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ON THE QUANTUM L-OPERATOR FOR THE TWO-DIMENSIONAL LATTICE TODA
MODEL

A. G. Bytsko* and I. Yu. Davydenkova' UDC 5179

We consider the two dimensional quantum lattice Toda model for affine and simple Lie algebras of type A For
its known L operator, the second order correction in lattice parameter € 4s found It is proved that the equation
determining the third order correction in € has no solutions Bibliography: 9 titles

1 INTRODUCTION

1.1. Continuous classical model. The (1+1) dimensional Toda chain associated with the affine Lie algebra

As\l,)_l is a model which describes the relativistic dynamics of IV scalar fields, ¢,, a =1, , N, assigned to nodes
of the corresponding Dynkin diagram Their equations of motion are
0? 0? 2m? ,
— — B(Patr1—0a) _ ,28(da—da-1) 1
<6t2 6.’1}'2) (ba ﬂ (6 € ) ( )

Here and below, the index which enumerates nodes of the affine Dynkin diagram takes values in Z/N In
particular, ¢n1+, = ¢, Equations of motion (1) are generated by the following Hamiltonian and Poisson
structure:

N .
1 1 2,
H=> /daz<2wg + 2(395%)2 + ’; ezﬂwaﬂm)) : 2)
a=1

{Wa(x)a (o78 (y)} = Oab 6(37 - y) (3)
The model under consideration is integrable It admits a zero curvature representation with the following
U V pair [1,2]:

N N
U()\) = Z BTq€aq + M Z &P (Pat1—6a) (X% Neqat1 + A Y Nea-i-l,a), (4)
a=1 a=1
N N
V(A) = Z B az¢a €qq T M Z eﬂ(¢a+1_¢a) (XSa Nea,a-i-l - )\_5a Nea-‘rl,a): (5)
a=1 a=1

where the eqp are the basis matrices such that (eqp)ij = dqi0p;
The matrix U satisfies the following relation (the so called fundamental Poisson bracket, see [3]):

@0} = ()00 + 2] (6)

where 7(\) is the classical trigonometric r matrix for the algebra Ay_1, see [3 5] Here and below, lower indices
denote the tensor component, eg , U =U &I

1.2. Quantum lattice model. It is known that direct quantization of a continuous interacting field theory
has problems with ultraviolet divergences A possible roundabout is to consider a discrete regularization of the
model by putting it on a one dimensional lattice with step A For the lattice model, quantum canonical variables
that sit at different sites commute, and those that sit at the same site satisfy the following relations:

[Ta, Pp] = —i B dap (7)
The classical continuous limit of these relations recovers the Poisson structure (3) if one assumes that
7™ = Am,(z), oW =¢,(x), ==nA, (8)

where n is the lattice site number (it will be omitted in the subsequent formulas)
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Given an integrable classical continuous model, its quantum lattice analog is integrable as well if there exists
a quantum L operator (see, e g, [6]) such that:

(i) its classical continuous limit recovers the corresponding matrix U:

L(/\)‘ =1+ AUQ) +o0(A); 9)

h=0

(ii) it satisfies the following quadratic commutation relation which is a lattice analog of the fundamental
Poisson bracket (6):

R() i) La() = Lo L) B (10)
() ()

The quantum R matrix must satisfy the Yang Baxter relation,

Ry (A Ri3(A) Ryz(p) = Ras(p) Rus(A) Raz A ; (11)
1 1

and its classical limit must recover the classical r matrix
For the Ag\lf)_l Toda model, the quantum R matrix has the following form [4, 5]:

N N
RO =D (A =g %) eaa @ew+ (=77 ") DA eqy @ epa, (12)
a,b=1 a#b

where ¢ = e’ﬂzﬁ, Oy =0 fora <b,and 0,y =1fora > b

2 LATTICE QUANTUM L OPERATOR

2.1. First order. We use the following notation:

II = diag(m, ,7n), ¢ = diag(é1, ,9n),
€q = o Nea,cH-l , f/l; =A% Nea+17a )

R N R N
E:Zé\aa F:Zf/;
a=1 a=1

In the seminal paper [5], M Jimbo has found an approximate quantum L operator for the Ag\lf)_l Toda model
Namely, he showed that the following L operator:

N N
LJ(}\) — egl'[ (H_i_a(e—ﬂadcpﬁ_i_ eBa(Lpﬁ)) egn — Zeaaeﬂﬂ'a +5€§H (Z eB(¢a+1_¢a) (é\a + j/';)) egH (13)

a=1 a=1
satisfies the RLL relations (10) in zero and first orders in ¢
It is easy to see that (13) satisfies condition (9) if we set
e =mA (14)

and take into account the “renormalization” of momenta (8) in the continuous limit

