
Wireless Netw (2007) 13:855–870

DOI 10.1007/s11276-006-9858-y

Context-aware platform for mobile data management
Moira C. Norrie · Beat Signer · Michael Grossniklaus ·
Rudi Belotti · Corsin Decurtins · Nadir Weibel

Published online: 23 October 2006
C© Springer Science + Business Media, LLC 2006

Abstract Interaction design is a major issue for mobile in-

formation systems in terms of not only the choice of in-

put/output channels and presentation of information, but also

the application of context-awareness. To support experimen-

tation with these factors, we have developed platforms to

support the rapid prototyping of multi-channel, multi-modal,

context-aware applications. The Java-based platform pre-

sented here is based on an integration of a cross-media link

server and an object-oriented framework for advanced con-

tent publishing, along with a Client Controller and Context

Engine. We also describe how this platform was used to de-

velop a mobile tourist information system for an international

arts festival where interaction was based on a combination

of interactive paper and speech output.

Keywords Mobile information systems . Interactive paper .

Web publishing . Context-awareness . Rapid prototyping

M. C. Norrie ( ) . B. Signer . M. Grossniklaus . R. Belotti .

C. Decurtins . N. Weibel
Institute for Information Systems, ETH Zurich, CH-8092 Zurich,
Switzerland
e-mail: norrie@inf.ethz.ch

B. Signer
e-mail: signer@inf.ethz.ch

M. Grossniklaus
e-mail: grossniklaus@inf.ethz.ch

R. Belotti
e-mail: belotti@inf.ethz.ch

C. Decurtins
e-mail: decurtins@inf.ethz.ch

N. Weibel
e-mail: weibel@inf.ethz.ch

1 Introduction

Mobile information systems require platforms that not only

deal with the challenges of data distribution and dynamic

networking, but also entirely new forms of interaction and

information delivery. Ideally, users should receive the right

information at the right time and place, and in a way that

restricts neither their mobility nor their interaction with other

people and the environment. This means that devices must be

either wearable or very portable and easily placed in pockets

when not in use.

The tourist domain has been a focus of several research

projects in mobile information systems [22] and yet, while

many of these projects have successfully demonstrated both

the advantages of context-awareness and the potential of new

mobile technologies, most of them fail to meet the require-

ments of performing complex, often collaborative, tasks in

mobile environments. Tourism is generally a social activ-

ity and part of the enjoyment is planning activities together

with family, friends and locals. PDAs are often used in mo-

bile applications but their screens are small and difficult to

read outdoors, especially by more than one person at a time.

Further, the small screen size limits the amount of infor-

mation that can be viewed at one time and does not sup-

port the actions of comparing and combining information

which is often what tourists want to do [6]. Some researchers

have therefore experimented with tablet PCs to provide bet-

ter functionality [7], but clearly these further restrict mo-

bility as they are much heavier than PDAs and require the

use of both hands. Another problem of mobility is that of

power and the problem of electronic devices is that they de-

liver absolutely no information unless switched on and using

power.

For all of the above reasons, we wanted to investigate the

potential of alternative technologies for access to both static

Springer



856 Wireless Netw (2007) 13:855–870

and dynamic information in mobile environments. In partic-

ular, we were interested in experimenting with paper-based

interfaces exploiting new forms of digital pen and paper that

could be used both for interaction and data capture. One ma-

jor advantage of these interfaces is the fact that core, static

information is printed and hence accessible even when the

digital system is not in use. The digital system provides op-

tional, valued-added services that give access to supplemen-

tary information, dynamic data and transactional services.

The choice of output channel was some form of visual dis-

play such as a PDA or head-mounted display, or voice based

on a text-to-speech engine. To support these investigations

and the rapid development of applications as well as the ex-

perimentation process itself, we developed an experimental

platform for mobile information systems [5]. The system was

used to develop a mobile guide for visitors to the Edinburgh

international arts festival in 2004 where we carried out exper-

iments with two variants of the system—an interactive paper

brochure combined with voice input/output and a version

based only on voice input/output.

The necessary generality and flexibility required for rapid

prototyping was achieved by adopting a database approach
that enables all information about the application and its in-

terface, the system and the devices to be stored in one or

more databases and be updated dynamically at run-time. The

database management systems are object-oriented and man-

age code as well as data, inclusive of triggers, and therefore

can be considered as driving the application rather than be-

ing simple repositories of data. Further, the approach that

we adopt is based on an integration and extension of con-

cepts from open hypermedia systems and content publishing

databases.

Based on our experiences with the 2004 festival system

described in [5], we refined the platform and re-designed

the application in 2005. A major change in the architec-

ture was to replace the content publishing platform with a

newly developed system with integrated support for context-

awareness through an extended concept of object variants and

versions [4]. With this change, we also moved to a platform

that is entirely Java-based. With respect to the application, we

focussed on an interface that is based on a set of interactive

documents—an event brochure, a map and a bookmark—

and with a voice output channel. This interface is offered

in parallel to HTML browser interfaces on desktop PCs or

PDAs, including a kiosk system that enables users to print

personalised interactive daily event schedules.

In this paper, we present the overall architecture and main

components of our Java-based platform for the development

of multi-channel, multi-modal, context-aware applications.

The case study of the Edinburgh festival system for 2005 is

used to explain the operation of the various components and

their interplay as well as motivating the architectural design

choices.

We begin in Section 2 with a description of our approach

and the main components of the platform. In Section 3, we

then present the festival guide that we developed and the

specific architecture of this system in terms of the function-

ality, devices and modes of interaction supported. Using this

example, we go on to explain the details of the various com-

ponents of the platform, at the same time showing what is

involved in developing specific applications. Section 4 de-

tails the Client Controller, while the content publishing and

hypermedia components are presented in Sections 5 and 6,

respectively. Section 7 provides some discussion of our ex-

periences with the system during user trials carried out in

Edinburgh during the 2005 festival. Concluding remarks are

given in Section 8.

2 Platform overview

Rapid application prototyping and experimentation in mobile

information systems requires a flexible and extensible infor-

mation platform for content delivery. Not only must it support

the requirements of multi-channel and context-aware access

that have come to be expected in state-of-the-art mobile sys-

tems, but also the highly-dynamic nature of experimental

systems where it may be necessary to integrate and recon-

figure new devices, resources, modes of interaction etc. at

any time. Further, for purposes of experimentation, it may be

desirable to offer alternative interfaces and modes of opera-

tion in parallel or to easily be able to switch back and forth

between different configurations. Although these are all re-

quirements for experimentation, we note that, increasingly,

there are requirements for operational systems to also offer

such flexibility in order that enterprises can react quickly to

new technologies and customer demands.

One of the major challenges of mobile data management

is the issue of how to support interaction for users on the

move [10]. Consider the case of tourists visiting a city. They

do not want to carry heavy equipment and often want to

be hands-free. They move between very quiet environments,

such as art galleries and theatres, and very noisy environ-

ments, such as main streets and bars. Much of the time is

usually spent outdoors sightseeing and wandering. They of-

ten travel in pairs or groups and collaborate in the discovery

and planning of activities. For all of these reasons, a simple

adaptation of a visual desktop interface to a small screen de-

vice such as a PDA may not be the most appropriate solution.

In fact, although tourist guides for PDAs are now commer-

cially available, studies of tourists show that paper maps and

guides are still considered the essential tourist accessories.

