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Abstract The algorithmic approach to data modelling

has developed rapidly these last years, in particular meth-

ods based on data mining and machine learning have been

used in a growing number of applications. These methods

follow a data-driven methodology, aiming at providing the

best possible generalization and predictive abilities instead

of concentrating on the properties of the data model. One

of the most successful groups of such methods is known as

Support Vector algorithms. Following the fruitful devel-

opments in applying Support Vector algorithms to spatial

data, this paper introduces a new extension of the tradi-

tional support vector regression (SVR) algorithm. This

extension allows for the simultaneous modelling of envi-

ronmental data at several spatial scales. The joint influence

of environmental processes presenting different patterns at

different scales is here learned automatically from data,

providing the optimum mixture of short and large-scale

models. The method is adaptive to the spatial scale of the

data. With this advantage, it can provide efficient means to

model local anomalies that may typically arise in situations

at an early phase of an environmental emergency. How-

ever, the proposed approach still requires some prior

knowledge on the possible existence of such short-scale

patterns. This is a possible limitation of the method for its

implementation in early warning systems. The purpose of

this paper is to present the multi-scale SVR model and to

illustrate its use with an application to the mapping of

Cs137 activity given the measurements taken in the region

of Briansk following the Chernobyl accident.

Keywords Machine learning � Support vector regression �
Multi-scale environmental modelling � Spatial mapping �
Kernel methods

1 Introduction

Support vector regression (SVR) has recently shown

promising performances in a number of spatial mapping

tasks (Kanevski et al. 2002a). SVR is a robust non-linear

regression method based on the Statistical Learning Theory

as defined by Vapnik (1998). This is a general framework

for solving statistical Machine learning problems, such as

classification, regression and probability density estimation

from empirical data. SVR is a non-parametric regression

method, which exploits kernel expansion. It attempts at

minimizing the empirical risk (the residuals on the training

data), simultaneously keeping low the complexity of the

model. By doing this, the over-fitting on the training data

can be avoided and one may expect promising predictive

abilities.

In environmental monitoring and modelling, one often

has to deal with data generated by processes that are

operating at different spatial scales. This is typically the

case with environmental pollutants which can show locally

spotted patterns of high concentrations while these con-

centrations are usually lower but present more structure on

scales that are closer to the one of the monitored area.

These differences usually reveal several underlying phys-

ical phenomena possessing different characteristic spatial

scales. The deposition of radionuclides following an acci-
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dental release in the atmosphere, for example, is a process

that is typically governed by both a dry deposition process

that will delineate the overall contamination structure and

local so called hot-spots that have been generated at shorter

scales by a wet deposition process.

The usual spatial interpolators are global and smoothing

since they deal with some average scale only. The methods

designed for the simultaneous detection and modelling of

unusual spatial phenomena in the described multi-scale

conditions would be particularly interesting.

In this paper, an extension of the SVR method is con-

sidered. In the proposed multi-scale SVR, the regression

estimation is based on the so-called kernel dictionaries, i.e.

the linear combination of different kernel functions. The

combination of Gaussian Radial Basis Functions of dif-

ferent bandwidths is principally considered here. The

bandwidths are the hyper-parameters of the learning algo-

rithm, which have to be adjusted by the user. The joint

influence of the different scales is then tuned in an auto-

matic way from data, providing an optimum mixture of the

selected short and large scale models.

In the following sections of this contribution, the reader

will first (Sect. 2) find an introduction to the Statistical

Learning Theory from which the Support Vector learning

is derived. Section 3 is explaining further how a multi-

scale SVR model can be constructed. A real case study,

presented in Sect. 4, deals with the analysis of Cs137

radioactive contamination of the Briansk region (Russia)

that followed the Chernobyl nuclear power plant accident

in 1986. In this case study, the method appears to be a

powerful tool for the detection and the simultaneous

modelling of the radioactive release. The tricky hot-spots

patterns of the analysed data were detected and modelled

by the short-scale component of the model. The perfor-

mances of the multi-scale SVR model were found to be

competitive to those obtained by standard geostatistical

tools and a number of other Machine Learning methods for

regression estimation, such as General Regression Neural

Network. Final remarks and discussions will be given in

Sect. 5.

2 Learning from environmental data

Geostatistics has been these last decades one of the most

well-established approaches for working with spatially

distributed data (Cressie 1993; Chiles and Delfiner 1999).

Geostatistics, in general, is a model-dependent approach

based on the exploratory analysis and modelling of spatial

correlation structures.

The growing amount of multi-dimensional information

coming from contemporary environmental monitoring

networks asks for corresponding tools. The geometric

domain of the spatial processes, usually considered as 2D

or 3D space, is now extended with, for example, terrain

features available from digital elevation models. Geo-

graphical Information Systems can further provide useful

sources of information by allowing users to easily incor-

porate multi-band remote sensing images into their appli-

cations, and bringing potentially another few hundreds of

input dimensions to the analysed information. Applications

of contemporary approaches based on the ‘‘learning from

data’’ philosophy (Cherkassky and Mullier 1998) are

therefore of significant interest to the data analysts. If the

challenges in learning from data in the fields of biocom-

puting, hyperspectral remote sensing images, data mining

have led to a revolution in the statistical sciences during the

last decade (Breiman 2001), much remains to be done in

the analyses of geo-referenced data.

