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Abstract In this paper we present a numerical method for
performing higher-order simulations of elastic-plastic
waves in solids and we illustrate the accuracy of our
approach by various numerical simulations of wave
phenomena around cracks. The simulation of crack
problems in solids is especially challenging, since the
singularities in physical variables occurring at the crack
are particularly difficult for numerical schemes to simu-
late, but they create many interesting physical effects.

1
Introduction
There is a huge variety of numerical schemes for solving
hyperbolic partial differential equations (cf [1, 7, 8, 20]),
including special schemes for the elastic plastic wave
equation in solids (cf [9–14]). Most of them are finite
volume schemes, which update cell averages in every time-
step by calculating fluxes over the cell-borders. In [2] and
[3] Fey presented a scheme called Method of Transport for
calculating these fluxes in high order in space and time for
hyperbolic conservation laws in fluid mechanics in several
space dimensions, which we extended to the elastic-plastic
wave equation in [4] and [5], which is not a pure con-
servation law anymore. The main advantage of the method
presented in [4] and [5] is that (in principle) it can be
implemented in any order for the approximation in both
space and time.

The purpose of this paper is to apply our numerical
methodology to a challenging class of physical problems,
i.e. crack problems in solids. Cracks are particularly dif-
ficult to simulate since they typically produce singularities
in stress components, especially at the crack-tip. Further,
many numerical methods of low order (e.g. first or second
order schemes) have to perform a refinement of the
numerical grid around the crack-tip to obtain good
numerical results, which is costly implementation-wise
and computation-wise. We will show that our method
yields an excellent resolution of wave phenomena around
cracks even when using a Cartesian grid due to the use of

higher order approximations. Nevertheless, it is important
to mention that even when using a high-order method, in
certain situations the usage of an adapted grid around the
crack-tip is advantageous, e.g. for calculating transient
dynamic stress intensity factors.

Our paper briefly explains the model equations under
consideration and the Method of Transport for solving the
elastic-plastic wave equation. Then, we simulate several
interesting crack problems, discussing the physical
behavior or elastic-plastic waves around a crack.

2
The elastic-plastic wave equation
We use a formulation of the elastic-plastic wave equation,
which is based on the assumption of small strains, i.e. it is
a linearization of the general flow equations (cf. [6, 15]).
Furthermore, we use a formulation of the elastic-plastic
wave equation as a first order system, which means we
have to use three physical variables: The symmetric stress
tensor r, the symmetric strain tensor e and the velocity
vector ~v. Furthermore, we need the deviatoric stress
tensor s which is defined as sij ¼ rij � 1

3 dijrkk. The system
consists of equations describing the conservation of
momentum, the compatibility relations between velocity
and strain variables and the Prandtl model equations for
describing the relationship between stress and strain (cf
[18]):
Conservation of momentum:

o

ot
vi ¼

1

q

X3

j¼1

o

oxj
rijðq ¼ densityÞ ð1Þ

Compatibility relationship:

o

ot
�ij ¼

1

2

o

oxj
vi þ

o

oxi
vj

� �
i � j ¼ 1; . . . ; 3 ð2Þ

Stress-strain relationship:

o

ot
�ij ¼

1þ m
E

o

ot
rij �

m
E

dij
d

dt
rkk þ sij

d

dt
v ð3Þ

with m ¼ Poisson’s ratio, E ¼ Young’s modulus and the
function d

dt
v detailed below describing the plastic flow. For

elasticity equation (3) reduces with d
dt

v � 0 to Hooke’s
law. In order to distinguish between elastic and plastic
deformation we use the so-called von Mises yield function
(cf [17]):

f ðsÞ ¼ 1

2
sijsij ¼: j2: ð4Þ
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Basically, plasticity occurs in a certain point if the current
function jðtÞ in that point attains the value of j0ðtÞ, which
is the maximal value of jðtÞ in the past, i.e. with

j0ðtÞ ¼ max
t0�t0�t

jðt0Þ

three different cases may occur:

jðtÞ < j0ðtÞ: Elastic deformation.
jðtÞ ¼ j0ðtÞ and d

dt
j � 0: Elastic deformation.

jðtÞ ¼ j0ðtÞ and d
dt

j > 0: Plastic deformation.

This plasticity model reduces to the well-known hystere-
sis-curve as shown in Fig. 1 in the case of one stress and
one strain variable.