Note that, though the L operator (13) is approximate, the corresponding R matrix (12) contains no small
parameter ¢ and is an exact solution to (11) In order to treat the quantum Toda model by means of the quantum
inverse scattering method (see [6]), one needs an exact quantum L operator that solves relation (10) in all orders
in ¢ In the present paper, we consider the second and third order corrections to the L operator (13)

2.2. Second order. Consider an L operator L(A,¢) that admits a series expansion in parameter ¢,

L(xe) =) e"LM()) (15)

n>0



Expanding relation (10) in &, we obtain an infinite set of relations for L(™)(\) Their closed forms corresponding
to orders e, n = 0,1, 2,3, are as follows:

A\ 70 ©(,y_ 10 0) A
R(H)Ll N O () = 2O () L “’R<u>’ (16)
AN ) (0) (0) (1) _ () (0) (0) (1) A
R(u) (L) L0 () + O LD () = (L5 () LOO) + L0 () L W)R(u)’ a7)
! (2) (20 L8 (o) + 17 O 287 () + L1V ) 17 ()
= (L2 ZOW) + L0 L () + L () LU W) R (2) , 18)
and
R (2) (LP N LY () + L) LY () + L V) L (1) + L (A LY ()
= (L) LOO) + L) L) + L2 () LO ) + LY () LP () R (2) 19)
We take

LOMN) =€ and LM()) = g2l (p+ e Prde 4y eﬁad‘Pﬁ) g2l (20)
Notice that we have slightly generalized the first order L operator (13) by introducing arbitrary coefficients p4
and p_ In order to comply with the classical limit condition (9), we have to assume that p;, p— — lash — 0
The problem which we want to solve is the following First, given L(®()\) and LM ()) as in (20), find the
most general solution L(?)(\) to Eqs (18) Then we check whether Eq (19) has a solution L(®)()) for some
suitable L) ())
The main result of the present paper is the following statement

Proposition 1. Let R(\) be given by (12), and let L(®()\) and LM () be given by (20) Then
(i) the general solution to Eq (18) is given by

TASIOVEDARICVEARICY (21)
Here LW (X) is an arbitrary solution to Eq (17), and L™ ()\) has the form
L) =21 (71 e Prde 2 4 oy efede B2 4 o (e7Fede ) (eP2de F) (eﬁmﬁ)(e—ﬁad@@)) 2™, (22)
where the coefficients v; must satisfy the following conditions:
for N=2: y3+y1=pip-; (23)
qp% p

or N > 3: = , = )
f - n 1+¢ 1+4+g¢

(i) for any choice of LY(X) in (21), Eq (19) has no solution for L® ()\)

Vo and y3+y4 = pyp; (24)

A proof is given in Appendix A

Formula (21) reflects the fact that the general solution to an inhomogeneous equation is the sum of its particular
solution and the general solution of the corresponding homogeneous equation Let us note that Lo (M) does not
necessarily satisfy condition (9)

The explicit expression for (22) involving the basis matrices is as follows:

N
L(Z)()\) _ Z egﬂ'a (,}/3 623(¢a+1*¢a) + 74 ezﬁ(ﬁf’a*(ﬁa—l))eg”ﬂ €aa
a=1
N ;
+v Z e2Ta—1B(0at1—=da—1) s Tat1 Ca—1.a+1 Aa1t+da N (25)

a=1

N
s _ 8
+ 7y E e2Tat1pB(Pat1—da—1) s a1 €atla 1 Aa1t+da v

a=1
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For N = 2, Eq (25) contains only diagonal terms In this case, choosing p; = p— =1, 71 = 72 = 0, and
v3 =1 (or y3 = 0), we obtain an exact L operator,

L(x e2m (1 4e%2(@2—00)esm  geam (ef(02-61) 4 \~LeB0102))e5ms 26
(V) = cebm (eB(#2=01) 4 )\eﬁ(m—m))e‘;m eam (1+ 52623(¢r¢2))€§n2 ’ (26)
where § = (ys—v4)8 The L operator (26) satisfies relation (10) in all orders in ¢ Upon the reduction ¢y = —¢y,
my = —71, BEq (26) yields the well known exact L operator for the sinh Gordon model [6,7]

3 REDUCTION TO NONAFFINE CASE

The (141) dimensional Toda chain associated with the simple Lie algebra An_; describes the relativistic
dynamics of N scalar fields whose equations of motion are given by the same Eq (1), where no periodicity in
index a is assumed In this case, one can formally set S = —Bdn41 = 400 in (1) and (2) The same procedure
applied to (4) (5) yields a U V pair without a spectral parameter