Machine learning (ML) methods present a number of

advantageous features over more traditional approaches.

Mainly developed for high-dimensional data such as texts

and images, the ML methods aim at being independent of

the dimensionality of the input space. They are furthermore

designed to deal with non-linear problems in a robust and

non-parametric way. Particularly tailored to overcome the

curse of dimensionality are Support Vector algorithms,

which were found to behave well in numerous applied

problems (Meyer et al. 2003). Machine learning methods

provide a way of incorporating directly additional infor-

mation as an input for a learning algorithm. In geostatistics,

the increasing dimensionality of the input space endows the

researcher with the need for higher-dimensional variogram

models.

Because the dimensionality of the space of the co

variables (or ‘‘outputs’’ in the ML terminology) is

increasing as well, the Machine learning approaches can

also be ported to multivariable problems and provide an

alternative to co-kriging for example.

Machine learning methods have thus potentially a wide

and exciting field of applications and open promising

perspectives for research in environmental applications.

Readers can find in Cherkassky et al. (2006) a number of

applications of data-driven and model-free approaches to

solve environmental problems (Cherkassky et al. 2006).

A new learning paradigm called Support Vector

Machine (SVM) emerged in the early nineties (Boser et al.

1992; Cortes and Vapnik 1995). It was proposed essentially

to solve two-class classification problems (dichotomies)

but has been generalized later on to deal with multi-class

classification problems, regression tasks, as well as esti-

mations of probability densities. For what concerns their

application to spatial data, learning methods based on

SVMs were applied to various tasks such as the classifi-

cation of soil-types, the estimation of contamination levels,

the prediction of medium porosity, the predictive mapping
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of contaminant concentrations, etc. (Kanevski and Canu

2000; Kanevski et al. 2002a). More recently, environ-

mental applications of SVMs also include landslide sus-

ceptibility modelling (Brenning 2005) snow avalanche

danger prediction (Pozdnoukhov et al. 2007), chemico-

physical soil analysis (Bhattacharya and Solomatine 2006)

or rainfall forecasting (Pai and Hong 2007). SV-based

regression models have also shown promising results when

used in conjunction with geostatistics (Kanevski et al.

2002b).

In this paper, an SV-based regression algorithm is

developed to allow the simultaneous modelling of envi-

ronmental phenomena at several different spatial scales.

2.1 Statistical learning theory

Machine learning deals with the development of algorithms

describing training data and which have good generaliza-

tion abilities. This means that the successful predictive

algorithms are those that provide accurate estimations at

the new (validation) points, where the desired quantity is

unknown (Hastie et al. 2001; Cherkassky and Mullier

1998). Statistical learning theory (SLT) is devoted to such

problems as extracting knowledge from a finite number of

empirical observations (Vapnik 1998). The observations

are considered to be independent and identically distributed

(i.i.d.).

The predictive abilities of an algorithm are, obviously,

one of its most important characteristics. How well an

algorithm can generalize from a given training data set to

predict values of the previously unseen (validation) sam-

ples can be measured with the expectation of the loss (the

penalty given for an error) over the ensemble of the vali-

dation data. This value is called the risk in terms of SLT.

This term should not be confused with the one used in

environmental risk assessment. The following bounds on

the generalization error or risk R are derived in SLT:

RðhÞ � RempðhÞ þ RconfðhÞ; ð1Þ

where Remp is an empirical risk found in the training data,

and Rconf is a confidence term, which penalizes the

excessively complex models. The empirical risk Remp is a

mean error of the algorithm applied to the training data and

is measured according to the selected loss function. For

example, a popular choice in regression estimation for such

a loss function is the mean squared error loss.

Both terms in the bound (1) depend on the ‘‘complex-

ity’’ h of the learning algorithm. This notion of complexity

is an important one and is explained hereafter in more

details. The process of learning can be seen as the choice of

the most appropriate function f(x,k) from the available set

F(L) = {f(x,k), k2L}. The complexity of the algorithm

f(x,k) can be controlled by the choice of the vector of

hyper-parameters k of the modelling functions in the

available set, defined by the set L of their admissible val-

ues. To allow a comparison of the functions in the set, these

need to be characterized by a single parameter defined here

as the Vapnik-Chervonenkis dimension (VC-dimension) of

the modelling functions (Vapnik 1998). The VC dimension

is plotted on horizontal axis in Fig. 1, while the vertical

axis corresponds to the value of risk. Let us consider the

case where the complex model (h is large) can fit any given

dataset, a situation that is typically defined as over-fitting.

There is no evidence that such a model can generalize well

the problem at hand, and the confidence term will here

remain very large. On the other hand, a model that is overly

simple can not fit the given data and capture the depen-

dencies of the modelled process: although the confidence

term of such models is low, the empirical risk is too high.

