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Abstract. Background: Auger electron emitters that can
be targeted into DNA of tumour cells represent an
attractive systemic radiation therapy goal. In the situation
of DNA-associated decay, the high linear energy transfer
(LET) of Auger electrons gives a high relative biological
efficacy similar to that of α particles. In contrast to α
radiation, however, Auger radiation is of low toxicity
when decaying outside the cell nucleus, as in cytoplasm or
outside cells during blood transport. The challenge for
such therapies is the requirement to target a high
percentage of all cancer cells. An overview of Auger
radiation therapy approaches of the past decade shows
several research directions and various targeting vehicles.
The latter include hormones, peptides, halogenated nucle-
otides, oligonucleotides and internalising antibodies.
Discussion: Here, we will discuss the basic principles of
Auger electron therapy as compared with vector-guided α
and β radiation. We also review some radioprotection
issues and briefly present the main advantages and
disadvantages of the different targeting modalities that
are under investigation.
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Introduction

Current clinically useful systemic radiation therapies are
mainly based on β− radiation emitters [1]. Radioisotopes

such as 131I, 32P and 89Sr are efficient therapeutic agents
because they are taken up by cancerous or hyperactive
tissues [2–8]. These β− emitters and others such as 90Y
and 177Lu have been coupled to antibodies [9–12] or
peptides [13, 14] in order to target them into tumours for
systemic radiation therapy. In recent years, α emitters have
regained popularity with the emergence of new production
processes and the availability of clinically useful targeting
agents such as humanised, tumour-selective monoclonal
antibodies. However, studies with α emitters remain mostly
pre-clinical [15, 16]. Similarly, Auger radiation therapy,
while being a long-standing research goal, has encountered
multiple obstacles, and clinical studies have been very
scarce.

Among the different requirements of systemic radiation
therapy that we shall discuss below, we first mention the
importance of suitable tumour-selective vehicles. Anti-
bodies in lymphoma therapy and peptides that bind to
somatostatin receptors are the most advanced options in
this respect.

A second requirement, in our opinion, aimed at
increasing the efficacy of systemic radiation therapy, is
the repeated application of internal emitters. Even though
radiolabelled antibodies, as an example, circulate and
irradiate tumours over a period of a few days, repetition of
therapy might still be favourable. Repetition of therapy
cycles is already in use in radio-peptide treatment.
Repetition of treatment or, alternatively, continued infusion
appears essential with certain radio-nucleotides that can
only be incorporated in the S phase of the cell cycle, such
as iododeoxyuridine. The aim of repeating radiotherapy
cycles is the successive destruction of the most accessible
and radiosensitive parts of cancer nodules. The sequential
radiotherapy cycles would hit re-oxygenated, re-nourished
cycling cells in radiosensitive phases, as is the case in
conventional external beam radiation therapy [17, 18].

A third requirement of systemic radiation therapy is the
targeting of radiation to large proportions of all live
cancerous cells. With respect to large solid tumour nodules,
the crossfire effect of β− particle emitters can be a major
advantage [9–12]. The long range tissue penetration,
however, might be a disadvantage when targeting small
clusters of tumour cells.
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Owing to their physical properties, α and Auger
electron emitters are better adapted for the treatment of
individual cells or small clusters. These two radiations
provide a high linear energy transfer (high LET) type of
energy deposition: α particles with about 80–100 keV/μm
and Auger electrons with 4–26 keV/μm [19]. As a
consequence, α radiation has a path length in tissue in
the range of only 40–80 μm while the path length of most
Auger electrons is well below 1 μm. These radiations are
therefore optimal for treatment of individual cancer cells or
small cell clusters. The limited tissue penetration of only a
few cell diameters and the rather short half-life of most
available α emitters are the major reasons why this type of
radiation is mainly appropriate for haematological
malignancies [19].

In contrast to α and β− radiation, treatment based on
Auger electron emitters requires targeting of the radioiso-
tope into individual tumour cells and even into the nucleus.
Optimal Auger radiation efficacy is obtained when Auger
emitters are tightly bound to DNA. Despite the multiple
obstacles that have been encountered, Auger radiation
therapy approaches remain appealing because of the
selective toxicity for cells that incorporate the radiopharma-
ceutical into the nucleus. In contrast to α and β− radiation,
Auger radiation emitters remain of low toxicity while
travelling in blood or bone marrow but become highly
efficient when incorporated into DNA of target cells.

The high LET type energy deposition of α and Auger
radiation in DNA produces a high proportion of double
strand breaks. The double strand destruction of several
nucleotides can make DNA repair [20, 21] rather inefficient
and prone to error. The relative biological efficacy (RBE)
of α and Auger radiation emitters is thus significantly
higher than that of β− radiation. However, this is the case
for both tumour and normal tissues.

Fundamental requirements of systemic radiation
therapy

The first requirement of systemic radiation therapy is the
definition of suitable tumour-selective vehicles in order to
avoid normal tissue toxicity. Antibodies and peptides,
notably those binding to somatostatin receptors, [22], are
most advanced in this respect. Furthermore, two anti-CD20
antibodies for radioimmunotherapy (RIT) of lymphoma are
currently FDA approved [23, 24].

