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Abstract The presence of chloroethene dechlorination activ-
ity as well as several bacterial genera containing mainly
organohalide-respiring members was investigated in 34
environmental samples from 18 different sites. Cultures
inoculated with these environmental samples on tetrachlor-
oethene and amended weekly with a seven organic electron
donor mixture resulted in 11 enrichments with cis-DCE, ten
with VC, and 11 with ethene as dechlorination end product,
and only two where no dechlorination was observed.
“Dehalococcoides” spp. and Desulfitobacterium spp. were
detected in the majority of the environmental samples
independently of the dechlorination end product formed.
The concomitant presence of Dehalococcoides spp. and
Desulfitobacterium spp. in the majority of the enrichments
suggested that chloroethene dechlorination was probably the
result of catalysis by at least two organohalide-respiring
genera either in parallel or by stepwise catalysis. A more
detailed study of one enrichment on cis-DCE suggested that
in this culture Desulfitobacterium spp. as well as Dehalo-
coccoides spp. dechlorinated cis-DCE whereas dechlorina-
tion of VC was only catalyzed by the latter.
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Introduction

Since decades chloroethenes, such as tetrachloroethene
(PCE) and trichloroethene (TCE), are produced in large
quantities worldwide and as a result of inappropriate
handling or storage, they are very frequently encountered
as contaminants in groundwater, soils, and sediments
(McCarty 1997; Fetzner 1998; Comber and Gardner
1999). Under anaerobic conditions, these compounds can
be reductively dechlorinated via dichloroethene (DCE) and
vinyl chloride (VC) to harmless ethene by organohalide-
respiring bacteria for which chloroethenes act as electron
acceptors in the energy metabolism (Holliger et al. 1999).
While cis-1,2-DCE has been mainly reported as dechlori-
nation intermediate, some studies have also shown that
trans-DCE is sometimes formed (Gerritse et al. 1999;
Griffin et al. 2004; Miller et al. 2005; Cheng et al. 2010).

The question was, after isolation of several organohalide-
respiring bacteria with different metabolic properties, whether
these bacteria are also relevant in the environment where
natural attenuation of chloroethenes occurs. A survey includ-
ing samples from the United States of America as well as
Europe has shown that “Dehalococcoides” spp. seemed to be
widespread and often detected where ethene formation has
been observed (Hendrickson et al. 2002). Another study has
shown that the genus Desulfitobacterium could be detected
at many different locations in Quebec, Canada (Lanthier et
al. 2001). Other organohalide-respiring bacteria such as G.
lovleyi and Dehalobacter spp. have also been observed in
groundwater systems and enrichments cultures thereof
(Davis et al. 2002; Grostern and Edwards 2006; Amos et
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al. 2007; Daprato et al. 2007; Nijenhuis et al. 2007;
Dowideit et al. 2010).

The goal of this study was to evaluate the presence of
bacterial genera such as Desulfitobacterium, Dehalobacter,
and Dehalococcoides among which most isolates are
organohalide-respiring bacteria in numerous environmental
samples and enrichment cultures thereof and to link the
presence or absence of these genera with the dechlorination
end product formed.

Material and methods

Chemicals All chemicals were analytical grade and used
without purification. PCE (99%) and n-hexadecane (99%)
were purchased fromAcros Organics, Geel, Belgium.Cis-1,2-
dichloroethene (cis-DCE) (97%) was obtained from Sigma-
Aldrich, Chemie GmbH, Steinheim, Germany. VC (99.5%)
and ethene (99.95%) were procured from Fluka AG, Buchs,
Switzerland. All gasses (N2, CO2, H2) were purchased from
SLGas, Sauerstoffwerk Lenzburg, Switzerland. Due to the
possible presence of inhibiting compounds in synthetic cis-
DCE, also biogenic cis-DCE was used prepared as described
by Maymo-Gatell et al. (2001), however Desulfitobacterium
hafniense strain TCE1 was used here as PCE-dechlorinating
bacterium.

Source of inocula and enrichment cultures The 34 inocula
used in this study were from 18 different sites and
comprised the following: 19 wet aquifer samples, eight
groundwater samples, two sludge samples from bioreactors
treating chlorinated compound-contaminated waters, and
five non-contaminated samples (one mix of different
digester sludge from municipal wastewater treatment
plants, two river and two lake sediment samples) (see
Online Resource 1—Table S1).