It is therefore important that other forms of innovative in-

terfaces are investigated and it is expected that wearable de-

vices and non-visual channels such as audio can play an im-

portant role. One of our major interests is the possibility of

Springer



Wireless Netw (2007) 13:855–870 857

retaining familiar forms of paper documents such as maps,

guides and event brochures and using emerging technolo-

gies for digital pen and paper to augment these with digital

information and services. In this way, there is an easy and

natural transition from the paper world to the digital world

and both can be supported alongside each other with bridges

between them. In our experiments on mobile information

systems, we have developed a number of demonstrator ap-

plications for tourists that offer a variety of interfaces, in-

cluding ones based on interactive paper and audio as well as

regular HTML web interfaces for a range of fixed and mobile

devices.

To facilitate the rapid prototyping of user interfaces for

multiple devices and modes of interaction, it is clear that the

user interfaces should be generated dynamically based on

content and presentation templates rather than hard-coded.

Such a content-driven approach brings the advantage that

only the final visualisation step has to be changed to sup-

port a new client device or mode of interaction, while the

application logic and content remain the same for all out-

put devices. Assuming an architecture based on XML, this

essentially means that new XSLT templates have to be writ-

ten to adapt content to a specific view, structure and layout

represented in the appropriate format of the output chan-

nel. In some cases, additional automatic content repurposing

may be necessary to conform to the features of a specific

device.

It is also important that the development platform should

support experimentation with context-awareness, enabling

application developers to easily define and change their no-

tion of context and allowing all aspects of a system to be

made context-dependent. This means that not only may the

information presented to the user depend on factors such as

time and location, but also the mode of interaction. For ex-

ample, as the user approaches a kiosk with a display screen,

the system may automatically switch the output channel from

an audio device to visual output on the screen or a combina-

tion of both. Only a multi-modal information platform can

guarantee that the user or system may choose the appropriate

access modality based on the current context. It also ensures

that the developers and interaction designers have the nec-

essary support to experiment with flexible combinations of

various input and output modalities.

To meet all of these requirements, we have developed the

content publishing platform XCM and a Client Controller for

input/output handling, that together support not only multi-

channel, context-aware information delivery, but also multi-

modal interfaces. To achieve maximum flexibility, the con-

tent publishing platform has been implemented as an ex-

tension of the object-oriented database system OMS [15, 21]

which has been augmented with new content publishing con-

cepts. The OMS platform was itself developed to support

rapid prototyping of, not only database applications, but also

new database concepts and all aspects of the system can be

changed dynamically at run-time. Key to this is the fact that

all information is represented as database objects—including

application metadata and system data. In the case of XCM,

this also means that as well as content, the view, structure and

layout of documents are defined through objects. Further, by

introducing a model of context together with the concept of

object variants, all aspects of the application and system can

be made context-aware. Details of the XCM system and its

role in the platform for mobile information systems are given

in Section 5.

As stated above, interactive paper offers interesting pos-

sibilities for users to access digital information and services

in mobile environments. It is just one example of linking

physical objects in the user’s environment to digital arte-

facts. The web is a hypermedia system that links arbitrary

digital resources together and, in effect, what we would

like to do is to extend the web to physical spaces (some-

times referred to as physical hypermedia). To support cross-

media linking, and specifically interactive paper, we have

developed a cross-media information management platform,

called iServer [25], that allows any form of physical or dig-

ital resources to be linked together. A plug-in architecture

enables new types of resources to be integrated easily. Fur-

ther, we can link not only static information, but also active

content represented by program code which gets executed at

link activation time. In Section 6, we describe how iServer

was used in the festival application to support an interface

based on interactive paper, including the use of active com-

ponents to allow writing capture.

By integrating the components introduced above—

namely the content publishing component (XCM), the cross-

media server (iServer and iPaper) and the Client Controller—

as shown in Fig. 1, an extremely flexible and powerful plat-

form for experimentation with mobile information systems is

achieved. It enables context-aware applications with multi-

modal, multi-channel interfaces to be developed quickly

Fig. 1 System components

Springer



858 Wireless Netw (2007) 13:855–870

and even allows for the simultaneous testing of alternative

interfaces and run-time system evolution. Also, these ap-

plications may span physical and digital spaces allowing

all sorts of physical objects and locations to be digitally

augmented.

The selection of an active component results in the execu-

tion of its associated program code on the iPaper Client and

on iServer. An active component that is executed on iServer

may directly access information resources that are, for ex-

ample, stored in external databases. However, some active

components do not immediately return a result to the user

but instead process subsequent client requests. This second

form of active component is helpful in defining complex in-

teraction patterns which may be allocated to different active

components.

The Client Controller component handles some of the

user interaction. Any request from an active component that

is sent to XCM is also processed by the Client Controller

which is configured as a proxy for the XCM server within

iServer. The Client Controller augments any request with

contextual information such as time or location before for-

warding it to XCM. The information data that is stored in the

application database will be transformed to the appropriate

format for the current output channels by XCM. The result

may contain information for multiple output channels and it

is the responsibility of the Client Controller to activate the

appropriate output channels.

A simplified version of the interactions involved in access-

ing information is shown in Fig. 2. Interaction may be explic-

itly invoked by a user or implicitly triggered by a context-

aware object (context sensor) and results in an activation of

the resources linked to the triggered event, which can be

content resources, services or active components. Finally, a

dynamically generated document is sent back to the user.

A database approach is used throughout the development

of all components. This means that all component metadata

are represented as database objects, enabling dynamic up-

dates and system reconfiguration at run-time. In the next

section, we present the festival application that is used in

later sections to describe the components and their interac-

tions in detail.

interaction
(user or sensor)

activates links
content resources

services (applications)
active components

XML-based
web publishing

generate documents

generate documents

Fig. 2 Interaction process

3 EdFest system

Tourism has been recognised as a domain with considerable

potential for the use of mobile technologies and a number of

research projects have developed PDA-based tourist guides,

for example, Georgia Tech’s Cyberguide [1], the Lancaster

GUIDE system [9] as well as Xerox PARC’s electronic guide-

book [29]. While commercial guides such as the city guides

from Vindigo [27] have had some success, ethnographic stud-

ies of tourists such as that of Chalmers and Brown [6] report

on the fact that it is rare to see tourists on city streets using

these guides. Paper maps and guide books continue to be

considered the essential tourist accessories. The Campiello

project [11] chose to investigate the use of paper as an in-

terface. Paper flyers and special newspapers were distributed

around a city and tourists could use them to activate services

or input data to a community information system by using

scanners at special kiosks.

There are many strong arguments for retaining paper in

mobile environments, including the fact that it is light, ro-

bust, cheap and easily annotated in a number of different

ways [16, 18, 24]. Also, the planning of activities during

a city visit often involves combining and comparing infor-

mation within and across documents such as maps, event

brochures and guidebooks and this is easier using paper doc-

uments than working with digital mobile devices with small

screens. We therefore chose to investigate the use of emerging

technologies for digitally augmented paper in mobile tourist

environments and, particularly, in the context of a large in-

ternational arts festival.

The Edinburgh Festival Fringe is the world’s largest in-

ternational arts festival and it celebrated its 59th year in

2005 with around 340 venues, 1800 events and 27000 per-

formances over a four week period. With so many events on

offer, visitors often plan which events to visit at short notice

and based on contextual factors such as location and time

as well as ticket availability. Reviews also play an important

role in the selection process and are not only published in

newspapers and on-line, but also displayed outside venues

and attached to event flyers. Ideally, tourists should be able

to access information about the city, the venues, the events

and also reviews during the visit and not only during pre-

visit planning. The Edinburgh festivals therefore provide an

ideal environment for testing technologies for mobile infor-

mation systems and appropriate means of delivering relevant

information in a timely and convenient manner.

