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Abstract We analyze parabolic PDEs with certain type of weakly singular or
degenerate time-dependent coefficients and prove existence and uniqueness of weak
solutions in an appropriate sense. A localization of the PDEs to a bounded spatial
domain is justified. For the numerical solution a space–time wavelet discretization is
employed. An optimality result for the iterative solution of the arising systems can be
obtained. Finally, applications to fractional Brownian motion models in option pricing
are presented.
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60G22

1 Introduction

This work aims at the analysis of certain type of degenerate linear parabolic differen-
tial equations and the design of an efficient algorithm for their numerical treatment.
The numerical analysis of degenerate parabolic Kolmogorov equations with weakly
singular or degenerate coefficients is of independent interest. We present the pricing
of European type options under a fractional Brownian Motion (FBM) market model
as our main application.

The arising PDE reads as follows:

∂t u − tγ Lu = f on I × D (1.1)

u(0) = g, (1.2)
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338 O. Reichmann

where L denotes a diffusion operator, g the sufficiently smooth initial data, γ a con-
stant with γ ∈ (−1, 1), I = [0, 1] and a Lipschitz domain D ⊂ R

d for d ≥ 1. Note
that negative exponents γ lead to an explosion at t = 0, while positive γ lead to
a degeneracy of the diffusion coefficients. Therefore the initial condition has to be
imposed in an appropriate sense.

We consider a weak space–time formulation in the sense of [3,10,38], as a pos-
sible singularity or degeneracy of the diffusion coefficients impedes the application
of classical parabolic theory, cf. [2,33]. The use of appropriate wavelet bases in the
space–time domain leads to Riesz bases for the ansatz and test spaces, cf. [6,38]. As
pricing problems are typically posed on unbounded spatial domains, a localization for
the PDE with different boundary conditions and the arising truncation estimates are
presented.

The use of Riesz bases in conjunction with the compressibility of the correspond-
ing operator enables us to prove the optimality of the solution process for the arising
bi-infinite linear system, compared to the sequence of best N -term approximations.
By optimality we mean that the approximations produced by the method converge
asymptotically with the same rate in an appropriate norm as the sequence of best
approximations from the span of the best N tensor products of temporal and spatial
wavelets.

The FBM was introduced by Kolmogorov [28] under the name “Wiener Spiral”.
The current name is due to the pioneer work of Mandelbrot and Van Neus [29]. The-
oretical properties such as stochastic integration with respect to FBM and stochastic
differential equations driven by FBM have received a lot of attention, cf. [5,22,23,27]
and the monograph [7]. Applications of fractional Brownian motion are not restricted
to finance [32], but an extensive amount of literature is devoted to applications in
modeling foreign exchange options, weather derivatives and other types of products.
For simple contracts such as plain vanilla European options closed form solutions
can be derived, for instance [5,31]. In general these are not available and numerical
methods have to be employed. Though there exists literature on path simulation for
FBM, e.g. [1,29,34,40], deterministic solution methods have, to our knowledge, not
been analyzed so far.

The remainder of the paper is structured as follows. In the following section we
present two uniqueness and existence results for degenerate parabolic PDEs in a
weak space–time formulation with different enforcement of the initial conditions.
In Sect. 3 the discretization of the PDEs is presented using space–time wavelets. Sec-
tion 4 presents an optimality result for the solution of the arising bi-infinite systems
using the algorithm of [12] or [13]. Subsequently, the application of the derived theory
to the pricing of European options under an FBM market model is described. Finally,
we conclude and bring up some open questions.

2 Weak formulation

In this section we derive two weak space–time formulations for degenerate para-
bolic equations such as (1.1)–(1.2) in arbitrary space dimensions. The main difference
between the two formulations described lies in the enforcement of the initial condition.
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Optimal space–time adaptive wavelet methods for degenerate parabolic PDEs 339

Well-posedness results as well as a-priori estimates can be obtained based on eigen-
function expansion of the operator L .

2.1 Essential initial condition

We consider the following degenerate parabolic problem for sufficiently smooth
u(t, x):

∂t u − tγ Lu = f on I × D, (2.1)

u(0) = g, (2.2)

where L is defined by

L := γ + 1

2

d∑

j,k=1

∂

∂x j
a j,k(x)

∂

∂xk
, (2.3)

for γ = 2H − 1, H ∈ (0, 1), a bounded Lipschitz domain D ⊂ R
d and a finite time

interval I := (0, T ), T > 0. We assume a j,k(x), 1 ≤ j, k ≤ d to be smooth functions
such that ∞ > a ‖ξ‖2 ≥ ξ� A(x)ξ ≥ a ‖ξ‖2 > 0, for all ξ, x ∈ R

d , ξ 	= 0, and
A(x) = A(x)�, where A(x) = (a j,k(x))1≤ j,k≤d . The operator maps L : V → V ∗,
where V := H1

0 (D), V ∗ = H−1(D) and the associated bilinear form a(·, ·) reads

a(u, v) : V × V → R, a(u, v) := 〈Lu, v〉V ∗,V , ∀u, v ∈ V . (2.4)

To state the variational formulation of (2.1)–(2.2) we introduce the following spaces

X := H1
t−γ /2(I ; V ∗) ∩ L2

tγ /2(I ; V ) (2.5)

∼=
(

H1
t−γ /2(I )⊗ V ∗) ∩

(
L2

tγ /2(I )⊗ V
)
,

Y := L2
tγ /2(I ; V ) ∼= L2

tγ /2(I )⊗ V, (2.6)

X(0 := {w ∈ X : w(0, ·) = 0 in V ∗}, (2.7)

X0) := {w ∈ X : w(T, ·) = 0 in V ∗}, (2.8)

L2
tγ /2
(I ) := C∞(0, T )

‖·‖
L2

tγ /2
(I )

and H1
tγ /2
(I ) := C∞(0, T )

‖·‖
H1

tγ /2
(I )

. We refer to [36,
Chapter II.4] for proofs of the isomorphisms given in (2.5) and (2.6) for X and Y . The
weighted norms are defined by

‖u‖2
L2

tγ /2
(I )

:=
∫

I

u2tγ dt, ‖u‖2
H1

tγ /2
(I )

:=
∫

I

u2tγ dt +
∫

I

u̇2tγ dt.
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340 O. Reichmann

We use the following norms on X and Y
‖u‖2

X := ‖u̇‖2
L2

t−γ /2 (I ;V ∗) + ‖u‖2
L2

tγ /2
(I ;V ) ,

‖u‖2
L2

tγ /2
(I ;V ) :=

∫

I

tγ ‖u‖2
V dt, ‖u‖2

L2
t−γ /2 (I ;V ∗) :=

∫

I

t−γ ‖u‖2
V ∗ dt,

‖u‖2
H1

t−γ /2 (I ;V ∗) :=
∫

I

t−γ ‖u‖2
V ∗ + t−γ ‖u̇‖2

V ∗ dt,

where we denote by ‖·‖V the energy norm on V , i.e.,

‖u‖2
V = a(u, u).

The family of eigenfunctions of the self-adjoint operator L in (2.3) is denote by (φλ)λ∈σ
for σ ⊂ R+ and is assumed to form an orthonormal basis of L2(D). Therefore any ele-
ment in v ∈ V admits the following representation v = ∑

λ∈σ vλφλ, vλ ∈ R, λ ∈ σ .
Due to Parseval’s theorem we obtain ‖v‖2

L2(D) =∑λ∈σ |vλ|2. Besides,

‖v‖2
V = a(u, u) =

∑

λ∈σ
λ |vλ|2

holds. Any element h ∈ V ∗ admits the following representation

h =
∑

λ∈σ
hλφλ, where hλ := 〈h, φλ〉V ∗,V

and it easy to see that

‖h‖2
V ∗ =

∑

λ∈σ
λ−1 |hλ|2 .

We now show the following result.