The strategy for constructing a learning machine algo-

rithm is thus to find a trade-off between the model com-

plexity and its fit to the data. This can be achieved by

minimizing the training error while maintaining h small

(see Fig. 1).

This idea, called Structural Risk Minimization (Vapnik

1998), which led to a family of Support Vector algorithms,

has been further developed to solve classification tasks,

regression and probability density estimations.

2.2 Support vector learning

Support vector machines provide non-linear and robust

solutions by mapping the input space into a higher-

dimensional feature space using kernel functions. This

method has the advantage of placing into the same

framework some of the most widely used models such as

linear and polynomial discriminating surfaces, feed-for-

ward neural networks, and networks composed of radial

basis functions. When solving classification problems,

Fig. 1 Bound on the validation error which is derived in SLT. The

minimum of the bound provides the optimal complexity of the

predictive model for a given dataset
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SVMs provide the classification directly, without solving a

more general task of modelling class densities at an inter-

mediate step. In contrast to the generative and Bayesian

methods that are based on the modelling of some proba-

bility densities, SVMs are focusing on the marginal and

most discriminative data samples. SVMs provide thus

sparse models, i.e. only a (small) subset of data possesses

non-zero weights. These data samples, called Support

Vectors, usually lie close to the decision surface. They can

be considered as a robust characteristic of the problem

(given fixed model parameters).

The SVM classification algorithm was initially derived

for the linear discriminating surfaces—hyper-planes. It was

shown that in order to minimize the model complexity one

has to maximize the margin between samples of different

classes. More details on Support Vector for classification

can be found in the tutorial of Burges (1998).

The idea of controlling the model complexity can be

extended to regression problems as shown later in Vapnik

(1995). Most significant examples are the Support Vectors

(refer to Sect. 2.2.3; Fig. 3 below), which lie on the

boundary of some e-tube around the modelling function.

The data samples lying inside the e-tube are not taken into

account as these are considered to be excessive. As a

matter of fact, the use of these data samples would com-

plicate the model too much and may lead to low general-

ization abilities. Let us stress that SVR is tuned in an

automatic way by solving the optimization problem with a

unique solution. The construction details of the SVR

algorithms are given below.

2.2.1 Kernel functions

Kernel functions and the kernel ‘‘trick’’ are as much

important in support vector learning as the idea of com-

plexity control. Kernel functions are the symmetric posi-

tive-definite functions that satisfy the Mercer conditions

(Aronszajn 1950). They provide a way for computing dot

products in possibly infinite-dimensional feature spaces

(Reproducing Kernel Hilbert Spaces, RKHS). The kernel

trick consists in the substitution of dot products between the

samples in the input space with the kernel function. A linear

algorithm, which is formulated in terms of dot products

between the samples can therefore be directly turned into its

non-linear extension (Scholkopf and Smola, 2002).

Based on the training set {(x1, y1), (x2, y2)..., (xN, yN)} of

high-dimensional i.i.d. input vectors xi and output mea-

surements yi, the basic model in Support Vector methods is

a kernel expansion:

f ðx; aÞ ¼
XN

i¼1

aiKðx; xiÞ þ b; ð2Þ

where b is a constant threshold and ai the weights to be

optimized using the training data. For the sake of writing

simplicity, we will denote with a the whole set of the

weights {ai, i = 1,..., N}. K(x,xi) is a kernel function. The

model (2) corresponds to some linear model f(x, w) = wx

+ b, given that w is expressed as a linear combination of

training samples w ¼
PN

i¼1

aixi; and the dot products are

substituted with the Kernel function: (x, xi) fi K(x, xi).

Consequently, the linear model in some high-dimensional

feature space corresponds to the non-linear model in the

input space. This duality is a remarkable property of the

Support Vector algorithms.

Because the parameter(s) of the kernel are the hyper-

parameter(s) of the SVM, these should be tuned using the

available knowledge and data. The usual criterion to tune

the parameters of the kernel function is the cross-validation

or m-fold cross-validation error, or the testing error if there

is enough data to split it into training and testing subsets.

Gaussian Radial Basis Functions,

Kðx; x0Þ ¼ e�
ðx�x0Þ2

2r2 ; ð3Þ

are traditionally used in many practical problems. They

were found to be well suited for environmental applications

such as predictive spatial mapping. Its bandwidth r, which

is acting here as a hyper-parameter, is proportional to some

characteristic distance implied by the data. The properties

of the model will scale as shown in Fig. 1, since the model

complexity increases as the value of r decreases and visa

versa. It provides thus a useful heuristic for the choice of

the optimal value of this parameter.

