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Abstract We propose a fully discretised numerical scheme for the hyperelastic rod
wave equation on the line. The convergence of the method is established. Moreover,
the scheme can handle the blow-up of the derivative which naturally occurs for this
equation. By using a time splitting integrator which preserves the invariants of the
problem, we can also show that the scheme preserves the positivity of the energy
density.
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1 Introduction

We consider the compressible hyperelastic rod wave equation

ut − uxxt + 3uux − γ (2ux uxx + uuxxx ) = 0, u|t=0 = u0. (1)

This equation is obtained by Dai in [13] as a model equation for an infinitely long
rod composed of a general compressible hyperelastic material. The author considers
a far-field, finite length, finite amplitude approximation for a material where the first
order dispersive terms vanish. The function u = u(t, x) represents the radial stretch
relative to a prestressed state. The parameter γ ∈ R is a constant which depends on
the material and the prestress of the rod, whose physical values lie between −29.4760
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2 D. Cohen, X. Raynaud

and 3.4174. For materials where first order dispersive terms cannot be neglected, the
KdV equation

ut + uux + uxxx = 0

applies and only smooth solitary waves exist. In contrast, the hyperelastic rod
equation (1) admits sharp crested solitary waves.

The Cauchy problems of the hyperelastic rod wave equation on the line and on
the circle are studied in [12] and [25], respectively. The stability of a class of solitary
waves for the hyperelastic rod wave equation on the line is investigated in [12]. In
[21], Lenells provides a classification of all traveling waves. In [12,25], the authors
establish, for a special class of initial data, the global existence in time of strong solu-
tions. However, in the same papers, they also present conditions on the initial data
for which the solutions blow up and, in that case, global classical solutions no longer
exist. The way the solution blows up is known: In the case γ > 0, there is a point
x ∈ R and a blow-up time T for which limt→T ux (t, x) = −∞ for (for γ < 0, we
have limt→T ux (t, x) = ∞).

To handle the blow-up, weak solutions have to be considered but they are no longer
unique. For smooth solutions, the energy

∫
R
(u2 + u2

x ) dx is preserved and H1(R) is
a natural space for studying the solutions. After blow-up, there exist two consistent
ways to prolong the solutions, which lead to dissipative and conservative solutions.
In the first case, the energy which is concentrated at the blow-up point is dissipated
while, in the second case, the same energy is restored. The global existence of dissipa-
tive solution is established in [6]. In the present article, we consider the conservative
solutions, whose global existence is established in [18].

For γ = 1, the hyperelastic rod wave equation yields the Camassa–Holm equation

ut − uxxt + 3uux − 2ux uxx − uuxxx = 0.

There is by now an important literature on the numerical discretisation of the Camassa–
Holm equation. Let us review some of these works. In [4] and [5], a particle method
was presented and convergence, as the number of particles tends to infinity, is proved
for smooth solutions. In [17,19], numerical schemes relying on a discretisation based
on multipeakons are proved to converge for non-smooth solutions. Note that these
schemes depend on a special type of solutions, the multipeakons, which do not exist
for the hyperelastic rod equation. An adaptive finite volume method was derived in [1]
for peakon-type solutions. Still related to the spatial discretisation of the Camassa–
Holm equation, are the works [20] and [24], where a collocation method, respectively a
local discontinuous Galerkin method, are presented and spatial convergence is proved
for smooth solutions. Following a more geometrical approach, the first multi-symplec-
tic schemes for the Camassa–Holm equation were presented in [10], however without
proofs of convergence. A convergent finite difference scheme is studied in [16] for
a special class of initial datas whose properties are preserved by the equation. For
non-smooth solutions, beside of [19], the only schemes with proof of convergence
are given by [7] and [9], where finite difference schemes are used. But these schemes
converge to the dissipative solutions of the Camassa–Holm equation.

123



Numerical schemes for hyperelastic rod 3

In comparison with the Camassa–Holm equation, there are only a few works in the
literature which are concerned with numerical methods for the hyperelastic rod wave
equation. In [22], the authors consider a Galerkin approximation which preserves a
discretisation of the energy. In [11], a Hamiltonian-preserving numerical method and
a multisymplectic scheme are derived. In both works, no convergence proofs are pro-
vided and the schemes cannot handle the natural blow-up of the solution. The present
paper fills these lack.

In this paper, we propose a fully discretised numerical scheme which can com-
pute the solution on any finite time interval. In particular, it approximates solutions
which have locally unbounded derivatives (the condition ux ∈ L2(R) allows for an
unbounded derivative in L∞(R)). A standard spatial discretisation of (1) cannot give
us global solutions and the proofs of convergence for such schemes become highly
nontrivial when the solution approaches blow-up time. The main achievement of this
paper is the full convergence proof (both with respect to time and space) of the scheme.
To compute the global solutions, we follow the framework given in [18]. With a coor-
dinate transformation into Lagrangian coordinates, we first rewrite the problem as a
system of ordinary differential equations in a Banach space (Sects. 2, 3). We establish
new decay estimates (Sect. 4) which allow us to consider solutions defined on the
whole real line. We discretise the system of equations in space (Sect. 5) and time
(Sect. 7) and study the convergence of the numerical solution in Sect. 8. In Sect. 6, we
explain how to define a converging sequence of initial data. This construction can be
applied to any initial data in H1(R). Finally, in Sect. 9, numerical experiments demon-
strate the validity of our theoretical results. Moreover, the time splitting discretisation
enables the scheme to preserve invariants and we can use this property to prove that the
scheme preserves the positivity of a discretisation of the energy density u2 + u2

x dx ,
see Theorem 17. A Lagrangian formalism is also used in [5,17,19] to derive numeri-
cal schemes for the Camassa–Holm equation. However they rely on a particular class
of solutions, the multipeakons, which is not available for the hyperelastic rod wave
equation, that is when γ �= 1.

The main difficulty in the numerical simulation of the hyperelastic rod wave equa-
tion is to find an appropriate spatial discretisation which can handle the discontinu-
ities in the first derivative and the loss of regularity. This is reflected in the papers
[5,8,16,17,20,24] where the focus is clearly set on the spatial discretisation and the
integration in time is done by standard numerical schemes. The spatial discretisation
we propose is radically different from those proposed previously as it is based on a
reformulation of the problem.