We considered various options for the display of informa-

tion and decided to dispense with any form of visual display

such as a PDA, tablet PC or head-mounted display and in-

stead focus on audio output for a first demonstrator. However,

since a major goal of the longer-term project is to investigate

different interaction modes in mobile environments, a key

requirement was to ensure that different access modes could

Springer



Wireless Netw (2007) 13:855–870 859

Fig. 3 EdFest interaction components

be supported simultaneously and to provide a flexible plat-

form for development and experimentation. While our main

focus for this project was therefore on paper and audio, we

also developed basic interfaces suited for tablet PCs, PDAs

and head-mounted displays.

The resulting EdFest system was based on the interaction

components shown in Fig. 3, namely a special interactive

paper brochure containing a categorised event list and blank

pages for comments, a digitally augmented map showing the

positions of all venues, a two-sided bookmark, a digital pen

and an earpiece used for voice output.

The interactive paper brochure is implemented using

Anoto technologies [2] originally developed for handwrit-

ing capture. This technology is based on a special pattern of

dots that encodes document position information and a digi-

tal pen that has a camera alongside the stylus. It can process

images in real-time to give up to 100 (x, y) pen positions

per second. This information is stored in the pen and can be

transmitted to a computer on demand. Logitech, Nokia and

Maxell have all developed digital pens based on this tech-

nology. We were able to use a prototype of the Nokia pen

specially modified by the Anoto engineers to send position

data continuously and hence enable us to use the pen as an

interaction device as well as for writing capture.

A central server has a database with information about

venues, events, restaurants and also user reviews. The paper

brochure contains a list of event summaries listed alphabet-

ically according to title under the various festival categories

such as comedy, dance and theatre. Two event entries in the

brochure are shown in Fig. 4.

Pictograms denote active areas which, when activated by

touching them with the pen, provide supplementary informa-

tion from the festival database through a text-to-speech inter-

face. Examples of such information include descriptions of

bar and catering facilities on offer at the event venue, warn-

Fig. 4 Part of EdFest booklet page

ings about nudity or the use of bad language and information

about disabled access.

At the bottom of each event, the user can get information

about when the show is performed and whether tickets are

still available through pictograms for dates shown within the

festival timeline. By pointing to the pictogram depicting an

alarm clock to the right of the timeline, a user can set a

reminder for a specific event. The system will then remind

registered users by sending an SMS message to their mobile

phone 30 minutes before the start of the event.

Last but not least, the users can enter their ratings and

reviews of events and share them with other users. At the top

right of the event entry there is a rating area. By pointing to

one of the ratings to the right of the rating label, the user can

enter their own rating of an event. Selecting the ‘?’ pictogram

to the left of the rating label gives the user access to the

average rating of the event. Users can also enter handwritten

comments about events using the blank comment pages at the

back of the brochure. These comments are captured digitally

and using intelligent character recognition (ICR) software,

they are converted to text. When the comments are entered

they are read back to the user for confirmation. A pictogram

in the event entry allows users to hear comments entered by

other users.

The second document, the interactive map, shows all of

the venues in the city and provides functionality to access

information about them. By pointing anywhere on the map,

ideally on the number of a venue itself, the user can access a

description of the venue that is closest to the position where

they pointed. The user also has a GPS device, enabling the

system to detect their location and support locator and nav-

igation tasks. For example, there is a ‘Where Am I?’ button

located at the top of the map. The system helps the users lo-

cate their position on the map by telling them the general grid

position, together with a general guide to placement within

the grid e.g. “Grid F5, top right”. If the user then points with

the pen within that grid, the system will give feedback telling

Springer



860 Wireless Netw (2007) 13:855–870

them where to move the pen to arrive at the precise location.

Similarly, the user can be guided to the location where an

event is taking place by selecting the appropriate pictogram

in the event brochure. They are then given a map grid ref-

erence and again given instructions to help them locate the

precise position of the venue on the map.

Finally, the bookmark offers search facilities on one side

and ticket reservations and setting of preferences on the other.

The searches can specify a number of criteria such as the date,

time, category and location indicated by the user’s present

position or by pointing to the map. On the side visible in

Fig. 3, users can set their preferences using check boxes

against a list of categories and also book tickets by selecting

an event and a date from the brochure and the number of

tickets on the bookmark. A confirmation step ensures that

all details are correct before the reservation is completed

and the user is then given a reservation number. ‘Repeat’

icons at the bottom of each page can be used at any time

to repeat the last message and this allows the user to have

the reservation number repeated if necessary. Last but not

least, the bookmark also contains a small map with the main

navigation features marked. This map also provides access

to all of the functionalities available on the full-sized map

such as ‘Where Am I?’.

A component of the EdFest application that does not in-

teract with the application through the paper-based mobile

interface is the kiosk, a stationary client platform that is con-

nected to the rest of the system through a reliable network

connection. Sitting at the kiosk, a user can browse through all

events—even the ones that are not contained in the booklet as

they were latecomers—and see the reviews that other users

have entered for a given show. The users can also compose

and print a customised personal event schedule that then in-

teracts with the system as a part of the mobile client in much

the same way as the booklet does.

The resulting EdFest architecture is shown in Fig. 5. The

system is based on a client-server infrastructure. On the

server side, we have XCM, the content publishing server

that will be described later in this section. On the client side,

the system consists of several components that offer spe-

cific functionalities. The iPaper Client is responsible for the

communication with the digital pen, while the voice engine,

Natural Voices from AT&T [3], is responsible for processing

the VoiceXML files included in the response from the server.

An HTML browser was also provided on the client side for

experimentation with head-mounted displays.

The digital pen is connected to the client computer over

Bluetooth. For the audio output, we use wired as well as

Bluetooth headsets. A GPS sensor is connected to the USB

port and provides a serial port emulator, which makes it eas-

ier to get the GPS coordinates. The client is connected to

the server using an ethernet connection, ad-hoc wireless net-

work, wireless network public access points or mobile phone

GPRS connections. While developing the interactive festival

system, we did most of the tests in the laboratory using ether-

net connections, whereas in the field we used ad-hoc wireless

connections.

A request of the iPaper Client is directly sent to the iServer

component. As mentioned in the previous section, iServer

uses a plug-in mechanism to support different resource types.

In the case of digitally augmented paper, the iServer plug-in

manages the link information necessary to map (x, y) coor-

dinates delivered by the digital pen to digital objects repre-

sented by active areas that are defined by arbitrarily complex

geometrical shapes within pages. As well as mapping to con-

tent resources such as images, videos and web documents,

Fig. 5 EdFest architecture

Springer



Wireless Netw (2007) 13:855–870 861

active components can be used to bind areas on paper to ar-

bitrary services as described later in Section 6. When iServer

receives the request including the pen’s (x, y) coordinates, it

resolves the activated link to the appropriate URL-encoded

request which is then sent to the XCM server. For example,

a specific active area within the booklet might be mapped to

http://edfest.org/xcm?anchor=getRating.

A special component, the Client Controller, is configured

as a transparent proxy on the client-side between iServer

and XCM. A core component of the Client Controller is the

Context Engine that is responsible for managing the context

information and, if required, can build high-level semantic

context objects from primitive values obtained from hard-

ware or software sensors. It gathers all relevant information

and updates the corresponding context elements such as the

user’s location, the protocol in use, language settings and the

content type. An additional context factor allowed for is the

set of users nearby. If some important changes in context

happen, the Client Controller can contact the interested user

using the information provided by the Context Engine. This

functionality is used, for instance, to remind users about the

start of events.

The XCM server manages the application database, which

contains information about the events, performances, venues,

users, etc. Additionally, in a special metadata database, XCM

stores information about the definition of interfaces in terms

of document structures and XSLT presentation templates.