2.2.2 Regularization and complexity

Traditionally, SV algorithms are introduced starting from

their linear versions. In the case of SV classification, an

optimal large margin separation hyper-plane is introduced

and then extended to non-linear SVM using the Kernel

trick, as shown in Burge’s tutorial (Burges 1998). In

regression, the flattest hyper-plane with the e-tube which

best fits the data is constructed, and then extended into the

non-linear kernel expansion (2), as shown for example in

(Smola and Scholkopf 2004). There is, however, an

equivalent way to introduce SV algorithms, which involves

the construction of a regularized risk functional (Tikhonov

and Arsenin 1977) exploiting specific cost functions and

regularizer types. This approach, which is exploited later

on here, is often used to construct in two steps a kernel-

based algorithm with some specifically desired properties.

First, an appropriate cost function (a penalty for misfit of

the model to the given training sample) that implies the
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sparse solution, i.e. a lot of the weights a in the expansion

(2) are zero, is selected. The complexity of the decision/

regression function is then penalized using regularization

in RKHS. Both criteria contribute to the development of

the model of the optimal complexity for a given task.

e-Insensitive cost function The cost function of SV

regression is a linear e-insensitive one (see also Fig. 2):

Dðy; x; f Þ ¼ jy� f ðxÞj � e if jy� f ðxÞj[e;
0 otherwise.

�
: ð4Þ

It provides sparseness of the model since points with

values inside the e-tube have no penalty and obtain zero

weights. Note that an asymmetric cost function can be

taken if the costs of over and underestimations are not

equivalent in the applied problem at hand. The cost func-

tions which are used nowadays in SVR were originally

exploited in the framework of robust regression estimation

(Huber 1964; Vapnik 1995).

Optimization problem The general optimization problem

for finding the weights in the expansion (2) is the following:

min
a

QðaÞ þ C
XN

i¼1

Dðyi; xi; aiÞ; ð5Þ

where Q(a) is a regularization term, which we will define

later on, and C is a constant defining the trade-off between

the model complexity and the fit to the given training data.

This minimization is usually solved given the constraints

C > ai > 0, i = 1,...N. For the details on the equivalence of

this approach to original ideas of SLT such as controlling

the complexity of the model, please refer to Scholkopf and

Smola (2002) and references therein, or to the tutorial

Smola and Scholkopf (2004) (Sects. 4, 6). Intuitively, the

regularization term penalizes the weights a to force the

resulting model to be smooth or, in other words, not

‘‘excessively complex’’.

2.2.3 Support vectors

The optimal solutions provided by SV algorithms are

sparse. It means that a larger part of the weights ai take

zero values (due to the specific cost functions) and only

those that are strictly positive will contribute to the deci-

sion function. The training data samples that correspond to

ai > 0 are called Support Vectors. In classification prob-

lems, the Support Vectors with C > ai > 0 are the samples

that are the closest to the decision boundary between dif-

ferent classes. In a regression point of view, these are the

samples that lie at the boundary of the e-tube around the

model. Note that if one is removing all other points except

the SV from the training data set and training SVM on the

Support Vectors only, one would obtain the same model,

i.e. SV play the determinant role in the given learning task.

This also means that the number of SV, their locations and

the corresponding weights can provide a basis for the cri-

teria to be used for the search for locations where addi-

tional measurements would change (improve) the current

model (Pozdnoukhov and Kanevski 2006).

The meaning of parameter C has not been discussed

yet although it plays an important function. The parameter is

an upper bound for weights, which defines the trade-off be-

tween complexity of the model and the tolerance to training

errors. If C is set to a sufficiently large value (infinity), the

model is forced to describe the training data without errors. It

can be a doubtful choice if the data are known to be noisy.

Noisy data are thus often better modelled with lower values

of C, which will account for training errors.

3 Linear programming support vector machines

The regularization functional (5) has still to be specified.

The choice of Q(a) determines the type of the optimization

problem which has to be solved to find the optimal weights

ai. In traditional SVR settings, the quadratic regularization

is used, leading to quadratic programming optimization

problem. The Linear Programming SVR (LP-SVR) is of

our interest in this paper. The regularizer for LP-SVM’s is

defined as follows:

QLPðaÞ ¼
XN

i¼1

ðai þ a�i Þ; ð6Þ

where the summation by i corresponds to the training data.

The reasons for the choice of the LP formulation will be

Fig. 2 The cost function of Support Vector Regression is a linear e-
insensitive function. In this figure, e is set to one and no penalty is

attributed to the samples that deviate from the regression function for

more than e = 1
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explained hereafter. For computational reasons, the

weights ai
* and ai expressing, respectively, a positive and

a negative impact of the training samples, need to be

introduced. One of the weights is always zero, i.e. the

contribution of every data sample may be either positive or

negative. The kernel expansion of the model stays

unchanged, hence one will define

f ðx; aÞ ¼
XN

i¼1

ða�i � aiÞKðx; xiÞ þ b:

The standard linear e-insensitive loss function (4) is used

in this formulation as it is a common choice of a loss

function for the majority of SVR methods.

