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Abstract A brief historical overview is given which
discusses the development of classical stability con-
cepts, starting in the seventeenth century and finally
leading to the concept of Lyapunov stability at the be-
ginning of the twentieth century. The aim of the pa-
per is to find out how various scientists thought about
stability and to which extent their work is related to
the stability concepts bearing their names, i.e. La-
grange, Poisson and Lyapunov stability. To this end,
excerpts of original texts are discussed in detail. Fur-
thermore, the relationship between the various works
is addressed.

Keywords History of mechanics · Stability theory ·
Torricelli’s axiom · Lyapunov · Lagrange–Dirichlet
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1 Introduction

Is the solar system stable? Under which load will a
beam buckle? Is the figure of equilibrium of a steady
rotating fluid stable? These fundamental questions
were some of the major problems that motivated scien-
tists such as Euler, Lagrange, Poincaré and Lyapunov
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to think about the concept of stability of motion. The
origin of stability theory must clearly be sought in
mechanics. The interest in the stability of motion is
today greater than ever and is no longer confined to
mechanics. Stability issues play a role in economi-
cal models, numerical algorithms, quantum mechan-
ics, nuclear physics, and control theory as fruitfully
applied in for example the fields of mechanical and
electrical engineering.

Various stability concepts exist in modern litera-
ture, e.g. Lagrange, Poisson and Lyapunov stability.
Apparently, these stability concepts bear the names of
illustrious scientists from the past. The reason why
these names are connected with these notions of sta-
bility is often far from trivial. One might be tempted
to make the possible erroneous assumption that a sta-
bility notion has been developed by the scientist after
which it is named. A historical survey on how these
stability concepts came into being therefore seems ap-
propriate.

The existing literature on the history of mechanics
has adequately discussed the life and work of leading
scientists and has studied the history of various scien-
tific problems and developments which have shaped
the scientific progress in mechanics, such as the three-
body problem, the development of the concept of force
or the invention of calculus. However, the particular
history of stability concepts has barely been addressed.
One of the few publications on this topic is the histori-
cal overview of Loriá and Panteley [32], which focuses
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on the post-Lyapunov era. The concept of stability is
used in many different scientific fields and the word
‘stability’ is not only used in the context of mechan-
ics. A complete historical survey of stability concepts
would therefore have to involve an in-depth study of
a great variety of contexts such as philosophy, the-
ology, astronomy, numerical analysis, structural me-
chanics, fluid dynamics and control theory, as well as
the circulation of ideas and techniques between these
domains. The scope of the present paper is much more
limited.

The aim of this paper is to give a short historical ac-
count of the development of the main classical stabil-
ity concepts which are used in the theory of dynamical
systems and modern control theory. A limited num-
ber of contexts have been chosen which have directly
influenced modern stability theory. Furthermore, the
scope has been limited with respect to time. One may
go back in history as far as Aristotle and Archimedes
to study the origin of stability ideas, but the Age of
Reason (the seventeenth century) has been chosen as
starting point of the historical survey. The formula-
tion of Lyapunov’s stability concept in the beginning
of the twentieth century marks the beginning of mod-
ern stability theory and has therefore been chosen as
endpoint. In particular, the aim of this paper is to find
out how various scientists thought about stability and
to which extent their work is related to the stability
concepts bearing their names. To this end, excerpts of
original texts are presented in their original form and
language, translations are given, and they are subse-
quently discussed in detail. Furthermore, the relation-
ship between the various works is addressed.

2 Torricelli’s axiom

The Aristotelian idea that weight strives to a natural
position in the centre of the world (i.e. the universe)
led in the fourteenth century to the concept of centrum
gravitas, which encompasses the idea that every body
possesses a point in which all heaviness can be thought
to be concentrated and which has the tendency to co-
incide with the centre of the world [9]. Galileo Galilei
(1564–1642) altered this Aristotelian idea by replac-
ing the centre of the world by that of the centre of the
earth. Evangelista Torricelli (1608–1647), a disciple

of Galilei, put these ideas into a more mathematical
formulation. In his work De Motu Gravium, Torricelli
postulated his axiom (reproduction from [46], p. 99):

Translation:

Two weights which are linked together cannot
start moving by themselves if their common cen-
tre of gravity does not descend.