Document structures, content views and layout information

are defined in terms of metadata objects that govern the stan-

dard publishing process of XCM. In the case of EdFest, XCM

delivers VoiceXML files for the voice engine and different

HTML pages for the stationary kiosk, pre- and post-visit

desktop web browsing, and also for the possible use of a

head-mounted display or PDA during the visit. When XCM

receives a request from iServer, it uses the information con-

tained in its databases to return an appropriate document

according to the context that has been inserted by the Client

Controller. This document is then delivered back to the Client

Controller, which is responsible for dispatching it to the ap-

propriate rendering component. In the case of a VoiceXML

document, the Client Controller forwards the information to

the Voice Engine, which provides audio output to the user.

More details about the publishing process and our content

publishing framework itself are given in Section 5.

4 Client controller

As we have seen in the previous section, the client of the

EdFest system is composed of several interface components

such as the iPaper Client and the Voice Engine. These compo-

nents are all HTTP clients since they are either off-the-shelf

components such as the Voice Engine or customised compo-

nents such as the iPaper Client that were developed with other

application setups in mind. By default, the components are

autonomous and do not know anything about each other. They

could in principle communicate directly and independently

with the server components through an HTTP connection.

However, in the case of a platform for mobile information

systems, and the EdFest application in particular, we wanted

to intertwine the components to form an integrated multi-

modal user interface that can provide more functionality than

the sum of all functionalities of the separate components.

The Client Controller is the component that takes care of

this integration and is the central component on the client

side. It acts as an HTTP proxy for iServer and the Voice

Engine. Instead of communicating directly with the server

components, the HTTP connection goes through the Client

Controller which is therefore able to alter or even replace

both HTTP requests from the interface component and re-

sponses from the server. It can also trigger side-effects based

on the request or the response and further integrates addi-

tional components, such as the Context Engine.

One of the most important features of the Client Controller

is the dispatching of HTTP responses. A request is usually

initiated by the user through one of the interface compo-

nents, either through a touch with the pen or a selection of an

HTML link. Without the Client Controller, we would have

a multi-channel interface where the channels are completely

independent. For a full multi-modal interface, we need to

be able to trigger a request using one modality but display

the response in another modality. In the EdFest application,

for example, we want to request a voice output by pointing

with the pen to a particular area in the paper brochure. In

this case, the HTTP request is triggered by the iPaper plug-in

for iServer and the response from the server is interpreted

by the Client Controller. It analyses the content type of the

response and dispatches the result to the appropriate compo-

nent (e.g. the Voice Engine). In order to complete the HTTP

request that was initiated by the iPaper plug-in, the Client

Controller sends back a default response for the content type

of the iPaper plug-in upon successful dispatching of the orig-

inal HTTP response. The dispatch mechanism is kept very

flexible so that the Client Controller can easily be extended

with new interface components.

Another issue in multi-modal interfaces is the consistency

and synchronisation of the various input and output channels.

For example, it may not make sense that the Voice Engine

continues processing a voice dialogue with information about

an event after the user selects another event. User events

should therefore be able to interrupt actions. For this rea-

son, the Client Controller analyses the generated requests to

determine whether or not to stop actions such as voice out-

put. In the current implementation of the EdFest system, this

analysis was kept very simple and the Client Controller stops

any running voice dialogues when new requests are received.

Springer



862 Wireless Netw (2007) 13:855–870

While this is what the user wants in many cases, there are

some cases where the user may want to continue listening to

the text while perhaps writing a comment on an event. This

is one of the interaction issues that we want to experiment

with in the future to develop more sophisticated means of

deciding when to interrupt actions based on an analysis by

the Client Controller of the request content.

As already mentioned in Section 3, the EdFest applica-

tion also makes use of context information managed by the

Context Engine. Context information such as the GPS coor-

dinates and information about the devices in use originates

on the client side. The Context Engine keeps track of the

context by gathering this information continuously either by

polling all attached sensors or through directed updates that

it receives from other components capable of delivering con-

text. The Client Controller is also responsible for collecting

this information and propagating it to the content publishing

system on the server side. This can be done by augmenting

the URL of the HTTP request with additional parameters.

The Client Controller provides an additional mechanism

for pushing information from the server to the client by act-

ing as an HTTP server and listening for notification requests.

These requests can be sent by the XCM system or, indeed,

any other component of the system. The IP address, port and

URL that the Client Controller listens to are part of the con-

text information that it delivers to the Context Engine which

keeps track of the callback information and delivers it to all

registered components by attaching callback information to

each request. If a server-side component needs to send a noti-

fication to a user, it extracts the corresponding callback URL

from the request and makes a notification call to this URL.

In the current EdFest prototype, we use this feature to inform

users of friends nearby as well as for event reminders.

5 Publishing component

Nowadays a web publishing framework has to support multi-

channel access and, increasingly, context-awareness. Al-

though a large variety of tools and technologies are avail-

able to support the publishing of static and dynamic data on

the web, many of these lack a well-defined declarative model.

Within the research community, this problem has been recog-

nised and a number of model-based approaches [8, 13, 14]

have been proposed. In contrast to most of these, our ap-

proach is system-based rather than tool-based. By this, we

mean that, instead of developing tools on top of existing

database technologies, we wanted to develop a database sys-

tem with support for general content and web publishing

integrated into the core model and system.

The resulting content publishing framework is the

eXtensible Content Management system (XCM) [12]. As

context-dependent content delivery is becoming more and

more important in many fields including the field of mobile

computing, XCM has been built to be context-aware by de-

sign. Two of its basic concepts are of particular importance

for this aspect. The first of these concepts is a well-defined

model of context and the second is the fact that in XCM

all objects that need to be context-aware can have multiple

variants, one for each context. Finally, context-dependent in-

formation delivery is then controlled by matching the context

of a request to the variants of the objects involved.

The model of context that we use is similar to that pro-

posed by others for HTML [28] and also semi-structured

data [26]. Context is defined in terms of a set of (name,

value) pairs which specify the various context dimensions

to be taken into account in deciding on the content, struc-

ture, view and layout of a document. These dimensions can

include anything from user-related properties such as lan-

guage preference and location to system-related properties

such as the request protocol and client device. The EdFest

application allows for several context dimensions such as a

user’s identity, their current location, the time, the language

setting and the protocol used.

As mentioned before, objects which are deemed to be

context-sensitive can have multiple variants. Each variant has

a set of characteristics also represented using (name, value)

pairs that define the context in which it is appropriate. In con-

trast to context, where exact values for all dimensions have

to be supplied, the values for characteristics can also include

wildcards, sets and intervals. The syntax that was defined

for these cases, as well as their precise interpretation, can

be found in Table 1. As an example for such a characteris-

tic value, consider a template object that is used to render a

venue object in EdFest. Such an object has a variant for each

output format that needs to be generated as represented by

the format characteristic, e.g. format=html.

At the time of processing a request, XCM first extracts the

context information from the request. Context information

can be either inferred from the HTTP header or can be ex-

plicitly set in the query string of the request. When gathering

all objects specified by the request, this context information

is matched against the characteristics of all object variants

Table 1 Syntax for values of characteristic

Syntax Definition

v Unary value that matches a context value vctx , iff

vctx = v.

∗ Wildcard value that matches all context values vctx .

v1{:vn} Set S := {v1, . . . , vn}. A context value vctx matches,

iff vctx ∈ S.

vlower..vupper Interval I := [vlower , vupper ]. A context

value vctx matches, iff vlower ≤ vctx ≤ vupper .

+ Prefix indicating a required match.

− Prefix indicating an illegal match.

Springer



Wireless Netw (2007) 13:855–870 863

involved and, for each object, the most appropriate variant

is selected. The matching algorithm that selects the variants

to be delivered to the client performs a best match rather

than an exact match. This avoids having to specify an object

variant for each possible combination of context dimensions.