It appears from these therapies that the specificity of
antibodies or peptides for tumour is not an absolute
requirement. Targeting of normal B cells with anti-CD20 or
anti-CD22 antibodies is generally well tolerated [11, 25],
probably because these antibodies do not bind to bone
marrow stem cells and other cells of the immune system,
notably T cells. In contrast, tolerance of treatment with
Campath antibody (alemtuzumab) is more compromised,
since its target antigen is expressed on both normal B and T
lymphocytes [26]. Campath treatment can therefore
provoke depression of both antibody and cellular immu-
nity, thereby frequently leading to severe infections.

An advantage of current RIT may be the fact that it is
administered in combination with high amounts of non-
labelled antibodies. The non-conjugated antibodies can
themselves provide an efficient biological treatment of
cancer or lymphoma and leukaemia [26–28]. Indeed, it is
well documented that unlabelled monoclonal human IgG1

antibodies provide highly efficient effector functions such
as complement-dependent cytotoxicity, antibody-depen-
dent cellular cytotoxicity or direct induction of apoptosis
and cell killing. Current RIT is therefore a combination
treatment that favourably combines biological therapy with
radiation treatment.

Treatment repetition and/or prolonged application of
internal emitters, as are used in conventional radiotherapy,
might be a second requirement for efficient systemic
radiation therapy. However, some currently used clinical
antibodies are still of rodent origin (tositumomab,
ibritumomab) [23, 24], bearing the risk of immunising
patients and not allowing repeated treatment cycles. It has
been shown, however, that chimerisation (rituximab) [27]
and, even more so, humanisation of monoclonal antibodies
(alemtuzumab or trastuzumab) [26, 28] significantly
reduces the risk of a human anti-mouse IgG immune
response. In peptide treatment and Auger electron therapy
approaches, immune response to the targeting vehicles will
generally not occur, providing the opportunity to repeat
treatment cycles without particular constraints.

Targeting of a high percentage of all live cancerous cells
may be a third requirement of systemic radiation therapy. It
is important to realise that the tumour uptake of
radiolabelled antibodies, peptides and other conjugates is
frequently quite inhomogeneous. In this situation, the
crossfire effect of β− particle emitters can constitute a
major advantage [9–12]. The longer range tissue penetra-
tion of this radiation type is due to a small energy
deposition on the radiation path of only 0.2 keV/μm.
β− radiation is thus providing a low LET type radiation
similar to X-rays. Owing to this long-range tissue penetra-
tion of β− radiation, a crossfire effect is created, reaching a
major portion of tumour cells rather homogeneously even
in a solid tumour and despite inhomogeneous radio-
pharmaceutical distribution (Fig. 1). Another advantage
of β− radiation therapy approaches is the availability of
multiple radioisotopes emitting low-, medium- and high-
energy electron radiation (Table 1). These different energies
provide short- to long-range tissue penetration paths of 0.1
up to 10 mm [29]. Optimal tumour sizes for given
β− energies have been modelled [30]. Results of in vivo
studies, however, have not always correlated with these
predictions [31, 32]. The disagreement may be partially due
to insufficient knowledge of microscopic distribution of the
radio-vector or insufficient coverage of radiobiological
issues such as killing of clonogenic cells [31].

However, it is obvious that small tumour nodules or
clusters of tumour cells will not be treated efficiently with
high-energy β− emitters. At a small target size, energy
deposition of high-energy β− radiation becomes predomi-
nant in the normal surrounding tissue and insufficient in the
target tumour cells. As an example, it has been calculated
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that the absorbed fraction per cell of electrons from 90Y
with a mean energy of 935 keV would be as low as 0.1%
[33]. In this respect, low-energy beta radiation would be
more advantageous. Experimentally, superior anti-tumour
efficacy was observed with somatostatin analogues
labelled with a combination of a high- (90Y) and low-
energy (177Lu) β− emitters in rats bearing simultaneously
small and large tumours [34]. More efficient systemic
radiation therapies against individual tumour cells or small
cell clusters, with respect to radiation deposition in the
target, would be provided with α or Auger radiation
emitters.

Physical properties of Auger radiation

Auger radiation was described in 1925 by Pierre Auger
[35]. Auger electrons arise from electronic shells of
radionuclides when these decay by electron capture.
Electron capture processes create inner shell electron
vacancies by an electron transfer from this shell into the
nucleus. The inner shell electron vacancies are subse-
quently filled by electron transitions from shells of higher

energy, a process that occurs in cascade. The energy
difference of these transitions can be released either as
photons or as low-energy electrons, the Auger electrons.

Typically, Auger radiation decays produce between 5
and 30 Auger electrons. Depending on the relationship of
the electronic shells involved, these transitions are
classified into Auger, Coster-Kronig and super-Coster-
Kronig processes. The electrons emitted by these three
processes are referred to as Auger electrons [19, 36–38].

Auger electrons are of low energy. The small negatively
charged low-energy electrons produce multiple ionisations
of high LET type (4–26 keV/μm) and consequently have a
very short range in biological tissues, typically <0.5 μm.
The large majority of Auger electrons have a tissue
penetration range of the order of a few nm only [19].