In this axiom, Torricelli considers a system of two in-
terconnected weights being in equilibrium under the
influence of gravity. If the equilibrium is in modern
terms unstable, then a small initial disturbance leads
to a considerable movement of the system, i.e. the
weights of the system can ‘start moving by them-
selves’. If, however, the equilibrium is stable, then
a small disturbance does not lead to a considerable
movement. Torricelli simply uses the words ‘start
moving by themselves’ without speaking of an initial
disturbance from an equilibrium. A modern interpre-
tation of Torricelli’s axiom is that a mechanical sys-
tem of interconnected rigid bodies subjected to gravity
with sufficient kinematical constraints and remaining
degrees of freedom attains a static equilibrium in such
a configuration that the centre of gravity of the system
takes the lowest possible position (at least locally).
This is necessarily a stable equilibrium, because one
has to lift the centre of gravity and increase the total
potential energy of the system in order to change the
configuration of the system, being the modern static
stability criterion. Hence, although Torricelli did not
use the word ‘stability’, his axiom certainly preludes a
stability concept based on the (gravitational) potential
energy.

3 Stability of floating bodies

Inspired by the work of Archimedes of Syracuse, the
Flemish and Dutch scientists Simon Stevin (1548–
1620) and Christiaan Huygens (1629–1695) stud-
ied the equilibrium of floating bodies. In his work
Byvough der weeghconst [42], Stevin wrote (following
Archimedes) that a floating body takes such a position
that its centre of gravity is on the vertical centre line



The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability 175

Fig. 1 Corollary of Stevin,
Byvough der weeghconst
(reproduction from [42],
p. 202)

of gravity of the displaced fluid. Furthermore, he gives
the following corollary, see Fig. 1:

Translation (from [7]):

It is obvious that if the body’s centre of grav-
ity is above the centre of gravity of the body of
the displaced water, it has such top-heaviness
that everything turns over (provided, however, it
be not supported) until the body’s centre line of
gravity is in the vertical centre line of gravity of
the body of displaced water, below the centre of
gravity of the body of displaced water.

Apparently, Stevin thought that a floating body is sta-
ble when the centre of gravity is below the centre of
buoyancy (‘the centre of gravity of the body of the dis-
placed water’), which is not generally true. Compared
with Stevin, the work of Huygens [17] has a more
mathematical style, but still relies upon geometrical
methods as was common in the seventeenth century.
In many theorems, such as the following one, Huygens
addresses stability problems of floating bodies (cited
from [17], Theorema 6, p. 103):

Si corpus solidum liquido supernatans ultrò in-
clinetur et alium situm acquirat; altitudo centri
gravitatis totius corporis supra centrum gravi-
tatis partis mersae, minor erit positione corporis
posteriori quam priori.

Translation:

If a solid body, floating on a liquid, inclines and
acquires another position, then the height of the
centre of gravity of the total body over the centre
of gravity of the submerged part will be smaller
in the latter position than in the former position.

The theorems of Huygens have a strong similarity with
the work of Stevin. However, the novelty in the work
of Huygens is that he explicitly compares two different
positions of the system. In the 18th century, the study
of the roll-stability of ships was carried on by Daniel
Bernoulli (1700–1782), Leonhard Euler (1707–1783)

and Pierre Bouguer (1698–1758). Daniel Bernoulli
distinguishes between stable (which he calls ‘firm’)
and unstable equilibria of floating bodies and writes
(cited from [3], Sect. 3 on p. 148):

[. . .] quo ambo aequilibrii situs ab invicem dis-
tinguuntur; minima quidem vis quaevis corpora
etiamsi in aequilibrio firmo posita aliquantillum
nutare facit, sublata autem vi corpus rursus ad
situm naturalem tendit, nisi nutatio certos quos-
dam terminos transgressa fuerit.

Translation (by F. Cerulus, private communication, to
be published in The Bernoulli Edition, vol. 6 of the
‘Werke von Daniel Bernoulli’):

[. . .] by this, both positions of equilibrium are
distinguished one from the other; indeed, a mini-
mal arbitrary force makes a body—although put
in firm equilibrium—nod a little, but when the
force has been undergone [i.e. ceases to act],
the body tends again to its natural position, un-
less the nodding would have exceeded certain
bounds.

