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This paper presents a novel mesh-update technique for unsteady free-surface
Newtonian flows using spectral element method and relying on the arbitrary
Lagrangian—Eulerian kinematic description for moving the grid. Selected results
showing compatibility of this mesh-update technique with spectral element
method are given.
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1. INTRODUCTION

Incompressible free-surface flows are encountered in a wide range of engi-
neering and environmental flows. In the nineties the more specific case
of turbulent free-surface flows started to be investigated with numeri-
cal computation based on high-order methods [8,9]. In our work, we
aim at computing large-eddy simulation (LES) of unsteady, incompress-
ible and Newtonian turbulent free-surface flows by using the spectral ele-
ment method (SEM) [13,14]. The choice of interface-tracking technique
was made to ensure an accurate description of the free surface.

This paper highlights the computational techniques we are develop-
ing for simulating incompressible free-surface flows using the SEM. These
techniques include the arbitrary Lagrangian—Eulerian (ALE) formulation
[2,7,15], mesh update and re-meshing methods [6, 10].

This paper is organized as follows. The governing equations in the
ALE framework for general free-surface flows are introduced in Sec. 2.
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Then, we present the discretization methods and numerical technique in
Sec. 3. Sections 4 and 5 are dedicated to the moving-grid technique and
the mesh-transfer operation, respectively.

2. GOVERNING EQUATIONS

A moving boundary-fitted grid technique has been chosen to simu-
late the free surface in our computations. This choice of a surface-tracking
technique is primarily based on accuracy requirements. With this group of
techniques, the grid is configured to conform to the shape of the interface,
and thus adapts continually (at each time step) to it and therefore provides
an accurate description of the free surface to express the related kinematic
and dynamic boundary conditions.

The free-surface incompressible Newtonian flows that we have
considered are governed by the Navier-Stokes equations comprising the
momentum equation and the divergence-free condition. In the arbitrary
Lagrangian—Eulerian (ALE) formulation, a mixed kinematic description
is employed: Lagrangian description of the free surface Q2 (¢), Eulerian
description of the fixed domain boundaries dQ2p and mixed description
of the internal fluid domain (r), subset of R¢ with d =2,3 the space
dimension, ¢ referring to the time as the fluid domain is changing when
its boundaries are moving. Let us denote by Q¢ a reference configuration
(for instance the domain configuration at initial time ¢ =1fy). The system
evolution is studied in the time interval I =[ty, T]. The position of a point
in the current fluid domain Q(¢) is denoted by x (Eulerian coordinate) and
in the reference frame Qg by Y (ALE coordinate). Let A; be a family of
mappings, which at each r €l associates a point Y € Q¢ to a point x € Q;:

A Qo CcRY > Q, cRY, x(Y, 1) = A (Y). (1)

A; is assumed to be continuous and invertible on Q, and differentiable
almost everywhere in /. The inverse of the mapping A, is also continuous
on (. With these notations the set of equation reads:

3
a—: F (V=W Vv = —Vyp+20Vs - Dy +f  in Q) 2)
Y

Vx-v=0 in Q(), 3)

with v(x, t) the velocity field, p(x,t) the pressure field (normalized by the
constant density p), Dx(v) = %(va—i—vaT) the rate-of-deformation tensor,
v the kinematic viscosity of the fluid and f the body force. The ALE mesh
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velocity w(x,t) appearing in (2) is defined as

d
wXx,H)=—| = ﬁ
y Ot

o “4)

Y
Surface tension effects are assumed to be negligible as we deal with
turbulent flows. The associated boundary conditions are:

— the kinematic boundary condition on dQF(¢):
V-n=w-n, (%)

n being the local outward unit normal to the free surface;
— the dynamic boundary condition on 9Qg(z):

—pn+2vDx(v) -n=0, (6)

assuming an inviscid air and zero ambient pressure;
— homogeneous Dirichlet boundary condition on dQ2p:

v=w=0. (7)

In addition to the set of governing equations (2)—(7), the closure of this
free-surface problem based on a moving-grid formulation requires one
more equation governing the evolution of the mesh velocity w in the inter-
nal fluid domain Q(z). The boundary values of w being prescribed by the
equations (5) and (7) on the boundary 02z (t) UdQ2p of the fluid domain.
This last governing equation for w will be presented in detail in Sec. 4.