Internal conversion (IC) electrons are created by
collision of photons (from the nuclear decay) with inner
shell electrons that are ejected. IC electrons have discrete
energies in the keV range. This energy is higher than that of
most Auger electrons as defined above but lower than that
of classical β− radiation such as emitted by 131I or 90Y.
Some groups use a wider definition for Auger electrons,
such that they comprise all low-energy electrons, and
thereby consider that IC electrons are also among the
Auger electrons. However, in contrast to Auger electrons,
IC electrons produce mostly a low LET type tissue
irradiation with a penetration path generally in the μm
range. IC electrons from decays in the cytoplasm can
accordingly reach the nuclear DNA. However, the
observed biological efficacy of IC electrons is similar
to that of conventional β− radiation and X-rays [39].
When referring to IC electrons in this review, we shall call
them by that name and make the distinction from Auger
electrons, as justified by the different biological efficacy of
these two radiation types.

A large number of radioisotopes emit some Auger
radiation, but the most interesting Auger electron emitters
for the purpose of treatment are 125I, 123I and 201Tl
(Table 2) [38]. 55Fe would emit a very high proportion of
radiation energy in the form of Auger electrons, but it does
not qualify for therapy in humans owing to its half-life of
2.7 years. For the three mentioned emitters, the Auger
radiation energy released per decay remains significant,

Fig. 1. Schematic presentation of α, β− and Auger radiation path
lengths in a cellular and subcellular environment (arbitrary scaling).
Note that the major energy deposition of an Auger radiation decay
occurs in the close vicinity of a few nm, while that of α and β−

radiation occurs on tracks of 40–80 μm and 0.1–10 mm,
respectively

Table 1. Radiation properties of representative therapeutic radioisotopes

Radiation β− α Auger electrons

Energy Low Moderate High Very high Very low

Examples 169Er 131I 90Y 211At 125I
177Lu 186Re 188Re 213Bi 123I
67Cu 153Sm 32P 212Bi 111In
199Au 111Ag 89Sr 149Tb 55Fe
33P 64Cu 67Ga

Mean tissue range (mm) 0.1–0.3 0.3–1 1–5 0.03–0.08 <0.001
Particularity Low LET and crossfire effect High LET High LET
Best suited for treatment of: Tumour masses Clusters and individual cells Individual cells and clusters
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while it is frequently less than 1% for other isotopes
like 99mTc. For 125I, 123I and 201Tl, the Auger electron
energy release per decay represents between 3.7% and
19.9% of the total energy, a higher proportion of radiation
energy being released in the form of photons. Since photons
penetrate tissue with a low energy deposition per μm path,
they are of minor relevance with respect to therapy but
should continue to be borne in mind for the potential non-
specific irradiation of radiosensitive tissues such as bone
marrow.

The radioisotope 123I, though it releases only about 14%
of its decay energy in the form of Auger and IC electrons,
would be a good candidate for therapy. Its half-life of
13.2 h would be well adapted for peptide or oligonucleotide
Auger radiation treatment and the biodistribution could be
followed by scintigraphy based on the γ radiation of
159 keV.

Energy deposition in the nuclear space

The shower of electrons produced in a typical Auger
radiation decay has a punctiform origin. The abundance of
low-energy electrons in a microscopic or “nanoscopic”
space can be seen as an onion-like energy deposition in
concentric spherical shells. It has been calculated that the
absorbed energy around the decay site of 125I would be
80 eV/nm3 within the first nanometre. Energy deposition
would drop to about 10 eV/nm in the second nanometre 3

and fall further to 3 eV/nm3 in the third nanometre [40]. The
calculated energy deposition of 10 eV/nm3 within a radius
of 2 nm implies a locally absorbed radiation dose of 1.6
MGy [40]. This local radiation dose is 22,000 times higher
than a conventional external beam radiation dose of 70 Gy
delivered in conventional radiation therapy to tumours over
several weeks. The locally deposited energy of 1.6 MGy
corresponds to 1.6×10−18 J/nm3. This translates into a
temperature increase of 382°C per nm3 of water. Obviously,
this locally very high energy deposition within 2 nm from
decay will then rapidly dissipate, i.e. dilute, into the total
space of the nucleus. If we consider a nucleus of 2 μm

radius, the dilution factor would be 109 and the overall
heating effect for the nucleus would be 0.38×10−6°C and
thus insignificant.

Auger radiation biology

The double strand DNA helix presents a diameter of 2 nm.
In a typical Auger radiation decay, the highest energy
deposition occurs in spheres of 1–2 nm, as described
elsewhere [40]. This means that the calculated local energy
deposition of an Auger emitter incorporated into DNA
would hit both DNA strands with an energy of 1.6 MGy or
higher. This radiation energy is therefore largely sufficient
to disrupt both DNA strands over distances of several
nucleotides (Fig. 2) [39, 41]. For 125I or 123I decays
associated with DNA, this translates into a general rule of:
“One decay=one double strand break”. Similar to an α
radiation path through the cell nucleus, the genetic
information is lost in these double strand breaks owing to
destruction of several nucleotides on both strands [42–44].
Repair still remains possible but will frequently be
erroneous. These features are responsible for the high
RBE of Auger radiation when decays occur in close
association with DNA. It is a most intriguing feature of
Auger radiation that it possesses the high cytotoxicity of α
radiation when occurring in close vicinity to DNA while
being of low toxicity outside the cell nucleus.