Daniel Bernoulli speaks explicitly of the stability of
an equilibrium and considers the couple of restoring
forces when the equilibrium of the floating body is
perturbed by a small amount. Similarly to Huygens,
Bernoulli implicitly considers two different positions
of the system but their distance is small. Euler re-
fines the work of Daniel Bernoulli in his two-volume
treatise Scientia Navalis [11] and distinguishes be-
tween equilibria which are stable, unstable and indif-
ferent (cited from [11], vol. 1, Chap. 3, Proposition 19,
p. 86):

Stabilitas, qua corpus aquae innatans in situ ae-
quilibrii persuerat, aestimanda est ex momento
potentiae restituentis, si corpus dato angulo in-
finite paruo ex situ aequilibrii fuerit declinatum.

Translation:

The stability of a floating body in equilibrium
is determined by the restoring moment arising
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when the body has been displaced from equilib-
rium by an infinitesimally small angle.

Euler uses the word ‘stability’ and associates stabil-
ity with the response on an infinitely small disturbance
from the equilibrium position. The idea of infinitely
small disturbances will later play a role in the work of
Lagrange. Bouguer [6], working independently from
Euler, introduced the term ‘metacentric height’, which
became the modern expression to determine the roll-
stability of ships [38].

4 Elastic stability

The theory of elastic stability in statics began with the
work of Euler on the critical buckling load of columns.
Daniel Bernoulli suggested in a letter to Euler (dated
October 20th 1742, published as ‘Lettre XXVI’ in
[14]) that the differential equation of the elastica could
be found by minimising the integral of the square of
the curvature along the rod, being proportional to what
we now call the elastic strain energy. Euler acted on
this suggestion in his ‘Additamentum’ De curvas elas-
ticis of his work Methodus inveniendi lineas curvas
maximi minive proprietate gaudentes [10] (see also the
German translation in [30]) on the calculus of vari-
ations. After deriving the differential equation of the
elastica by minimising the elastic strain energy using
the calculus of variations, Euler proceeds to derive
the same equation by known mechanical principles,
thereby establishing the validity of the variational pro-
cedure (see the historical review in [12]). Based on the
differential equation for the elastica, Euler found a cer-
tain length which a column must attain to be bent by its
own weight or an applied weight, and concluded that
for shorter lengths it will simply be compressed, while
for greater lengths it will be bent, i.e. buckle. Although
Euler initiated the analysis of the elastic stability of the
static equilibrium, he tacitly left the notion of stability
undefined. In this context, we have to remark that sta-
bility is in essence a concept of dynamical systems as
time plays an essential role.

5 The Lagrange–Dirichlet stability theorem

The development of a stability concept in dynamics
was continued by J.L. Lagrange (1736–1813), who

formalised the axiom of Torricelli for conservative dy-
namical systems employing the concept of potential
energy. In his monumental work Méchanique Analy-
tique, Lagrange wrote (cited from [21], Part 1, Sect. 3,
No. 16, p. 38):

On vient de voir que la fonction Φ [the po-
tential energy] est un minimum ou un maxi-
mum, lorsque la position du systême est celle de
l’équilibre ; nous allons maintenant démontrer
que si cette fonction est un minimum, l’équilibre
aura de stabilité ; ensorte que le systême étant
d’abord supposé dans l’état de l’équilibre, & ve-
nant ensuite à être tant soit peu déplacé de cet
état, il tendra de lui-même à s’y remettre, en fai-
sant des oscillations infiniment petites.

Translation:

We have shown that the [potential energy] func-
tion Φ is in a minimum or maximum, when the
configuration of the system is one of equilib-
rium; we are now going to demonstrate that if
this function is in a minimum then the equilib-
rium will be stable, such that the system, being
assumed in equilibrium and displaced by a small
amount, will tend to return to it by itself while
making infinitely small oscillations.