In order to keep the spectral parameter in the U V pair, the following procedure was suggested in [8] (in the
case corresponding to A;; a generalization was considered in [9]) Take & > 0 and shift (the zero modes of) the
fields, mass, and spectral parameter in (4) (5) as follows:

bo — da+al/B, m—etm, \—eNA (27)
Then the limit as & — 400 yields the following U V pair:
U\ = BII + m(e—ﬂad<p}_77 + eﬁadq>F) and V()\) = 0,® + m(e—ﬁadq>§ _ eﬁadq>F), (28)
where
N N N-1  N-1
E = Z/e\a = Z/\J“ Negarr and F = Z fo= Z €at1,a (29)
a=1 a=1 a=1 a=1

The U matrix in (28) satisfies the same fundamental Poisson bracket (6) with the same classical r matrix as
in the affine case
In the nonaffine case, we have the following counterpart of Proposition 1

Proposition 2. Let R(\) be given by (12) Then:
(i) Equations (16) and (17) admit the following solutions:

LOMN) =€ and LW\ = el (p+ e P f 4 efade ) g2l ; (30)
(ii) given LIO(X) and L(N) as in Eq (30), the general solution to Eq (18) has the form
L) =L@ + LM (31)
Here LW (X) is an arbitrary solution to Eq (17), and L™ (X\) has the form
LE(N) = 11 (qy e78ds 2 4 oo 2 4 g (e Fodo B) (5o ) 4y (eP2de ) (e Po B) )BT, (32)
where the coefficients v; must satisfy conditions (23) and (24);
(iii) for any choice of LY (X) in (31), Eq (19) has no solution for L(® ()

A proof is given in the Appendix
For N =2, Eq (32) contains only diagonal terms Furthermore, F? = 0 In this case, choosing p; = p_ =1,
v =0, and y3 =1 (or 73 = 0), we obtain an exact L operator,

esm (1—!—62623("’2*"’1))63”1 e meB(B2=01) 5 m

L(\) = ( gea™ (f(02-01) 4 \B(@1=02))eBm  ghma (1 4 2e2B(61-02)) 5 ) ’ (33)

where 8 = (75 —74)8 The L operator (33) satisfies relation (10) in all orders in £ Upon the reduction ¢, = — ¢y,
me = —m1, Eq (33) yields the exact L operator for the Liouville model [8]
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APPENDIX A
A.1. Proof of Proposition 1. Second order We use the following notation:
H, =e€40 — €at1,0+1, Ko = qéH", and  aq(X) = tr(H,X),

where a = 1, ,N and eny1,nv+1 =e1r Then
K.éy =2 &K, and K. fy =q 24 fI,, (34)

where A is the Cartan matrix of the affine algebra As\l,)_l
In the first step, following [5], we rewrite L()(\) and L*)(\) by moving €51 to the extreme right:

N
LOM) =Y e hoal® <p+e§aa(H)Kaga n pie—gaa(H)Kafa)eﬂH (35)
a=1
and
N
o0 =% (71 e Baa(@)+aut (®)e ] (caD+aani (D) | K, 1808, (36)
a=1

+qp e Plea®tann(®) o= a@tacnI f o foy Fo + e 200 @ K2 (138, fu + 4 J?aga»eﬂn

Next, we substitute (35) (36) into (17) (18) and move all the factors containing e’ to the right using the
relations

Pl e=Bau(®) — o=Bau(®) (2 @ T) Pl and  ePllee—00a(®) = o—Baa(®) (] g K2) ¢Plla

Finally, matching coefficients at functionally independent exponentials of quantum fields, we obtain a set of
relations Here one should take into account that R(\) commutes with (e4, ® T+ I ® e44); hence,

[R(A)aKa ® Ka] =0 and [R()\),eﬁnleﬂnz] -0

+5a,(M)

The relations which arise as matching conditions for coefficients in (17) at the fields e—#%=(®)e are as

follows:
A , A
R Azy) = A'(z) R , a=1, [N, (37)
7 7
where z, = €,, fa, respectively,
Alzy) =2, 9K, '+ K, @24, and A'(z,) =2, 0 K, + K, ' ®z, (38)

Here and below, zy ® I depends on A while I ® z depends on p

In [5], Jimbo has shown that the solution to Eqs (37) is unique up to an overall scalar factor and that this
solution is given by the R matrix (12)

Now, treating Eq (18) similarly and matching coefficients at the fields

e B@a(@)+as(9) o (mraa(ID+rzan(l) o — 4
we get the relations
A A
R(H) Xfare — (X;,;“z)’R(u> , ab=1 N, (39)

where the prime at the right hand side denotes permutation of tensor factors (similar to that in (38)) Obviously,
Xre = X% We have the relations