Besides the direct effect of Auger electrons on DNA
double strands, an indirect radiation effect of Auger energy
deposition will occur via production of radicals [45]. The
radicals diffuse freely in the intracellular space and can
cause further DNA damage. Even a bystander effect by
diffusion of radicals through gap junctions has been
described [46].

In order to compare the RBE of different radiation types,
the radiation weighting factor (WR) has been introduced.
WR compares the biological efficacy of a given radiation
dose of a particular radiation type with that of X-rays.
X-ray effects are being attributed theWR of 1.

125I- and 123I-
iododeoxyuridine (IdUrd) has frequently been used to

Table 2. Examples of Auger electron emitters for which the Auger radiation represents a significant percentage of the overall energy release
per decay

Isotope Auger electrons/
decay

IC electrons/
decay

Auger
energy/decay
(keV)

IC
energy/decay
(keV)

Total energy/
decay (keV)

Auger energy
in % of total
energy/decay

IC energy
in % of total
energy/decay

T1/2

55Fe 5.1 0 4.2 0 5.8 71.9 0 2.7 yr
67Ga 4.7 0.3 6.3 28.1 201.6 3.1 13.9 78 h
99mTc 4.0 1.1 0.9 15.4 142.6 0.6 10.8 6 h
111In 14.7 0.2 6.8 25.9 419.2 1.6 6.2 67 h
123I 14.9 0.2 7.4 20.2 200.4 3.7 10.1 13 h
125I 24.9 0.9 12.2 7.2 61.4 19.9 11.8 59.4 d
201Tl 36.9 1.1 15.3 30.2 138.5 11.0 21.8 73 h

Decay energies are given as reported by the AAPM nuclear medicine task group 6 [38]. X- and γ-ray contributions are only included in the
column that shows the total energy release per decay
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measure the biological effects of Auger radiation. Since the
decay sites of radio-IdUrd, once incorporated into DNA,
fulfil the requirement of close vicinity to DNA, double
strand breaks occur with a probability of about 1 per decay.
The RBE of 125I-IdUrd and 123I-IdUrd measured in V79
cells was 8 and 7 [40, 47], respectively. This means that, for
an identical deposition of energy, the Auger radiation of
DNA-incorporated 125I-IdUrd and 123I-IdUrd would be
eight- and sevenfold more efficient compared with X-rays,
γ or conventional β− radiation [48]. This biological
efficacy of DNA-incorporated 123I/125I-IdUrd would be
similar to that of α radiation [48, 49]. Nuclear localised
Auger processes that are not directly linked to DNAwould,
however, develop a WR only about half that of DNA-
associated decays [39].

In experiments other than those mentioned above,
different research groups have reported widely divergent
biological efficacies of Auger radiation, with WR values as
high as 64 in the particular situation of chronic irradiations
[50]. The appreciation of these and other reported effects
remains a matter of debate [49]. The Nuclear Medicine task
group of the American Association of Medical Physicists
has proposed the application of a radiation weighting factor
of 10 for deterministic effects of Auger radiation and a
factor of 20 for stochastic effects, provided that this
radiation occurs in the nucleus in close association with
DNA [39]. In view of the mentioned divergent observa-
tions, this proposal is not generally accepted.

Unlike most Auger electrons, IC electrons may
significantly irradiate the cell nucleus when decaying in
the cytoplasm. Because of the lower biological efficacy of
IC electrons, however, the predicted radiation effects must
be clearly distinguished between IC and Auger electrons,
notably when the latter occur in the nucleus. As previously
mentioned, such IC electrons develop a low LET type
irradiation associated with mostly single strand breaks and
a WR of about 1 [39].

Gonadal effects

It is quite well established that Auger irradiation of the
gonads also gives an RBE of about 7 regarding deterministic
effects [51]. However, the stochastic effects of Auger
radiation emitters in human gonads remain a question of
debate. There are divergent observations concerning not
only long term effects but also the calculation of dose
deposition in gonad cells. It has been reported that the
irradiation dose to sperm heads may be up to 160 times
higher than that cited by ICRP report 53, which did not
include Auger radiation [52]. Furthermore, transfer of 111In-
labelled transferrin through the intact, so-called blood-testis
barrier has been reported, which would be mediated by the
Sertoli cells [53, 54]. The authors referred to evidence from
experimental animal studies that the emitted Auger radiation
might even produce hereditary effects in offspring [55]. It
could be hypothesised that similar situations would be found
in ovaries, since separation of the maternal and offspring
circulation would provide a barrier similar to that in male
gonads. As a consequence of these observations, these
authors [55] suggested that the administration of larger
diagnostic activities of 111In-radiopharmaceuticals might
require contraception. In comparison, our first experiments
with 125I-IdUrd did not indicate any significant uptake into
gonads of mice. This suggested that the blood-testis barrier
might be operational for this agent as well. This statement
would be in agreement with the observation that radio-IdUrd
does not cross the intact blood-brain barrier [56]. However,
autoradiographic experiments have not been performed in
these studies, which represents a limitation.