In Fig. 1, for small stresses, i.e. jrj � j0 the relationship
is linear (Hooke’s law). However, if the stress jrj exceeds a
certain value j0 then plastic flow occurs. Furthermore,
unloading processes are always assumed to be elastic in
our plasticity model. After the plastic loading and the
elastic unloading process, plasticity will occur again if
jrj � j1 with j1 being the largest value of the stress jrj in
the past.

Furthermore, for this yield-criterion the function d
dt

v
from Eq. (3) can be written in the form

d

dt
v ¼ 1

2j
1

lpðjÞ
� 1

l

 !
d

dt
j ð5Þ

with a measured function lpðjÞ � l (cf. Fig. 1) and the
elastic shear modulus l ¼ E

2ð1þmÞ. Hence, we have a system
of the form1

V t þr � cLð UÞ ¼ 0

ðc ¼ wave-speed, will be specified later) ð6Þ
rt ¼ CðrÞ : et ð7Þ
where we defined the vectors

V ¼ ðv1; v2; v3; �11; �22; �33; �12; �13; �23ÞT ð8Þ
U ¼ ðv1; v2; v3; r11; r22; r33; r12; r13; r23ÞT : ð9Þ
Equation (6) summarizes the conservation of momentum
(1) and the compatibility relations (2) (LðUÞ is a linear
function of U , since both equations are linear) and Eq. (7)
contains the stress-strain relationship from (3) with the
rank-4 tensor CðrÞ.

It is noteworthy that the system (6), (7) is not (cannot
be written as) a pure hyperbolic conservation law, unless
the material is purely elastic where the matrix C is
constant.

2.1
Model equation in 2-D
Without loss of generality we demonstrate our approach
for a solid under the so-called plane strain condition
(cf [15]), i.e. the z-component of the displacement and
velocity vector is vanishing:

�13 ¼ �23 ¼ �33 ¼ r23 ¼ r13 ¼ v3 � 0: ð10Þ
Hence, the flux Eq. (6) reduces to:

v1

v2

�11

�22

�33

�12

0
BBBBBB@

1
CCCCCCA

t

¼

r11

q
r12

q
v1

0
0

1
2 v2

0
BBBBBB@

1
CCCCCCA

x

þ

r12

q
r22

q
0
v2

0
1
2 v1

0
BBBBBB@

1
CCCCCCA

y

ð11Þ

Although �33 is constant according to Eqs. (10) and (11),
we leave �33 in the equation for the following ideas,
because when investigating elastic-plastic waves we will
replace strains with stresses and the corresponding stress
component r33 does not vanish.

The general stress-strain relationship contained in
Eqs. (3) and (5) reduces under the assumption (10) to

_�11

_�22

_�33

_�12

0
BB@

1
CCA ¼ CðrÞ

_r11

_r22

_r33

_r12

0
BB@

1
CCA ð12Þ

with CðrÞ

Fig. 1. Response of the strain variable � to the stress r in the case
when hysteresis occurs

¼

aþ hðjÞ
4lj2 s2

11 bþ hðjÞ
4lj2 s11s22 bþ hðjÞ

4lj2 s11s33
hðjÞ
2lj2 s11r12

bþ hðjÞ
4lj2 s22s11 aþ hðjÞ

4lj2 s2
22 bþ hðjÞ

4lj2 s22s33
hðjÞ
2lj2 s22r12

bþ hðjÞ
4lj2 s33s11 bþ hðjÞ

4lj2 s33s22 aþ hðjÞ
4lj2 s2

33
hðjÞ
2lj2 s33r12

hðjÞ
4lj2 s11r12

hðjÞ
4lj2 s22r12

hðjÞ
4lj2 s33r12

1
2lþ

hðjÞ
2lj2 r2

12

0
BBBBBB@

1
CCCCCCA

ð13Þ

1 With the : denoting the appropriate tensor product.
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j2 ¼ 1

2
sijsij ¼

1

3
ðr11 � r33Þ2 þ ðr22 � r33Þ2
�

�ðr11 � r33Þðr22 � r33Þ� þ r2
12

a ¼ 1

9K
þ 1

3l

b ¼ 1

9K
� 1

6l

hðjÞ ¼ l
lpðjÞ

� 1 ð14Þ

with the Bulk modulus K ¼ E
3ð1�2mÞ.

We will use the following definitions for plane strain:

V ¼ ðv1; v2; �11; �22; �33; �12ÞT ð15Þ
U ¼ ðv1; v2; r11; r22; r33; r12ÞT ð16Þ
with which the 2-D system can be written in the general
form (6), (7) again.