The resulting optimization problem is a Linear Pro-

gramming problem in which

min
a;n

Q
LP
ðaÞ þ C

XN

i¼1

ðni þ n�i Þ, subject to ð7Þ

yi � e� ni �
XN

i¼1

ða�i � aiÞKðxi; xjÞ

þ b � yi þ eþ n�i ; i ¼ 1; . . . N ð8Þ

C � a�i � 0; C � ai � 0; n�i � 0; ni � 0: ð9Þ

In this formulation, the non-negative variables n, n*

were introduced to substitute the non-differentiable cost

function in the regularized functional. The condition im-

plied by the e-insensitive cost function (an allowance for

the modelling function to lie inside the e-tube without

giving any penalty, illustrated in Fig. 2) is now taken into

account in the constraints.

This problem can be solved in the present form using

some standard Linear Programming solvers. The kernel

function and e parameter have to be specified by a user

before defining the optimal weights a*
i, ai by solving the

problem (7)–(9). The obtained weights are then used for

prediction with the kernel expansion model.

3.1 Multi-scale kernels

A linear combination of the simpler basic kernels can be

used to construct prediction models that are spatially

adaptive as we will see hereafter. The general idea of using

the kernel dictionaries and the linear regularizer (6) was

introduced in (Weston et al. 1999), where it was applied to

probability density estimation with SV algorithm. The idea

was to build a kernel-based model which would use

different kernels selected from a user-defined ‘‘kernel

dictionary’’, and combine them in a data-driven way. This

can be considered as a multi-kernel decomposition of

functions. In the context of spatial data, this method will

select the kernels from the dictionary adapting in space in a

data-driven way.

The final model is provided with the following kernel

expansion:

f ðx; aÞ ¼
XN

i¼1

ða�ð1Þi � að1Þi ÞK1ðx; xiÞ þ . . .
h

þða�ðkÞi � aðkÞi ÞKkðx; xiÞ
i
þ b; ð10Þ

where we denote ai
(p) as the weight corresponding to ith

training point and pth kernel.

The algorithm which would tune the ai
(p), a*

i
(p) param-

eters uses the linear regularizer, which is analogous to (6):

QMulti
LP ðaÞ ¼

Xk

p¼1

XN

i¼1

aðpÞi þ a�ðpÞi

� �
; ð11Þ

where the summation by i corresponds to the training data

and the summation by p corresponds to the kernels.

Compared to (7)–(9), the summation by kernels is

included. The optimization problem becomes therefore

min
a;n

QMulti
LP ðaÞ þ C

XN

i¼1

ðni þ n�i Þ subject to ð12Þ

yi � e� ni �
XN

i¼1

Xk

p¼1

ða�ðpÞi � aðpÞi ÞKpðxi; xjÞ

þ b � yi þ eþ n�i ; ð13Þ

a�ðpÞi � 0; aðpÞi � 0; n�i � 0; ni � 0: ð14Þ

Thus, the core of the optimization problem remains the

Linear Programming, and the kernel representation of the

modelling function is preserved.

Considering the spatial modelling problem, the multi-

scale RBF functions can be used

f ðx; aÞ ¼
XN

i¼1

Xk

p¼1

ða�ðpÞi � aðpÞi Þe
�ðx�xiÞ2

2r2
p þ b: ð15Þ

The choice of the number of components in (15) has to

be made by user. The choice of k components increases the

dimension of the optimization problem (12)–(14), which is

2N(k + 1). Moreover, k bandwidths rp have to be tuned.

The two-scale Gaussian RBF is a practical choice for the

case studies
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f ðx;aÞ¼
XN

i¼1

ða�ð1Þi �að1Þi Þe
�ðx�xiÞ2

2r2
1 þða�ð2Þi �að2Þi Þe

�ðx�xiÞ2

2r2
2

" #
þb:

ð16Þ

3.2 Related approaches

Generally, the presented problem and its solution are re-

lated to the task of model selection which received par-

ticular attention in many fields and the readers will find that

considerable amount of work has already been done in this

direction. Among the most related approaches, we will cite

the work of (Weston 1999) which includes the popular

multiple kernel learning methods (Sonnenburg et al. 2006).

These aim at exploring the (convex) combinations of ker-

nel functions that are leading to the relevant optimization

problems such as QP and LP. The main target of the latter

methods is the automatic feature selection, and not some

modelling that is spatially adaptive.

Another related group of methods is dealing with mixture

and ensemble models (Kuncheva 2004). Approaches like

boosting are also good candidates that can deal with mixtures

of kernels (Bi et al. 2004): here, the final prediction is ob-

tained from a combination of the outputs of ‘‘weak learn-

ers’’, which are the building blocks of the boosting methods.

4 Case study

The following case study aims to highlight the main prop-

erties of the developed method. Particularly, the spatial

distribution of the weights a is presented. It demonstrates

that the model adapts to the data spatially, meaning that the

a weights in the mixture (16) are tuned automatically by

solving the LP. A hot spot in Cs137 activity is detected and

modelled with a short-scale component of (16).