We want to emphasize that other schemes (based on more standard spatial dis-
cretisations as, for example finite differences) will inevitably experience difficulties
when the solution becomes irregular and they will not be able to handle a peakon–
antipeakon collision, as described in Sect. 9.3. This is illustrated in the peakon and
cuspon traveling solutions presented in Figs. 3 and 5. These solutions are irregular in
the sense that they have a discontinuous (in the case of the peakon) and unbounded
(in the case of the cuspon) derivative at the peak. A direct spatial discretisation of the
partial differential equation (1) naturally induces numerical dissipation. Indeed, when
discretising in space, there is an upper bound on the frequencies that a finite discrete
space step can represent and the frequencies above this bound are simply ignored.
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4 D. Cohen, X. Raynaud

For our scheme, by using a reformulation of the equation as an ordinary differential
equation in a Banach space, the cut-off of high frequencies becomes harmless and we
observe indeed very little numerical dissipation. We implemented the upwind scheme
presented in [1]—without the mesh refinement—to compare our results. In [24], a
local discontinuous Galerkin method is derived and analysed. The spatial discretisa-
tion is suited for solutions with discontinuities and the peakon solution are indeed
well approximated. However, there is no proof of convergence and the scheme cannot
handle collisions, as for example a peakon–antipeakon collision.

The results of this paper are also valid for the generalised hyperelastic rod wave
equation

ut − uxxt + 1

2
g(u)x − γ (2ux uxx + uuxxx ) = 0, u|t=0 = u0. (2)

However, for simplicity only the numerical discretisation of Eq. (1) will be analysed.
Equation (2) was first introduced in [6]; it defines a whole class of equations, depending
on the choice of the (locally uniformly Lipschitz) function g and the value of the param-
eter γ , which contains several well-known nonlinear dispersive equations. Taking
γ = 1 and g(u) = 2κu + 3u2 (with κ ≥ 0), Eq. (2) reduces to the Camassa–Holm
equation [3]; For g(u) = 3u2, Eq. (2) becomes the hyperelastic rod wave equation (1);
For g(u) = 2u + u2 and for γ = 0, Eq. (2) leads to the Benjamin–Bona–Mahony
(BBM) equation (or regularised long wave) [2].

2 The semigroup of conservative solutions

The purpose of this section is to recall the main results of [18] about the conservative
solutions of the hyperelastic rod wave equation (1). The total energy for the hyperelas-
tic rod wave equation is given by the H1 norm, which is preserved in time for smooth
solutions. An important feature of this equation is that it allows for the concentration
of the energy density (u2+u2

x ) dx on sets of zero measure. To construct a semigroup of
conservative solution, it is necessary to keep track of the energy when it concentrates.
This justifies the introduction of the set D defined as follows.

Definition 1 The set D is composed of all pairs (u, μ) such that u belongs to H1(R)

and μ is a positive finite Radon measure whose absolute continuous part, μac, satisfies

μac = (u2 + u2
x ) dx .

The measure μ represents the energy density and the set D allows μ to have a singular
part. The solutions of (1) are constructed via a change of coordinates, from Eulerian to
Lagrangian coordinates. An extra variable which account for the energy is necessary.
Let us sketch this construction. We apply the inverse Helmholtz operator (Id− ∂xx )

−1

to (1) and obtain the system of equations

ut + γ uux + Px = 0 (3a)

P − Pxx = 3 − γ

2
u2 + γ

2
u2

x . (3b)
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Numerical schemes for hyperelastic rod 5

By using the Green function of the Helmholtz operator, we can write P in an explicit
form, i.e.,

P(t, x) = 1

2

∫

R

e−|x−z|
(

3 − γ

2
u2 + γ

2
u2

x

)

(t, z) dz. (4)

We also define

Q(t, x) := Px (t, x) = −1

2

∫

R

sgn(x − z)e−|x−z|
(

3 − γ

2
u2 + γ

2
u2

x

)

(t, z) dz. (5)

Next, we introduce the characteristics y(t, ξ) defined as the solutions of

yt (t, ξ) = γ u(t, y(t, ξ))

with y(0, ξ) given. The variable y(t, ξ) corresponds to the trajectory of a particle in
the velocity field γ u. However, the Lagrangian velocity will be defined as

U (t, ξ) = u(t, y(t, ξ))

and the cumulative energy H(t, ξ) as

H(t, ξ) :=
y(t,ξ)∫

−∞
(u2 + u2

x ) dx .

We next express (4) and (5) in terms of the new variables X = (y, U, H) (see [18] for
the details) and we obtain

P(t, ξ) = 1

2

∫

R

e− sgn(ξ−η)(y(ξ)−y(η))

(
3 − 2γ

2
U 2 yξ + γ

2
Hξ

)

(η) dη,

Q(t, ξ) = −1

2

∫

R

sgn(ξ − η)e− sgn(ξ−η)(y(ξ)−y(η))

(
3 − 2γ

2
U 2 yξ + γ

2
Hξ

)

(η) dη.

Finally, we obtain the following system of differential equations

yt = γU (6a)

Ut = −Q (6b)

Ht = U 3 − 2PU, (6c)

which we rewrite in the compact form

Xt = F(X).
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6 D. Cohen, X. Raynaud

The mapping F is a mapping from E to E , where E is a Banach space that we now
define. We denote by V the space defined as

V = { f ∈ Cb(R) | fξ ∈ L2(R)},

where Cb(R) = C(R)∩L∞(R). The space V is a Banach space for the norm ‖ f ‖V :=
‖ f ‖L∞ + ∥

∥ fξ
∥
∥

L2 . The Banach space E is then defined as

E = V × H1 × V

with norm ‖ f ‖E := ‖ f ‖V + ‖ f ‖H1 + ‖ f ‖V . In [18], the existence of short-time
solutions of (6) is established by a standard contraction argument in E . The solutions
of (6) are not in general global in time but for initial data (ζ0, U0, H0) which belongs
to the set F , which we now define, they are.

Definition 2 The set F consists of all (ζ, U, H) ∈ E such that

(ζ, U, H) ∈ [W 1,∞(R)]3 and lim
ξ→−∞ H(ξ) = 0 (7a)

yξ ≥ 0, Hξ ≥ 0, yξ + Hξ ≥ c almost everywhere, for some constant c > 0

(7b)

yξ Hξ = y2
ξ U 2 + U 2

ξ almost everywhere. (7c)

The set F is preserved by the flow, that is, if X (0) ∈ F and X (t) is the solution to (6)
corresponding to this initial value, then X (t) ∈ F for all time t . The properties of the
set F can then be used to establish a priori estimates on the solutions and show that
they exit globally in time, see [18] for more details. We denote by St the semigroup
of solutions in F given by the solutions of (6).

Given an initial data (u, μ) ∈ D, we have to find the corresponding initial data in
F ; we have to define a mapping between Eulerian and Lagrangian variables. To do
so, we set

y(ξ) = sup{y | μ((−∞, y)) + y < ξ}, (8a)

H(ξ) = ξ − y(ξ), (8b)

U (ξ) = u ◦ y(ξ). (8c)

We define X = L(u, μ) and L maps Eulerian to Lagrangian variables. When μ = μac
(no energy is concentrated), Eq. (8a) simplifies and we get

y(ξ) +
y(ξ)∫

−∞
(u2 + u2

x )(x) dx = ξ.