The most important difference between the elastic wave
equation and the standard wave equation /tt � c2D/ ¼ 0
is the existence of several wave modes. In the elastic case
there are compression waves (P-waves) with wave-speed

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Kþ4=3l

q

q
and shear waves (S-waves) with wave-speed

c2 ¼
ffiffi
l
q

q
< c1. In plastic regions we find an additional fast

plastic wave cf and a slow plastic wave cs with
cs < c2 < cf < c1 (cf. [9–17]).

3
The numerical approach
The most appropriate approach (cf [4]) is to solve the two
parts of the system (6), (7) separately in each time step (i.e.
solving the flux (6) with a PDE-solver and the ODE (7)
with an ODE-solver), instead of trying to re-arrange them
to a closed-form PDE. The reason for this ansatz are
numerical problems, e.g. the right-hand side of the ODE
(7) can be discontinuous (depending on the hysteresis
model). We discuss these two steps in the following, since
they will be the basis for the simulation of crack problems.
For solving the PDE we use the method of transport, for
solving the ODE-part of the system we apply a high-order
Runge-Kutta solver.

The approach presented ensures high-order simulations
for both – the PDE part and the stress-strain relationship,
which results in a computational advantage compared to
other methods, (e.g. [9–14]) using a first-order recon-
struction of the stress-strain relationship only.

3.1
The method of transport
The basic idea of the method of transport is to rewrite the
flux Eq. (6) equivalently as a coupled system of advection
equations. Therefore, we introduce a set of direction vec-
tors ~ni, i ¼ 1; . . . ; k, not necessarily of unit length, which
have to fulfill the following two consistency relations:

Xk

i¼1

~ni ¼ 0;
1

k

Xk

i¼1

~ni~n
T
i ¼ I ð17Þ

With these definitions we can rewrite the flux Eq. (6) (or
11) as follows:

V t þr � cL ¼ 0 ð18Þ

() 1

k

Xk

i¼1

fðV þ L~niÞt þr � cðV þ L~niÞ~nT
i g ¼ 0 ð19Þ

()
Xk

i¼1

fð RiÞt þr � c Ri~n
T
i g ¼ 0

with the identity matrix I and the quantities Ri ¼ 1
k

V þ L~nið Þ. We observe that our flux equation can be
written as a system of coupled advection equations, each of
which transports the quantity Ri at the velocity c~ni.

Note that Eq. (19) is strictly equivalent to the original
Eq. (18). Our approximation consists of decoupling the
system, i.e. at a certain time-step tn we define the inde-
pendent quantities

Rið~x; tnÞ :¼ 1

k
Vð~x; tnÞ þ Lð~x; tnÞ~nið Þ ð20Þ

and then solve the advection equations

Rið Þtþr � Ric~n
T
i

� �
¼ 0 8i ð21Þ

independently, i.e. we calculate the quantities Rið~x; tÞ on
the time interval t 2 ½tn; tnþ1� using Eq. (21) and given the
initial solution Rið~x; tnÞ. At the next time-step tnþ1 the
update for the vector V reads:

Vð~x; tnþ1Þ ¼
Xk

i¼1

Rið~x; tnþ1Þ ð22Þ

This yields a first order approximation for the exact
solution in time if the consistency relations (17) hold,
since then

V t ¼
Xk

i¼1

ðRiÞt ¼ �
Xk

i¼1

r � ðcRi~n
T
i Þ ¼ �r � cL:

and consequently

Vð~x; tn þ DtÞ �
Xk

i¼1

Rið~x; tn þ DtÞ ¼ OðDt2Þ

However, to obtain approximations of higher order in time
one has to add correction terms into the numerical fluxes,
i.e. one uses slightly modified quantities in the advection
equations

Ri :¼ 1

k
V þ Lþ Kð Þ~nið Þ

where the correction matrix K can be found by comparing
the Taylor expansion of the exact solution to the expan-
sion of the numerical scheme, which we show for the 2-D
case (i.e. ~x ¼ ðx; yÞT) in the following (the 3-D case is
analogous). The derivation of the correction terms is quite
similar to the derivation of the second order Lax-Wendroff
scheme (cf. [16]).

For the exact solution of Eq. (6) we obtain:

Vð~x; t0þDtÞ¼Vð~x; t0ÞþDtV tð~x; t0Þþ
Dt2

2
V ttð~x; t0Þþ . . .

The flux Eq. (6) in 2-D can be rewritten in the form (since
it is linear)
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V t ¼ AUx þ BUy

with two constant matrices A and B. Taking into account
the definition of V and U (Eqs. (15) and (16)) and the
stress-strain relationship (12) it is straightforward to see
that a linear relationship of the form

U t ¼ AðrÞV t ð23Þ
exists with a matrix A.