Theorem 2.1 For every f ∈ Y∗, g = 0 (2.1)–(2.2) admits a unique solution u ∈ X(0
and there holds the a-priori error estimate

‖u‖X ≤ √
2 ‖ f ‖Y∗ ,

where ‖ f ‖Y∗ = ‖ f ‖L2
t−γ /2

(I, V ∗).

The proof follows from the inf-sup condition (2.9), the surjectivity (2.10) and the
continuity (2.11) of the corresponding bilinear form using, e.g. [4] or [8, III, Theorem
4.3]. These properties will be proved in the following. We need the spaces X := {u ∈
L2

tγ /2
(I ) ∩ H1

t−γ /2(I ) : u(0) = 0} and Y := L2
tγ /2
(I ) and remark that H1

t−γ /2(I ) ⊂
C0(I ) holds, this follows as in Lemma 2.4. For u ∈ X we define the seminorm:

‖u‖Xλ :=
∥∥∥λ− 1

2 t−γ /2u̇ + λ
1
2 tγ /2u

∥∥∥
L2(I )

.
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Optimal space–time adaptive wavelet methods for degenerate parabolic PDEs 341

Lemma 2.1 For λ > 0 and u ∈ X, define the norm ‖u‖λ by

‖u‖2
λ := λ−1

∥∥∥t−γ /2u̇
∥∥∥

2

L2(I )
+ λ

∥∥∥tγ /2u
∥∥∥

2

L2(I )
.

Then, for all u ∈ X holds:

‖u‖λ ≤ ‖u‖Xλ ≤ √
2 ‖u‖λ .

Proof Let u ∈ X , then

‖u‖2
Xλ = λ−1

∥∥∥t−γ /2u̇
∥∥∥

2

L2(I )
+ λ

∥∥∥tγ /2u
∥∥∥

2

L2(I )
+ 2

∫

I

uu̇ dt

= ‖u‖2
λ + |u(T )|2 ≥ ‖u‖2

λ .

Further,

2

∣∣∣∣∣∣

∫

I

uu̇ dt

∣∣∣∣∣∣
≤ 2λ1/2

∥∥∥tγ /2u
∥∥∥

L2(I )
λ−1/2

∥∥∥t−γ /2u̇
∥∥∥

L2(I )

≤ λ

∥∥∥tγ /2u
∥∥∥

2

L2(I )
+ λ−1

∥∥∥t−γ /2u̇
∥∥∥

2

L2(I )

and therefore ‖u‖2
Xλ ≤ 2 ‖u‖2

λ.

Lemma 2.2 We have

inf
0 	=u∈X(0

sup
0 	=v∈Y

B(u, v)

‖u‖X ‖v‖Y
≥ 1√

2
, (2.9)

∀ 0 	= v ∈ Y : sup
u∈X(0

B(u, v) > 0 (2.10)

and

sup
0 	=u∈X(0,0 	=v∈Y

|B(u, v)|
‖u‖X ‖v‖Y

< ∞, (2.11)

where

B(u, v) :=
T∫

0

(〈v(t), u̇(t)〉V,V ∗ + tγ a(u(t), v(t))
)

dt, (2.12)

for u ∈ X(0, v ∈ Y and a(·, ·) as in (2.4).
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342 O. Reichmann

Proof Let u ∈ X . Then u =∑λ∈σ uλ(t)φλ, v ∈ Y, v =∑λ∈σ vλ(t)φλ, where φλ are
the eigenfunctions of the self-adjoint operator L . The family of functions (φλ)λ∈σ is
assumed to form an orthonormal basis of L2(D) and uλ(t) ∈ L2

tγ /2
(I )∩H1

t−γ /2(I ), vλ ∈
L2

tγ /2
(I ), then

B(u, v) =
T∫

0

(〈v(t), u̇(t)〉V,V ∗ + tγ a(u(t), v(t))
)

dt

=
∑

λ∈σ

T∫

0

λ1/2vλ(t)t
γ /2
(
λ−1/2t−γ /2u̇λ(t)+ λ1/2tγ /2uλ(t)

)
dt.

Therefore,

|B(u, v)| ≤
⎛

⎝
∑

λ∈σ
λ

T∫

0

tγ |vλ(t)|2 dt

⎞

⎠
1/2

×
⎛

⎝
∑

λ∈σ

T∫

0

∣∣∣λ−1/2t−γ /2u̇(t)λ + λ1/2tγ /2uλ(t)
∣∣∣
2

dt

⎞

⎠
1/2

= ‖v‖L2
tγ /2

(I ;V )

(
∑

λ∈σ
‖uλ(t)‖2

Xλ

)1/2

≤ ‖v‖L2
tγ /2

(I ;V )
√

2

(
∑

λ∈σ
‖uλ(t)‖2

λ

)1/2

= √
2 ‖u‖X ‖v‖Y .

This implies (2.11). Next given u ∈ X(0, we define Y � vu =∑λ∈σ vλ(t)φλ by

vλ(t) = λ−1t−γ u̇λ(t)+ uλ(t),

then

‖vu‖2
Y =

∑

λ∈σ
λ

T∫

0

tγ
(
λ−1t−γ u̇λ(t)+ uλ(t)

)2
dt

=
∑

λ∈σ

T∫

0

(
λ−1/2u̇λ(t)t

−γ /2 + λ1/2uλ(t)t
γ /2
)2

dt

=
∑

λ∈σ
‖uλ(t)‖2

Xλ ≤ 2 ‖u‖2
X . (2.13)

B(u, vu) =
T∫

0

〈vu(t), u̇(t)〉V ∗,V + tγ a(u, vu) dt
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=
∑

λ∈σ

T∫

0

(
λ−1t−γ u̇λ(t)+ uλ(t)u̇λ(t)

)

+λtγ
(
λ−1t−γ u̇λ(t)+ uλ(t)uλ(t)

)
dt

=
∑

λ∈σ

T∫

0

(
λ−1t−γ |u̇λ(t)|2 + d

dt
|uλ(t)|2 + λtγ |uλ(t)|2 dt

)

= ‖u‖2
X + ‖u(T )‖2

L2(D) − ‖u(0)‖2
L2(D) .

This implies (2.9) using (2.13). Let now v(t) = ∑
λ∈σ vλ(t)φλ be given, we define

uv(t) =∑λ uλ(t)φλ, where (uλ(t))λ∈σ is given as solutions of the following sequence
of initial value problems.

λ−1t−γ u̇λ(t)+ uλ(t) = vλ(t) for t ∈ (0, T ), uλ(0) = 0.

In the following it will be shown that v ∈ Y implies uv ∈ X . We have

‖v‖2
Y =

∑

λ∈σ

T∫

0

tγ λ |vλ(t)|2 dt

=
∑

λ∈σ

T∫

0

λ

∣∣∣λ−1/2t−γ u̇λ(t)+ λ1/2uλ(t)
∣∣∣
2

=
∑

λ∈σ
‖uλ(t)‖2

Xλ ≥
∑

λ∈σ
‖uλ(t)‖2

λ = ‖uv‖2
X .

We are now able to prove statement (2.10).

B(uv, v) =
T∫

0

〈v(t), u̇v(t)〉 + tγ a(uv(t), v(t)) dt

=
∑

λ∈σ

T∫

0

vλ(t)u̇λ(t)+ λuλ(t)vλ(t)t
γ dt

=
∑

λ∈σ

T∫

0

λtγ |vλ(t)|2 dt = ‖v‖2
Y > 0.

Remark 2.1 For every f ∈ Y∗ the problem (2.1)–(2.2) with g = 0 admits a unique
solution u ∈ X(0 satisfying

B(u, v) = 〈 f, v〉V ∗,V , ∀v ∈ Y .
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344 O. Reichmann

With X and Y as in (2.5)–(2.6) and B(·, ·) as in Lemma 2.2, we have the a-priori
estimate

‖u‖2
X ≤ 2 ‖ f ‖2

Y∗ .

The existence of a unique weak solution for non-homogeneous initial data follows
via the following change of variable ṽ(t, x) = v(t, x) − g, for g ∈ V . The function
ṽ(t, x) satisfies the same PDE as v(t, x) with homogeneous initial conditions and a
different right hand side.