Reciprocally, we define the mapping M from Lagrangian to Eulerian variables: Given
X = (y, U, H) ∈ F , we recover (u, μ) = M(X) ∈ D by setting
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Numerical schemes for hyperelastic rod 7

u(x) = U (ξ) for any ξ such that x = y(ξ), (9a)

μ = y#(Hξ dξ). (9b)

Here, y#(Hξ dξ) denotes the push-forward of the measure Hξ dξ by the mapping y.
Finally, we recall the following main result from [18].

Theorem 1 The mapping T : D × R+ → D, where D is defined by Definition 1,
defines a continuous semigroup of conservative solutions of the hyperelastic rod wave
equation (1), that is, given (ū, μ̄) ∈ D, if we denote by t 
→ (u(t), μ(t)) = Tt (ū, μ̄)

the corresponding trajectory, then u is a weak solution of the hyperelastic rod wave
equation (3).

The function y(t, ξ) gives the trajectory of a particle which evolves in the veloc-
ity field given by γ u(t, x). If u is smooth, then it is Lipschitz in the second variable
and the mapping ξ → y(t, ξ) remains a diffeomorphism. We denote its inverse by
x → y−1(t, x). In this case, the density ρ(t, x) is given by

ρ(t, x) = 1

yξ (t, y−1(t, x))
. (10)

We can also recover the energy density as

(u2 + u2
x )(t, x) = Hξ

yξ

(t, y−1(t, x)). (11)

In the following sections, we design numerical schemes which preserve the positivity
of the particle and energy densities as defined in (10) and (11).

3 Equivalent system of ODEs in a Banach space

In this section, we reformulate the hyperelastic rod wave equation (3) as a system of
ordinary differential equations in a Banach space as this was done in [18] but where
we decouple the functions y, U and H and their derivatives yξ , Uξ and Hξ . Thus, after
differentiating (6), we obtain

ζξ t = γUξ (or yξ t = γUξ ), (12a)

Uξ t = γ

2
Hξ +

(
3 − 2γ

2
U 2 − P

)

yξ , (12b)

Hξ t = −2QU yξ + (3U 2 − 2P)Uξ , (12c)

where we set ζ(t, ξ) := y(t, ξ)− ξ . The system (12) is quasilinear with respect to the
first derivative (ζξ , Uξ , Hξ ). This is an essential feature which leads to the stability
of the solutions. Convergence proofs of numerical schemes rely generally on stability
results and this is also the case here. It explains why the scheme we propose here is
constructed upon the first derivatives. Let
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8 D. Cohen, X. Raynaud

q = yξ , w = Uξ , h = Hξ and v = q − 1 (13)

then (6) and (12) rewrite

ζt = yt = γU, (14a)

Ut = −Q, (14b)

Ht = U 3 − 2PU, (14c)

vt = qt = γw, (14d)

wt = γ

2
h +

(
3 − 2γ

2
U 2 − P

)

q, (14e)

ht = −2QUq + (3U 2 − 2P)w, (14f)

where P and Q are given by

P = 1

2

∫

R

e− sgn(ξ−η)(y(ξ)−y(η))

(
3 − 2γ

2
U 2q + γ

2
h

)

(η) dη (15)

and

Q = −1

2

∫

R

sgn(ξ − η)e− sgn(ξ−η)(y(ξ)−y(η))

(
3 − 2γ

2
U 2q + γ

2
h

)

(η) dη. (16)

The main variables among the new variables (y, U, H, q, w, h) are the derivative
variables q, w and h with respect to which the system is linear. The remaining vari-
ables, that is, y, U and H as well as the coefficients P and Q can be seen as integrals
depending on q, w and h. Thus, the system (14d)–(14f) can be considered as a system
of integro partial differential equations (where the integrals are space integrals and
the derivatives are time derivative). However, for accuracy, we compute the variables
y, U and H through their time evolution, as given by the first three equations in (14),
instead of computing them as integrals. In this way we can also prove the convergence
of the scheme, which is the main goal of this article.

Since the terms P and Q have similar structure, in the remaining of the paper
most of the proofs will be established just for one of them. Now, we do not require
(13) to hold any longer and, setting Y := (ζ, U, H, v, w, h), we obtain the system of
differential equations

Yt (t) = G(Y (t)),

where G is defined by (14). In the remaining, we will sometimes abuse the notation and
write Y = (y, U, H, q, w, h) instead of Y = (ζ, U, H, v, w, h). Then, we implicitly
assume the relations y(ξ) = ζ(ξ) + ξ and q = v + 1. The variables y and q are the
physical ones but do not have the proper decay/boundedness properties at infinity and
this is why ζ and v have to be introduced. The system (14) is defined in the Banach
space F , where F is given by
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Numerical schemes for hyperelastic rod 9

F := L∞(R) × (L∞(R) ∩ L2(R)) × L∞(R) × L2(R) × L2(R) × L2(R).

For any Y = (ζ, U, H, v, w, h) ∈ F we use the following norm on F :

‖Y‖F = ‖ζ‖L∞ + ‖U‖L2 + ‖U‖L∞ + ‖H‖L∞ + ‖v‖L2 + ‖w‖L2 + ‖h‖L2 .

The following proposition holds.

Proposition 1 The mappings P : F → H1(R) and Q : F → H1(R) belongs to
C1(F, H1(R)) and G : F → F belongs to C1(F, F). Moreover, given M > 0, let

BM = {X ∈ F | ‖X‖F ≤ M}.

There exists a constant C(M) which only depends on M such that

‖P(Y )‖H1 + ‖Q(Y )‖H1 +
∥
∥
∥
∥
∂ P

∂Y
(Y )

∥
∥
∥
∥

L(F,H1)

+
∥
∥
∥
∥
∂ Q

∂Y
(Y )

∥
∥
∥
∥

L(F,H1)

≤ C(M) (17)

and

‖G(Y )‖F +
∥
∥
∥
∥
∂G

∂Y
(Y )

∥
∥
∥
∥

L(F,F)

≤ C(M) (18)

for all Y ∈ BM .

Here, abusing slightly the notations, we denote by the same letter P the function
P(t, ξ) and the mapping Y 
→ P . The same holds for Q. The norms L(F, H1(R))

and L(F, F) are the operator norms.