The enrichment cultures in 100 or 500 ml serum
bottles (VWR international AG, Merck, Dietikon, Swit-
zerland) containing 50 or 250 ml of anaerobic medium
were performed with a two-liquid phase system that has
been described previously (Holliger et al. 1998). In an
anaerobic glove box (Anaerobic System model 1,024,
Forma Scientific, Brouwer, Luzern, Switzerland), the 100-
ml bottles containing freshly prepared anaerobic mineral
medium were inoculated by the addition of approximately
1 g of solid material or 10 ml liquid (water or sludge),
depending on the inoculum. Oxygen was removed from
the anaerobic glove box with R-20 palladium catalyst
provided by BASF, Wädenswil, Switzerland. The bottles
were closed in the glove box and the gas phase of the
bottles was aseptically replaced with a N2/CO2 mixture
(4:1, v/v, 1.0 bar over pressure) using a gas exchange
system (Druva Sonderventie GmbH, Eppelheim, German)

and sterile hydrophobic 0.2 μm filters (Sarstedt AG,
Sevelen, Switzerland). PCE, TCE, and DCE were dis-
solved in hexadecane at a concentration of 100, 80, and
50 mM, respectively. The hexadecane solutions were
added to serum bottles that were sealed with Viton rubber
stoppers. After changing the gas phase with pure nitrogen,
the hexadecane solutions were sterilized by heat (121 °C,
20 min). The volumes added to inoculated culture bottles
by syringe were (per 50 ml of medium); PCE 5 ml, TCE
6 ml, DCE 10 ml. Vinyl chloride was injected as pure gas
directly to the culture bottles in amounts of approximately
1 mmol (25 ml) per 50 ml of medium. These latter cultures
did not contain any hexadecane.

Electron donors were added once a week from 50 times
concentrated anoxic stock solutions. A mixture of seven
electron donors (acetate-formate-propionate-butyrate-ethanol-
lactate-pyruvate) was mainly used, each added at a concen-
tration of 0.285 mM resulting in a total concentration of 2 mM
total electron donor per week. For the cis-DCE dechlorinating
AQ1 culture, an electron donor mixture containing propio-
nate, butyrate and ethanol (0.67 mM each) was used. The
enrichment cultures were incubated stationary at 30 °C in the
dark.

Analytical methods The dechlorination activity of the
enrichments was followed by measuring the concentra-
tion of chloride in the aqueous phase by silver ion
titration with a Chlor-o-counter (Flohr Instrument, Nieu-
wegein, Netherlands). Chloroethenes and methane were
analyzed by gas chromatography as previously described
(Maillard et al. 2003). The volatile fatty acids were
analyzed using a HPLC (Varian Star 9,100, Varian AG,
Zug, Switzerland) with a refractive index detector (ERC-
7,415 A, Varian). Samples of 1.2 ml were deproteinated by
adding 150 μl Ba(OH)2 0.15 M and 150 μl ZnSO4

0.15 M, centrifuging 10 min at 11,000×g, and filtering
with a 0.2-μm filter (Sarsted, Sevelen, Switzerland). The
HPLC was equipped with a guard column connected to an
organic acid column maintained at 60 °C (ORH-801,
InterAction INC, Varian). The solvent was 50 mM H2SO4

with a flow rate of 0.61 ml/min.

DNA extraction The Kit UltraClean™ Soil DNA Isola-
tion from MoBio Laboratories, Inc. (BIOzym, Land-
graaf, Netherlands) was used for the DNA extraction.
Aliquots of 0.5 g of soil and aquifer and 10 ml of
environmental water sample, and 15 ml of the enrich-
ment cultures were extracted. Liquid samples were
centrifuged at 29,000×g for 5 min at 4 °C, the pellet
resuspended in 300 μl 0.1 M sodium phosphate buffer
(pH 8.0), and the suspension transferred in the extraction
tubes provided by MoBio. Bead beating was performed
two times 30 s at 1,000 rpm with a Mikrodismembrator S
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(B. Braun Biotech International GmbH, Melsungen,
Germany). The DNA was extracted according the suppli-
er’s protocol and recovered finally in 50-μl samples.