As our focus is on transient problems, proper initial conditions at
time =ty for the fluid velocity v and for the mesh velocity w have to be
provided. The initial fluid velocity must satisfy the divergence-free condi-
tion and the values of the initial mesh velocity have to be given together
with the initial shape of the free surface.

Based on the strong formulation of this free-surface problem given
above, one can derive the more appropriate weak transient ALE formula-
tion:

Find (v(t), p(1)) € HO{ Q)Y x LA(Q(t)) such that for almost every
1210

4 (oA ) - vdQ +/

(o A1) - Vy[vy — yw]dQ
dr Jaq Q)

:/ (pVx- (@0 A7) = 20Dy (o A7 1)) 1 Vyiv) dQ
Q(1)

+/ f-(ho A1) dQ Viie Hi 5 (Q0)7, ®)
Q1) '



140 Bouffanais and Deville

and
—f gVx-vdQ=0  Vge L*(Q)). )
Q1)

with the functional space Hc}, p(S2(2)) defined by

Hy (1) ={ve L*(Q(1)), VxveL* Q)" Vg, =0}

It is worth noting that the weak formulation (8)—(9) is only valid in our
particular case where homogeneous natural and essential boundary condi-
tions, respectively (6) and (7) are applied to the system.

3. NUMERICAL TECHNIQUE AND DISCRETIZATION

A classical Galerkin approximation is applied to the set of govern-
ing equations in its weak transient ALE form (8)-(9) on the flow domain
Q(r), in order to determine the pressure and the fluid velocity, keep-
ing in mind that the mesh velocity is obtained by the moving-grid tech-
nique developed in the next section. The Galerkin approximation is then
discretized by using the spectral element method with the classical stag-
gered Py — Py_, approach to avoid the development of spurious pres-
sure modes. Discontinuous and continuous approximations are respectively
taken for the pressure and fluid velocity. The mesh velocity is discretized
using the same polynomial space as the fluid velocity, namely Py, based
on a Gauss-Lobatto-Legendre (GLL) grid of order N. For the discontin-
uous approximation of the pressure, a Gauss—Legendre (GL) grid of order
N —2 is used. Consequently the ALE Navier—Stokes semi-discrete equa-
tions can be derived from (8)—(9):

€ My +Clv wy = Ky +D7 p+F. (10)
_Dy=0, (11)

M denoting the mass matrix, K the direct stiffness matrix, D7 the discrete
gradient operator, D the discrete divergence operator, C(v, w) the discrete
convective operator depending both on the fluid and mesh velocities and
F the discrete body force. The update of the position x of the mesh points
is performed by integrating the following discrete equation:

dx

=Y (12)
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The set of semi-discrete equations (10)—(12) is discretized in time
using a decoupled approach: the linear Stokes computation (linear viscous
diffusive term) is integrated based on an implicit backward differentiation
formula of order 2, the nonlinear convective term is integrated based on
a simple method used by Karniadakis et al. [11], consisting in an explicit
extrapolation of order 2. Finally the update of the position of mesh points
is based on an explicit and conditionally stable Adams—Bashforth of order
3 (AB3).

Lastly the treatment of the pressure relies on a generalized block LU
decomposition, using a standard fractional-step method with pressure cor-
rection.

4. MOVING-GRID TECHNIQUE

As already mentioned in the previous sections, our free-surface flow
computations are of interface-tracking type and rely on a moving-grid
technique, allowing large amplitude motions of the free surface, generating
a grid conforming to the shape of the free surface for an accurate and easy
application of the boundary conditions on Qg (). Moreover a descrip-
tion as accurate as possible of the turbulent free-surface boundary layer
is essential to our work. These points justify by themselves the choice of a
moving-grid technique that increases the difficulty of the marginally intrac-
table problem of turbulent viscous flow computations.

The computation of the mesh velocity w in the internal fluid domain
Q(t) is the corner-stone of the moving-grid technique developed in the
framework of the ALE formulation. The values of the mesh velocity being
prescribed on the boundary 9Q2(z) =9Qp(r) UdQ2p as expressed by equa-
tions (5) and (7), the evaluation of w in Q(¢) can be obtained as the solu-
tion of an elliptic equation:

Exw=0 in Q). (13)

This elliptic equation constitutes a classical choice for calculating the mesh
velocity [8]. In the present case it is desirable to impose an additional con-
straint to the mesh velocity problem, in order to ensure the incompressibil-
ity of the mesh by imposing a divergence-free condition to w:

Vx-w=0 in Q(1). (14)
Our choice for the elliptic operator & is based on the assumption that

the motion of the mesh nodes is equivalent to a steady Stokes flow, corre-
sponding physically to an incompressible and elastic motion of the mesh.
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The boundary-value steady Stokes problem for the mesh velocity can be
formulated as follows:

w-n=v-n on 0Q2r (1), (15)
w-t=0 on dQr(1), (16)
w=0 on dQp, (17)

where 7 is the local unit vector directly orthogonal to n, and
Vx-6=0 in Q(@), (18)
Vi-w=0 in Q(z), (19)
denoting by ¢ the Cauchy stress tensor of the mesh defined by:
& = —pl+5(Vxw+ Vew!) (20)

with p and ¥ being respectively the fictitious mesh pressure and the ficti-
tious kinematic viscosity of the mesh, characterizing the elasticity of the
mesh in its motion.

The choice of this boundary-value problem for the mesh velocity has
several justifications. Constraining the elliptic equation by a divergence-
free condition for w allows to ensure the conservation of the volume of
the spectral elements, condition that is helpful in practice to have rapidly
convergent computations [1]. In general the global volume of the compu-
tational domain may not be conserved, e.g. with an inflow-outflow imbal-
ance, which requires (17) to be relaxed. In addition, the mesh velocity w
appears in the convective part of Egs. (2), (8) and (10), together with the
divergence-free fluid velocity v. Moreover it is worth remembering that the
divergence-free condition imposed to w leads to a conservation of the met-
rics (the Jacobian being constant in time) when moving the mesh. Finally
the unavoidable issue of fulfilling the geometric conservation law (GCL)
in the ALE framework [3-5] is automatically solved when considering a
divergence-free mesh velocity as a consequence of the work of Formaggia
and Nobile in [5].

From a numerical point of view, the problem corresponding to the
set of Egs. (15)-(19) is discretized using the SEM, with a staggered grid
Py —Py_» for the couple mesh (w, p). An Uzawa decoupling technique
is employed for the treatment of the fictitious pressure.

Based on the technique described earlier, we have developed the fol-
lowing moving-grid algorithm:



Mesh Update Techniques 143

1. Input data: mesh M" at t =1,, with nodal coordinates x", fluid
velocity v* on 9., mesh velocity w" in Q" UJQ";

2. Step I: steady Stokes computation of w*t! by Eqs. (15)—(19);

3. Step 2: update of the nodal coordinates Eq. (12); spectral element
vertices are moved according to the AB3 scheme:

At
X —x 4 Ty 23w~ 16w" ! 4 5w"2); 1)

4. Creation of the new mesh M"t! with the new Gauss—Lobatto and
Gauss-Lobatto-Legendre grids for each new spectral element;

5. Output data: mesh M"*+! at time-step # =1,,1, with nodes coordi-
nates X", mesh velocity w'*! in Q"tluaQrt!.

Two performance tests have been carried out on a study case where one
edge of a squared mesh is deformed by a sine profile. Both of these tests
aimed at verifying the spectral element volume conservation that is theo-
retically imposed by the divergence-free condition on w. The first test is
dedicated to the verification of the global volume conservation, by com-
puting the relative change of the volume of the computational domain
when moving the grid from the initial square to the deformed one. For
several number of spectral elements and for a polynomial interpolation
order ranging from 1 up to 12, the relative change of the volume of
the computational domain is found to be smaller than the machine pre-
cision. The second test is also devoted to the volume conservation but
now from a local perspective and by numerically computing the L2(2)-
and L2(w)-norm of the divergence of the mesh velocity w for a polyno-
mial interpolation order N ranging from 5 up to 12, where w is interior
of the computational domain made of the spectral of elements of Q2 not
sharing an edge with 9Q2. Results are presented on Fig. 1 and it is found
that these norms are exponentially decreasing with N as expected when
using a spectral element method [1]. Moreover we can note that the L2(w)-
norm of V-w has a faster rate of convergence than the L?()-norm. This
is justified by the fact that the divergence-free constraint cannot easily be
enforced at the grid points located in the vicinity of the boundaries of the
computational domain .

5. MESH-TRANSFER OPERATION

In the previous section was presented the moving-grid technique used in
our work to move the grid points at each time-step, generating a new mesh.
Depending on the amplitude of the mesh deformation at each time-step,
this technique can be applied during an important number of iterations.
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Fig. 1. L%-norms of the divergence of the mesh velocity w versus polynomial interpolation
order N (Log scale).