In other words, Lagrange posed the theorem that, if
the system is conservative, a state corresponding to
zero kinetic energy and minimum potential energy is
a stable equilibrium point. Moreover, Lagrange gave
a definition of stability of an equilibrium. Clearly,
Lagrange meant that an equilibrium is stable when
neighbouring solutions remain close to the equilib-
rium, which agrees with our modern concept of sta-
bility in the sense of Lyapunov. Lagrange speaks of
infinitely small oscillations around an equilibrium be-
cause a stable equilibrium in a conservative system is
necessarily a centre. Using a Taylor series approxima-
tion of the potential energy up to second-order terms,
Lagrange proved that the equilibrium is indeed stable
when the first-order terms vanish and the second-order
terms are positive, corresponding to a minimum of the
potential energy. J.P.G. Lejeune Dirichlet (1805–1859)
added a note [27] to the theorem of Lagrange, argu-
ing that a minimum of the potential energy might also
be caused by fourth or higher-order terms in the Tay-
lor series, but a minimum of the potential energy is
sufficient to prove stability. The theorem is in liter-
ature therefore referred to as the Lagrange–Dirichlet
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stability theorem and plays an important role in elasto-
statics. An equilibrium in elasto-statics is called stable
when it corresponds to a minimum of the potential en-
ergy. Hence, the Lagrange–Dirichlet stability theorem
is used in elasto-statics as the definition of stability
(instead of a condition for stability). The reason for
this is that the notions of time, velocity and trajectory
are non-existent in statics and a definition of stability
based on those notions cannot be given.

The stability concept employed by Lagrange was
adopted in the scientific world. P.S. Laplace (1749–
1827), for instance, used a very similar notion of sta-
bility (cited from [25], Livre 3, p. 164):

Il existe deux états très-distincts d’équilibre ;
dans l’un, si l’on trouble un peu l’équilibre, tous
les corps du systême, ne font que de petites os-
cillations autour de leur position primitive, et
alors l’équilibre est ferme ou stable. Cette stabi-
lité est absolue, si elle a lieu quelles que soient
les oscillations du systême ; elle n’est que rela-
tive, si elle n’a lieu que par rapport aux oscil-
lations d’une certaine espèce. Dans l’autre état
d’équilibre, les corps s’éloignent de plus en plus
de leur position primitive, lorsqu’on vient à les
en écarter.

Translation:

There exist two very distinct states of equilib-
rium; in one, if we perturb a little the equilib-
rium, all bodies of the system only make small
oscillations around their primitive position and
the equilibrium is therefore firm or stable. This
stability is absolute if it is present whatever os-
cillations of the system may be; it is only rela-
tive, if it is present with respect to oscillations
of a certain type. In the other state of equilib-
rium, the bodies move away from their primitive
position when separated from it.

6 The stability of a rotating fluid

The problem of the figure of the earth led in the late
17th century to the question of what the possible fig-
ures of equilibrium are of a rotating fluid. A homoge-
neous mass of fluid was considered, which is rotating
around an axis through its centre of gravity, under the
influence of no forces beyond centrifugal force and the
mutual gravitational attraction of its molecules when

it is assumed that the whole fluid rotates as if it were
solid (see the historic survey [26]). It was found that
the figure is either a ‘MacLaurin ellipsoid’, which is
an ellipsoid with rotational symmetry, or a ‘Jacobi el-
lipsoid’ for which all axes are different. J. Liouville
(1809–1882) studied the stability of figures of equi-
librium by using a modified version of the Lagrange–
Dirichlet stability theorem [31]. Liouville stated that,
in the absence of dissipation, the figure of equilib-
rium is stable if it corresponds to a maximum of the
force vive, being twice the kinetic energy. A maxi-
mum of the kinetic energy corresponds to a minimum
of the potential energy if the total energy is conserved.
The work of Liouville later inspired Poincaré and Lya-
punov.

Hydrodynamic instability became a central ques-
tion in the nineteenth century. The history of stabil-
ity concepts in general fluid mechanics is beyond the
scope of this paper, but has been studied in detail in
[8].

7 The stability of the world system

Celestial mechanics has greatly influenced the termi-
nology of modern stability theory (for a good overview
of this topic see [45]). P.S. Laplace (1749–1827) stud-
ied the celestial three-body problem using a perturba-
tion analysis neglecting terms in the mass of second-
order and higher and assuming small values of eccen-
tricity [24]. He concluded that, under these assump-
tions, the variation of the semi-major axis of the orbits
is periodic with a constant amplitude, i.e. of the form
A sin(αt + β). Laplace makes the following conclu-
sion (cited from [23], p. 248–249):

Ainsi le système du monde ne fait qu’osciller au-
tour d’un état moyen dont il ne s’écarte jamais
que d’une très petite quantité. Il jouit, en vertu
de sa construction et de la loi de la pesanteur,
d’une stabilité qui ne peut être détruite que par
des causes étrangères [. . .]