2.2 Natural initial condition

As we assume non-homogeneous initial conditions, we can either transform the prob-
lem into a homogeneous setting as described in Sect. 2.1 or impose natural conditions
as follows:

T∫

0

(v(t), u̇(t))L2(D)dt = −
T∫

0

(v̇(t), u(t))L2(D)dt + (u(t), v(t))L2(D)|T0 ,

for v, u ∈ C∞(I, V ). For u(0) 	= 0 we impose homogeneous Dirichlet conditions on
v, i.e. we require v(T ) = 0. The variational formulation with weak enforcement of
the initial conditions then reads: given f ∈ X ∗

0), g ∈ V :

u ∈ Y : B∗(u, v) =
T∫

0

〈v(t), f (t)〉V,V ∗dt + 〈g, v(0)〉V,V ∗ , ∀v ∈ X0), (2.14)

where B∗(·, ·) is given by

B∗(u, v) :=
T∫

0

(−〈u(t), v̇(t)〉V,V ∗ + tγ a(u(t), v(t))
)

dt, (2.15)

for u ∈ Y, v ∈ X0), with a(·, ·) given in (2.4). We define the functional l∗(v) on X as
follows:

l∗(v) :=
T∫

0

〈v(t), f (t)〉V,V ∗dt + 〈g, v(0)〉V,V ∗ .

Lemma 2.3 For f ∈ X ∗
0) and for g ∈ V, l∗ is a continuous, linear functional on X0),

i.e., there exists a C > 0 s.t.

∀v ∈ X0) : ∣∣l∗(v)
∣∣ ≤ C

(
‖ f ‖X ∗

0)
+ ‖g‖V

)
‖v‖X0)

.
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Proof For f ∈ X ∗
0) we have:

∣∣∣∣∣∣

T∫

0

〈v(t), f (t)〉V,V ∗dt

∣∣∣∣∣∣
≤ ‖v‖X0)

‖ f ‖X ∗
0)
.

By the embedding given in (2.16) we obtain for v ∈ X0)

‖v(0)‖V ∗ ≤ ‖v‖C0(I ,V ∗) ≤ C ‖v‖X ,

which implies,

|〈v(0), g〉|V ∗,V ≤ ‖g‖V ‖v(0)‖V ∗ ≤ C ‖g‖V ‖v‖X .

This implies the claimed result.

We need the following embedding result.

Lemma 2.4 For X := H1
t−γ /2(I ; V ∗)∩ L2

tγ /2
(I ; V ) the following continuous embed-

ding holds:

X ⊂ C0(I , D(�
1
2 − |γ |

2 )), (2.16)

where � denotes the operator � = L1/2, as defined in [15, Chapter VIII, §3,
Definition 8]. The operator �θ, θ ∈ (0, 1) denotes the holomorphic interpolant
between V and V ∗.

Proof Consider first γ ∈ (−1, 0), then L2
tγ /2
(I, V ) ⊂ L2

t−γ /2(I, V ). For the space

H1
t−γ /2(I, V ∗)∩ L2

t−γ /2(I, V ), the claimed result follows from [16, Chapter XVIII, §1,

Remark 6]. Let now γ ∈ (0, 1). Then H1
t−γ /2(I, V ∗) ⊂ H1

tγ /2
(I, V ∗), therefore we can

again apply [16, Chapter XVIII, §1, Remark 6] and conclude.

Remark 2.2 (i) The space H1
t−γ /2(I, V ∗)∩ L2

t−γ /2(I, V ), for γ ∈ (0, 1), is contin-

uously embedded in C0(I , D(�
1
2 + γ

2 )), cf. [16, Chapter XVIII, §1, Remark 6].
(ii) The elementary embedding of X in C0(I , V ∗) can be shown as follows, cf.

[25, Proposition 1.1],

T∫

0

‖v(t)‖V ∗ dt ≤
⎛

⎝
T∫

0

‖v(t)‖2
V ∗ t−γ dt

⎞

⎠
1/2⎛

⎝
T∫

0

tγ dt

⎞

⎠
1/2

.

Therefore the mapping K : u → u′, K : X → L1
loc(I, V ∗) is continuous. This

implies that v is absolutely continuous on I with values in V ∗. Note that this
does not imply the continuity of the embedding.
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346 O. Reichmann

(iii) We obtain an analogous result for the weight function (T − t)γ instead of tγ .
(iv) To our knowledge, it is not known if the embedding given in Lemma 2.4 is

sharp.

Theorem 2.2 Let B∗(·, ·) be given as in (2.15) and X ,Y as in (2.5)–(2.6). Then the
following estimates hold

inf
0 	=u∈Y

sup
0 	=v∈X0)

B∗(u, v)
‖u‖Y ‖v‖X0)

≥ 1√
2
,

∀0 	= v ∈ X0) : sup
u∈Y

B∗(u, v) > 0,

sup
0 	=v∈X0),0 	=u∈Y

|B∗(u, v)|
‖u‖Y ‖v‖X

< ∞.

Proof The proof is analogous to the proof of Lemma 2.2.

Corollary 2.1 For every g ∈ V and f ∈ X ∗
0), there exists a unique weak solution

u ∈ Y in the sense that u satisfies (2.14).

Remark 2.3 Note that for this formulation smoothness of the initial data is required,
i.e. g ∈ V . This is stronger than in the standard parabolic setting, as in this situa-
tion g ∈ L2(D) is sufficient in order to prove well-posedness of the corresponding
weak formulation. This stronger condition stems from the fact that in the setup only

the continuous embedding X ⊂ C0(I ,�
1
2 − |γ |

2 ) can be proved, while in the standard
parabolic case (L2(I, V ) ∩ H1(I, V ∗)) ⊂ C0(I , L2(D)) holds.

Remark 2.4 Alternatively the following formulation with natural initial conditions
could also be considered. Find w ∈ X such that

B†(w, v) = f †(v), for all v := (v1, v2) ∈ Y × V, where (2.17)

B†(w, v) =
T∫

0

(〈ẇ(t), v1(t)〉V ∗,V + a(w(t), v1(t))
)

dt + 〈w(0), v2〉V ∗,V ,

f †(v) =
T∫

0

〈v1(t), f (t)〉V ∗,V dt + 〈g, v2〉V ∗,V .

The well-posedness of (2.17) follows as in Lemma 2.2. The advantage of formulation
(2.17) is the absence of any boundary conditions in the temporal domain, therefore
the bases presented in the next section can be used for the discretization without any
additional considerations.

3 Discretization

For the space–time discretization of the degenerate parabolic PDE, given by
(2.1)–(2.2), we follow [3,38]. A crucial role for the efficient discretization is the use
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of tensor product Riesz bases on the space–time domain. We construct appropriate
bases in the following and prove the necessary norm equivalences.

3.1 Wavelets

To present the space–time discretization, we briefly recapitulate basic definitions and
results on wavelets from, e.g., [11] and the references therein. For specific spline
wavelet constructions on a bounded interval J , we refer to, e.g. [18,35,39]. Our use
of compactly supported, piecewise polynomial multiresolution systems (rather than
the more commonly employed B-spline finite element spaces) for the Galerkin dis-
cretization of corresponding equations is motivated by the following key properties of
these spline wavelet systems: (a) the approximation properties of the multiresolution
sytems equal those of the B-spline systems, (b) the spline wavelet systems form Riesz
bases on the corresponding spaces allowing for simple and efficient precondition-
ing of the arising matrices, (c) the spline wavelet systems can be designed to have a
large number of vanishing moments. We recapitulate the basic definitions from, e.g.
[11,39] to which we also refer for further references and additional details, such as
the construction of higher order wavelets.
Our wavelet systems on the bounded interval J are two-parameter systems
{ψl,k}l=−1,...,∞,k∈∇l of compactly supported functions ψl,k , where ∇l denotes the
set of wavelet indices on level l. Here the first index, l, denotes “level” of refinement
resp. resolution: wavelet functions ψl,k with large values of the level index are well-
localized in the sense that diam(suppψl,k) = O(2−l). The second index, k ∈ ∇l ,
measures the localization of wavelet ψl,k within the interval I at scale l and ranges in
the index set ∇l . In order to achieve maximal flexibility in the construction of wavelet
systems (which can be used to satisfy other requirements, such as minimizing their
support size or to minimize the size of constants in norm equivalences), we consider
wavelet systems for the temporal discretization which are biorthogonal and orthonor-
mal systems for the spatial domain. The system consists of a primal wavelet system
{ψl,k}l=−1,...,∞,k∈∇l which is a Riesz basis of L2(J ) and a corresponding dual wavelet
system {ψ̃l,k}l=−1,...,∞,k∈∇l (which will never be used explicitly in our algorithms).