Now, we can easily replace derivatives in time by spatial
derivatives:

V t ¼ AUx þ BUy ¼ r � ½AU;BU� ð24Þ
V tt ¼ AðU tÞx þ BðU tÞy
¼ r � f½A;B�ðAðrÞV tÞg ð25Þ

¼: r � Z ð26Þ
The Taylor expansion of the advection Eq. (21) is:

Rið~x; t0 þ DtÞ ¼ Rið~x; t0Þ þ DtðRiÞtð~x; t0Þ

þ Dt2

2
ðRiÞttð~x; t0Þ þ . . . ð27Þ

Using the advection equation (21), time derivatives can be
replaced by spatial derivatives:

ðRiÞt ¼ �r � ðRi~n
T
i cÞ ð28Þ

ðRiÞtt ¼ �r � ððRiÞt~n
T
i cÞ ¼ r � ððr � ðRi~n

T
i cÞÞ~nT

i cÞ
Obviously, our scheme is first order accurate since

Xk

i¼1

Rið~x; t0Þ ¼ Vð~x; t0Þ

Xk

i¼1

Rið~x; t0Þ~nT
i c ¼ cL

which gives

Xk

i¼1

ðRiÞtð~x; t0Þ ¼ Vtð~x; t0Þ ¼ �r � cLð~x; t0Þ

¼ �
Xk

i¼1

r � Rið~x; t0Þ~nT
i c

� �
ð29Þ

However, comparing Eq. (24) to (28) it turns out that the
second order derivatives in time are not the same:

V tt �
Xk

i¼1

ðRiÞtt ¼ r � Z þ
Xk

i¼1

ðRiÞt~n
T
i c

 !
¼ r � �K 6¼ 0

ð30Þ
with �K :¼ Z þ

Pk
i¼1ðRiÞt~n

T
i c. We define the correction

matrix K by

K ¼ Dt

2
�K ð31Þ

and the transported quantities ~Ri by

~Ri :¼ 1

k
V þ ðLþ 1

c
KÞ~ni

� �
ð32Þ

Equation (29) still holds for the ~Ri (¼) the scheme is still
consistent). Furthermore, one can easily verify:

Xk

i¼1

ð~RiÞtð~x; t0Þ ¼
Xk

i¼1

ðRiÞtð~x; t0Þ �
Dt

2
r � �K ð33Þ

and consequently

Vð~x; t0 þ DtÞ �
Xk

i¼1

~Rið~x; t0 þ DtÞ ¼ OðDt3Þ

Our decomposition is now of second order, since the
second order error (30) is compensated by the correction
term appearing in the first order derivative of ~Ri. Third
and fourth order can be achieved analogously.

The integration of the decoupled advection Eqs. (21)
can be written in a simple explicit form, since the wave-
speed c is constant:

Rið ~y; tÞ ¼
Z

IR2

Rið~x; tnÞdð~y� ½~xþ c~niDt�Þd~x ð34Þ

Moreover, there is an infinite number of possible propa-
gation vectors that fulfill the consistency relation (17), e.g.
one could simply use the four diagonal directions
~ni ¼ ð�1;�1ÞT . However, to obtain better numerical
results (e.g. results closer to the analytic solution if avail-
able) it is advantageous to chose a ‘‘wave-model’’ ~ni that
takes into account the physical behavior of the system, e.g.
the decomposition into advection equations based on the
wave-model ~ni should reduce to the 1-D decomposition
into right eigenvectors if one simulates a 1-D problem. A
very advanced wave-model fulfilling this physical
requirement was presented in [5], which we will use for the
numerical calculations in this paper. The scheme will be
consistent if and only if the consistency relation (17)
holds, independent of the wave-speed c that appears in the
flux (6) and the decomposition (19). For stability reasons
the wave-speed c used for solving the advection equations
has to be set to the highest physical propagation speed that
can appear, i.e. c1 – as shown by ([2, 3]), this requirement
is equivalent to fulfilling the traditional CFL-condition.

So far our discussion has been semi-discrete only, since
we haven’t discretized the space variables yet. The space
discretization can be done as for all types of finite volume
methods, i.e. one has to add the following two steps:

� At a certain time-level one computes cell-averages for
each cell Iij (we assumed a grid in 2-D) for the quantity
V according to Eq. (22):

�Vnþ1
ij ¼ 1

jIijj
Xk

l¼1

Z

Iij

Rlð ~y; tnþ1Þd ~y ð35Þ

� Before each time-step one has to reconstruct the func-
tion Vð~x; tÞ by polynomials in space from the previously
updated cell-averages.