Translation:

Thus the world system only makes small oscilla-
tions around an average state of which it never
deviates more than a small amount. It enjoys, by
virtue of its construction and the law of gravita-
tion, a stability which can only be destructed by
external causes [. . .]
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Hence, Laplace speaks of the stabilité du système du
monde, the stability of the world system. It should be
emphasised that Laplace’s definition of stability for
the solar system concerns a single motion with given
initial conditions, whereas most other notions of sta-
bility, such as of Lagrange presented in Sect. 5, imply
perturbations of the initial conditions.

Though Laplace is traditionally given credit for es-
tablishing the proof of the stability of the solar system,
it is only after Lagrange’s work that Laplace made
his first major contribution to the theory of the sta-
bility of the solar system. Laplace’s original contri-
bution [22] is limited and non-rigorous. It was La-
grange [20] who invented a general method which ex-
tended the result of Laplace for arbitrary eccentricities,
still neglecting terms in the mass of second-order and
higher. S.D. Poisson (1781–1840) extended the per-
turbation analysis to second as well as to third-order
terms in the mass. Poisson showed that the variation
of the semi-major axis only contains terms of the form
A sin(αt + β) if terms in the mass of second-order are
taken into account [40]. Based on this analysis, the
motion of the earth and moon with respect to the sun
therefore remains bounded and Poisson writes (cited
from [40], p. 5):

[. . .] nous avons fait voir que la stabilité du sys-
tème planétaire n’est pas altérée, lorsqu’on a
égard aux carrés des masses et à toutes les puis-
sances des excentricités et des inclinaisons.

Translation:

[. . .] we have shown that the stability of the plan-
etary system is not changed if one takes into ac-
count the square of the masses and all powers of
eccentricities and inclinations.

Similarly to Laplace, Poisson associates the bounded-
ness of the variation of the semi-major axis with the
concept of stability.

The extension of Poisson to third-order terms in
the perturbation analysis reveals in addition secular
terms of the form At sin(αt + β) in the variation of
the semi-major axis. The amplitude of these oscilla-
tory terms grows unboundedly with time. An analy-
sis strictly based on third-order terms, and neglecting
higher-order terms, therefore implies that the motion
of the planets does not remain bounded but the planets
come arbitrarily close to their original position infi-
nitely many times.

Also C.G.J. Jacobi (1804–1851) contemplates
whether the results of Laplace, Lagrange and Poisson
are the proof of the Stabilität des Weltsystems, i.e. the
stability of the world-system (cited from [18], pp. 29–
30):

In diesen und ähnlichen Betrachtungen liegt der
Kern der berühmten Untersuchungen von Lapla-
ce, Lagrange und Poisson über die Stabilität des
Weltsystems. Es existirt nämlich der Satz: Nimmt
man die Elemente einer Planetenbahn veränder-
lich an und entwickelt die grosse Axe nach der
Zeit, so tritt diese nur als Argument periodischer
Functionen ein, es kommen keine der Zeit pro-
portionale Terme vor.

Translation:

In these and similar considerations lies the
essence of the famous studies of Laplace, La-
grange and Poisson on the stability of the world
system. Namely, the statement exists: If one as-
sumes the elements of a planetary orbit to be
variable and if one expands the semi-major axis
in time, then time only appears as argument of
periodic functions, i.e. no terms proportional to
time appear.

We conclude that Jacobi, like Laplace and Poisson,
associated the word stability with periodic functions
which do not grow unboundedly. Jacobi continues
with a discussion of secular terms in the third-order
perturbation analysis of Poisson and finally remarks
that the truncation of the order in the perturbation
analysis does not allow for a conclusion about the
boundedness of the motion.

In 1887, King Oscar II of Sweden sponsored a
mathematical competition with a prize for a resolu-
tion of the question of how stable the solar system is,
a variation of the three-body problem. J.H. Poincaré
(1854–1912) won the prize, being the starting point
of his work on the stability of the solar system which
accumulated in his work Les Méthodes Nouvelles de
la Mécanique Céleste [39] (for a historical survey on
Poincaré, see [1, 15]). Poincaré states [39] that the
term ‘stability’ is used in different ways and he con-
tinues to discuss the differences between the results
of Lagrange and Poisson on the variation of the semi-
major axis. According to Poincaré, Lagrange found
that the variation of the semi-major axis is governed
by terms of the form A sin(αt + β), whereas Pois-
son found that there are in addition terms of the form
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At sin(αt + β). He comes to the conclusion (cited
from [39], vol. III, Chap. XXVI, pp. 140–141):

Le mot de stabilité n’a donc pas le même sens
pour Lagrange et pour Poisson.