The primal wavelet bases ψl,k span finite dimensional spaces

W l := span {ψl,k : k ∈ ∇l}, VL :=
L−1⊕

l=−1

W l l = −1, 0, 1 . . .

The dual spaces are defined analogously in terms of the dual wavelets ψ̃l,k by

W̃ l := span {ψ̃l,k : k ∈ ∇l}, ṼL :=
L−1⊕

l=−1

W̃ l l = −1, 0, 1 . . .

In the sequel we require the following properties of the wavelet functions to be used on
our Galerkin discretization schemes, we assume without loss of generality I = (0, 1)
for the time interval and D = (0, 1)d for the physical domain. The use of a hypercube
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as the spatial domain enables us to construct the basis functions for the discretization
of the physical space as tensor products of univariate basis functions. Besides, we
could also use sparse tensor products to overcome the curse of dimension, cf. [19] for
the elliptic case. Domains of this form arise naturally in the discretization of pricing
equations due to localization, cf. Sect. 5. We now state the requirements for the tem-
poral wavelet basis � := {θλ : λ ∈ ∇�} and the dual basis �̃ := {θ̃λ : λ ∈ ∇�},
where ∇� denotes the set of all wavelet indices.

(t1) Biorthogonality: the basis functions θl,k, θ̃l,k satisfy

〈θl,k, θ̃l ′,k′ 〉 = δl,l ′δk,k′ . (3.1)

(t2) Local support: the diameter of the support is proportional to the meshsize 2−l ,

diam supp θl,k ∼ 2−l , diam supp θ̃l,k ∼ 2−l . (3.2)

(t3) The primal basis functions are assumed to be piecewise polynomials of order
pt where piecewise means that the singular support consists of a uniformly
bounded number of points over all levels.

(t4) Vanishing moments: The primal basis functions θl,k are assumed to satisfy
vanishing moment conditions up to order pt > 1

1∫

0

θl,k, tαdt = 0, α = 0, . . . , dt = pt , l ≥ 0. (3.3)

The dual wavelets are assumed to satisfy

1∫

0

θ̃l,k, tαdt = 0, α = 0, . . . , d̃t , l ≥ 0, (3.4)

for d̃t ≥ dt .
(t5) We assume the following norm equivalences, for all 0 ≤ s ≤ κ and a κ ≥ 1

‖u‖2
s ∼

∞∑

l=−1

∑

k∈∇l

22ls
∣∣∣ul

k

∣∣∣
2
, ul

k := 〈θ̃l,k, u〉, (3.5)

where ‖·‖s denotes the Hs(0, 1)-norm.

Further we require that the wavelets and the dual wavelets for the time domain belong
to W 1,∞(0, 1) and the boundary wavelets for the time discretization satisfy:

∣∣θl,k(t)
∣∣ ≤ Cθ2l/2(2l t)β, (3.6)

∣∣(θl,k)
′(t)
∣∣ ≤ Cθ23l/2(2l t)β−1, t ∈ [0, 2−l ], β ∈ N0, k ∈ ∇L

l , (3.7)
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∣∣θ̃l,k(t)
∣∣ ≤ CθCθ2l/2(2l t)β̃ , (3.8)

∣∣(θ̃l,k)
′(t)
∣∣ ≤ Cθ23l/2(2l t)β̃−1, t ∈ [0, 2−l ], β̃ ∈ N0, k ∈ ∇̃L

l , (3.9)

where γ /2+β > − 1
2 and −γ /2+ β̃ > − 1

2 with γ as in (2.1). The sets ∇L
l and ∇̃L

l are
given as follows, ∇L

l := {k ∈ ∇l : 0 ∈ suppθl,k} and ∇̃L
l := {k ∈ ∇̃l : 0 ∈ suppθ̃l,k}.

The estimates (3.6)–(3.9) play a crucial role in the proof of the norm equivalences for
the weighted spaces, cf. [6, Section 3]. We refer to [14] for explicit constructions.
The spatial basis is constructed as follows: we define the subspace VL of H1

0 (D),
for D = [0, 1]d , as the full tensor product of d univariate approximation spaces, i.e.
VL :=⊗1≤i≤d V li , which can be written as

VL = {
σl,k : −1 ≤ li ≤ L − 1, ki ∈ ∇li , i = 1, . . . , d

}
,

with basis functions σl,k = σl1,k1 · · · σld ,kd ,−1 ≤ li ≤ L − 1, ki ∈ ∇li , i = 1, . . . , d,
where ∇li denotes the set of wavelet coefficients in the i-th coordinate on level li ,
supported on [0, 1]. We can write VL in terms of increment spaces

VL =
⊕

−1≤li ≤L−1

W l1 ⊗ · · · ⊗ W ld .

We denote by � = {σμ : μ ∈ ∇�} = ⊗d
i=1�i , �i = {σμi : μi ∈ ∇�i }. The

tensor product spatial basis satisfies the following assumptions, where ∇� is the set
of all wavelet multi-indices and ∇�i denotes the set of all wavelet indices in the i-th
coordinate.

(s1) Local support: the diameter of the support is proportional to the meshsize 2−l ,

diam supp σl,k ∼ 2−l . (3.10)

(s2) Continuity: the primal basis function are assumed to be elements in
Crx (0, 1), with rx ≤ px − 2.

(s3) Piecewise polynomial of order px , where piecewise means that the singular
support consists of a uniformly bounded number of points.

(s4) Vanishing moments: The primal basis functions σl,k are assumed to satisfy
vanishing moment conditions up to order px > 1

1∫

0

σl,k, xαdx = 0, α = 0, . . . , dx = px , l ≥ 0. (3.11)

(s5) Orthonormality in L2(0, 1).
(s6) Riesz basis property in L2(0, 1) and renormalized in H1

0 (0, 1) and
H−1(0, 1).

We refer to [20,21] for explicit constructions.
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3.2 Time discretization

Using the wavelet constructions of the previous section we are now able to obtain
Riesz bases for the spaces L2

tγ /2
(0, 1) and H1

tγ /2
(0, 1).

Theorem 3.1 The norm ||| · |||L2
tγ /2

(0,1) is given as

|||u|||2
L2

tγ /2
(0,1)

:=
∞∑

l=−1

∑

k∈∇l

(2−l k)γ
∣∣∣ul

k

∣∣∣
2
, (3.12)

where u ∈ L2
tγ /2
(0, 1) admits the unique representation

u =
∞∑

l=−1

∑

k∈∇l

ul
kθl,k, ul

k = 〈θ̃l,k, u〉.

Then the following norm equivalence holds for all functions u ∈ L2
tγ /2
(0, 1):

‖u‖2
L2

tγ /2
(0,1)

∼ |||u|||2
L2

tγ /2
(0,1)

. (3.13)

Proof The result follows from [6, Theorem 3.3] setting ω = tγ /2 and checking
Assumption 3.1 and 3.2 in [6].

A similar result can be obtained for H1
tγ /2
(0, 1) using the following theorem:

Theorem 3.2 Let � be as above and let u ∈ H1
tγ /2
(0, 1), then

∥∥u′∥∥2
L2

tγ /2
(0,1) ∼

∞∑

l=−1

22l
∑

k∈∇l

(2−l k)γ
∣∣∣ul

k

∣∣∣
2
.