Proof First we prove that the mappings Y 
→ P and Y 
→ Q as given by (15) and
(16) belong to C1(F, L∞(R) ∩ L2(R)). We rewrite Q as

Q(X)(ξ) = −e−ζ(ξ)

2

∫

R

χ{η<ξ}(η)e−(ξ−η)eζ(η)

×
(

3 − 2γ

2
U 2q + γ

2
h

)

(η) dη

+eζ(ξ)

2

∫

R

χ{η>ξ}(η)e(ξ−η)e−ζ(η)

×
(

3 − 2γ

2
U 2q + γ

2
h

)

(η) dη, (19)

where χB denotes the indicator function of a given set B. We decompose Q into the
sum Q1 + Q2, where Q1 and Q2 are the operators corresponding to the two terms in
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10 D. Cohen, X. Raynaud

the sum on the right-hand side of (19). Let h(ξ) = χ{ξ>0}(ξ)e−ξ and A be the map
defined by A : v 
→ h � v. Then, Q1 can be rewritten as

Q1 = −e−ζ(ξ)

2
A ◦ R(Y )(ξ), (20)

where R is the operator from F to L2(R) given by

R(Y )(ξ) = eζ(ξ)

(
3 − 2γ

2
U 2(1 + v) + γ

2
h

)

(ξ).

The mapping A is a continuous linear mapping from L2(R) into L2(R) ∩ L∞(R) as,
from Young inequalities, we have

‖h � v‖L2 ≤ ‖h‖L1 ‖v‖L2 and ‖h � v‖L∞ ≤ ‖h‖L2 ‖v‖L2 . (21)

For any Y ∈ BM , we have

‖Q1‖L2∩L∞ ≤ C(M) ‖A ◦ R‖L2∩L∞ ≤ C(M) ‖R‖L2 ≤ C(M)

for some constant C(M) which depends only on M . From now on, we denote generi-
cally by C(M) such constant even if its value may change from line to line. The same
result holds for Q and P . Since R is composed of sums and products of C1 maps, the
fact that R : F → L2 is C1 follows directly from the following short lemma whose
proof is essentially the same as the proof of the product rule for derivatives in R.

Lemma 1 Let 1 ≤ p ≤ ∞. If K1 ∈ C1(F, L∞(R)) and K2 ∈ C1(F, L p(R)), then
the product K1 K2 belongs to C1(F, L p(R)) and

∂(K1 K2)

∂Y
(Y )[Ȳ ] = K1(Y )

∂K2

∂Y
(Y )[Ȳ ] + K2(Y )

∂K1

∂Y
(Y )[Ȳ ].

With this lemma in hands, we thus obtain that

∂ R

∂Y
(Y )[Ȳ ] = eζ

(
3 − 2γ

2
(ζ̄U 2(1 + v) + 2UŪ (1 + v) + U 2v̄) + ζ̄ γ

2
h + γ

2
h̄

)

and
∥
∥
∥
∥
∂ R

∂Y
(Y )

∥
∥
∥
∥

L(F,L2)

≤ C(M).

Then, Q1 is in C1(F, L2(R) ∩ L∞(R)),

∂ Q1

∂Y
(Y )[Ȳ ] = e−ζ

2

(

ζ̄ A(R(Y )) − A

(
∂ R

∂Y
(Y )[Ȳ ]

))
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Numerical schemes for hyperelastic rod 11

and

∥
∥
∥
∥
∂ Q1

∂Y
(Y )

∥
∥
∥
∥

L(F,L2∩L∞)

≤ C(M).

We obtain the same result for Q2, Q and P . We differentiate Q and get

Qξ = γ

2
h + 3 − 2γ

2
U 2q − Pq. (22)

Hence, the mapping Y 
→ Qξ is differentiable,

∂ Qξ

∂Y
(Y )[Ȳ ] = γ

2
h̄ + 3 − 2γ

2
(2UŪ + U 2q̄) − ∂ P

∂Y
(Y )[Ȳ ]q − Pq̄,

and

∥
∥
∥
∥
∂ Qξ

∂Y
(Y )

∥
∥
∥
∥

L(F,L2)

≤ C(M).

It follows that Q belongs to C1(F, H1(R)) and
∥
∥
∥ ∂ Q

∂Y

∥
∥
∥

L(F,H1)
≤ C(M). The same

result holds for P and (17) is proved. By using Lemma 1, we get that G ∈ C1(F, F)

and this proves (18). �

By using Proposition 1 and the standard contraction argument, we prove the exis-

tence of short-time solutions to (14):

Theorem 2 For any initial values Y0 = (ζ0, U0, H0, v0, w0, h0) ∈ F, there exists a
time T , only depending on the norm of the initial values, such that the system of differ-
ential equations (14) admits a unique solution in C1([0, T ], F). Moreover, for any two
solutions Y1 and Y2 such that supt∈[0,T ] ‖Y1(t)‖F ≤ M and supt∈[0,T ] ‖Y2(t)‖F ≤ M,
then

sup
t∈[0,T ]

‖Y1(t) − Y2(t)‖F ≤ C(M) ‖Y1(0) − Y2(0)‖F , (23)

where the constant C(M) depends only on M.

Proof The stability result (23) is a direct application of Proposition 1 and Gronwall’s
lemma. �

The system of differential equations (14) in the Banach space F has an interesting
geometric property: it possesses an invariant. In fact, the following quantity

I (Y ) := U 2q2 + w2 − qh
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12 D. Cohen, X. Raynaud

is conserved along the exact solution of the problem as we show now. For any Y (t)
solution of (14), we have

d

dt
I (Y (t)) = 2UUt q

2 + 2U 2qqt + 2wwt − qt h − qht

= −2U Qq2 + 2U 2qγw + 2w

(
γ

2
h +

(
3 − 2γ

2
U 2 − P

)

q

)

−γwh − q(−2QUq + (3U 2 − 2P)) = 0. (24)

Additionally, we have

Lemma 2 The following properties are preserved (independently one of each other)
by the governing equations (14)

(i) q, w, h belongs to L∞(R).
(ii) qh = U 2q2 + w2 (or I (Y ) = 0).

(iii) qh = U 2q2+w2 (or I (Y ) = 0) and q ≥ 0, h ≥ 0, q+h ≥ c almost everywhere
for some constant c > 0.

(iv) The functions y, U and H are differentiable and yξ = q, Uξ = w and Hξ = h.

The proof of Lemma 2 follows the lines of [18, Lemma 2.7]. Having a closer look at
Lemma 2, we now define the following set.

Definition 3 The set G consists of the elements (y, U, H, q, w, h) ∈ F which satisfy
the conditions (i), (iii) and (iv).

As a consequence of Lemma 2, the set G is preserved by the system. For any initial
data in G, the solution of (14) coincide with the solutions that are obtained in [18]. In
particular, we prove in the same way as in [18] that

Theorem 3 For initial data in G, the solutions to (14) are global in time.