Hence, the algorithm computes a ranking value for each ob-

ject variant by comparing all context dimensions specified

in the request to those of each variant. If no variant reaches

a ranking above a previously defined threshold, a specially

denoted default variant that exists for each object is returned.

However, in practice, this straightforward algorithm is not

always enough to select an appropriate variant. There are

ambiguous situations when more than one variant is ranked

with the same maximum value. In this case, the algorithm

can no longer determine which variant it should return and

selecting one at random can lead to very undesirable results.

To limit the number of such problematic situations, our al-

gorithm further supports the notion of required and illegal

characteristic values. As can be seen from the lower part of

Table 1, a value that is prefixed with a plus sign needs to

have been specified among the given context dimensions in

order for a particular variant to be eligible. In contrast to this,

a value prefixed with a minus sign will lead to a particular

variant being discarded, if the same value has been speci-

fied for the corresponding context dimension. To achieve a

maximum degree of expressiveness, these two prefixes can

be combined with any of the syntax patterns described in the

upper half of the table. Using such a prefix, we could refine

the example of a template variant given above and charac-

terise it withformat=+html to express that this template is

exclusively applicable when the context demands an HTML

representation of the content.

Another strength of the matching algorithm is that it can

also be used to implement certain application processes. In

EdFest, for instance, the booking process allowing users to

reserve tickets using the bookmark has been implemented

entirely with variants without having to implement any ap-

plication logic that couples the various phases of this process.

As the information that is gathered by the reservation process

can be seen as context, we modelled each step of the process

as a variant that matches to a particular state within the gath-

ering of information as shown in Fig. 6. Initially, when the

process begins, no information has been entered by the user

and thus the context is empty. Consequently the system dis-

plays the default variant that has been defined to match to the

empty context. The default variant is a form that prompts the

user to select an event and, as soon as this form is submitted,

the context is updated with the additional value represent-

ing the identifier of the event. As the context has changed so

does the variant that is delivered to the client, each guiding

the user one step further along the booking process. Finally,

when all required data has been gathered the reservation is

stored and the user is informed about the booking number.

doBooking

id=+*

id=+*
event=+*

id=+*
event=+*
date=+*

id=+*
event=+*
date=+*
tickets=+*

id=+*
event=+*
date=+*
tickets=+*
confirmed=true

/doBooking

/doBooking?id=309

/doBooking?id=309&event=e747

/doBooking?id=309&event=e747
&date=2005-10-27

/doBooking?id=309&event=e747
&date=2005-10-27&tickets=2

/doBooking?id=309&event=e747
&date=2005-10-27&tickets=2

&confirmed=true

Client XCM

Fig. 6 Using variants to implement a booking process

XCM’s model of context and its support for object variants

allow multi-channel requirements to be implemented very

elegantly. For the EdFest application, we have implemented

three different channels: HTML, VoiceXML and PDF. The

HTML channel is currently used in the kiosk application

and for the display of captured notes for users with a head-

mounted display. In addition, we have also used it internally

for development and technical testing. The aim of the current

EdFest system was clearly to support on-site activities during

the visit to the festival. But as we also aim to support pre- and

post-visit activities, the HTML channel has been extended for

activities such as the browsing of events or reviews and the

composition of customised personal schedules. An important

channel, especially for accessing dynamic information, is the

voice channel that is used in the mobile client. Upon request

that the user sends by interacting with pen and paper, XCM

generates VoiceXML prompts from the data objects for the

display of information. These prompts usually contain a ver-

sion of the content that has been summarised and processed

in a way that is graspable over the voice channel.

However, the main channel of the EdFest prototype is not

the voice interface, but the paper brochure. This brochure

is also generated by the XCM publishing framework. The

system contains templates that generate an XML represen-

tation of the content that follows the desired structure of

the brochure, i.e. a collection of event categories containing

the actual events with all their associated information. This

XML document is then processed by a special client com-

ponent that, based on a set of templates, produces the final

PDF document which can be printed and bound to a book-

let. The Anoto pattern that is used by the Nokia Digital Pen

has to be added manually to the generated PDF document.

As we intended the booklet to look as similar as possible

to the original brochure distributed by the Edinburgh Fringe

Festival, we decided not to use XSL:FO [23] to generate the

PDF document as was done previously for the 2004 EdFest

system. The precision requirements of the layout for the new

Springer



864 Wireless Netw (2007) 13:855–870

booklet have surpassed the capabilities that XSL:FO has to

offer at the moment as objects need to be placed at exact po-

sitions. As this publishing process is still rather complex, we

are currently working on integrating these tasks into a single

step, so that booklets can be printed directly from the web

publishing system.

With the dynamic generation of the paper brochures and

booklets, we also need an automated export of the mapping

information for the iServer component to define the nec-

essary cross-media links. As the iServer component uses a

separate database for the link information, this database has

to be updated upon creation of a new brochure by the con-

tent publishing system. For this reason, the client component

that generates the PDF document for the brochure also keeps

track of the positions of all interactive elements while render-

ing the content. This information is then used to produce an

XML description of the link metadata for the paper brochure.

The XML description can be imported by the corresponding

tool of the iServer component.

For the EdFest application, we printed the booklets before

going to Edinburgh for the user trials and all users had the

same booklet. For this setup, we could also have produced the

booklets with other tools, such as word processors or desk-

top publishing tools, but the authoring of the links from pa-

per would have been difficult to control, especially since the

booklet went through many design changes. Another major

advantage of using a content publishing framework to gen-

erate the printed documents is that we can also dynamically

produce customised booklets. As mentioned above, this func-

tionality to generate customised personal programmes has

been implemented as a part of the kiosk application which

uses the HTML channel of the system.

The three channels of the content publishing framework

are independent. The integration, if necessary, is done by the

Client Controller as already described. From the point of view

of the content publishing component, it just provides a multi-

channel interface to some information and services. This

means that the client has to issue separate requests for each

document that it wants to access since the content publishing

framework can only return one response for each request. For

example, it is not possible to return both an HTML document

and a voice dialogue as the result of a single request. This is

a limitation that is not well suited to a true multi-modal user

interface. With the Client Controller, we can currently use a

workaround in that we can analyse a request and transform it

into multiple requests for the different channels or modalities

if required. The drawback however is that the client has

to specify the channels for the response of the request. An

activation of additional output channels based on context

information or data in the EdFest application database would

not be possible. For this reason, we are extending the current

implementation of XCM with the ability to return multi-part

responses. Which and how many responses will be generated

can be determined dynamically based on application data,

publication data or context information. The multi-part

responses would be split by the Client Controller and

the individual responses dispatched to the corresponding

handler components. This would allow, for example, that a

single response could return control information for the Pen

Client, some voice output and an image to be shown on the

head-mounted display. Similar approaches to multi-modal

interfaces are currently also being investigated as part of

W3C’s Multimodal Interaction Activity (MMI) [19]. The

XHTML+Voice (X+V) specification, for example, allows

the embedding of VoiceXML elements in an XHTML

document. There are web browsers that already interpret this

format, for example, Opera’s Multimodal Browser. The avail-

ability of standards and corresponding tools would of course

tremendously simplify the development of such multi-modal

interfaces.

6 Paper as a mobile device

As mentioned earlier, the iServer platform is a cross-media

information management framework supporting digital as

well a physical objects. The iPaper plug-in that we imple-

mented for interactive paper and applied in the EdFest system

was developed in the context of a European project called

Paper++. More details of the specific technologies devel-

oped within this project and the motivations behind the re-

search in interactive paper can be found in [17, 25].

In this section, we introduce active components, a new

type of resource that was developed for the iServer platform

to support the design of complex interaction patterns as re-

quired by the EdFest prototype. While regular links just re-

turn a single piece of information such as an HTML page or

a movie clip, active components are Java objects that become

dynamically instantiated based on a configuration stored in

the iServer metadata database and can be executed on the

server as well as on the client side. The iPaper Client is a

component that can run active components on the client side.