Proof See [6, Theorem 5.1].

Therefore � forms after diagonal scaling a Riesz basis of H1
tγ /2
(0, 1).

Remark 3.1 Note that analogous results to Theorems 3.1 and 3.2 can be obtained for
the weight function w(t) =∏k

j=1(t j − t)γ j , γ j ∈ (−1, 1), j = 1, . . . , k.

3.3 Space–time discretization

We are now able to construct a Riesz basis for the spaces X and Y in the case of a
bounded spatial domain. The spaces have the following tensor product structure:

X = (L2
tγ /2(I )⊗ V ) ∩ (H1

t−γ /2(I )⊗ V ∗) and Y = L2
tγ /2 ⊗ V,
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where V = H1
0 (D). Let � and � be given as above, then we obtain from [24,

Proposition 1 and 2] that the collection �⊗� normalized in X , i.e.,

⎧
⎪⎪⎨

⎪⎪⎩
(t, x) → θλ(t)σμ(x)√∥∥σμ

∥∥2
V + ‖θλ‖2

H1
t−γ /2 (I )

∥∥σμ
∥∥2

V ∗

: (λ, μ) ∈ ∇X := ∇� × ∇�

⎫
⎪⎪⎬

⎪⎪⎭

is a Riesz basis for X , denoted by [�⊗�]X and that �⊗� normalized in Y , i.e.,

{
(t, x) → θλ(t)σμ(x)∥∥σμ

∥∥
V

: (λ, μ) ∈ ∇X

}

is a Riesz basis for Y , denoted by [�⊗�]Y .

4 Optimality

We are interested in optimality of the approximation of the solution process of the
bi-infinite linear system, which arises from the discretization of (2.1) using the bases
as described in the previous section. We derive estimates for the work required to solve
of the arising linear systems, under the assumption that the best N -term approxima-
tion of the solution vector u converges with a certain rate s. This class of elements in
l2(∇X ) is formalized in the following definition.

Definition 4.1 For s > 0 the approximation class As∞(l2(∇X )) is defined as follows:

As∞(l2(∇X )) := {v ∈ l2(∇X ) : ‖v‖As∞(l2(∇X )) < ∞},

where ‖v‖As∞(l2(∇X )) := supε>0(ε×[min {N ∈ N0 : ‖v − vN ‖l2(∇X ) ≤ ε}]s) and vN

denotes the best N -term approximation of v.

Let s > 0 be such that u ∈ As∞(l2(∇X )), in order to be able to bound the complexity
of an iterative solution method for the bi-infinite system Bu = f , with appropriate B
and f , one needs a suitable bound on the complexity of an approximate matrix-vec-
tor product in terms of the prescribed tolerance. We formalize this in the notion of
s∗-admissibility.

Definition 4.2 B ∈ L(l2(∇X ), l2(∇Y )) is s∗-admissible if there exists a routine which
yields, for any ε > 0 and any finitely supported w ∈ l2(∇X ), a finitely supported
z ∈ l2(∇Y ) with ‖Bw − z‖l2(∇Y ) < ε. For any s ∈ (0, s∗), there exists an admissibil-
ity constant aB,s such that

#suppz ≤ aB,sε
−1/s ‖w‖1/s

A1/s∞ (l2(∇X ))
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and the number of arithmetic operations and storage locations used by the call of the
routine is bounded by some absolute multiple of

aB,sε
−1/s ‖w‖1/s

A1/s∞ (l2(∇X )) + #suppw + 1.

Next we introduce the concept of s∗-computability.

Definition 4.3 The mapping B ∈ L(l2(∇X ), l2(∇Y )) is s∗-computable if, for each
N ∈ N there exists a BN ∈ L(l2(∇X ), l2(∇Y )) having in each column at most N
nonzero entries whose joint computation takes an absolute multiple of N operations,
such that the computability constants

cB,s := sup
N∈N

‖B − BN ‖1/s
l2(∇X )→l2(∇Y )

are finite for any s ∈ (0, s∗).

In the following we assume that for f ∈ Y∗ and any ε > 0 we can compute fε ∈ l2(∇Y )
with

‖f − fε‖l2(∇Y ) ≤ ε and #supp fε � min{N : ‖f − fN ‖l2(∇Y ) ≤ ε},

where fN denotes the best N-term approximation of f . The number of arithmetic
operations and storage locations used by the computation of fε is bounded by some
absolute multiple of #suppfε + 1. The following theorem links the two concepts of
s∗-admissibility and s∗-computability, cf. [38, Theorem 4.10].

Theorem 4.1 An s∗-computable B is s∗-admissible.

We use the following result from [38, Corollary 4.6].

Corollary 4.1 If B ∈ L(l2(∇X ), l2(∇Y )) and C ∈ L(l2(∇Y ), l2(∇Z )), for Z ∈
{X ,Y}, then so is CB ∈ L(l2(∇X ), l2(∇Z ))

The adaptive wavelet methods from [12,13] can be shown to be optimal for s∗-admis-
sible B and u ∈ A1/s∞ (l2(∇X )).

Theorem 4.2 Consider the bi-infinite system Bu = f and let B be s∗-admissible,
then for any ε > 0, both adaptive wavelet methods from [12,13] produce an approx-
imation uε to u with ‖u − uε‖l2(∇X ) ≤ ε. If u ∈ As∞(l2(∇X )), then #suppuε �
ε−1/s ‖u‖1/s

As∞(l2(∇X ))
and if, moreover, s < s∗, then the number of arithmetic oper-

ations and storage locations required by a call of either of these adaptive wavelet
solvers with tolerance ε is bounded by some multiple of

ε−1/s(1 + aB,s) ‖u‖1/s
As∞(l2(∇X ))

+ 1.

The multiples depend only on s when it tends to 0 or ∞, and on ‖B‖l2(∇X )→l2(∇Y )
and

∥∥B−1
∥∥

l2(∇Y )→l2(∇X ) when they tend to infinity.
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The following proposition is very useful, as the coefficients in the PDE (2.1) separate,
i.e., using appropriate bases for the discretization leads to linear systems that possess
a tensor product structure, cf. [38, Proposition 8.1].

Proposition 4.1 For some s∗ > 0, let C,D be bi-infinite matrices, which are s∗-com-
putable. Then

(a) C ⊗ D is s∗-computable with computability constant satisfying, for 0 < s <
s̃ < s∗, cC⊗D,s � (cC,s̃ cD,s̃)

s̃/s and
(b) for any ε ∈ (0, s∗),C ⊗ D is (s∗ − ε)-computable, with computability con-

stant cC⊗D,s satisfying, for 0 < s < s∗ − ε < s̃ < s∗, cC⊗D,s �
max (cC,s̃)max (cD,s̃).

Let [� ⊗ �]X and [� ⊗ �]Y be the Riesz bases of X and Y defined in Sect. 3.3,
further let �̇ := {θ̇λ, λ ∈ ∇�}. Denoting by ‖�‖V the diagonal matrix with entries
σμ,μ ∈ ∇� and by [�]V the Riesz basis of V consisting of the collection� normalized
in V , similarly for other spaces and collections, we obtain the following representation
of the bi-infinite system arising from the bilinear form B(·, ·) as in Lemma 2.2

B := B([�⊗�]X , [�⊗�]Y )

=
⎡

⎣(�̇,�)L2(I ) ⊗ (�,�)L2(D) +
∫

I

tγ a(�⊗�,�⊗�) dt

⎤

⎦ (4.1)

×
(

I dt ⊗ ‖�‖−1
V

)
‖�⊗�‖−1

X

=
[
([�̇]H1

t−γ /2 (I )
,�)L2(I ) ⊗ ([�]V ∗ , [�]V )L2(D)

]
(4.2)

×
(

‖�‖H1
t−γ /2 (I )

⊗ ‖�‖V ∗

)
‖�⊗�‖−1

X

+
∫

I

tγ a(�⊗ [�]V ,�⊗ [�]V ) dt (I dt ⊗ ‖�‖V ) ‖�⊗�‖−1
X .