We denote by St the semigroup of solutions to (14) in G. Note that global existence
can only be established for initial data in G and do not hold in general for initial data
in F .

4 Decay at infinity

The terms P and Q, as given by (15) and (16) which appear in the governing equa-
tions (14), are global in the sense that they are not compactly supported even if Y
is. Consequently the set of compactly supported functions is not preserved by the
system. However, we identify in this section decay properties which are preserved by
the system. These are new results which allow us to compute solutions on the full
real line. In comparison, most numerical schemes for the Camassa–Holm equation
[1,10,11,16,20,22,24] consider periodic solutions. In [7,9], the case of the real line
is considered but a grid of infinite length is used. In the present article, by using the
decay estimate of this section, we prove the convergence of the scheme for a grid of
finite length.
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Numerical schemes for hyperelastic rod 13

We denote by Fexp, the subspace of F of functions with exponential decay defined as

Fexp = {Y ∈ F | q, w, h ∈ L∞(R), e|ξ |U, e|ξ |w ∈ L2(R), e|ξ |h ∈ L1(R)}.

We define the following norm on Fexp

‖Y‖Fexp = ‖Y‖F + ‖q‖L∞ + ‖w‖L∞ + ‖h‖L∞

+‖e
|ξ |
2 U‖L2 + ‖e

|ξ |
2 w‖L2 +

∥
∥
∥e|ξ |h

∥
∥
∥

L1
.

Given α > 1, we denote by Fα , the subspace of F of functions with polynomial decay
defined as

Fα = {Y ∈ F | q, w, h ∈ L∞(R), (1 + |ξ |) α
2 U, (1 + |ξ |) α

2 w ∈ L2(R),

(1 + |ξ |)αh ∈ L1(R)}.

We define the following norm on Fα

‖Y‖Fα = ‖Y‖F + ‖q‖L∞ + ‖w‖L∞ + ‖h‖L∞

+‖(1 + |ξ |) α
2 U‖L2 + ‖(1 + |ξ |) α

2 w‖L2 + ‖(1 + |ξ |)αh‖L1 .

Theorem 4 The spaces Fexp and Fα are preserved by the flow of (14). Considering
the short-time solutions given by Theorem 2, we have that

(i) If Y0 ∈ Fexp, then supt∈[0,T ] ‖Y (t, ·)‖Fexp ≤ C,

(ii) If Y0 ∈ Fα , then supt∈[0,T ] ‖Y (t, ·)‖Fα ≤ C,

for a constant C which only depends on T and ‖Y0‖Fexp [case (i)] or T and ‖Y0‖Fα

[case (ii)].

Proof Let us prove the case (i). First, we establish L1 bounds on the solutions. By
applying the Cauchy–Schwartz inequality, we get

∫

R

|U0(ξ)| dξ =
∫

R

e
−

∣
∣
∣ ξ

2

∣
∣
∣
e

∣
∣
∣ ξ

2

∣
∣
∣ |U0(ξ)| dξ ≤ √

2
∥
∥
∥e|ξ |U 2

0 (ξ)

∥
∥
∥

1
2

L1
,

which implies that U0 ∈ L1(R) and ‖U0‖L1 ≤ C for some constant C which depends
only on

∥
∥e|ξ |U 2

0 (ξ)
∥
∥

L1 . Similarly we get that w0 ∈ L1(R) and ‖w0‖L1 ≤ C for some
constant C which depends only on

∥
∥e|ξ |w2

0(ξ)
∥
∥

L1 . We denote generically by C such
a constant, which depends only on T and ‖Y0‖Fexp . From Theorem 2 and Lemma 2,
we get that

‖q(t, ·)‖L∞ + ‖w(t, ·)‖L∞ + ‖h(t, ·)‖L∞ ≤ C.
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14 D. Cohen, X. Raynaud

By following the same argument as in the proof of Proposition 1, from (20) to (21),
but, instead, using the Young inequality ‖κ � r‖L1 ≤ ‖κ‖L1 ‖r‖L1 , we obtain that

‖Q(t, ·)‖L1 ≤ C(‖h(t, ·)‖L1 + 1) (25)

for a constant C which depends only on ‖Y (t)‖Fexp and, therefore, only on ‖Y0‖Fexp

and T . The same estimate holds for P , that is,

‖P(t, ·)‖L1 ≤ C(‖h(t, ·)‖L1 + 1). (26)

Let us denote

J (t) := ‖U (t, ·)‖L1 + ‖w(t, ·)‖L1 + ‖h(t, ·)‖L1 .

From the governing equations (14), after using (25) and (26), we get

J (t) ≤ J (0) + C + C

t∫

0

J (τ ) dτ.

Hence, by applying Gronwall’s lemma, we get that, for t ∈ [0, T ],

J (t) = ‖U (t, ·)‖L1 + ‖w(t, ·)‖L1 + ‖h(t, ·)‖L1 ≤ C (27)

for another constant C . Let L(t) denotes

L(t) =
∥
∥
∥e|ξ |U 2(t, ·)

∥
∥
∥

L1
+

∥
∥
∥e|ξ |w2(t, ·)

∥
∥
∥

L1
+

∥
∥
∥e|ξ |h(t, ·)

∥
∥
∥

L1
. (28)

From the definition of Q, we get that

Q(t, ξ) ≤ C
∫

R

e−|ξ−η|(U 2 + h)(t, η) dη (29)

so that

e|ξ |Q(t, ξ) ≤ C
∫

R

e|ξ |e−|ξ−η|e−|η|e|η|(U 2 + h)(t, η) dη

≤ C L(t)

because |ξ | − |η| ≤ |ξ − η| and therefore

∥
∥
∥e|ξ |Q(t, ·)

∥
∥
∥

L∞ ≤ C L(t). (30)
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Numerical schemes for hyperelastic rod 15

Similarly, we get that

∥
∥
∥e|ξ | P(t, ·)

∥
∥
∥

L∞ ≤ C L(t). (31)

From the governing equations (14), we get that

∥
∥
∥e|ξ |U 2(t, ξ)

∥
∥
∥

L1
≤

∥
∥
∥e|ξ |U 2

0

∥
∥
∥

L1
+

t∫

0

∥
∥
∥2e|ξ |QU (τ, ·)

∥
∥
∥

L1
dτ

≤
∥
∥
∥e|ξ |U 2

0

∥
∥
∥

L1
+ 2

t∫

0

∥
∥
∥e|ξ |Q(τ, ·)