It distinguishes two working modes: a browsing mode where

no active component is running on the client side and an ac-
tive mode where an active component has been instantiated

and is currently running. On incoming pen events, the iPaper

Client either sends a regular request to iServer or delegates

the pen request to a running active component.

We present two scenarios where active components have

been used on iServer as well as on the iPaper Client to manage

complex operations within the EdFest system. As mentioned

earlier, iServer with the iPaper plug-in mainly stores metadata

about active regions within the festival brochure, the map and

the bookmark while the actual festival data about venues,

events, performances, ticket availability etc. are stored in the

EdFest application database managed by XCM.

Springer



Wireless Netw (2007) 13:855–870 865

In the first scenario, we introduce the XCMRequest ac-

tive component that runs on iServer and mainly acts as a

“proxy” component for information that is accessible through

XCM. TheXCMRequest active component is typically used

when the user points with the pen somewhere in the EdFest

booklet, on the map or on the bookmark to get additional in-

formation in the form of audio output. The iPaper Client sends

an HTTP request to iServer and the interactive paper plug-in

resolves the positional information to the appropriate target

resource as shown in Scenario 1 of Fig. 7. In the case that

the information is stored in the EdFest application database,

the resolved resource will be an XCMRequest active com-

ponent. Based on the active component’s identifier attribute,

an object of the corresponding Java class is instantiated and

initialised with the active component’s supplementary meta-

data available from the iServer database. In the case of an

XCMRequest component, this data includes an XCM query

encoded as an HTTP request that can be sent to the content

management system. The request is sent to the XCM con-

tent publishing platform which generates the corresponding

response that is sent back to the XCMRequest component.

Note that for the EdFest system we used a single database

for managing information about the festival, but the concept

of an active proxy component running on iServer could be

used to integrate various heterogeneous data sources.

The Nokia Digital Pen that we used for the Edinburgh

festival trials, continuously streams data in the form of po-

sitional information to the iPaper Client. While the user is

browsing an interactive festival document, this information

is stored in a buffer and, only after a certain amount of time, is

it possible to actually send a request to iServer. This filtering

of pen events works fine in the case of a user pointing to spe-

cific areas of one of the interactive paper documents which

normally should result in a single request. Furthermore, the

iPaper Client always checks if there is still an open response

for a request that has been sent earlier, in combination with a

fixed timeout. If there is a conflict, the new request is rejected

and the iPaper Client acoustically informs the user that an-

other request is currently being processed. In this browsing

mode, each pen event, after the described filtering process,

results in a single request which is sent to the server compo-

nent as outlined earlier in Fig. 5. However, for certain tasks,

it makes sense that the iPaper Client processes multiple pen

events before sending a request to iServer. This enhanced

application logic of the iPaper Client can be realised by ap-

plying client-side active components. In the remainder of this

section, we present a client-side active component running

on the iPaper Client that was used within the EdFest demon-

strator to capture the handwritten comments of users.

The lower part of Fig. 7 shows a second scenario, where

a comment is captured based on the user’s interaction with

the festival booklet, involving a client-side active compo-

nent. If a user starts to write on one of the empty comment

pages at the end of the festival brochure that are defined

as capture areas, the iPaper Client first sends a single event

to iServer as is normally done in the browsing mode. The

iPaper plug-in for iServer performs a lookup for the specific

pen position and returns a Capture active component. An

instance of the Capture active component is instantiated

on the server side, based on the active component’s config-

uration metadata stored in the iServer database. In the case

of the Capture component, this information includes an

upload address, i.e. a URL where the captured information

finally should be uploaded using an HTTP POST request, as

well as a timeout parameter which is used to terminate a cap-

turing process without explicit user intervention as described

later in this section. The Capture active component loaded

on iServer sends an XML message, including the identifier

attribute of the active component as well as various configu-

ration parameters, back to the iPaper Client.

The iPaper Client receives the XML message and identi-

fies it as an active component response. An instance of the

corresponding Capture active component stub is instanti-

ated based on the identifier of the active component XML

message and the additional information stored within the

message. During its initialisation phase, the Capture ac-

tive component has to obtain information about the active

region (selector) to which it is actually bound. Therefore, the

active component running on the iPaper Client sends a special

getSelector active component command to the iServer

active component which then looks up this information and

sends back a response containing the requested selector. Note

that in the case where this information is only needed once

during the initialisation phase of the iPaper Client active com-

ponent, it could always be directly integrated into the first

active component message to reduce the number of requests

and therefore improve the system’s performance. When the

client-side stub for the Capture component is created, it

asks the iPaper Client for the time when the last request was

sent to the server, which is the time when the request for the

capture note component itself was initiated. This informa-

tion is used later to fetch the appropriate information from

the buffer. After the active component has been loaded, the

iPaper Client switches from browsing mode to active mode

which simply means that subsequent pen events are delegated

to the active component running on the iPaper Client instead

of directly being sent to the server.

As explained before, theCapture active component stub

running on the iPaper Client requested information about the

active region that was defined as an active capture area. The

capture process is completed when either the pen leaves the

active capture area or after the predefined timeout, which is

also a parameter of theCapture active component, elapses.

In the meantime, all pen events are stored in the buffer. Af-

ter the capture process has been terminated by one of the

two possibilities just described, the Capture component

Springer



866 Wireless Netw (2007) 13:855–870

Nokia Digital

Pen SU-1B

iPaper

Client

(x,y) coordinates

iServer

and iPaper

XCM

(EdFestDB)

Client

Controller

docID, page, (x,y)

XCM request

XCMRequest

AC

load AC

XCM request + context

Scenario 1

(x,y) coordinates

Scenario 2

docID, page, (x,y)

context augmentation

context augmentation

Capture

AC

AC message (XML)

Capture

AC

(x,y) coordinates

AC command

(getSelector)
getSelector

AC selector
selector

(x,y) coordinates

(x,y) coordinates

(x,y) coordinates

(x,y) coordinates

(x,y) coordinates

(x,y) coordinates

(x,y) coordinates

.

.

.

(x,y)

(x,y)

.

.

.

upload image (HTTP POST)

upload OK
upload OK

upload OK

get selector

get

information

store

image

load AC

inform AC

VoiceXML, HTML, ...
AC Response

VoiceXML, HTML, ...Voice Engine,

HTML Browser, ...

load AC

image + context

Fig. 7 iPaper Client and iServer active components

performs a lookup in the pen buffer to get all positional in-

formation acquired during the capture process. This lookup is

based on the temporal information that the active component

requested in its initialisation phase. Finally, the captured in-

formation is sent to the predefined upload URL for the XCM

server in a special XML format for representing notes con-

sisting of one or more strokes defined by multiple points as

well as additional metadata such as timing information or the

pressure that was applied to the pen nib at a specific posi-

tion. The XCM server stores the captured information in this

neutral XML format which can easily be adapted to different

output channels. To provide direct user feedback after a com-

ment has been stored, XCM does some further processing on

the captured data. In a first step, ICR is applied to the stroke

information stored in the XML note. To achieve good hand-

writing recognition results without special training sessions,

we used the MyScript Java development environment offered

by Vision Objects [20]. The recognised text is embedded in

a VoiceXML document and returned to the Capture ac-

tive component running on the iPaper Client. Through this

process, the user gets immediate feedback about the interpre-

tation of his comment by the system. In addition, the Client

Controller sends a response to the Capture active compo-

nent confirming the successful upload of the comment. The

active component informs the iPaper Client that it has fin-

ished its work and it is immediately unloaded by the iPaper

Client which switches back to the default browsing mode. In

the case that the system could not perform good handwriting

recognition on a comment, the voice output informs the user

that the comment has been stored by XCM but could not

be transformed to a textual representation. However, such a

comment may still be accessible from another output chan-

nel such as the HTML interface offered at the kiosks, where

comments are rendered as JPEG images.