4.1 Hot spot detection and modelling in Cs137 fallout

In the present section the problem of interpolating spatial

data using multi-scale SVR is explored by means of a case

study. A set of 683 observations of deposited radiocaesium

(Cs137, in kBq/m2) measured in the western part of the

Briansk region, Russia, will be here analysed (Savelieva

et al. 2005). The data were collected following the Cher-

nobyl nuclear power plant accident of April 1986. The first

objective of the analysis is obviously to generate some

predictions of the radioactivity levels at unsampled loca-

tions. The particular problem of hot-spot detection and its

modelling is of particular interest. Details about data col-

lection and other relevant information can be found in the

report (Chernobyl Accident Results 2001).

4.1.1 General methodology

The case study follows the traditional approach to spatial

data analysis used with geostatistics and Machine learning

algorithms. Starting with an analysis of the monitoring

network and the identification of possible clusters, the

measurements are then analysed using statistics and geo-

statistics for identifying outliers and spatial correlations.

These first stages are common to all environmental map-

ping tasks and we refer to (Kanevski and Maignan 2004)

for a comprehensive description of the methodology.

The next step concerns the data preparation for the

training of the algorithm. The data are split into training,

testing and validation subsets. The validation set is used

strictly only for checking the residuals obtained from the

outcome of the selected regression model defined by the

optimal parameters selected during the training phase.

Because the validation subset is never used for model

training or tuning, the results provide reliable information

about the quality of the obtained model. The testing set is

used for the prior selection of the SVR hyper-parameters.

The investigation of the residuals is made according to

various statistical and geostatistical criteria (e.g. statistical

distribution and spatial correlation of the residuals...). It is

only when the residual statistics of the validation subset are

considered to be satisfactory that the mapping of the whole

data set is applied with the optimal SVR model to generate

the final map of the investigated variable.

The Lambert-Azimuthal projection of the spatial coor-

dinates was used. The measured values of Cs137 activity

were linearly scaled into [0, 1] interval. From the 683

measurements, a set of 200 validation points was extracted

after some declustering procedure, which aimed to get a

representative dataset over the investigated spatial domain.

Note that, in the presence of clustered data, a random

selection would have been inappropriate because of the risk

to get a validation set with an overrepresentation of mea-

surements from the same cluster.

4.1.2 Parameters of support vector regression

The parameters of SVR model (16) are the bandwidths of

kernel functions r1 and r2, the trade-off parameter C and

the width of insensitive tube e. How these user-defined

parameters are tuned and how they influence the regression

estimation is explained below.

• The RBF kernel bandwidth(s) r is defined in kilometres

and acts as a hyper-parameter of the learning algorithm.

For values of r that are much smaller than the average

distance between samples, the model shows some trend

towards overfitting while for values of r that are closer

to the size of the spatial domain, the model will show
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too much smoothing. From an SLT perspective, these

observations can be explained as follows: small values

of r lead to a VC-dimension that is too high, the model

becomes too complex and tends to fit any data,

including outliers. On the other hand, large values of

r will lead to a low VC dimension and low model

complexity, therefore the dependencies of the analysed

processed will be lost. The choice of an optimal value

of r depends thus mainly on the topology of the

monitoring network and on the data variability. For the

multi-scale kernel models (16), thus means that differ-

ent values of r parameters can provide an elegant way

for the modelling of complex phenomena observed at

different spatial scales.

• The Trade-off parameter C is defining the trade-off

between the training error and the model complexity. In

a dual formulation, C defines the upper-bound of the

multipliers ai; hence, it defines the maximal influence

the sample can exert on the solution. Practically, one

will seek a value of C that will not be much less than

the maximum values found within the training data to

fit the extreme values but also not too low in view to

avoid too much smoothing of the data.

• The Insensitivity parameter e represents the width of

the region that is insensitive to the cost function (see

Figs. 2, 3 above). The parameter is thus the one that

mainly defines the sparseness of the SVR solution—the

points lying inside the e-tube have zero weights. It is

consequently also the main parameter that incorporates

some information about the quality of the measure-

ments. It should be of the same order as the measure-

ment’s accuracy, or as the square root of the so-called

nugget value used in geostatistics, that is the sum of the

variances attributed to the measurement errors and the

microscale variability. Hence, e influences the smooth-

ness of the mapping and the larger its value, the

smoother the result.

Tuning of the parameters Two widely used approaches

for tuning the parameters can be encountered. One is based

on cross-validations while the second one, which is the

approach that is adopted in this case study, is based on the

splitting of the data into training and testing subsets and the

errors are analysed for all the possible combinations of the

parameters tested. The distribution of the observations into

the training and the testing subsets is shown with a post

plot in Fig. 4a.

A comprehensive search in a hyper-parameter space

(e, C) was performed. C was set to 25, and the values for e
were ranging between 0.02 and 0.04. The value of e = 0.04

was used for the overall prediction mapping.

The search for optimal values for parameters r1 and r2 is

the key to the successful outcome of the presented method.

Figure 5 shows that the lowest testing error values for both

parameters r1 and r2 are found in two distinct regions of the

plot of the error surface (r1, r2), underlying so that the

investigated phenomenon is presenting different character-

istics at different spatial scales. The error surfaces shown in

Fig. 5 clearly highlight symmetry along the line r1 = r2.