End-point PCR detection and quantitative real-time
PCR Specific primers (Online Resource 1—Table S2)
used for the detection of known PCE-dechlorinating
bacterial species and genera were designed together with
people from Bioclear BV (Groningen, Netherlands) in the
framework of the EU FP5 project MAROC. Primers for
the detection of bvcA and vcrA genes were taken from
(Behrens et al. 2008). All primers were purchased at
Microsynth AG (Balgach, Switzerland). Amplification
reactions were performed with a thermocycler T3 (Bio-
metra, Biolabo, Châtel-St-Denis, Switzerland). The 10 μl
PCR mixture contained 1× PCR Buffer B, 0.2 mM dNTPs,
0.5 μM of each primer, 0.1 μl (5 U/μl) of Taq polymerase
(Promega, Catalys AG, Wallisellen, Switzerland), and 1 μl
of the extracted DNA. The following thermocycling
program was used for all primer sets except for Desulfi-
tobacterium spp.; 94 °C for 3 min (one cycle); 94 °C for
30 s, annealing temperature (Table S2) for 30 s, 72 °C for
1 min 30 s (25 of 35 cycles); 72 °C for 10 min (one cycle).
For Desulfitobacterium spp., the elongation was only 30 s
instead of 1 min 30 s. For DNA isolated from the inocula,
the PCR comprised 35 cycles whereas only 25 cycles were
used for enrichment DNA.

Quantitative real-time PCR was carried out as described
previously with the primers specifically developed for this
purpose (Smits et al. 2004). Here, the 16 S rRNA gene of
Desulfitobacterium spp. and Dehalococcoides spp. were
targeted.

T-RFLP analysis The 16 S rRNA genes of the microbial
communities present in the samples were amplified with
general bacterial primers Eub 8 F-Hex™ fluorescently
labeled at the 5′ position and Eub 534R (Online Resource
1—Table S2). Two tubes of 50 μl PCR mixture for each
sample contained 1× PCR buffer B (Promega), 0.2 mM
dNTPs, 0.24 μM of each primers (forward and reverse
primers), 0.4 μl (5 U/μl) of Taq polymerase, and 2 ng of the
extracted DNA. The following thermocycling program was
used; 94 °C for 5 min (one cycle); 94 °C for 30 s, 56 °C for
45 s, 72 °C for 2 min (35 cycles); 72 °C for 10 min (one
cycle). The two tubes of each sample were pooled, purified
with the QIAquick PCR purification Kit (Qiagen AG,
Basel, Switzerland) and resuspended in 30 μl. The purified
PCR products were quantified with a fluorometer (TD 700
Tuner Designs, Witec AG, Littau, Switzerland) using the
PicoGreen kit (PicoGreen® dsDNA quantification Kit,
Molecular Probes Europe B.V., Leiden, Netherlands) and
50 ng were digested with the enzyme HaeIII (Promega)
during 4 h at 37 °C. An aliquot of 1 μl of the digested

product was prepared according to the supplier ABI
(Applied Biosystems, Rotkreuz, Switzerland) and loaded
in the ABI Prism® 3,100 capillary array (50 cm) and
ABI Prism® 3,100 POP-6™ polymer. The results were
analyzed with the package ABI Prism® 3,100 GeneScan
Software. Each peak of the electropherogram represented
a molecular operational taxonomic unit (OTU) which can
originate from one strain, a species, different members of
a genus, or any other unit of classification. The results
were analyzed with the online software TAP T-RFLP
from Ribosomal Database Project II (Maidak et al. 1999).
To estimate the relative abundance of an OTU, its peak
area was expressed as the percentile of the total of all peak
areas of the electropherogram.

Cloning and sequencing The detail procedure is described
in the supplementary material (Online Resource 1). Briefly,
PCR products targeting bacterial 16 S rRNA genes were
purified, ligated into pGEM-T Easy vector (Promega), and
transformed into competent Escherichia coli DH5α cells by
heat shock. Colony PCR was done with T7 and SP6
promoter primers. Clones containing DNA fragments of
expected length were sequenced with T7 and SP6 promoter
primers using the BigDye Terminator v3.0 Ready Reaction
Kit (ABI Applied Biosystems) according to the manufac-
turer’s instructions. Samples were run on the ABI Prism
3,100 Genetic Analyzer.