∥
∥
∥

L∞ ‖U (τ, ·)‖L1 dτ

≤
∥
∥
∥e|ξ |U 2

0

∥
∥
∥

L1
+ C

t∫

0

I (τ ) dτ, (32)

by using the L1 a priori estimates (27) and (30). From (14), we also obtain that

∥
∥
∥e|ξ |h(t, ξ)

∥
∥
∥

L1
≤

∥
∥
∥e|ξ |h0

∥
∥
∥

L1
+

t∫

0

(
2

∥
∥
∥e|ξ |Q(τ, ·)

∥
∥
∥

L∞ ‖U (τ, ·)‖L1

)
dτ

+
t∫

0

(
C

∥
∥
∥e|ξ |U 2(τ, ·)

∥
∥
∥

L1
+

∥
∥
∥e|ξ | P(τ, ·)

∥
∥
∥

L∞ ‖w(τ, ·)‖L1

)
dτ

which, after using the L1 estimates (27), (30) and (31), yields

∥
∥
∥e|ξ |h(t, ξ)

∥
∥
∥

L1
≤

∥
∥
∥e|ξ |h0

∥
∥
∥

L1
+ C + C

t∫

0

I (τ ) dτ. (33)

Similarly we get that

∥
∥
∥e|ξ |w2(t, ξ)

∥
∥
∥

L1
≤

∥
∥
∥e|ξ |w2

0

∥
∥
∥

L1
+

t∫

0

γ

2

∥
∥
∥e|ξ |h(τ, ξ)

∥
∥
∥

L1
dτ

+
t∫

0

(C
∥
∥
∥e|ξ |U 2(τ, ·)

∥
∥
∥

L1
+ C

∥
∥
∥e|ξ | P(τ, ·)

∥
∥
∥

L∞ ‖w(τ, ·)‖L1) dτ.

≤
∥
∥
∥e|ξ |w2

0

∥
∥
∥

L1
+ C + C

t∫

0

I (τ ) dτ. (34)
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16 D. Cohen, X. Raynaud

After summing (32), (33) and (34), we get L(t) ≤ L(0) + C + C
∫ t

0 L(τ ) dτ and
the result follows by applying Gronwall’s inequality. We now turn to case (ii). We
introduce the quantity

K (t) = ‖(1 + |ξ |)αU 2(t, ·)‖L1 + ‖(1 + |ξ |)αw2(t, ·)‖L1 + ‖(1 + |ξ |)αh(t, ·)‖L1 .

From (29), we get

(1 + |ξ |)α Q ≤ C
∫

R

(1 + |ξ |)αe−|ξ−η|(1 + |η|)−α(1 + |η|)α(U 2q + h) dη. (35)

Since |ξ | ≤ |ξ − η| + |η| ≤ (1 + |ξ − η|)(1 + |η|), we have (1 + |ξ |) ≤ 2(1 +
|ξ − η|)(1 + |η|) and

(1 + |ξ |)α ≤ 2α(1 + |ξ − η|)α(1 + |η|)α. (36)

Then, it follows from (35) that

(1 + |ξ |)α Q ≤ C
∫

R

e−|ξ−η|(1 + |ξ − η|)α(1 + |η|)α(U 2q + h) dη

≤ C
∥
∥e−z(1 + |z|)α∥

∥
L∞ K (t) ≤ C K (t) (37)

so that ‖(1 + |ξ |)α Q‖L∞ ≤ C K (t). We have to estimate ‖(1 + |ξ |)α Q‖L1 . We have

∥
∥(1 + |ξ |)α Q

∥
∥

L1 ≤
∫

R2

(1 + |ξ |)αe−|ξ−η|(1 + |η|)−α(1 + |η|)α(U 2q + h) dη dξ

=
∫

R2

(1 + |η + z|)αe−|z|(1 + |η|)−α(1 + |η|)α(U 2q + h) dη dz

≤ 2α

∫

R2

(1 + |z|)αe−|z|(1 + |η|)α(U 2q + h) dη dz [by (36)]

≤ C
∫

R

(1 + |z|)αe−|z| dz
∫

R

(1 + |η|)α(U 2 + h) dη

≤ C K (t). (38)

Hence,

∥
∥(1 + |ξ |)α Q

∥
∥

L1∩L∞ ≤ C K (t) (39)

123



Numerical schemes for hyperelastic rod 17

and the same bound holds for P . From the governing equations, we obtain

∥
∥
∥(1 + |ξ |)αU 2(t, ξ)

∥
∥
∥

L1
≤

∥
∥
∥(1 + |ξ |)αU 2

0

∥
∥
∥

L1
+

t∫

0

∥
∥2(1 + |ξ |)α QU (τ, ·)∥∥L1 dτ

≤
∥
∥
∥(1 + |ξ |)αU 2

0

∥
∥
∥

L1
+ 2

t∫

0

∥
∥
∥(1 + |ξ |)α Q2(τ, ·)

∥
∥
∥

L1
dτ

+2

t∫

0

∥
∥
∥(1 + |ξ |)αU 2(τ, ·)

∥
∥
∥

L1
dτ

≤
∥
∥
∥(1 + |ξ |)αU 2

0

∥
∥
∥

L1
+ C

t∫

0

K (τ ) dτ,

by (39), as ‖Q‖L∞ ≤ C , see (17). In a similar way, one proves that

∥
∥
∥(1 + |ξ |)αw2(t, ξ)

∥
∥
∥

L1
≤

∥
∥
∥(1 + |ξ |)αw2

0

∥
∥
∥

L1
+ C

t∫

0

K (τ ) dτ

and

∥
∥(1 + |ξ |)αh(t, ξ)

∥
∥

L1 ≤ ∥
∥(1 + |ξ |)αh0

∥
∥

L1 + C

t∫

0

K (τ ) dτ

so that

K (t) ≤ K (0) + C

t∫

0

K (τ ) dτ

and the result follows from Gronwall’s lemma. �

For later use, we note that, in this proof, we have established that

∥
∥
∥e|ξ |Q

∥
∥
∥

L∞ +
∥
∥
∥e|ξ | P

∥
∥
∥

L∞ ≤ C(‖Y‖Fexp) (40)

and

∥
∥(1 + |ξ |)α Q

∥
∥

L∞∩L1 + ∥
∥(1 + |ξ |)α P

∥
∥

L∞∩L1 ≤ C(‖Y‖Fα ) (41)

for some given increasing function C , see (30), (31) and (39).
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18 D. Cohen, X. Raynaud

5 Semi-discretisation in space

The first step towards a discretisation of (14) is to consider step-functions. We consider
an equally-spaced grid on the real line defined by the points

ξi = iΔξ,

where Δξ is the grid step and i = 0,±1,±2, . . .. We introduce the space

FΔξ = {Y ∈ F : each component of Y consists of

piecewise constant functions in each intervals [ξi , ξi+1)}.