This diagonal corresponds to the single-scale model. The

minima of the testing error for the single-scaled model can be

found for r = 5 and 7. However, the multi-scaled model has

better performance according to the testing error. Hence, the

following values were chosen for the predictive mapping and

validation of the model: r1 = 1.5 and r2 = 6.

4.1.3 Analysis and validation of the model

Before a model can be applied to generate the prediction

maps, it has to be analysed and validated first. Figure 6

(left) shows the scatterplot of the training data versus their

prediction according to the model. The values fall into the

e-tube of the width 0.04, according to the constraints (14).

This underlines that the optimization problem (12)–(14)

was solved correctly and that the model can be considered

as being trained properly.

The weights of the trained two-scale model are dis-

played in Fig. 7 using Voronoi polygons. The short-scale

component of the model (r = 1.5) focuses mainly on the

hot-spot found in the centre of the western part of the

investigated area as well as on some other short-scale

variations. The component of the bandwidth for r = 6

mainly models large-scale structures and trends. The

presence of these two scales can be further underlined

Fig. 3 SVR solution is e-insensitive, no penalty is attributed to the

samples found inside the e-tube. Support Vectors are defined by the

samples that are found on the edges of the tube. The samples found

outside of the tube are likely to be some noise and their ‘‘influence’’

is bounded with C
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when comparing Fig. 7 with the final predictive maps

shown in Figs. 8 and 9.

The validation set, which was kept aside till now, is

expected to provide us with an efficient mean to test the

reliability of our models. The validation scatterplots of the

single-scale and two-scale SVR models are presented on

the right side of Fig. 6. One can see that both the single and

the two-scale models tend to over-estimate the (linearly

scaled) levels of radioactivity. If overall improvements in

terms of Root Mean Squared Errors (RMSE) and correla-

tion coefficient are found when using the two-scale model

(Table 1), the last, however, will not show better estimates

of the values falling within the upper 75% quantile

(Q3/4 = 0.23) of the validation dataset. Still, the use of a

short-scale component improved the whole model since the

trade-off between different spatial scales was avoided.

Regarding the reconstruction of the spatial structures of

the investigated variable, Fig. 10 shows that the omnidi-

rectional variograms of the validation residuals of the

models are close to pure nugget effect, especially when the

two-scale model is used. Comparing the latter to the vari-

ogram of validation data, one can conclude that most of the

spatially structured information was extracted from data.

However, one will warn the readers that such an analysis

may not be thoroughly correct because of the possibility to

have non-stationarity within the data.

Fig. 4 Cs137data. a Training data (183 samples) are shown with crossed circles, testing data are indicated with squares. The intensity value is

shown using a normalized scale. The X and Y coordinates are given in kilometre. b Frequency histogram and variogram rose of the Cs137 data
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4.1.4 Multi-scale mapping

The prediction maps obtained for the short and the large-

scale components of the multi-scale LP-SVR are shown

in Fig. 8. While large-scale SVR component mainly

models the trend, the short-scale component highlights

local variations and the hot spot, which is further high-

lighted in the post plot of the full dataset shown in

Fig. 11.

The hot spot was thus captured by the short-scale part of

the model quite well. For what concerns the standard sin-

gle-scaled approach, it always provides some trade-off,

choosing the averaged parameters, which may not always

be the best compromise. For example, the ordinary SVR

with optimal C and e parameters provided the minimum

validation error of 0.125 for r = 5. In the case of the

double-scaled model, the obtained validation error was of

0.11. This improvement of the two-scale model in the

presented case study is therefore twofold. It provided first a

more accurate model of the short-scale dependencies as

well as of the hot spot, while this hot spot is smoothed

when applying the single-scale SVR model. Secondly, the

two-scale model allowed avoiding the trade-off and finding

optimal values of the spatial kernel bandwidths for the

modelling of the data. This is further underlined by the

lower RMSE obtained on the whole validation data.

5 Discussion and conclusions

A number of state-of-the-art methods that can be used for

the task of spatial prediction mapping exist, among which

Fig. 5 Testing error surfaces in the (r1 r2) plane. The figures show a

clear symmetry along the line r1 = r2. The optimal values (low error
areas) of the two-band width parameters differ, highlighting the

existence of different (short and large) spatial scales in data. The

locations of the optimal parameters r1–r2 are shown with a cross

Fig. 6 a Scatter plot of the

predicted values of the training

data prediction versus

observations for the multi-scale

model. The residuals lie in the

tube of e = 0.04, according to

constraints (13). b Scatter plot

of the predicted validation data

versus measurements for both

the single and the two-scale

SVR models. Values

corresponding to the hot spot

are highlighted
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deterministic interpolators (Nearest Neighbours, Inverse

Weighted Distance), geostatistical estimators (ordinary

kriging, simulations) and artificial neural networks are

regularly encountered (Kanevski et al. 1996). Geostatistical

estimators (Deutsch and Journel 1997) are probably the

most widely used functions nowadays because of their

aptitude to effectively benefit from the information ex-

tracted from the data about the spatial correlation of the

analysed variable. Geostatistics treat the measurements as

the realization of some spatial random process and the

estimation method is based on a model of the spatial

covariance function, the variogram. This dependence on

the variogram is known to be one of the most challenging

obstacles to the development of automated mapping

systems built around geostatistical algorithms. This is

particularly true when a few observations only are avail-

able and/or when the condition of stationarity is not veri-

fied. These limitations have been motivating new

developments based on other foundations, among others

the Machine Learning and Statistical Learning Theory. A

useful link between Machine Learning and geostatistics has

already been established in the field of Gaussian Processes

(Rasmussen and Williams 2006).