Bystander effect

It has been reported that an in vivo bystander effect occurred
in experiments using mixtures of 125I-IdUrd-labelled
LS174T cells and untreated cells [57]. The existence of
such an effect would allow therapy to be envisaged even if
not all cancer cells were targeted with a given radiophar-
maceutical. In the mentioned experiments, the mixed cell
suspensions containing defined proportions of 125I-IdUrd
pre-labelled cells and a constant amount of unlabelled cells
were injected subcutaneously in nude mice and tumour
outgrowth was followed 10–15 days later. It appeared that
the radiolabelled, dying cells developed a growth inhibitory
effect on the non-pre-labelled cells, producing a tumour
growth delay 2–4 days longer than expected. It was also

Fig. 2. Schematic presentation of an Auger radiation decay in a
stretch of double strand DNA. 125I-iododeoxyuridine (*U) is
incorporated in DNA as a thymidine (T) analogue. The arrowhead
indicates the reading direction of a given gene. The destruction of
the antisense sequence guanine-iododeoxyuridine-thymidine (G-*U-T)
goes together with the destruction of the sense sequence cytidine-
adenine-adenine (C-A-A), whereby the genetic code is lost over a
stretch of three nucleotides
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shown that the growth delay could not be explained by a
minor radiation exposure of non-pre-labelled cells from the
γ-radiation of 125I, since much higher external beam
irradiation doses were required to diminish tumour growth
to a similar degree. The authors thus concluded that an
Auger radiation therapy effect was observed which involved
more than just the tumour cells that were pre-labelled.
Whether this observation in fresh transplanted cells can be
extrapolated directly to outgrown tumours targeted with
Auger radiation emitters remains to be shown.

Dosimetry

Biodistribution and kinetic measurements of internal
radiopharmaceuticals in patients are difficult to achieve.
A high-quality dosimetry of γ- or positron-emitting
radiopharmaceuticals remains most difficult to perform in
a standard clinical setting [58]. The task becomes close to
unrealistic on an individual patient basis for Auger
radiation emitters. For Auger radiation dosimetry, knowl-
edge of the percentage of cells that are targeted in
individual tissues is essential. Furthermore, most relevant
Auger irradiation would occur only for DNA-associated
emitters [39, 59]. In contrast to target cells, non-target cells
would not be, or would be only minimally, irradiated from
Auger electron decays.

Given that the cumulated organ activity is known, a
mean nuclear absorbed radiation dose may be calculated, if
the percentage of DNA-associated Auger radiation can be
estimated. S values for such situations have been provided
[60]. For the estimation of the risk of long-term stochastic
effects, a WR of 20 may then be applied for nuclear-
associated Auger radiation [39]. This may provide a
radiation dose risk estimate for a patient exposed to Auger
radiation in a nuclear medicine diagnostic procedure [61].
As a best approximation, this dosimetry was based on
biodistribution and DNA incorporation measurements
performed in mice [61]. Measurement of all these
parameters in individual patients would be impossible.
Such risk appreciation should, however, be taken seriously,
particularly if significant uptake of the radiopharmaceutical
occurs in the gonads. As mentioned, if an Auger
radiopharmaceutical is taken up by the gonads, the cell-
specific localisation would have to clearly distinguish
between germline and stromal cell localisation in order to
allow for adequate Auger radiation dosimetry.

For calculation of deterministic, cytotoxic effects of
Auger radiation, knowledge of a mean nuclear absorbed
radiation dose in an organ, however, is insufficient. Here, it
is essential to have an estimate of the percentage of cells
that are targeted and to know the uptake rate of the
radiopharmaceutical into these cells. Furthermore, con-
sidering the effects of Auger radiation emitters with a long
half-life, such as 125I, cells insufficiently targeted might
escape cytotoxicity through cell division [36]. Cell division
produces a dilution of Auger radiation decays into multiple
daughter cells. Furthermore, considering clonal survival,
the probability of survival of at least one out of several

daughter cells will be higher than that of a single parent cell
exposed to the same number of Auger decays. The precise
dosimetric handling of cell division during long-lasting
Auger radiation is therefore highly complex. It requires, in
addition to the mentioned considerations, attention to the
notion of cell division delay [62] due to continued
irradiation that causes double strand DNA breaks. Double
strand beaks in turn induce cycling stop signals at different
check-points of the cell cycle allowing repair.

Biological Auger radiation effects have frequently been
measured with 125I or 123I-IdUrd. The short, 13-h half-life
of 123I provides an Auger radiation emitter that delivers the
large majority of its irradiation within 1 day, while cellular
doubling of tumours frequently occurs within 1 to several
days. In contrast, due to the long, 60-day half-life, 125I,
radiation delivery will occur over several days or weeks
provided that the radiopharmaceutical remains associated
with DNA. It was calculated for 125I-IdUrd that a given
cell was sterilised with a mean of 120 Auger radiation
decays that occurred in close association with DNA [62].
This would correspond to about 120 DNA double strand
breaks. This calculation was based on the knowledge of a
normal cell division time as well as a division time under
a given Auger irradiation condition. Thus, the out-dilution
effect of 125I-IdUrd during cell division was taken into
account in this dosimetry. However, in our understanding,
the creation of two or multiple daughter cells with an
accordingly higher clonal survival probability compared
with a single cell has not been included in the mentioned
calculations [36, 62]. Overall, the above-mentioned num-
ber of 120 Auger decays that would kill a cell therefore
remains an estimate and applicable to the particular cell
line only.