The load vector reads:

f =
∫

I

〈 f,�⊗ [�]V 〉V ∗,V dt. (4.3)

We remark that the solution algorithms of [12,13] are only applicable to symmetric
system matrices B, we therefore consider the normal equations

B∗Bu = B∗f (4.4)

instead, cf. [38, Section 4].
We now show the s∗-computability of B and B∗. First consider the term ([�̇]H1

t−γ /2 (I )
,

�)L2(I ). The ∞-computability of the bi-infinite matrix and its adjoint follows as

123



354 O. Reichmann

in [38, Section 8.2] using the properties of the temporal basis. Next we consider
([�]V ∗ , [�]V )L2(D). The ∞-computability follows from [38, Section 8.3]. We now
consider the s∗-computability of

∫
I tγ a(�⊗ [�]V ,�⊗ [�]V ). Due to the properties

of the bilinear form, we get:

∫

I

tγ a(�⊗ [�]V ,�⊗ [�]V )dt = (�,�)L2
tγ /2

(I ) ⊗ a([�]V , [�]V ).

Therefore is suffices to investigate the s∗-computability of both factors. The ∞-com-
putability of (�,�)L2

tγ /2
(I ) follows from [6, Theorem 3.1] as in [38, Section 8.3]. For

a([�]V , [�]V ) we can deduce from [37] that it is s∗-computable with s∗ = px + 1.
We arrive at the following theorem.

Theorem 4.3 Consider the weak form of the parabolic problem (2.1) on X ,Y as in
(2.5)–(2.6) with bilinear form B(·, ·) as in (2.12) and the right hand side

∫
I 〈 f, ·〉 with

f as (2.1). Its representation using space–time wavelets as in Sect. 3.3 with appro-
priate boundary conditions reads Bu = f with B as in (4.2) and f as in (4.3). Then
for any ε > 0, the adaptive wavelet methods from [12] and [13] applied to the normal
equations (4.4) produce an approximation uε with

‖u − uε‖l2(∇X ) ≤ ε.

If for some s > 0,u ∈ As∞(l2(∇X )), then supp uε � ε−1/s ‖u‖1/s
As∞(l2(∇X ))

. The con-

stant only depends on s when it tends to 0 or ∞. If for arbitrary s∗ > 0 it holds that
s < s∗, then the number of operations and storage locations required by one call of the
space–time adaptive algorithm with tolerance ε > 0 is bounded by some multiple of

ε−1/sd2 ‖u‖1/s
As∞(l2(∇X ))

+ 1,

where this multiple is uniformly bounded in d and depends only on s ↓ 0 and s → ∞.

Remark 4.1 The complexity estimates in Theorems 4.2–4.3 apply if any entry in any
vector that is generated inside the routine used in the Theorems can be stored in or
fetched from memory in O(1) operations. This assumption is valid if an unlimited
amount of memory is available, where each element can be accessed in O(1) opera-
tions, as this is not the case an additional log-term seems a priori unavoidable in the
complexity estimate. We refer to [19, Section 6] for a detailed discussion of this issue.

Remark 4.2 Instead of applying the methods of [12,13] to the normal equations as in
Theorem 4.3, we could use a GMRES-scheme applied to the original linear system.
The author is not aware of theoretical results on such an approach.

5 Application

We describe the application of the results obtained in Sects. 2 and 4 to PDEs arising
in the context of option pricing under FBM market models.
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5.1 Preliminaries

Let (�,F ,P) be a complete probability space supporting a real-valued FBM BH (t)
with Hurst parameter H ∈ (0, 1) and let F H

t be the σ -algebra generated by
BH (s), s ≤ t .

Definition 5.1 For H ∈ (0, 1), a fractional Brownian motion BH is a Gaussian pro-
cess with mean zero, i.e.,

E[BH (t)] = 0

for all t and covariance:

E[BH (t)BH (s)] = 1

2

{
|t |2H + |s|2H − |t − s|2H

}
,

for all s, t ≥ 0. We assume BH (0) = 0. For H = 1
2 we obtain a standard Brownian

motion.

Our market model reads as follows. If S(t) denotes the spot price of the risky asset,
then its dynamics under the real world measure P is given as:

d S(t) = μS(t)dt + σ S(t)d BH (t), t ≥ 0. (5.1)

For the notion of a stochastic integral with respect to a fractional Brownian motion
BH (t)we refer to [23,27]. Besides we assume the existence of a risk free bank account
P(t) with risk free interest rate r > 0. With the Girsanov theorem for FBM, cf. [5,
Theorem 2.8] or [27, Theorem 3.18], we obtain the risk adjusted dynamics of the stock
S(t) under the equivalent measure Q:

d S(t) = r S(t)dt + σ S(t)d B̃H (t), t ≥ 0,

where B̃H (t) is a fractional Brownian motion under Q and the discounted stock is
a quasi-martingale under Q, see [5, Definition 2.3] for the definition of quasi-con-
ditional expectation and quasi-martingales. Note that Q is not a martingale measure
as the stock is not a martingale under Q. Let g(S) be the payoff of a European type
contingent claim V , for sufficiently smooth g. Its value at time t before maturity is
given as the discounted quasi-conditional expectation:

V (t) = e−r(T −t)
ẼQ[g(ST )|F H

t ], (5.2)

cf. [5, Theorem 4.2] and [22, Proposition 1]. The option price V (t) admits a PDE
representation.

Theorem 5.1 Let v ∈ C1,2([0, T ],R) such that v : [0, T ] × R+ → R+ satisfy the
following PDE:

∂tv(t, S)+ r Sv(t, S)+ Hσ 2t2H−1S2∂SSv(t, S)− rv(t, S) = 0 on (0, T )× R+
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with terminal condition v(T, S) = g(S), then

v(t, S) = V (t, S) for all t ∈ [0, T ], S ∈ R+.

Proof The result follows from [22, Proposition 2] and [5, Proposition 6.1].

5.2 Weak formulation

5.2.1 Essential initial conditions

Consider the following backward Kolmogorov equation arising in option pricing in
the context of fractional Brownian motion models, i.e.,

∂t u(t, S)+ r S∂Su(t, S)+ Hσ 2tγ S2∂SSu(t, S) = 0 on (0, T )× R+
u(T, S) = g(S) on R+,

with r > 0, σ > 0 and H ∈ (0, 1). This setup can be reduced to the setting in
Lemma 2.2. Transforming to log-price coordinates and time-to-maturity we obtain
the following strong formulation for ṽ(τ, x) = u(T − τ, ex ):

0 = ∂τ ṽ(τ, x)− α(γ )∂x ṽ(τ, x)− β(γ )∂xx ṽ(τ, x) on (0, T )× R

ṽ(0, x) = g(ex ) on R,

where α(γ ) = (r − Hσ 2(T − τ)γ ) and β(γ ) = Hσ 2(T − τ)γ . After localization,
removal of the drift and transformation to excess to payoff the formulation reads as

follows v(τ, y) = ṽ
(
τ, y − τr + H

σ 2

γ + 1
(T − τ)γ+1

︸ ︷︷ ︸
z(τ,y)

)− g(ez(τ,y))︸ ︷︷ ︸
=:̃g(τ,y)

:

∂τ (v(τ, y)+ g̃(τ, y))− β(γ )∂yy(v(τ, y)+ g̃(τ, y)) = 0 on (0, T )× D (5.3)

v(0, y) = 0 on D. (5.4)

The localization to the bounded interval D = (−R, R) will be justified in Sect. 5.4.
The weak formulation reads: find v ∈ X(0 such that for all w ∈ Y

B(v,w) = f (w), (5.5)

where

B(v,w) =
T∫

0

(
〈w, v̇〉VD ,V ∗

D
+ a(τ, v,w)

)
dτ

a(τ, v,w) = H
σ 2

2
(T − τ)γ

(
∂yv(τ, y), ∂yw(τ, y)

)
L2(D) ,
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f (v) = −B(g̃, v)

X := H1
(T −τ)−γ /2(I ; V ∗

D) ∩ L2
(T −τ)γ /2(I ; VD),

Y := L2
(T −τ)γ /2(I ; VD),

VD := H1
0 (D).