Nevertheless the mesh obtained by moving the grid nodes can be too convo-
luted therefore affecting the accuracy and the convergence of the simulation.
Consequently a re-meshing operation is to be called by a specific control
parameter (e.g. a discrete Jacobian positiveness criterion) to provide a new
mesh topology. Before starting the ALE Navier—Stokes computation at the
next time-step on this newly created mesh, it is mandatory to transfer some
information from the previous mesh to the new one. The main requirement
imposed to this so-called mesh-transfer operation is to conserve the spectral
accuracy of the SEM. The information to be transferred comprises six fields:
the fluid velocities v, v"~! and the mesh velocities w”, w"*~1, w"=2 (time-
integration schemes are of order 2 for v and 3 for w) and also the pressure
at the current time-step (use of a pressure correction technique). As writ-
ten in Sec. 3, the velocities are expanded over a GLL grid and the pressure
over a GL one. Therefore our mesh-transfer technique must be capable of
transferring fields defined over GL and GLL grids.

Our mesh-transfer algorithm for GL grids being based on the one for
GLL grids, we will start presenting in detail the latter. Let us consider two
meshes M! and M? corresponding to different mesh topology of the same
computational domain and the mesh-transfer operation from M! to M?2.
In the sequel we will assume that we have the following decompositions in
terms of spectral elements:

E;
QuaQ; = Jo  fori=12. (22)

e=1
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As the computational domain remains unchanged, for each spectral
element Q%¢ of M? we have:

Q2 C(QU0Q)) Ve=1,...,E. (23)

Due to Eq. (23) our mesh-transfer technique only requires an interpola-
tion procedure. Let us note the physical location of the set of GLL grid
points of a spectral element Q% (ex=1,..., E;) by {xizj?ez} with (i =
l,....Nxp+1;j=1,... ,Nyr+1), Ny » (resp. Ny») being the order of
the polynomial interpolation in the x-direction (resp. y-direction) for the
mesh M? (with the same notations, Ny and N, can be different from
Ny.1 and Ny respectively). The proposed algorithm can be summarized
in three steps:

Find the spectral element Q¢ of M! containing xizjfez;

2

2. Determine the position !¢ of xiz]?f within the parent element

le'el of Qler;

3. Compute the value of the field at the point xl.zfe2 given rle1, the
GLL Lagrangian interpolation basis and the values of the field at
the GLL grid points of Q1.

The first step causes no difficulty in its implementation. The second step
uses a transfinite interpolation procedure in each spectral element, in order
to invert the iso-parametric mapping ®:

e . o Al
rher=glea shay =@ 1(x>) with i eQ ' =[-1, 12 (24)

In practice, the inversion is carried out differently depending on the topol-
ogy of the spectral element. With quadrangular spectral elements, our
algorithm performs a direct analytical inversion of the affine mapping ®
which is computationally inexpensive. With deformed spectral elements [1],
the inversion of ® relies on the so-called ‘inverse iso-parametric mapping
technique’ from Lee and Bathe [12] which is based on a Newton—-Raphson
type iterative procedure.

Finally in the last step, efficient routines compute the following spec-
tral interpolation:

Nl,x Nl,y

u(@ ') =ut s =3 Y uy m e mst), (29

k=0 1=0

with {r; (S)};vi ’01 and p=x, y, the one-dimensional GLL Lagrangian inter-
polation basis of degree N, 1. As said earlier the mesh-transfer technique
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for GL grids relies on the one for the GLL grids. In our simulations,
the only GL-interpolated field that has to be mesh-transferred is the
pressure field. Therefore, by interpolating the pressure on the GLL grid,
then by applying the GLL mesh-transfer operation introduced earlier and
finally by interpolating back on the GL grid, we manage to perform
the requested operation. It is important to minimize the occurrence of a
re-meshing as our mesh-transfer technique is computationally expensive
even for quadrangular elements (affine iso-parametric mapping). A more
detailed assessment of the performance of this technique is provided at the
end of this section.

This mesh-transfer operation has been extensively tested in order to
ensure its compatibility with the SEM, regarding its exponential rate of
convergence. Tests involving the following two key parameters have been
carried out: the polynomial interpolation order N and the amplitude of
the change in topology of the grid when re-meshing.

The set-up is presented in Fig. 2 and is made of a mesh comprising
four spectral elements. The change in topology of the mesh is prescribed
by moving only the vertex w (see Fig. 2) common to all four spectral ele-
ments and afterwards the mesh-transfer operation is performed.