Radioprotection

In view of the difficulty of precise Auger radiation
dosimetry, radioprotection in this field requires the applica-
tion of a large factor of potential overprotection in order to
cover the uncertainties from the dose calculation. For any
given Auger electron-emitting radiopharmaceutical, a po-
tential localisation in the cell nucleus of bone marrow stem
cells or, notably, germinal cells should be of the utmost
concern. This could be the case for oligonucleotides, 125I-
IdUrd or other nucleotides as well as hormones. However,
nuclear localisation might also occur with other radiophar-
maceuticals, as has been described for 111In-labelled
pharmaceuticals [53, 54]. According to these authors, 111In
might be released from a radiopharmaceutical and be
transported into gonad cells via binding to transferrin.

Experimental treatment approaches

Hormones and growth factors

Steroid hormones and analogues localise to nuclear
receptors [63, 64]. An advantage of hormonal vectors is
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the fact that all tumour cells are potential targets. 123I-
and 125I-iodo-oestrogens were used to study Auger
radiation treatment of oestrogen receptor-positive MCF-7
breast cancer cells [65–67]. The authors determined the
dose producing on average one lethal event per cell, the
D37. The random distribution of one lethal event per cell
predicts that 37% of cells will survive, as calculated by a
Gaussian model [17]. This leads to the definition of the term
D37 as the percent of survival corresponding to a mean of
one lethal hit per cell. These authors determined aD37 of 28
decays/cell for 125I-oestrogen. Similarly, for 125I-IdUrd the
D37 was determined as 30 decays/cell. In these experiments,
cells were frozen in order to accumulate the number of
decays/cell, facilitating dosimetry calculations without
interference from cell division. In terms of biological
efficacy, these numbers of decays would correspond to an
RBE of about 4.5. However, freezing as an artificial event
might itself modulate the survival probability after a given
cell insult and the biological relevance of this determination
of D37 might therefore not be definitive.

Epidermal growth factor (EGF) has been labelled
with 111In-DTPA. It was reported that after an incubation
period of 24 h up to 9.6% of the conjugate was found
associated with nuclear chromatin of breast cancer cells
overexpressing the EGF receptor [68]. Growth inhibition
was observed in a corresponding tumour xenograft model
[69].

With regard to 111In-DTPA-labelled octreotide, auto-
radiographic in vitro experiments showed that a small
fraction was being incorporated into the cell nucleus of
receptor-positive cells [70]. With the aim of increasing the
affinity to receptors, experimental studies with different
somatostatin analogues have been performed, including
recently a tri-functional peptide [71]. Based on the
observation of partial intranuclear localisation and evi-
dence of therapeutic efficacy in rats, 111In-DTPA-octreo-
tide has been evaluated in clinical studies for therapy of
neuroendocrine tumours [72–75], as discussed below.

Radio-iododeoxyuridine (IdUrd)

Radiolabelled iododeoxyuridine, such as 125I- and 123I-
IdUrd, has been studied for many years for its Auger
radiation effects [19]. The fact that these thymidine
analogues are directly incorporated into nascent DNA
during the synthesis phase of the cell cycle provides a most
reliable model for the experimental measurement of Auger
radiation biological effects.

A first major restriction of radiolabelled nucleotides,
however, lies in the fact that they are incorporated into
DNA only during the synthesis phase of the cell cycle. This
restriction has generally been overcome in vitro by using
incubation times covering at least two to three cell cycles.
For in vivo applications, osmotic pumps delivering radio-
IdUrd continuously over several days have been used in
order to bypass the problem of the very short circulation
time of nucleotides that are rapidly degraded after
administration.

A low rate of DNA incorporation both in vitro and in
vivo constitutes a second significant problem with the use
of 125I- or 123I-IdUrd. There are two obvious major reasons
for this: first, rapid catabolism of IdUrd and second,
competition from endogenous thymidine (dThd). In order
to circumvent the low DNA incorporation rate of 125I-
and 123I-IdUrd, incorporation modulation using dThd
synthesis inhibition has been studied by several groups
[76–78]. The aim has been to take advantage, under
blocked endogenous dThd synthesis, of the preferential
incorporation of radio-IdUrd into DNA through the salvage
pathway. The combination with different dThd synthesis
inhibitors, such as fluorodeoxyuridine (FdUrd) or metho-
trexate, produced up to a fivefold increase in the incorpo-
ration rates of unlabelled or radiolabelled IdUrd or
bromodeoxyuridine [76–78]. However, the increase in
incorporation after dThd synthesis inhibition did not yield
the expected increase in therapeutic efficacy of radio-IdUrd
[77]. The reason for the absence of an increase in toxicity
corresponding to the increased DNA incorporation rate
of 125I-IdUrd after dThd synthesis inhibition remains
unexplained, to our knowledge.