The well-posedness of this formulation follows analogously to Lemma 2.2.
Instead of localization of the problem to a bounded domain we can also consider the
equation in exponentially weighted Sobolev spaces, cf. [30, Section 2.2]

L2
ν(R) :=

{
v ∈ L1

loc(R) : veν|x | ∈ L2(R)
}
,

H1
ν (R) :=

{
v ∈ L1

loc(R) : veν|x |, v′eν|x | ∈ L2(R)
}
,

for some ν ∈ R.
To obtain a variational in this setup formulation we consider the pricing equation

before localization:

∂τ (v(τ, y)+ g̃(τ, y))− β(γ )(∂yyv(τ, y)+ g̃(τ, y)) = 0 on (0, T )× R (5.6)

v(0, y) = 0 on R. (5.7)

We multiply (5.6) by eν|y| and test with weν|y|, w ∈ C∞
0 ((0, T ),R):

∫

R

∂τ v(τ, y)w(τ, y)e2ν|y| dy − H
σ 2

2
(T − τ)γ

×
∫

R

[
eν|y|∂y (v(τ, y)) ∂y

(
eν|y|w(τ, y)

)
− (∂yeν|y|)(∂yv(τ, y))eν|y|w(τ, y)

]
dy

= (∂τ v(τ, y), w(τ, y))ν − H
σ 2

2
(T − τ)γ (∂yv, ∂yw)ν = −Bν(g̃, w),

where (·, ·)ν denotes the natural scalar product on L2
ν(R). We obtain existence of a

unique solution for the following problem as in (5.5): Find v ∈ Xν such that for all
w ∈ Yν

Bν(v,w) = fν(w), (5.8)

where

Bν(v,w) =
T∫

0

(〈w, v̇〉Vν ,V ∗
ν

+ aν(τ, v,w)
)

dτ

aν(τ, v,w) = H
σ 2

2
(T − τ)γ

[
(∂yv, ∂yw)ν

]
, fν(v) = −Bν(g̃, v),
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Xν := H1
(T −τ)−γ /2(I ; V ∗

ν ) ∩ L2
(T −τ)γ /2(I ; Vν), Yν := L2

(T −τ)γ /2(I ; Vν),

Vν := H1
ν (R),

for

Bν(g̃, ·) ∈ H1
ν (R)

∗. (5.9)

Note that (5.9) holds for standard options such as European calls and puts, for arbi-
trary ν ∈ R. For more exotic options, such as digital contracts or barrier options, with
discontinuous payoffs an appropriate smooth approximation of the payoff has to be
employed in order for (5.9) to hold.

Remark 5.1 The well-posedness of the pricing equation for European calls and puts
on weighted spaces Vν for arbitrary positive ν implies a fast decay of the excess-to-
payoff function at infinity. This property will be used to obtain a localization estimate
for the equation in Sect. 5.4.

5.2.2 Natural initial conditions

Instead of the enforcement of essential initial conditions, we now pose the problem
with natural initial data, cf. Sect. 2.2. For the backward Kolmogorov equation (5.6)–
(5.7) the formulation reads as follows: given f D ∈ (X D

0) )
∗, f −ν ∈ (X −ν

0) )
∗, gD ∈

VD, g−ν ∈ V−ν :

u ∈ YD : B∗
D(u, v) = 〈v, f D〉VD,V ∗

D
+ 〈v(0), gD〉V ∗

D ,V
, ∀v ∈ X D

0) , (5.10)

u ∈ Y−ν : B∗−ν(u, v) = 〈v, f ν〉Vν ,V ∗
ν

+ 〈v(0), gν〉V ∗
ν ,Vν , ∀v ∈ X −ν

0) , (5.11)

where

B∗
D(v,w) :=

T∫

0

(
−〈ẇ, v〉V ∗

D ,VD + aD(τ, v,w)
)

dτ,

B∗−ν(v,w) :=
T∫

0

(−〈ẇ, v〉V ∗
ν ,Vν + a−ν(τ, v,w)

)
dτ,

aD(τ, v,w) := H
σ 2

2
(T − τ)γ

(
∂yv(τ, y), ∂yw(τ, y)

)
L2(D) ,

a−ν(τ, v,w) := H
σ 2

2
(T − τ)γ

[
(∂yv(τ, y), ∂yw(τ, y))−ν

]
,

X D
0) := H1

(T −τ)−γ /2,0)(I ; V ∗
D) ∩ L2

(T −τ)γ /2(I ; VD),

X −ν
0) := H1

(T −τ)−γ /2,0)(I ; V ∗−ν) ∩ L2
(T −τ)γ /2(I ; V−ν),

YD := L2
(T −τ)γ /2(I ; VD),

Y−ν := L2
(T −τ)γ /2(I ; V−ν).
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The well-posedness of (5.10) and (5.11) can be shown as in Lemma 2.2.

Remark 5.2 Note that the condition g−ν ∈ V−ν is stronger than (5.9). The stronger
condition is only satisfied for standard payoffs such as European calls and puts for
ν > 1. A localization of the payoff has to be employed for ν ≤ 1.

5.3 Optimality

We apply the results of Sect. 4 to the derived formulations.

Theorem 5.2 Consider the weak formulation (5.5) on X ,Y as above. Its representa-
tion using space–time wavelets as in Sect. 3.3 with appropriate boundary conditions
reads Bu = f with B as in (4.2) and f as in (4.3). Then for any ε > 0, the adaptive
solution algorithm from [12,13] applied to the normal equations (4.4) produces an
approximation uε with

‖u − uε‖l2(∇X ) ≤ ε.

If for some s > 0,u ∈ As∞(l2(∇X )), then supp uε � ε−1/s ‖u‖1/s
As∞(l2(∇X ))

. The con-

stant only depends on s when it tends to 0 or ∞. If for arbitrary s∗ > 0 it holds that
s < s∗, then the number of operations and storage locations required by one call of
the space–time adaptive algorithm with tolerance ε > 0 is bounded by some multiple
of

ε−1/sd2 ‖u‖1/s
As∞(l2(∇X ))

+ 1,

where this multiple is uniformly bounded in d and depends only on s ↓ 0 and s → ∞.

Remark 5.3 An analogous result can be obtained for (5.10). The derivation of such
results for the global weighted formulations (5.8) and (5.11) is more involved, as the
construction of a Riesz basis for the dual of Vν is grueling.

Remark 5.4 A characterization of u in terms of Besov space regularity which is equiv-
alent to the requirement u ∈ As∞(l2(∇X ))would be desirable. To our knowledge such
results are not available for the described setup. The main difficulties arising for a char-
acterization are the tensor product structure of the basis and the weighted spaces in
time. The first issue has been addressed in the recent work [26]. We also refer to [17]
for general results.

5.4 Localization

In the following we describe two localization methods which lead to a formulation of
the pricing problem on a bounded domain. The localization error is quantified using
probabilistic techniques.
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5.4.1 Homogeneous Dirichlet boundary condition

The localization to a bounded domain and the use of homogeneous Dirichlet boundary
conditions is justified in the following. We follow [30, Section 4.2].

Theorem 5.3 Let u D be the sufficiently smooth solution of (5.3)–(5.4) and u the suffi-
ciently smooth solution of (5.6)–(5.7) with g(S) = max {(S − K ), 0} for some K > 0,
further let eD = u D − u. Then eD satisfies the following error bound:

‖eD(T )‖2
L2(D) + ‖eD‖2

L2
(T −t)γ (H

1([−R/2,R/2])) ≤ e−αR,

for some positive constants α and R.