Springer



Wireless Netw (2007) 13:855–870 867

<?xml version="1.0" encoding="UTF-8"?>
<iserver>
<activeComponent id="capture ac" creator="beat">

<name>Capture a Comment</name>
<identifier>CAPTURE BOOKLET</identifier>
<properties>
<parameter>
<key>org.iserver.ac:request</key>
<value>mode=db&amp;

anchor=setEventComment&amp;
document=booklet&amp;
require=event+user+format

</value>
</parameter>
<parameter>
<key>org.iserver.ac:timeout</key>
<value>5000</value>

</parameter>
...

</properties>
</activeComponent>
</iserver>

Fig. 8 Active component specification

The active components can be defined directly in the

database or they can be imported from an XML document.

Figure 8 shows an XML specification of an active component

with its main attributes. The name is used to find a specific

active component whereas the identifier is applied to

bind the definition of an active component to its related Java

class. The example shows the definition of a capture active

component where the first parameter with the request key

defines the request parameters that have to be sent to the

XCM server for uploading of the captured information. The

timeout of the capture active component (timeout key) has

been set to 5000 milliseconds which means that if the idle

time is greater than this threshold, the capture process will

be terminated automatically.

The concept of having client-side active components (run-

ning on the iPaper Client) and server-side active components

(running on iServer) which can communicate by sending spe-

cial active component messages has proven to be useful if

the client-side component has to get additional information

stored in the iServer database. Note that the two active com-

ponents presented in this section are just two possible imple-

mentations of the very flexible and powerful active compo-

nent concept which enormously simplifies the implementa-

tion of complex interaction components. Various other active

components have been implemented as part of the EdFest

prototype to support different interaction tasks such as the

rating of an event or the localisation of a venue.

7 EdFest at the festival

Initial tests and user trials of the EdFest system took place

in Edinburgh during August 2004. Based on the outcome of

these user trials, the system was improved in various ways

and a second user trial took place in August 2005. The us-

ability trials in 2005 were carried out during a five-day pe-

riod in various locations in the city, including public places

as well as locations in and around festival venues including

a fixed kiosk installed in the Fringe e-ticket tent. Our ac-

tivities during the week involved general system testing of

the EdFest prototype, a mix of semi-structured interviews

and naturalistic observations of tourists using the system and

also surveys based on user questionnaires. While it is beyond

the scope of this paper to describe the user studies in detail,

we include some general remarks on the outcomes in this

section.

Test users mainly included visitors to festival venues as

well as general tourists interviewed in public places. More

than twenty sessions, each lasting about 30 minutes, were

carried out with single users and pairs of festival visitors. In

addition, we carried out a number of smaller trials as well as

observing and videoing tourists in various venues and public

spaces such as streets, bars and cafes. Figure 9 shows different

users working with the interactive EdFest brochure, the map

and the bookmark to fulfil a number of tasks.

Fig. 9 User trials at the Edinburgh festivals

Springer



868 Wireless Netw (2007) 13:855–870

In the interactive festival brochure that was used in the

2004 user trials, all texts were interactive and a user could

access additional information by pointing to any printed part

of the booklet. However, since paper-based access to digital

information was new to most users, the user interface based

on active parts of printed text was not clear to many of them.

Therefore, for the 2005 version of the interactive festival sys-

tem, we decided that special pictograms, as shown earlier in

Fig. 4, should be used to link any additional digital informa-

tion. All active pictograms have the same shape and colour

making it very clear to a user where they should point with

the pen. A first analysis of the 2005 EdFest user trials reveals

that the pictogram-based user interface was much easier for

users to learn and understand.

Another major change from the system used in 2004 to the

current interactive festival guide in terms of the interaction

design was the removal of the voice input channel. For many

of the users in the 2004 trials it was unclear that they could

also talk to the system in order to navigate through the voice

dialogues. Even after learning that they had this possibility,

some users went on using the pen for input in parallel to the

voice input. In addition, some users expressed a reluctance

about having to talk to the system in public places in order

to get information or perform some task. As a result of the

negative feedback concerning the voice input channel, we

decided to remove this functionality from the 2005 proto-

type and use voice only as an output channel and design the

interface so that all interaction could be controlled from the

paper documents.

One problem of using the pen as a pointing device was

the fact that some users were concerned that they would

mark the brochure. We have found this to be a general

problem associated with the dual mode of the modified pen

which can act both as a selection and a writing device.

Ideally, the pen itself should have a mechanism to switch

between modes, for example by having a retractable writ-

ing stylus to indicate the switch from writing to interaction

mode. We consider such amendments to the design of digital

pens essential if they are to become devices with this dual

functionality.

Generally, the response to the interactive brochure, the

map and the bookmark was positive and users found the

map-based interaction, including the locator functionality, to

be particularly intuitive and very useful. There was positive

feedback concerning the means of inputting and getting event

ratings as well as for setting the reminders. Furthermore, we

got a lot of positive feedback for the new ticket booking func-

tionality accessible from the interactive bookmark. Despite

the very positive feedback from the user studies there is still

great potential for experimenting with alternative interactive

paper document designs for future versions of the system.

8 Conclusions

We have presented a platform that supports rapid prototyping

of mobile information systems. While we generally advocate

the use of rapid prototyping in system development, we feel

that it is even more crucial in the relatively new area of mobile

applications intended to provide context-aware information

services based on emerging technologies. Interaction with

these services becomes a major issue and there are many in-

novations in the features offered by new devices. It is there-

fore important to experiment, not only with alternative modes

of interaction, but also multi-modal interfaces.

We have shown that by combining general platforms for

context-aware web publishing and cross-media services, we

achieved a very flexible platform for mobile information sys-

tems. This platform supports multi-channel, context-aware

applications that may even span physical and digital spaces,

thereby enabling digital information and services to be linked

to places and objects in a user’s environment.

The EdFest systems developed in 2004 and 2005 served

as both a driving force for the design and development of the

platform and major demonstrations of its use. The project in-

tegrates many different aspects of mobile systems addressed

individually in other research projects and, hence, presented

us with many challenges. After two successive years of user

trials at the festival, we now have a system that not only pro-

vides a lot of functionality, but also rates highly in terms of

both usability and performance. The progress that has been

made in a relatively short period of time is mainly due to the

flexibility of the underlying platform and its support for rapid

prototyping and experimentation. This is achieved by using

data-driven approaches, where all information about the ap-

plication and its configuration is represented in one or more

databases in terms of objects that are subject to semantic

consistency constraints. This means that they can be updated

dynamically at run-time, but that there are guarantees that

this is done in a controlled way.

Acknowledgments We thank the other members of the EdFest team
for their contributions to the project, including their help with the
user trials in Edinburgh: Barbara Aeppli, Philipp Bolliger, Sandra
Brockmann, Marco Dubacher, Tina Körner, Slavisa Maslic, Alexios
Palinginis, Jan Rellermeyer, Christoph Schwank, Marco Steybe and
Ljiljana Vukelja. We also thank the organisers of the Edinburgh Fringe
Festival for their support.

References

1. G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper and M.
Pinkerton, Cyberguide: A mobile context-aware tour guide, Wire-
less Networks 3 (1997) 421–433.