We used the approach of short exposure of radio-IdUrd
in combination with short, non-toxic exposure to FdUrd.
We first showed that 125I-IdUrd incorporation in DNA
increased with this approach multiple-fold both in vitro and
in vivo using three different glioblastoma cell lines and
tumours [79]. After direct intra-tumoural application, up to
20% of radio-IdUrd was incorporated into tumour cell
DNA after FdUrd pre-treatment [80]. In comparison, only
4% of injected activity was DNA incorporated in non-pre-
treated animals. In the next step, we improved targeting of
radio-IdUrd into a higher number of cells. After the non-
toxic pre-treatment with FdUrd, cell synchronisation into
early S phase was observed for the different cell lines
studied 16–24 h post FdUrd. Thus ≥70% of glioblastoma
cells were synchronised in S phase and incorporated high
amounts of radio-IdUrd [81] at these delayed times. In our
most recent experiments, we were able to show that
70–80% of glioblastoma cells were killed after a single
incubation with modest activities of 125I-IdUrd after FdUrd
pre-treatment, whereas maximally 30% of cells were killed
after exposure to 125I-IdUrd alone, even when using much
higher concentrations. These percentages thus correlate
with the percentage of S phase cells targeted after FdUrd
pre-treatment.

In vivo, prolonged TS inhibition has been observed after
treatment with 5-fluorouracil [82]. Furthermore, i.v. push
injection of FdUrd is overall of low toxicity and has been
used therapeutically in the early stage of clinical application
of FdUrd [83, 84]. In comparison, the maximal tolerated
dose (MTD) of continued exposure (0.15 mg/kg FdUrd
perfused per day) is about 200-fold lower than the MTD of
FdUrd given in a single i.v. push injection (30 mg/kg
per day). These data suggest that the approach of FdUrd-
induced cell synchronisation might be used in vivo to deliver
radio-IdUrd to a high percentage of tumour cells.

As another parameter of radio-IdUrd biology, the
function of nucleoside transporters has occasionally been
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studied [85]. Certain subtypes of nucleoside transporters
are known to be expressed in a cell cycle-dependent
manner. Thus, hCNT1 is increased in G1–S transition [86].
It has been shown that inhibition of thymidylate synthase
leads to multiple-fold (30-fold) up-regulation of nucleoside
transporter expression [85]. This observation appears
compatible with the description of increased hCNT1
expression in the synthesis phase of the cell cycle [86].
In our opinion, such a regulation feedback would favour
cell uptake and incorporation of exogenous nucleosides
under the condition of suppressed endogenous dThd
synthesis and might represent a key element in certain
Auger radiation therapy approaches, such as intra-tumoural
injection of radio-IdUrd.

Oligonucleotides

Targeting of specific sequences of DNA or mRNA with
triplex-forming oligonucleotides [44, 87, 88] or antisense
oligonucleotides [89, 90] is a further appealing perspective
of Auger radiation treatment. The strategy aims to target
Auger radiation into key elements of cell survival.
Targeting of genes that are overexpressed in tumours
would be most interesting. As with nucleotides, however,
this strategy faces the obstacles of oligonucleotide
instability and low rates of uptake into the nuclear target.
The transfer of the oligonucleotides from the cytoplasm
into the nuclear compartment is generally very limited and
appears to be controlled by cellular elements that have not
been identified [44].

Aptamers represent another class of DNA or RNA
oligonucleotides. Aptamers fold into unique tertiary
conformations that are capable of binding most diverse
target antigens with high affinity and specificity, analogous
to antibodies [91–93]. Tumour targeting with a radiola-
belled aptamer has been demonstrated [94]. This opens the
possibility of using them in an internal radiotherapy
strategy. However, in common with the other oligonucle-
otides, the in vivo half-lives of aptamers are generally
short. Different stabilisation strategies have therefore been
attempted to overcome this limitation [92, 95–97].

Oligonucleotides can target mRNA in cytoplasm and in
the nucleus. Auger radiation delivered with antisense
oligonucleotides might be a means to disrupt mRNA and
thus be aimed at reducing translation of particular genes.
This approach could therefore be a means of circumventing
the problem of low uptake into the nuclear space. Similarly,
aptamers can directly target gene products in cytoplasm
and coupling with Auger emitters could potentially be a
means to increase their efficacy.

Low-energy electrons targeted into cytoplasm

Different monoclonal antibodies elicit antigen internalisa-
tion upon binding. Such antibodies have been labelled
with 125I and other Auger or low-energy electron emitters
[98–102]. Two-step targeting has been used in this approach

as well [103]. Similarly, MIBG, as an analogue of nor-
adrenaline, is concentrated in adrenergic tumour cells and
can be labelled with the different iodine radio-isotopes for
treatment purposes [104]. 125I-labelled MIBG has been used
in an Auger/low-energy electron therapy approach [105].
The fraction of intracellular generated electrons from 125I
decays (18-keV electrons) that is absorbed by individual
cells has been calculated to be as high as 60%. In
comparison, the absorbed fraction per cell of electrons
from 90Y, with a mean energy of 935 keV, would be as low as
0.1% [33]. Other low-energy electron emitters have also
been proposed for targeting of small tumour cell clusters,
such as 58Co and 103mRh [106] or 67Ga- and 111In-labelled
compounds [102].