Sequences were analyzed with the software package
Lasergene (DNASTAR, Inc, Madison, WI, USA) and
aligned with ClustalX (Thompson et al. 1994). The
phylogenetic trees were designed using the software
package MEGA4 (Tamura et al. 2007). The sequences
were compared with databases using the BLAST software
(Altschul et al. 1990).

Nucleotide sequences The obtained sequences for the AQ1
clones were submitted to Genbank with the following
reference numbers: HM63539-HM635368.

Results

Presence of known organohalide-respiring bacteria in
numerous inocula and cultures thereof In the framework
of different projects, a total of 34 environmental samples
were collected from 18 different sites. The majority of
the samples originated from sites contaminated with
chlorinated compounds (Online Resource 1—Table S1).
The environmental samples were used as inocula for
enrichment cultures amended with PCE as electron
acceptor and a substrate mixture composed of seven
organic compounds (acetate-formate-propionate-butyrate-
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ethanol-lactate-pyruvate) that was added once a week.
Chloride production started in all cultures quite rapidly
without considerable lag phases (Fig. 1). PCE dechlorina-
tion to cis-DCE was typically achieved after 7–9 weeks of
incubation and no formation of trans-DCE was observed.
Chloride continued to be formed in cultures producing VC
and ethene but at lower rates (Fig. 1). However, formation
of VC and ethene was not observed in all enrichments. In
11 cultures, cis-DCE was the dechlorination end product,
VC in another ten, and in 11 it was ethene (Table 1). Only
in two cultures no dechlorination was observed.

End-point PCR used for the detection of genera
Dehalococcoides, Desulfitobacterium, and Dehalobacter
showed the presence of Dehalococcoides in 23 inocula,
Desulfitobacterium in 21, and Dehalobacter only in seven
(Table 1). Dehalococcoides was also detected in most
enrichments, even in those where dechlorination did not go
beyond cis-DCE, but was below the detection limit in three
enrichments where ethene was formed (Table 1). Desulfi-
tobacterium was detected in all enrichments but one where
dechlorination occurred whereas Dehalobacter was only
detected in ten (Table 1).

Analysis of an enrichment culture dechlorinating DCE to
ethene One of the cultures obtained from the inoculum
AQ1 with cis-DCE as electron acceptor instead of PCE was
analyzed in more detail. It was fed with a propionate-
butyrate-ethanol electron donor mixture and transferred
approximately once in every 6–7 weeks.

After more than ten transfers and up-scaling from 50 to
250 ml cultures, cultures were inoculated containing either
PCE or cis-DCE as chlorinated electron acceptor. Cis-DCE
was dechlorinated in a two-step process with an initial
accumulation of VC and no formation of ethene until
almost all cis-DCE was consumed followed by the
dechlorination of VC to ethene (Fig. 2). Ethanol was
completely consumed between two weekly electron donor
additions whereas propionate and butyrate were only
partially consumed. Hydrogen and acetate balances indi-
cated that all hydrogen formed upon syntrophic electron
donor oxidation was consumed by reductive dechlorination
and methanogenesis and that no or almost no homo-
acetogenesis took place in this enrichment culture (Online
Resource 1—Fig. S1). PCE was also dechlorinated by this
culture line but slowly, and the formed cis-DCE was further
dechlorinated to VC and some ethene although large
amounts of PCE were still present (Online Resource 1—
Fig. S2).

Cloning and sequencing of bacterial 16 S rRNA genes
amplified from DNA isolated from the initial AQ1 culture
on the propionate-butyrate-ethanol mixture and cis-DCE,
showed the presence of Desulfitobacterium spp. and
Dehalococcoides spp. in this microbial consortium. Twelve
of the 30 clones classified with the bacterial genus
Dehalococcoides and five with Desulfitobacterium spp.
(Online Resource 1—Fig. S3). The closest relatives of the
Dehalococcoides-affiliated clones were the strains GT,
CBDB1, FL2, and BAV1 with 99% sequence identity.
The closest relative to the Desulfitobacterium-affiliated
clones was the first 16 S rRNA gene copy of strain DCB-
2 (Dhaf_R0006, 98% identity), with all of these five clones
corresponding to the shortest version of Desulfitobacterium
16 S rRNA genes (Online Resource 1—Fig. S3). The other
clones affiliated with Wolinella spp. (seven clones, 100%),
Azovibrio spp. (two clones, 100%), or Bacteroidetes (one
clone, 100%). Three additional clones were only distantly
related to Treponema spp. (75%).