Xt =e, Ky K;'ey+ (1 — b)) &K, ® K, '€, for a—b# +1mod N,
X;Cj+1 = '71 (é\a/e\aJrl ® K;1K;+11 + KaKaJrl ® /e\a/e\a+1) + Pi (/e\aKa+1 ® Ka_l/e\aJrl + é\a+1Ka ® K;Jil/e\a) 9
X = [y © K fy+ (1= 00p) folKu © K; ' fa for a—b#+1mod N,
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and
Xi7 = 0w (s @fe @ K2+ K202 fo) + i (fua © K2 + K2 @ [u20)) (44)
+pip- Ky @ K o + 1Ko © K; '€,)

Let us note that Eqs (34) and (38) are relations for generators of the affine algebra As\l,ll which hold for any
rank and representation However, in the case of the fundamental representation, we have extra relations:

for N >2: aﬁ,:ﬁ,aazo if b#a;
for N>3: € =fyfa=0 if b—a#1mod N

Taking them into account, we note that

1+ AXL = AC)AEC), (1+6)X =A(f)Af), (45)
XET=A€,)A(6) and X, = A(f)A(fy) for a—b#0,£1mod N, (46)
XJ=prp- A@DA(R) for a#b, (47)
X = mARC)A 1) — a(pF —71) ACar1)A(CL) = (1 —@)pt + (0 — ¢ Im) Car Ka @ K Ea,  (48)
Xooir = 2 AFar)Af) — a1 (0% = 2) A(fa) A(far1) o)
= (=g N2 + (¢~ )%) falasr @ Ky fura s
and
Xim =1 AC)A(f) = 1 AF)AR) = (1= 75 — 1) (CaKa @ K. ' fu + fulu © K 'E,) (50)

Thus, the condition that the considered L(?) is a solution to (18) is equivalent to the requirement that relation
(39) holds for the right hand side of (45) (50) Equations (37) (38) imply that the right hand side of (45) (47)
satisfies (39) Furthermore, it is straightforward to check that (39) does not hold for the right hand side of
(48) (50) This implies that scalar factors on the right hand side of these equations must vanish In this way,
we obtain the values of ~; given in Proposition 1

A.2. Proof of Proposition 1. Third order
Lemma 1. Let R(\) be given by (12) and let L(O()\) be as in (20) Let

N

LOMW =" Ly W ea (51)
a,b=1
be an arbitrary solution to Eq (17) Then the operator valued coefficients Ef},}(,\) vanish unless a = b or

a—b==21mod N

Proof Consider the matrix entry eq ® e of Eq (17) Choose a, b, ¢ such that a # b, a # ¢, and b # ¢
Then, since L(O)()\) is a diagonal matrix, the computation of the matrix element in question involves only the
nondiagonal part of the R matrix (12) It is straightforward to check that as a result, we obtain the following

equation:
A\ Oea ~(4 AN\ Oeb ~ (4
() W= () "L (52)
Now, if b —a # 0,£1 mod N, then (52) for ¢ = a—1mod N and ¢ = a+ 1 mod N yields two equations which
are inconsistent unless Lglb)()\) =0 This completes the proof of Lemma 1 O

In order to prove part (ii) of Proposition 1, we write

N N
LON =Y LYWew and LON) =" LN ea (53)
a,b=1 a,b=1

for the general solution of (18) and for the sought solution of (19)
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Consider the matrix entry eq q4+1 ® €4—1,0+1 of Eq (19) in the case where N > 3 It is straightforward to
check that the resulting equation reads as follows:

A - A= A N\~
(u - 1)L;i+1<A>Lf_>1,a+l<u> + =0 AL () = (qu y 1)L§221,a+1<u>L§%;+1<A> (54)

Note that this equation, although it is resulting from the third order in the £ expansion, does not involve matrix
entries of L(®) The reason is that in (19), L®) is coupled to L(®) for which the matrix entries (a,a + 1) and
(a —1,a+ 1) vanish

Now, by Lemma 1, we can replace L® in (54) by the particular L(®) given by (22) since they must have
coinciding matrix entries (¢ — 1,a + 1) Finally, it is easy to check that (54) does not hold for matrix entries of
LM and L® (cf (13) and (25)) Therefore, for any possible choice of L(?), Eq (19) has no solution L(®)

A.3. Proof of Proposition 2. Part (i) We can obtain L™ in (30) from L} in (20) by setting fn =0 Since
relations (37) are linear in ,, they are consistent with such a reduction Hence, it follows that L(") given by
(30) is a solution to (18)

Part (ii) Similarly, setting v =0in (22), we obtain (32) A direct inspection of (40) (44) shows that the
X 1T are not affected by the reduction, while X_,~ and X, vanish if a = N or b = N and do not change if
a,b# N Therefore, relations (39) remain valid, which, in turn, implies that (19) holds

Part (iii) It suffices to repeat the reasoning given in Sec A 2 and notice that the matrix entries L((llt)z 41 and

L512217a+1 are not affected by the reduction O
This research was supported in part by the RFBR (projects 09 01 93108, 11 01 00570, and 11 01 12037) and
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