3.2
Stress update
The method of transport discussed above only yields an
update of V , i.e. the velocity and strain variables. The
stress variables r have to be updated by integrating the
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ODE (12) in time. The problem is that the strain variables
e are only known at the discrete time-levels tn and tnþ1.
However, to integrate Eq. (12) in time we have to know the
derivative et on the whole time-interval ½tn; tnþ1�. There-
fore, we reconstruct the strain-path in time by polynomials
in time:

eð~x; tÞ ¼ eð~x; tnÞ þ að~xÞðt � tnÞ þ bð~xÞðt � tnÞ2

þ . . . 8t 2 ½tn; tnþ1� ð35Þ
Since we can compute the time derivatives of the strain
variables at time tn and tnþ1 by using

o

ot
�ijðt	Þ ¼

1

2

ovj

oxi
þ ovi

oxj

� �
ð36Þ

o2

ot2
�ijðtnÞ ¼ 1

2q

X

k

o2

oxioxk
rik þ

o2

oxjoxk
rjk

� �
ðtnÞ

at t	 ¼ tn or tnþ1 ð37Þ
(vi is known at time tn and tnþ1 after the PDE-time-step
and rij is known at time tn) we can reconstruct the
behavior of the strain variables in time. Further, with the
help of this reconstruction one can integrate the stress-
strain relationship (12). It is important to note that during
the integration a transition from elasticity to plasticity
might occur where the right hand side of the ODE is
discontinuous. In such a case one has to find the exact
transition point (e.g. by bisection or with Newton’s
method) and then restart the ODE-solver at this point
(cf. Fig. 2).

Although we will demonstrate the accuracy of our
method by simulations on a Cartesian grid only, it is
important to mention that the same approach (consisting
of solving advection equations for the PDE and solving an
ODE for the stress-strain relationship) can be used on

irregular grids as well – the only extra effort consists of
implementing a solver for advection equations on a non-
Cartesian grid.

4
Crack problems for plane-strain
For our numerical examples, we consider a cracked plate
in 2-D under plane-strain as shown in Fig. 3. The crack is
modelled by assuming that along both sides of the crack
there is a free boundary up to the crack-tip. In contrast to
numerical methods that are based on an adjusted
numerical grid around the crack (especially at the crack-
tip), we simulate the dynamical behavior of elastic-plastic
waves hitting the crack on a standard Cartesian grid but
using numerical approximations of high (i.e. up to fourth)
order, which is advantageous from an implementation
point of view as well as for ensuring a fast computation of
numerical results.

In the following numerical simulation, we assume that
from both sides of the crack a compression wave is
approaching, as indicated in Fig. 3.

Since the crack is assumed to be a free boundary within
the solid, we have to impose the following boundary
conditions along both sides of the crack:

r22 ¼ r12 ¼ 0

Which basically means that the normal force along the free
boundary vanishes.

For all computations a grid of 500 
 500 cells is used for
the entire simulation and the results are plotted after 240
time-steps (which corresponds to t ¼ 0:96) for all simu-
lations – we only plot the solutions at one point in time,
since they look self-similar in time. The crack faces are
assumed to be traction free and crack face contact is
excluded in the simulation. Further, for all computations
we plot the maximal shear stress around the crack-tip,
since this variable typically illustrates the physical phe-
nomena very well and makes our results comparable to
other authors (e.g. [9–14]).

Fig. 2. Integration of the stress-strain relationship in the stress
space from rn to the new state rnþ1 The ODE-solver has to be
restarted on the yield surface (i.e. the level set of the yield func-
tion in the stress space separating elastic from plastic states) since
the ODE can be discontinuous at the transition from elasticity to
plasticity

Fig. 3. Compression waves carrying the velocity �v0
2 and the

stress component r0
22 approaching a crack
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Figure 4 shows a computation of the maximal shear
stress for a purely elastic material with

c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 4

3 l

q

s

¼ 1c2 ¼
ffiffiffi
l
q

r
¼ 1ffiffiffi

3
p

The initial conditions for the compression waves are
chosen as

v0
2 ¼ 0:55r0

22 ¼
v0

2

c1
r0

11 ¼ r0
33 ¼

v0
2ðK � 2=3lÞ

c1
r0

12 ¼ v0
1 ¼ 0

In the following Fig. 4 we plot the maximal shear stress for
the computed approximation.