The analysis of samples taken during 6 weeks of
incubation suggested that cis-DCE was dechlorinated by
Desulfitobacterium spp. and Dehalococcoides spp. whereas
VC was dechlorinated by Dehalococcoides spp. (Fig. 2).
On successive transfers, Desulfitobacterium spp. was
systematically and abundantly present during the first
2 weeks of incubation whereas Dehalococcoides dominated
the consortium after 4–6 weeks of incubation.

Discussion

The concomitant presence of Dehalococcoides spp. and
Desulfitobacterium spp. in the majority of the samples
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Fig. 1 Chloride production in cultures inoculated with different
environmental samples amended with a seven electron donor mixture
once a week and with hexadecane containing 100 mM PCE (nominal
PCE concentration in water phase ca. 8 mM), and producing different
dechlorination end products. Culture from sample GW3 (filled square)
producing DCE, from sample GW5 (filled triangle) producing VC,
and from sample AQ5 (filled diamond) producing ethene
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indicated that either both populations dechlorinated chlor-
oethenes in parallel or that there was a stepwise catalysis
where one population dechlorinated the higher chlorinated
ethenes (PCE, TCE) and the other the lower chlorinated
ones (DCE, VC). Several studies have presented evidence
that PCE and TCE dechlorination to ethene has been the
result of the activity of different populations successively
catalyzing the different dechlorination steps, either by

multiple Dehalococcoides spp. populations with different
metabolic properties (Duhamel et al. 2002; Waller et al.
2005; Holmes et al. 200; Behrens et al. 2008) or by
populations of two or three different genera (Yang et al.
2005; Grostern and Edwards 2006; Amos et al. 2009). In
analogy, it is postulated that in the numerous enrichments
obtained in this study the dechlorination of PCE was
catalyzed first by Desulfitobacterium spp. followed by

Table 1 End-point PCR detection of Dehalococcoides, Desulfitobacterium, and Dehalobacter in inocula and enrichments thereof amended with a
seven electron donor mixture added weekly and containing PCE dissolved in hexadecane

End producta Siteb Sampleb Dehalococcoides Desulfitobacterium Dehalobacter

Inoculum Enrichment Inoculum Enrichment Inoculum Enrichment

DCE S3 GW1 X X X X X

S4 AQ8 X X X X X

S4 GW2 X X X X

S5 AQ9 X X X X

S5 GW3 X X X

S7 GW6 X X X X X

S7 GW7 X X X X

S13 AQ14 X X X X X

S14 AQ16 X X

S14 AQ17 X X X

S14 AQ18 X

No. of samples 11 8 8 9 11 3 2

VC S1 AQ3 X X X

S3 AQ6 X X

S4 AQ4 X X X X

S5 GW4 X X X X

S6 GW5 X X X X

S7 AQ12 X X X X

S10 SL1 X X X X X

S15 RS1 X X

S14 AQ19 X X X X X

S18 LS2 X X X X

No. of samples 10 8 9 6 10 1 3

Ethene S1 AQ1 X X X X X

S2 AQ2 X X

S3 AQ5 X X X

S4 AQ7 X

S6 AQ10 X X X

S7 AQ11 X X X

S9 AQ13 X X X X X

S8 GW8 X X X X X X

S11 SL2 X X X X X X

S12 SL3 X

S14 AQ15 X X X X

No. of samples 11 7 8 6 10 3 5

a End product observed in enrichment culture after several months of incubation
b Information about the sites and samples is given in Online Resource ×Table S1
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dechlorination of the lower chlorinated ethenes catalyzed
by Dehalococcoides spp. However, dechlorination by
Desulfitobacterium spp. was perhaps not only restricted to
PCE and TCE.