The system (14) does not preserve the set FΔξ of piecewise constant function. Thus,
we define

PΔξ (Y )(ξ) =
∞∑

i=−∞
P(Y )(ξi )χ[ξi ,ξi+1)(ξ), (42)

QΔξ (Y )(ξ) =
∞∑

i=−∞
Q(Y )(ξi )χ[ξi ,ξi+1)(ξ) (43)

and consider a second system of differential equations

ζt = γU

Ut = −QΔξ

Ht = U 3 − 2PΔξU

qt = γw (44)

wt = γ

2
h +

(
3 − 2γ

2
U 2 − PΔξ

)

q

ht = −2QΔξUq + (3U 2 − 2PΔξ )w,

or, shortly,

Yt (t) = GΔξ (Y (t)).

Like in the preceding section, we show that this system of differential equations pos-
sesses a short-time solution, an invariant and that it solution converges to the solution
of (14) as Δξ → 0. In the next theorem we prove, by a contraction argument, the
short-time existence of solutions to (44).

Theorem 5 For any initial value Y0 = (y0, U0, H0, q0, w0, h0) ∈ F, there exists a
time T , only depending on ‖Y0‖F , such that the system of differential equations (44)
admits a unique solution in C1([0, T ], F).

This theorem is a consequence of point (i) in the following lemma.
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Lemma 3 The following statements hold

(i) The mapping GΔξ : F → F belongs to C1(F, F) and

∥
∥GΔξ (Y )

∥
∥

F +
∥
∥
∥
∥
∂GΔξ

∂Y
(Y )

∥
∥
∥
∥

L(F,F)

≤ C(M), (45)

for any Y ∈ BM .
(ii) For any Y ∈ F, we have

∥
∥G(Y ) − GΔξ (Y )

∥
∥

F ≤ C
√

Δξ (46)

for some constant C which only depends on ‖Y‖F .

Proof For any function f ∈ H1(R), let P( f ) be the function defined as P( f )(ξ) =∑∞
i=−∞ f (ξi )χ[ξi ,ξi+1)(ξ). Thus, we can rewrite QΔξ (Y ) and PΔξ (Y ) as

QΔξ (Y ) = P[Q(Y )] and PΔξ (Y ) = P[P(Y )].

Let us prove that P is a continuous mapping from H1(R) to L∞(R)∩ L2(R). By using
the Sobolev embedding theorem of H1(R) into L∞(R), we get

‖P( f )‖L∞ ≤ ‖ f ‖L∞ ≤ C ‖ f ‖H1

for some constant C , so that P is continuous from H1(R) into L∞(R). The L2 norm
of P( f ) is given by

‖P( f )‖2
L2 =

∞∑

i=−∞
Δξ f (ξi )

2.

We have, for all ξ ∈ [ξi , ξi+1), that

f (ξi )
2 = f (ξ)2 − 2

ξ∫

ξi

f (η) fξ (η) dη

≤ f (ξ)2 +
ξi+1∫

ξi

f 2(η) dη +
ξi+1∫

ξi

f 2
ξ (η) dη

which, after integration over [ξi , ξi+1), yields

Δξ f (ξi )
2 ≤

ξi+1∫

ξi

f (η)2 dη + Δξ

⎛

⎜
⎝

ξi+1∫

ξi

f 2(η) dη +
ξi+1∫

ξi

f 2
ξ (η) dη

⎞

⎟
⎠ .
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20 D. Cohen, X. Raynaud

Hence,

‖P( f )‖2
L2 ≤ (1 + Δξ) ‖ f ‖2

L2 + Δξ
∥
∥ fξ

∥
∥2

L2

and the mapping P is continuous from H1(R) to L2(R). Since QΔξ and PΔξ are
compositions of a continuous linear map P and a C1 map, they are also C1 and

∂ PΔξ

∂Y
(Ȳ ) = P

(
∂ P

∂Y
(Y )[Ȳ ]

)

for all Ȳ ∈ F . The same holds for Q so that (45) follows from Lemma 1. Let us prove
point (ii). First we note that (46) follows directly from the definitions of G, GΔξ and
the estimate

∥
∥Q(Y ) − QΔξ (Y )

∥
∥

L2∩L∞ + ∥
∥P(Y ) − PΔξ (Y )

∥
∥

L2∩L∞ ≤ C
√

Δξ. (47)

Let us prove (47). We estimate ‖Id − P‖L(H1,L∞∩L2), where the norm here is the
operator norm from H1(R) to L∞(R) ∩ L2(R). Let us consider f ∈ H1(R), we have

‖ f − P( f )‖L∞ ≤ sup
i

‖ f (ξ) − f (ξi )‖L∞([ξi ,ξi+1]) .

For any ξ ∈ [ξi , ξi+1), we have | f (ξ) − f (ξi )| ≤ √
Δξ

∥
∥ fξ

∥
∥

L2 , by the Cauchy–Sch-
wartz inequality. Hence,

‖ f − P( f )‖L∞ ≤ √
Δξ

∥
∥ fξ

∥
∥

L2 ≤ √
Δξ ‖ f ‖H1 .

We have

ξi+1∫

ξi

| f (ξ) − P( f )(ξ)|2 dξ =
ξi+1∫

ξi

∣
∣
∣
∣
∣
∣
∣

ξ∫

ξi

fξ (η) dη

∣
∣
∣
∣
∣
∣
∣

2

dξ

≤
ξi+1∫

ξi

((ξ − ξi )

ξ∫

ξi

f 2
ξ (η) dη) dξ

≤
ξi+1∫

ξi

f 2
ξ (η) dη

ξi+1∫

ξi

(ξ − ξi ) dξ

= (Δξ)2

2

ξi+1∫

ξi

f 2
ξ (η) dη.
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Hence,

‖ f − P( f )‖L2 ≤ Δξ√
2

‖ f ‖H1 (48)

and we have proved that ‖Id − P‖L2∩L∞ ≤ C
√

Δξ for some constant C . Then, we
have

∥
∥Q(Y ) − QΔξ (Y )

∥
∥

L2∩L∞ ≤ C
√

Δξ ‖Q(Y )‖H1 ≤ C ′√Δξ

for another constant C ′ which depends only on ‖Y‖F . One proves in the same way
the same estimate for P and thus we obtain (47). �


Concerning our new system of equations (44), it is not difficult to show in the same
way as in (24) that

IΔξ (Y ) := U 2q2 + w2 − qh

is also a conserved quantity along the exact solution of our problem. The system (44)
is introduced because it allows for a spatial discretisation of the original system (14).
Indeed, the set of piecewise constant functions is preserved:

Lemma 4 The set FΔξ is preserved, that is, if Y0 ∈ FΔξ and Y (t) is the solution of
(44) with initial data Y0, then Y (t) ∈ FΔξ for all t ∈ [0, T ].