Proof Note that eD satisfies the following equation:

T∫

0

(
d

dτ
eD(τ ), v

)

L2(D)
+ a(τ, eD(τ ), v) dτ = 0 ∀v ∈ H1

0 (D), (5.12)

with a(τ, ·, ·) given as in (5.5). Denote by φ a cut-off function with the following prop-
erties: φ ∈ C∞

0 (D), φ ≡ 1 on [−R/2, R/2] and
∥∥φ′∥∥

L∞(D) < C for some constant

C > 0 independent of R. Inserting v = φ2(x)eD(τ, x) into (5.12) leads to:

‖φeD(T )‖L2(R) +
T∫

0

a(τ, φeD(τ ), φeD(τ )) dτ =
T∫

0

ρ(τ) dτ,

where the residual ρ(τ) = a(τ, φeD, φeD)−a(τ, eD, φ
2eD). The residual admits the

following estimate:

T∫

0

ρ(τ) dτ ≤
T∫

0

∫

R

H
σ 2

2
(T − τ)γ (φ′)2e2

D(τ )e
ν|x |e−ν|x | dxdτ

≤ e−αR
D ‖e(τ )‖L2

(T −t)γ (L
2
ν (R))

,

for some positive constant α and arbitrary ν ∈ R.

Remark 5.5 Theorem 5.3 gives a rigorous justification for the approximation of the
option price (5.2) by the solution of a degenerate parabolic PDE on a bounded domain.
Choosing the computational domain sufficiently large with respect to the domain of
interest yields an negligible truncation error. In contrast to the subsequent section the
argument is purely deterministic. We do not rely on the representation of the option
price as a quasi-conditional expectation (5.1).
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5.4.2 Homogeneous Robin boundary condition

We make use of a probabilistic argument to approximate the pricing equation by a
local problem with Robin boundary conditions. First the ideas for the case where the
price process is driven by a Brownian motion will be presented and then extended to
the case of a price process driven by a fractional Brownian motion. The argumentation
relies on the following idea. The price process (5.1) is approximated by a process
that behaves similar to (5.1) inside the computational domain, but does not leave the
computational domain D. The behavior of the approximating process at the boundary
of the computational domain will be modeled using local times.
Brownian motion:
The reflected process can be characterized as follows, cf. [9, Theorem 2.1]:

Theorem 5.4 Let (−R, R) = D ⊂ R be a bounded open interval and W a Brownian
motion in R, then there exists a unique pair of continuous stochastic processes (X̃ , L̃)
adapted to the natural filtration of W such that

(i) X̃(t) ∈ D for all t ∈ [0, T ) with X̃ = 0,
(ii) L̃ is a nondecreasing process such that t → L̃(t) only increases when the

process X (t) is on the boundary,
(iii) X̃(t) = Wt +

∫ t
0 n(X̃(r))d L̃(r), where −n(x) is the exterior unit normal vector

on D.

The process L̃(t) is called local time of X = W . An intuitive characterization of the
local time is given in the following theorem. The result naturally generalizes when
X (0) 	= 0.

Theorem 5.5 Let the assumptions of Theorem 5.4 be satisfied, then

L̃(t) = lim
ε↓0

1

2ε

t∫

0

1Dε (X̃r ) dr, (5.13)

where Dε = {x ∈ D|d(x, ∂D) < ε} and d(x, ∂D) denotes the Euclidean distance of
x to the boundary of D. Besides the following estimate holds:

E[L̃(t)] ≤ C(t)e−α|R|2 ,

for some constant α > 0 and C(t) > 0, depending on t.

Proof The proof is given in [9, Theorem 2.6].

With these estimates available the localization estimate can now easily be obtained.

Theorem 5.6 Let g be globally Lipschitz with Lipschitz constant K1 and let the
assumptions of Theorem 5.4 be satisfied. Then

∣∣E[g(X (t))− g(X̃(t))]∣∣ ≤ K1E[L̃(t)] ≤ K1C(t)e−α|R|2 , (5.14)

with X̃ and X as in Theorem 5.4 and C(t), α as in Theorem 5.5.
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This justifies the approximation of E[g(X (T ))] by E[g(X̃(T ))], for sufficiently large
domains of interest. The Kolmogorov equation for
v̂(t, x) = E[g(X̃(T ))|X (t) = x] with X (t) = x + μt + σ B(t) reads

∂v̂(t, x)

∂t
+ μ

∂v̂(t, x)

∂x
+ σ 2

2

∂2v̂(t, x)

∂2x2 = 0 for x ∈ D

lim
x↑R

[
σ 2

2

∂v̂(t, x)

∂x
+ μv̂(t, x)

]
= 0 (5.15)

lim
x↓−R

[
σ 2

2

∂v̂(t, x)

∂x
+ μv̂(t, x)

]
= 0. (5.16)

The Robin-type boundary conditions (5.15)–(5.16) account for the fact that no prob-
ability mass can leave the domain D.
Fractional Brownian motion:
We proceed as in the Brownian case to approximate the pricing problem on an
unbounded domain by the formulation on a bounded domain. Let σW H (t) denote
a fractional Brownian motion and let X̃t := σW H (t)+ ∫ t

0 n(X̃(r))d L̃(r) denote the
reflected fractional Brownian motion on D, where L̃(t) is given by the following
definition analogous to (5.13).

Definition 5.2 Let t > 0 and x ∈ R. The local time of σW H up to time t on D is
given by

L̃(t) = lim
ε→0

t∫

0

1

2ε
1Dε (σW H (r)) dr, (5.17)

with Dε is as in Theorem 5.5.

We have the following estimate due to [7, Corollary 10.1.12]

∣∣Ẽ[L̃(t)]∣∣ ≤ C(t)e−α(t)R2
,

for some positive time-dependent constants C(t) and α(t). Therefore we have the
following estimate for sufficiently smooth payoffs g.

Theorem 5.7 Let g : R → R be globally Lipschitz with constant K2 and let v(t, x)
and v̂(t, x) be given as:

v(t, x) = Ẽ[g(σW H (T ))|F H
t ] and v̂(t, x) = Ẽ[g(X̃T )|F H

t ].

Then the following estimate holds:

|v(t, x)− v̂(t, x)| ≤
∣∣∣Ẽ[K2 L̃(T )|F H

t ]
∣∣∣ ≤ K2C(T )e−α(T )R2

.
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Remark 5.6 Theorem 5.7 naturally generalizes to processes driven by FBM with (non
constant) drift and non-homogeneous initial conditions.

The Kolmogorov equation for v̂(t, x) = Ẽ[g(X̃(T ))|F H
t ] with X (t) = x +∫ t

0 μ(t) dt + σW H (t) reads:

∂v̂(t, x)

∂t
+ μ(t)

∂v̂(t, x)

∂x
+ Hσ 2tγ

∂2v̂(t, x)

∂2x2 = 0 for x ∈ D

lim
x↑R

[
Hσ 2tγ

∂v̂(t, x)

∂x
+ μ(t )̂v(t, x)

]
= 0 (5.18)

lim
x↓−R

[
Hσ 2tγ

∂v̂(t, x)

∂x
+ μ(t )̂v(t, x)

]
= 0, (5.19)

with final condition v̂(T, x) = g(x). This justifies the use of Robin boundary con-
ditions for the localization of the pricing equation. The choice of the appropriate
boundary conditions is strongly related to the behavior of the process. Although both
localization using Robin and Dirichlet boundary conditions lead to an exponential
decay of the truncation error the constants depend on the nature of the process, there-
fore an a priori choice of the boundary condition, i.e., before the market model is
determined, is not meaningful.

6 Conclusion

The aim of this work is to contribute to the analysis of linear degenerate parabolic
equations. For certain types of equations well-posedness results for weak space–time
formulations could be obtained. The space–time domain was discretized using appro-
priate wavelets bases. This enabled us to obtain Riesz bases of the ansatz and test
spaces which led in conjunction with the compressibility of the arising operators to an
optimality result for a space–time adaptive solution algorithm of the resulting equiva-
lent bi-infinite linear system. An application of the theory to option pricing problems
under fractional Brownian motion market models was presented. For an option pricing
problem in the context of FBM well-posedness results for different formulations could
be obtained and localization of the pricing problem was justified rigorously.
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Christoph Schwab, Roman Andreev and the anonymous referees are gratefully acknowledged.
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