In all but one enrichment cultures where dechlorination
was observed, Desulfitobacterium spp. was detected as very
abundant population. This genus was also detected in more
than 50% of the inoculum samples that originated from
different European countries (Germany, The Netherlands,
and Switzerland). The possible ubiquity of this bacterial
genus has already been suggested in a study of soil samples
from the Canadian province of Quebec (Lanthier et al.
2001) and presence of Desulfitobacterium spp. in
chlorothene-dechlorinating microbial communities has also
been reported in several other studies (Davis et al. 2002;
Yang et al. 2005; Yoshida et al. 2007; Dowideit et al. 2010).

BesidesDesulfitobacterium spp., mainly Dehalococcoides
spp. was detected in the enrichment cultures on PCE
independently of the dechlorination end product observed.

The first survey on the presence of Dehalococcoides spp. at
chloroethene-contaminated sites has shown that this bacterial
genus is widely distributed and that it has not been detected
in samples from sites at which only incomplete dechlorina-
tion occurred (Hendrickson et al. 2002). A link between
complete chloroethene dechlorination and the presence of
Dehalococcoides spp. has also been presented in numerous
other studies investigating enrichment cultures and field sites
(Duhamel et al. 2002; Freeborn et al. 2005; Yang et al. 2005;
Grostern and Edwards 2006; Holmes et al. 2006; Daprato et
al. 2007; Lee et al. 2008; Dowideit et al. 2010). In many
enrichment cultures of the present study where Dehalococ-
coides spp. was detected in the inoculation material,
dechlorination was incomplete and stopped at DCE or VC.
This could be explained by the fact that in several
Dehalococcoides spp.-containing consortia different strains
of this bacterial genus seemed to be present with different
metabolic properties (Duhamel et al. 2002; Waller et al.
2005; Holmes et al. 2006; Daprato et al. 2007; Lee et al.
2008). Hence, it seems that the mere detection of the
presence of Dehalococcoides spp. in a microbial community
does not guarantee that dechlorination of chloroethenes will
be complete.

In three of the 11 enrichment cultures producing
ethene, Dehalococcoides spp. was not detected and also
not in two inocula. This suggested that there are other
bacteria not affiliated with this genus that are capable to
dechlorinate chloroethene to ethene. The identification of a
novel group of bacteria within the phylum Chloroflexi as
responsible organism for PCE dechlorination (Kittelmann
and Friedrich 2008) and of Dehalogenimonas lykanthro-
porepellens as novel genus and species using polychlori-
nated alkanes as electron acceptor (Moe et al. 2009)
indicates that the phylum Chloroflexi might contain other
yet unidentified organohalide-respiring bacteria producing
ethene from chloroethenes. Another possible explanation
for not detecting Dehalococcoides spp. is, however, that
members of this genus were present but not detected by the
specific primers used.

The analysis of the AQ1 enrichment culture on cis-1,2-
DCE suggested based on relative abundances of Desulfito-
bacterium spp. and Dehalococcoides spp. during dechlori-
nation that cis-DCE was first reduced to VC by both
genera, followed by VC dechlorination by the latter
population. This was rather surprising since all described
isolates of the genus Desulfitobacterium that dechlorinate
PCE and/or TCE produce exclusively cis-DCE (Smidt and
de Vos 2004; Villemur et al. 2006). Moreover and regarding
the Dehalococcoides spp. population, the VC reductive
dehalogenase genes vcrA and bvcA could not be detected in
this enrichment (data not shown). Attempts to isolate the
different populations present in the AQ1 enrichment on cis-
DCE did unfortunately fail so far but will be continued.
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Fig. 2 Number of 16 S rRNA gene copies per mL of culture as
determined by qPCR (a) and relative population sizes as determined
by T-RFLP (b) of Desulfitobacterium spp. and Dehalococcoides spp.
in an AQ1 enrichment culture dechlorinating cis-DCE to ethene with
propionate-butyrate-ethanol as electron donors. For Dehalococcoides
spp. the relative peak area of T-RF 168 is depicted, for Desulfito-
bacterium spp. the peak area represents the sum of the peaks of T-RF
212 and T-RF 329. Gray bars, Desulfitobacterium spp.; black bars,
Dehalococcoides spp.; filled diamond, cis-DCE; filled square, VC;
filled triangle, ethene

366 Appl Microbiol Biotechnol (2011) 90:361–368



Future efforts will in addition concentrate on the identifi-
cation of the reductive dehalogenase genes involved in
complete chloroethene dechlorination by this enrichment.
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