125I-iodide has been explored for therapy of hyperthy-
roidism and thyroid cancer [107–111]. However, no
significant advantage could be observed as compared
with 131I therapy. Radio-targeted gene therapy is a similar
approach whereby new genes are introduced into a tumour,
allowing cellular uptake of Auger radiopharmaceuticals.
Tumour transfection with the sodium iodide symporter
followed by treatment with 125I could constitute such a
low-energy electron radiation therapy approach [112, 113].
The biological efficacy to be expected from such
approaches will be similar to that of X-rays for an identical
radiation dose deposition.

Clinical studies

Treatment studies of thyroid cancer and hyperthyroidism
have been performed with 125I [108–111]. The combina-
tion of longer range, low-energy, γ radiation with the short-
range Auger and IC electron effects of 125I could be a
means to treat both large and small cancer nodules or
hyperplastic thyroid tissue. The efficacy of 125I treatment,
however, has been limited. The fact that radio-iodine does
not enter the nucleus and stays only briefly in the
cytoplasm before being deposited in colloidal form might
be responsible for the low contribution of Auger effects in
treatment. In fact, only a minor portion of the low-energy
electrons from 125I decay in cytoplasm and particularly in
colloid can reach the nuclear DNA. Furthermore, the
radiation protection issues of 125I are difficult to handle in
the clinical setting because of its long half-life of 60 days
and continued urinary elimination.

Most advanced therapy studies have been performed
with 111In-DTPA labelled octreotide [72, 73]. Here, nuclear
localisation of 111In-octreotide had been described, though
the percentage entering the nucleus might be small overall
[70]. A direct Auger radiation effect on DNAwas therefore
expected. Studies were performed on more than 50 patients,
but efficacy was rather modest. Therapeutic effects after
injection of 20–160 GBq 111In-DTPA-octreotide consisted
mostly in stabilisation of tumour growth, partial remissions
remaining scarce. Bone marrow toxicity was generally mild;
however, two myelodysplastic syndromes and one case of
leukaemia were observed in a group of six patients who had
been treated with a total of more than 100 GBq 111In-DTPA-
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octreotide [74, 75]. This latter observation was rather
unexpected. A word of caution was expressed by the
authors, who suggested that cumulated activities of 111In-
peptide conjugates should not exceed 100 GBq. A dosi-
metric calculation for these clinical therapy studies has not
been presented, to our knowledge. Insufficient knowledge
of biodistribution and subcellular localisation of the Auger
radiation emitter might have been responsible for this
omission. The reason for the limited efficacy of these
treatments therefore remains a matter of speculation. In fact,
it was observed that the distribution of radiotracer was quite
inhomogeneous in kidney [114]. Similar inhomogeneous
distribution of radiotracer might have occurred in tumour
and have been partially responsible for the limited thera-
peutic efficacy. In more recent studies, these groups based
their systemic radiation therapy of neuroendocrine tumours
on β− emitters using 90Y- or 177Lu-labelled somatostatin
analogues [75].

Clinical studies with radio-IdUrd have been performed,
mostly with the aim of measuring and visualising tumour
targeting [56, 115–118]. Multiple injections or prolonged
perfusion was not used in these rather preparative clinical
approaches. The requirement that tumour therapy with
Auger electron emitters should target a high percentage of
all cancerous cells was therefore not met. As a conse-
quence, therapeutic efficacy was generally not observed in
these studies.

Antibodies directed against different tumour-associated
antigens might elicit antigen internalisation upon binding.
Such antibodies have been labelled with 125I and other
Auger or low-energy electron emitters, and first therapy
studies been performed in patients [98, 119]. Similarly,
125I-labelled MIBG has been used in an Auger/low-energy
electron therapy approach [105]. Therapeutic efficacy with
these latter agents was mostly modest. In fact, also in radio-
MIBG treatment, 131I is still the preferred radioisotope for
therapeutic applications [104]. As for radioimmunotherapy
of solid tumours based on β− emitters, bone marrow
toxicity has been revealed as the dose-limiting factor for
antibodies labelled with Auger radiation emitters. Further-
more, and similar to thyroid treatment with 125I, the
internalising antibodies do not enter the nucleus. The
Auger radiation therefore reaches the nucleus only
partially, and its biological efficacy will be modest, with
a WR of about 1 [39].

Overall, clinical studies with Auger radiation emitters
have not met the major goal of efficacy, but some of these
studies have been performed with the aim of gaining
knowledge as to the feasibility of such an approach, rather
than with a therapeutic objective. Once the problems have
been solved, however, the particular properties of Auger
radiation will make its use for therapy an attractive
proposition.

Conclusion

Targeting of Auger or IC electron emitters into the nucleus
or cytoplasm of tumour cells is an appealing approach for

systemic radiation therapy. Multiple obstacles to the
administration of such therapies have been recognised
and some of them have been partially overcome. However,
most of these approaches still await demonstration of
successful use in animal models, which will be essential
prior to clinical application. Better understanding of Auger
radiation dosimetry and of its biological efficacy remains
another major task. The latter must guide our therapy
research, but in addition information must be gathered on
many radiopharmaceuticals that can reach the cell nuclei
with potential harmful Auger radiation. The combination
of these efforts may allow the potential health risk of this
particular radiation type to be assessed and may also guide
research in an appropriate way towards tumour therapy.
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