Two main types of algorithms based on the Machine

Learning and Statistical Learning Theory have been partic-

ularly studied by the authors: kernel-based machine learning

algorithms such as Support Vector methods and Gen-

eral Regression Neural Network (GRNN) (Specht 1991;

Fig. 7 Weights of the multi-

scale kernel expansion (6) found

for the selected parameters

r1 = 1.5 (a), r2 = 6 (b). Note

that while the large-scale

component models large-scale

variations and trends, the short-

scale part of the model

concentrates mainly on the hot

spot. X and Y coordinates are

given in km

Fig. 8 Prediction maps of the

multi-scale SVR components of

different scales, a r1 = 1.5,

b r2 = 6. X and Y coordinates

are given in kilometre
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Timonin and Savelieva 2005). In the General Regression

Neural Network (GRNN), the predictions are obtained by

taking the weighted sum of the adjacent measurements.

Compared to the SVR approach, GRNN is a faster method,

which can be trained and tuned in a more effective way.

The SVR method whish has been discussed in detail in

this paper is a robust regression estimator allowing for the

development of new extensions. The extension developed

here, called ‘‘the multi-scale approach’’, showed, by means

of a case study involving radioactivity measurements, that

processes operating simultaneously but at different scales

could be identified and that the handling of situations of

non-stationarity was facilitated. These advantages over

geostatistical estimators like ordinary kriging are particu-

larly interesting when designing environmental monitoring

systems conceived for the surveillance of critical variables

which values can rapidly fluctuate in time and space

(Pozdnoukhov 2005).

A number of open questions still remain for the use of

the methods for their implementation in automated envi-

ronmental monitoring and decision support systems. First

of all, like in geostatistics, Machine Learning based

methods rely very much on some training process and are

thus very much depending on the quantity of the data that

can be used for the training as well as on their quality.

We have seen that the multi-scale SVR offers some

means to adapt to the spatial scale of the data and that it

can so provide an interesting possibility for the detection

of local anomalies that may typically arise in situations of

Fig. 9 a Multi-scale predictive

mapping with the developed

LP-SVR model. b Single scale

(standard SVR) predictive

mapping at scale r = 5. Note

that the hot-spot in the western

part has been considerably

smoothed in the single-scaled

prediction. The X and Y
coordinates are given in

kilometre

Table 1 Validation RMSE and

correlation coefficient q
obtained for four spatial

interpolation models tested

Training

RMSE

Training

q
Validation

RMSE

Validation

q
Validation

Q3/4 RMSE

Validation

Q3/4 Ro

SVR 0.022 0.96 0.125 0.74 0.17 0.36

Multi-scale SVR 0.017 0.98 0.110 0.76 0.172 0.35

GRNN 0.075 0.93 0.121 0.74 0.164 0.40

Ordinary kriging 0 1 0.130 0.73 0.172 0.34

Fig. 10 Experimental omnidirectional variograms of the validation

data, and of the validation residuals for both the single-scale and the

two-scale SVR models. The variogram of the residuals of the single

scale model reveals some short-scale structures, while the variogram

of the residuals of the two-scale model is closer to a pure nugget,

showing that most of the spatial structure could be extracted. The lag

distances are in kilometre
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an early phase of an environmental emergency. Never-

theless, the method requires some prior knowledge on the

possible existence of such short-scale patterns, knowledge

that can be difficult to get in the early phase of an

environmental accident presenting extreme events. Hence,

the algorithms would have to be trained with the antici-

pation of an event presenting possible known patterns.

Decision-makers would also want to rely on information

regarding the uncertainties of the SVR predictions, which

are not yet available. The traditional approach of mapping

the variance of the predictions could be a solution. Other

approaches are under development and approaches as

those discussed in Nix and Weigend (1995) for example,

offer interesting possibilities. Another important research

direction in SVR is the incorporation of additional

information (soft data, prior knowledge and physical

models) about the investigated process, which may im-

prove the prediction performance of the model. In the

case study, described in Savelieva et al. (2005), mapping

methods based on the Bayesian Maximum Entropy

(Christakos 2000), which incorporated in the estimation

process ‘‘hard’’ data as well as ‘‘soft’’ information, that

is intervals or histograms obtained after repetitive mea-

surements, showed improved prediction performances of

the model.
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