Translation:

The word stability does therefore not have the
same meaning for Lagrange and for Poisson.

With respect to the solar system, Poincaré speaks of
the stability in the sense of Lagrange, with which
he means bounded behaviour of the planetary orbits,
and stability in the sense of Poisson, for which the
planets come arbitrarily close to their original posi-
tion infinitely many times. Hence, Poincaré gives the
false impression that Lagrange associates his work
on the semi-major axis with the concept of stability.
Similarly, reading Poincaré, one may falsely conclude
that Poisson’s notion of stability is related to non-
periodic terms which grow unboundedly. These two
errors have persisted in modern times and have led to
misnomers. Nowadays, the terms ‘Lagrange-stability’
and ‘Poisson-stability’, inherited from Poincaré, are
used to denote boundedness and recurrence of solu-
tions of arbitrary dynamical systems. The modern con-
cept of Lagrange stability is therefore very different
from the concept of stability as expressed by Lagrange
himself in Méchanique Analytique [21]. The work of
Poincaré on periodic orbits led to the modern concept
of Poincaré stability, which is also called orbital sta-
bility.

8 The stability of regulators

In the nineteenth century, the development of regula-
tors for steam engines and water turbines led to the
stability analysis of machines and regulators. The his-
tory of automatic control has been studied in detail in
the field of Systems and Control Theory (see for in-
stance [2, 4, 5, 19]). In this paper we will therefore
only briefly touch this subject.

J.C. Maxwell (1831–1879) analysed the stability of
Watt’s flyball governor [37] (see the historical survey
[16]). His technique was to linearise the differential
equations of motion to find the characteristic equation
of the system. He studied the effect of the system pa-
rameters on stability and showed that the system is
stable if the roots of the characteristic equation have

negative real parts. In 1877, E.J. Routh (1831–1907)
provided an algorithm for determining when a charac-
teristic equation has stable roots [41]. Around the same
time, the Russian I.A. Vyxnegradski� (1831–
1895), transliterated as I.A. Vyshnegradsky, analysed
the stability of regulators using differential equations
independently of Maxwell and studied the stability of
the Watt governor in more detail [47]. A.B. Stodola
(1859–1942) studied in 1893 the regulation of a wa-
ter turbine using the techniques of Vyshnegradsky
[43, 44]. Stodola modelled the actuator dynamics and
included the delay of the actuating mechanism in his
analysis and was the first to mention the notion of
the system time constant. Unaware of the work of
Maxwell and Routh, Stodola posed the problem of de-
termining the stability of the characteristic equation
to A. Hurwitz (1859–1919), who solved it indepen-
dently [4].

9 Lyapunov stability

Exact mathematical definitions of stability for a dy-
namical system, as well as general stability theo-
rems for nonlinear systems, were first formulated by
Russian scientists at the end of the nineteenth cen-
tury. The Russian scientist N.E. �ukovski� (1847–
1921), transliterated as N.E. Zhukovskii, introduced in
1882 a strong orbital stability concept which is based
on a reparametrisation of the time variable [48]. The
work of Zhukovskii has been almost forgotten and
has received renewed attention only recently [28]. The
stability concept of Zhukovskii agrees with Poincaré
stability when only equilibria and periodic solutions
are considered, which might explain why Zhukovskii’s
ideas fell into oblivion [28]. Moreover, the great suc-
cess of the work of Lyapunov might have overshad-
owed the contribution of Zhukovskii. In 1892, ten
years after the work of Zhukovskii, the Russian sci-
entist A.M. L�punov (1857–1918), usually translit-
erated as A.M. Lyapunov, defended his PhD thesis A
general task about the stability of motion [35]. The
work of Lyapunov became famous in Russia and later
also in the West. The PhD thesis of Lyapunov [35] was
reprinted in Russian in 1950 [36]. It was translated into
French in 1907 [29] and this translation was repro-
duced in [33]. An English translation and biography
has been published in 1992 in the centenary issue [13]
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Fig. 2 Definition of
stability according to
Lyapunov (reproduction
from [36], pp. 19–20)

in memory of Lyapunov and in [34]. Lyapunov him-
self reviewed and corrected the French version and in-
troduced some additional material [34]. The English
version [13, 34] is a translation of the French version
of 1907. In the following we will study the Russian
version of 1950 [36].