To evaluate the dependence of our technique with the interpolation
order N, the central vertex is moved to produce a topological change
in the mesh by a factor of approximately 10%. An analytical field f is
calculated on the initial mesh and mesh-transferred onto the distorted

C

wteM? Q=Q%tuQuQtiunt

w?e M? 0=0>"uQ>?2 U unNt

A B

Fig. 2. Sketch of the computational domain , the two meshes M! and M2 and their
spectral element decompositions before and after a prescribed re-meshing operation obtained
by moving the central vertex w.
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mesh, leading to the interpolated field f. The interpolation error is defined
by e=|f— fll 2 and computed values are presented in Table I, show-
ing a conservation of the exponential rate of convergence.

Table I. Evolution of the Error ¢ with the Spectral
Interpolation Order N

N o e=If-Flae N oe=If-Fleg
3 7.232e-03 12 4.400e-12
4 1.487e-03 13 9.850e-14
5 1.367e-04 14 1.252e-14
6 2.307e-05 15 3.602e-15
7 1.457e-06 16 3.354e-15
8 2.067e-07 17 1.843e-15
9 8.382e-09 18 1.585e-15
10 1.172e-09 19 1.105e-15
11 3.383e-11 20 1.151e-15

To characterize the effect of the distortion of the mesh on our mesh-
transfer operation, all possible positions of the moving vertex within the
computational domain € were envisaged. In particular, we present here
the case where w is moved along the diagonal AC of the computational
domain @ as shown in Fig. 2. Its motion is characterized by the set of
coordinates («, 8) of w in the parent domain Q =[—1, 1]%. The interpola-
tion error & was again computed for three values of N and results appear-
ing in Table II, show that our technique is totally independent on the
amplitude of topological change of the mesh due to the re-meshing oper-
ation.

Lastly, the computational expense of the mesh-transfer has been eval-
uated for a polynomial degree N =10 in both directions (192 grid points
for this 2D grid), and as previously for a topological change in the mesh
by a factor of approximately 10%, corresponding to a “small” 2D case.
The results confirm the afore-mentioned cost: a complete mesh-transfer
corresponds to approximately 100 Navier—Stokes solves depending on the
value of the time-step.

6. CONCLUSION AND FUTURE STUDIES

A novel isochoric moving-grid technique and mesh-transfer technique
for spectral element grids have been presented. Both of these techniques
are the corner-stones of our computations of turbulent free-surface flows
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Table II. Evolution of the Error & when « Moves
Along the Diagonal AC for Three Different Values of N

e=1>= g

a=p N=8 N=10 N=12
-0.9 2.100e-07 1.005e-09 3.849e-12
-0.8 2.267e-07 1.111e-09 4.448e-12
-0.7 2.000e-07 1.006e-09 3.906e-12
-0.6 1.928e-07 1.106e-09 4.073e-12
-0.5 2.289e-07 1.033e-09 3.786e-12
-0.4 1.847e-07 1.053e-09 4.199e-12
-0.3  2.326e-07 1.160e-09 4.166e-12
-0.2 2.231e-07 1.204e-09 4.332e-12
-0.1 2.067e-07 1.172e-09 4.400e-12
0.0 4.563e-16 1.199e-15 7.886e-16
0.1  2.067e-07 1.172e-09 4.400e-12
0.2 2.231e-07 1.204e-09 4.332e-12
0.3 2.326e-07 1.160e-09 4.166e-12
0.4 1.847e-07 1.053e-09 4.199%e-12
0.5  2.289e-07 1.033e-09 3.786e-12
0.6 1.928e-07 1.106e-09 4.073e-12
0.7  2.000e-07 1.006e-09 3.906e-12
0.8 2.267e-07 1.111e-09 4.448e-12
0.9  2.100e-07 1.005e-09 3.849e-12

using spectral element method. Part of the work was to ensure that these
two techniques have no effect on the exponential rate of convergence,
the main reason of our choice of the spectral element method. We have
obtained positive results all along the extensive series of tests carried out
to verify the behaviour of this rate of convergence. The development of an
automatized re-meshing scheme coupled to a re-meshing control parame-
ter is still under investigation.

Our next goal is to simulate three-dimensional turbulent free-surface
flows using the techniques presented in this paper with the difficult task
of gaining a better insight into the physics involved in the thin turbulent
boundary layer near the free surface.
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