2. Anoto AB, http://www.anoto.com

Springer



Wireless Netw (2007) 13:855–870 869

3. AT&T Natural Voices, AT&T Shannon Labs, New Jersey, USA,
http://www.naturalvoices.att.com/

4. R. Belotti, C. Decurtins, M. Grossniklaus, M.C. Norrie and
A. Palinginis, Interplay of content and context, Journal of Web
Engineering 4(1) (2005) 57–78.

5. R. Belotti, C. Decurtins, M.C. Norrie, B. Signer and L. Vukelja,
Experimental platform for mobile information systems, in: Pro-
ceedings of MobiCom 2005, 11th Annual International Conference
on Mobile Computing and Networking, Cologne, Germany (August
2005) pp. 258–269.

6. B. Brown and M. Chalmers, Tourism and mobile technology, in:
Proceedings of ECSCW 2003, 8th European Conference on Com-
puter Supported Cooperative Work, Helsinki, Finland (September
2003) pp. 335–355.

7. B. Brown and E. Laurier, Designing electronic maps: An ethno-
graphic approach, in: Map Design for Mobile Applications eds
L. Meng, A. Zipf and T. Reichenberger. Springer Verlag (2004).

8. S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai and
M. Matera, Designing Data-Intensive Web Applications, The Mor-
gan Kaufmann Series in Data Management Systems. (Morgan
Kaufmann, 2002).

9. K. Cheverst, N. Davies, K. Mitchell, A. Friday and C. Efstratiou,
Developing a context-aware electronic tourist guide: Some issues
and experiences, in: Proceedings of CHI 2000, ACM Conference
on Human Factors in Computing Systems, The Hague, The Nether-
lands (April 2000) pp. 17–24.

10. M.J. Franklin, Challenges in ubiquitous data management, in: Lec-
ture Notes In Computer Science: Informatics - 10 Years Back. 10
Years Ahead, Springer-Verlag, vol. 2000 (2001) pp. 24–33.

11. A. Grasso, A. Karsenty and M. Susani, Augmenting paper to en-
hance community information sharing, in: Proceedings of DARE
2000, Conference on Designing Augmented Reality Environments,
Elsinore, Denmark (April 2000) pp. 51–62.

12. M. Grossniklaus and M.C. Norrie, Information concepts for con-
tent management, in: Proceedings of DASWIS 2002, International
Workshop on Data Semantics in Web Information Systems, Singa-
pore, Republic of Singapore (December 2002) pp. 150–159.

13. G.-J. Houben, P. Barna, F. Frasincar and R. Vdovjak, Hera: Devel-
opment of semantic web information systems, in: Proceedings of
ICWE ’03, 3rd International Conference on Web Engineering (July
2003) pp. 529–538.

14. G. Kappel, W. Retschitzegger and W. Schwinger, Modeling cus-
tomizable web applications—a requirement’s perspective, in: Ky-
oto International Conference on Digital Libraries, Kyoto, Japan
(November 2000) pp. 168–179.

15. A. Kobler, M.C. Norrie and A. Würgler, OMS Approach to database
development through rapid prototyping, in: Proceedings of WITS
’98, 8th Workshop on Information Technologies and Systems,
Helsinki, Finland (December 1998).

16. D.M. Levy, Scrolling Forward: Making Sense of Documents in the
Digital Age, (Arcade Publishing, October 2001).

17. P. Luff, C. Heath, M.C. Norrie, B. Signer and P. Herdman, Only
touching the surface: Creating affinities between digital content and
paper, in: Proceedings of CSCW 2004, Chicago, USA (November
2004) pp. 523–532.

18. C.C. Marshall, Annotation: From paper books to digital library,
in: Proceedings of DL ’97, 2nd ACM International Conference on
Digital Libraries, Philadelphia, USA (July 1997) pp. 131–140.

19. W3C Interaction Domain: Multimodal Interaction Activity,
http://www.w3.org/2002/mmi/

20. MyScript Handwriting Recognition Software, Vision Objects,
http://www.vision-objects.com/

21. M.C. Norrie, An extended entity-relationship approach to data man-
agement in object-oriented systems, in: Proceedings of ER ’93, 12th

International Conference on the Entity-Relationship Approach, Ar-
lington, USA (December 1993) pp. 390–401.

22. A. Pashtan, R. Blattler, A. Heusser and P. Scheuermann, CATIS: A
context-aware tourist information system, in: Proceedings of IMC
2003, 4th International Workshop of Mobile Computing, Rostock,
Germany (June 2003).

23. D. Pawson. XSL-FO: Making XML Look Good in Print, O’Reilly
& Associates (August 2002).

24. A.J. Sellen and R. Harper, The Myth of the Paperless Office, MIT
Press (November 2001).

25. B. Signer and M.C. Norrie, A framework for cross-media informa-
tion management, in: Proceedings of EuroIMSA 2005, International
Conference on Internet and Multimedia Systems and Applications,
Grindelwald, Switzerland (February 2005) pp. 318–323.

26. Y. Stavrakas and M. Gergatsoulis, Multidimensional semistructured
data: representing context-dependent information on the web, in:
Proceedings of CAiSE 2002, 14th Conference on Advanced Infor-
mation Systems Engineering, Toronto, Canada (June 2002) pp. 183–
199.

27. Vindigo City Guide, http://www.vindigo.com/
28. W.W. Wadge, G. Brown, M.C. Schraefel and T. Yildrim, Intensional

HTML, in: Proceedings of PODDP ’98, 4th International Work-
shop on Principles of Digital Document Processing, Saint Malo,
France (March 1998) pp. 128–139.

29. A. Woodruff, P. Aoki, A. Hurst and M. Szymanski, Electronic
guidebooks and visitor attention, in: Proceedings of ICHIM 2001,
6th International Cultural Heritage Informatics Meeting, Milan,
Italy (September 2001) pp. 437–454.

Moira C. Norrie is a Professor at ETH Zurich where she is head of
the Institute for Information Systems and leads the Global Information
Systems research group. Her research interests include object-oriented
models and systems for data management, web engineering, mobile
and personal information systems and interactive paper as a medium
for integrating printed and digital information.

Beat Signer is a Post-Doctoral researcher in the Global Information
Systems research group at ETH Zurich. He received a Ph.D. from ETH
Zurich in 2005 for his work investigating fundamental concepts for in-
teractive paper and cross-media information management. His research
interests include interactive paper, cross-media information manage-
ment, object-oriented technologies and software engineering.

Springer



870 Wireless Netw (2007) 13:855–870

Michael Grossniklaus is a research assistant in the Global In-
formation Systems research group at ETH Zurich. He received a
Diploma (M.Sc.) in Computer Science from ETH Zurich in 2001
and is currently completing his Ph.D. His main research interest
is empowering information systems for context-aware data manage-
ment and delivery in the domain of web engineering and mobile
computing.

Rudi Belotti was a research assistant in the Global Information Systems
research group at ETH Zurich from 2004–2006. He received a Diploma
(M.Sc.) in Computer Science from ETH Zurich in 2004. In his research,
he developed a general model and engine for the management of context
information in mobile information systems. He is currently working for
an e-business services company in Ticino, Switzerland.

Corsin Decurtins is a research assistant in the Global Information Sys-
tems research group at ETH Zurich. He received a Diploma (M.Sc.)
in Computer Science from ETH Zurich in 2002. His research focusses
on model-based approaches and infrastructure for ubiquitous and mo-
bile information environments. In addition to his Ph.D. Corsin also
works part-time as a senior software engineer at the software company
Netcetera.

Nadir Weibel is a research assistant in the Global Information Systems
research group at ETH Zurich. He received a Diploma (M.Sc.) in Com-
puter Science from ETH Zurich in 2003 and is currently working on
his Ph.D. His research is in the area of interactive paper, particularly on
the authoring and publishing infrastructure for interactive documents as
well as issues of human computer interaction and mobile environments.

Springer