Obviously, all physical aspects are well resolved: a
circular compression wave travelling at c1 and a circular
shear wave travelling at c2 are created at the crack-tip. At
the free boundary of the crack, a Rayleigh wave is travel-
ling along the surface of the crack at a speed less than c2.
Further, the circular P-wave propagating along the free
surface of the crack produces a von Schmidt travelling at
speed c2, which has the shape of a cone since c2 < c1.
Moreover, at the crack-tip the stress becomes singular.

The problem becomes even more interesting if we allow
plastic deformation. We choose the same initial conditions
for the compression waves and the initial value for the
yield parameter is chosen as

j0 ¼ 1:

We further assume lpðjÞ � const with

lp

l
¼ 3

16

In addition to the physical behavior observed for the
elastic solid, a zone of plastic deformation is created at the
crack-tip, as can be seen from Fig. 5, where the intensity of
the stress becomes so large that the yield criterion is ful-
filled and the material is in the state of plastic flow.

We now consider the same crack but this time shear
waves are approaching from both sides of the crack. The
initial conditions are chosen as

v0
1 ¼ 0:55 ð38Þ

r0
12 ¼

l
c2

v0
1

r0
11 ¼ r0

22 ¼ r0
33 ¼ v0

2 ¼ 0 ð39Þ
Figure 6 shows the elastic and Fig. 7 the plastic case.

As for compression waves hitting a crack, various wave
phenomena are created at the crack-tip, i.e. a circular
compression and a shear wave. Furthermore, a von
Schmidt wave is created at the free boundary of the crack.
In addition to this, the second example shows a plastic
zone, again indicated by the contour lines for the yield-
variable j > 1. Since the slow plastic wave speed cs is
constant with

cp

c
¼

ffiffiffiffiffi
lp

l

r
¼

ffiffiffiffiffi
3

16

r

Fig. 4. Numerical computation of the maximal shear stress
around the crack-tip in the elastic case. The singularity, the
compression wave, the shear wave, the Rayleigh wave and the von
Schmidt wave are well resolved (grid: 500 
 500 cells)

Fig. 5. Computation of the maximal shear stress around the
crack-tip for an elastic-plastic material. Due to the very high
stress intensity at the crack-tip, a zone of plastic deformation
occurs at the crack-tip, which is indicated by the level-sets of the
yield-variable j in the area of j > 1 (grid: 500 
 500 cells)

Fig. 6. Maximal shear stress in the cracked plate for an elastic
material. The wave phenomena are similar to those in Figure (4)
(grid: 500 
 500 cells)
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we observe a plane cs-wave propagating behind the dis-
continuous shear wave. Since the wave-speeds in the
plastic and elastic region are different (c2 > cs), a conic
head wave is produced by the P-wave travelling along the
border between elasticity and plasticity, analogous to the
von Schmidt wave at a free boundary.

The numerical computations show that the structure of
the physical wave phenomena including plastic flow
around the crack is well resolved in all examples, although
they were computed on the simplest grid possible, i.e. a
Cartesian grid, which is due to the use of approximations
of high order in space and time.

5
Conclusion
Although the elastic-plastic wave equation is not a pure
conservation law known from fluid-dynamics, we could
use the Method of Transport combined with a high-order
Runge-Kutta ODE-solver to simulate plastic waves in sol-
ids in high order. The method we presented can be used up
to any order in space (by reconstructing the solution by
polynomials after each time-step) and in time (by using
correction terms in the numerical flux) and it can be used
with any kind of hysteresis model, which can be described
by an ODE at every point. Furthermore, Fey showed in [2,
3] that the Method of Transport can be used for nonlinear
conservation laws, which shows that our method is not
limited to the linearized model of small strains. Compared
to other methods (cf. introduction) the Method of Trans-
port has the advantage that it can be implemented to any
order in space and time and hence it allows high resolution
simulations with less computation time.

Further, we showed by numerical examples that the use
of high-order schemes for elastic-plastic waves is espe-
cially advantageous when simulating cracks in solids, since
the singularities in the stress and the complex structure of
waves created at the crack-tip require a very high resolu-
tion of the physical behavior of solids, in particular when
using a Cartesian grid without grid-refinement near the

crack(-tip). Using a Cartesian grid is advantageous from
both an implementation and a computation effort point of
view, but only reasonable when using a numerical scheme
of very high order in space and time.
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