The notation of Lyapunov differs a little from the
modern notation. Lyapunov introduces n quantities Fi

which are functions of the k trajectories fj (t) of the
positions qj starting from the unperturbed initial con-
dition qj0. The quantities Qi denote these functions
for the perturbed trajectories due to perturbations εj

on the initial position and ε′
j on the initial velocity. The

definition of stability, according to Lyapunov reads in
the original Russian version [36] as, see Fig. 2:

Translation:

Let L1,L2, . . . ,Ln be given arbitrary posi-
tive numbers. If for all Ls , no matter how
small they are, one can choose positive num-
bers E1,E2, . . . ,Ek , E′

1,E
′
2, . . . ,E

′
k , such that

for all real εj , ε′
j satisfying the conditions

|εj | � Ej , |ε′
j | � E′

j (j = 1,2, . . . , k)

and all t , greater than t0, the following inequal-
ities are satisfied

|Q1 − F1| < L1, |Q2 − F2| < L2, . . . , |Qn − Fn| < Ln,

then the non-perturbed motion is stable with re-
spect to the quantities Q1,Q2, . . . ,Qn; other-
wise—unstable.

In modern terminology, an equilibrium is defined to be
Lyapunov-stable if for each ε-neighbourhood one can
find a δ-neighbourhood of initial conditions, such that
their solutions remain within the ε-neighbourhood.
Note that the quantities Li construct the ε-neighbour-
hood in the original definition of Lyapunov, while the
quantities Ej set up the δ-neighbourhood. The origi-
nal definition of Lyapunov is for a mechanical system
with k degrees of freedom and with respect to n given
functions Qi of the k positions qj . The modern def-
inition of Lyapunov stability is for arbitrary dynami-
cal systems and is no longer restricted to mechanical
systems. Furthermore, the modern definition of Lya-
punov stability is not with respect to some functions on
the state of the system, but to the state itself. Loosely
speaking, Lyapunov stability means that neighbouring
solutions remain close to the equilibrium, which is es-
sentially the same as what Lagrange understood un-
der the term stability (see the citation of Lagrange in
Sect. 5). Lyapunov proved stability using two distinct
methods. In the first method, known as Lyapunov’s
first method or Lyapunov’s indirect method, the stabil-
ity of an equilibrium is studied through linearisation.
The second method, also called the direct method of
Lyapunov, is far more general. The fundamental idea
behind the direct method of Lyapunov is the stability
theorem of Lagrange–Dirichlet, which is based on the
mechanical energy. The direct method of Lyapunov
is able to prove the stability of equilibria of nonlin-
ear differential equations using a generalised notion of
energy functions. Unfortunately, though his work was
applied and continued in Russia, the time was not ripe
in the West for his elegant theory, and it remained un-
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known there until its French translation in 1907. Its
importance was finally recognised in the 1960s with
the emergence of control theory.

10 Closure

Various excerpts of original texts on stability issues
have been studied in the previous sections and have
been put in their historical context. The above study is
very limited and fragmentary. Still, we can draw a few
tentative conclusions.

The technical term ‘stability’ in the context of me-
chanics already appeared in 1749 in the work of Euler.
The question of roll-stability of floating bodies has
been a strong motivation for the theoretical research
on stability in the seventeenth and eighteenth century.

Celestial mechanics has influenced foremost the
terminology in stability theory. The modern concepts
of Lagrange and Poisson stability are due to Poincaré
and have little to do with how Lagrange and Poisson
actually thought about stability. Hence, from a histori-
cal point of view, one might regard ‘Poisson stability’
and ‘Lagrange stability’ as misnomers.

Interestingly, the essence of the Lyapunov stabil-
ity concept, which is usually thought to be developed
at the end of the nineteenth century, can already be
found in the work of Lagrange. The idea of solutions
which remain in the neighbourhood persisted through
the ages and can also be found in for instance the work
of Laplace and Poisson. The exact mathematical defi-
nition of stability in terms of an ε–δ technique is most
probably due to the nineteenth century Russian school,
but the origin of the general idea behind this stability
concept must be sought in the eighteenth century in
western Europe.
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