The proof of this lemma is straightforward. We can now compare solutions of (44)
and of the original system (14).

Theorem 6 Given M > 0 and Y0, Y0,Δξ ∈ F. Let Y (t) be the short-time solution of
(14) with initial data Y0 and YΔξ (t) be the short-time solution of (44) with initial data
Y0,Δξ in the interval [0, T ]. If we have

‖Y (t)‖F ≤ M and
∥
∥YΔξ (t)

∥
∥

F ≤ M for all t ∈ [0, T ],

then we also have

∥
∥Y (t) − YΔξ (t)

∥
∥

F ≤
(∥
∥Y0 − Y0,Δξ

∥
∥ + CT

√
Δξ

)
eCT for all t ∈ [0, T ] (49)

with some constant C which depends only on M.

Proof The proof of this theorem is a consequence of Lemma 3 and of Gronwall’s
lemma. We have
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Y (t) − YΔξ (t) = Y0 − Y0,Δξ +
t∫

0

(
G(Y (τ )) − GΔξ (YΔξ (τ ))

)
dτ

= Y0 − Y0,Δξ +
t∫

0

(
G(Y (τ )) − G(YΔξ (τ )) + G(YΔξ (τ ))

−GΔξ (YΔξ (τ ))
)

dτ

which yields, after using Proposition 1 and Lemma 3,

∥
∥Y (t) − YΔξ (t)

∥
∥

F ≤ ∥
∥Y0 − Y0,Δξ

∥
∥

F + C

t∫

0

∥
∥Y (τ ) − YΔξ (τ )

∥
∥

F dτ + CT
√

Δξ,

for some constant C which depends only on M . Then, (49) follows from Gronwall’s
lemma. �


Lemma 2 and Theorem 4 show that there exist properties of the initial data that are
preserved by the system (14). The same results—with the exception of property (iv)
in Lemma 2—hold for the system (44). This is the content of the following theorem.

Theorem 7 We consider an initial datum Y0 ∈ F and the corresponding short time
solution Y (t) of (44) given by Theorem 5.

(i) If q0, w0, h0 belongs to L∞(R) then

sup
t∈[0,T ]

(
‖q(t, ·)L∞ + ‖w(t, ·)L∞ + ‖h(t, ·)L∞

)
≤ C

for some constant C which depends only on T and ‖Y0‖Fexp .
(ii) If we have qh = U 2q2 + w2 for t = 0 (or I (Y0) = 0) then this holds for all

t ∈ [0, T ].
(iii) If we have qh = U 2q2 + w2 (or I (Y ) = 0) and q ≥ 0, h ≥ 0, q + h ≥ c

almost everywhere for some constant c > 0, then the same relations holds for
all t ∈ [0, T ].

(iv) If Y0 ∈ Fexp, then

sup
t∈[0,T ]

‖Y (t, ·)‖Fexp ≤ C, (50)

if Y0 ∈ Fα , then

sup
t∈[0,T ]

‖Y (t, ·)‖Fα ≤ C, (51)

where the constant C depends only on T and ‖Y0‖Fexp , and T and ‖Y0‖Fα ,
respectively.
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Proof The system (44) is obtained from (14) by simply replacing P and Q by PΔξ

and QΔξ as defined in (42) and (43). Therefore, the proofs of points (i), (ii) and (iii) in
Lemma 2, which do not require any special properties of P and Q, apply directly to
(44). After introspection of the proof of Theorem 4, we can see that in order to prove
(50), we need to prove that the estimates (25), (26), (30), (31), which hold for P and
Q, also hold for PΔξ and QΔξ , namely,

∥
∥QΔξ (t, ·)

∥
∥

L1 ≤C(‖h(t, ·)‖L1 +1),
∥
∥PΔξ (t, ·)

∥
∥

L1 ≤C(‖h(t, ·)‖L1 + 1) (52)

and

∥
∥
∥e|ξ |QΔξ (t, ·)

∥
∥
∥

L∞ ≤ C L(t),
∥
∥
∥e|ξ | PΔξ (t, ·)

∥
∥
∥

L∞ ≤ C L(t), (53)

where L(t) is defined in (28) and C is a constant which depends only on T and‖Y0‖Fexp .
We denote generically by C such constant. In the same way that we obtained (48), we
now get that, for any f ∈ W 1,1(R),

ξi+1∫

ξi

| f (ξ) − P( f )(ξ)| dξ =
ξi+1∫

ξi

∣
∣
∣
∣
∣
∣
∣

ξ∫

ξi

fξ (η) dη

∣
∣
∣
∣
∣
∣
∣

dξ

≤ Δξ

ξi+1∫

ξi

∣
∣ fξ (η)

∣
∣ dη

and therefore

‖ f − P( f )‖L1 ≤ Δξ
∥
∥ fξ

∥
∥

L1 . (54)

We obtain, after using successively (54), (25), (22) and (26), that

∥
∥QΔξ

∥
∥

L1 ≤ ∥
∥QΔξ − Q

∥
∥

L1 + ‖Q‖L1

≤ Δξ
∥
∥Qξ

∥
∥

L1 + C(‖h‖L1 + 1)

= Δξ

∥
∥
∥
∥
γ

2
h + 3 − 2γ

2
U 2q − Pq

∥
∥
∥
∥

L1
+ C(‖h‖L1 + 1)

≤ C ‖P‖L1 + C(‖h‖L1 + 1)

≤ C(‖h‖L1 + 1).

We handle in the same way
∥
∥PΔξ

∥
∥

L1 and this concludes the proof of (52). For any
ξ ∈ R, we have ξ ∈ [ξi , ξi+1) for some i . Then,

e|ξ |QΔξ (t, ξ) = e|ξ |−|ξi |e|ξi |Q(t, ξi ) ≤ eΔξ
∥
∥eξ Q(t, ξ)

∥
∥

L∞ ≤ C L(t)
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by (30) and, therefore,
∥
∥e|ξ |QΔξ (t, ·)

∥
∥

L∞ ≤ C L(t). Similarly, we obtain the corre-
sponding result for PΔξ so that (53) is proved. Again, after introspection of the proof
of Theorem 4, we can check that, in order to prove (51), we need to prove that

∥
∥(1 + |ξ |)α QΔξ (t, ·)

∥
∥

L∞∩L1 + ∥
∥(1 + |ξ |)α PΔξ (t, ·)

∥
∥

L∞∩L1 ≤ C K (t). (55)

We have

∥
∥(1 + |ξ |)α QΔξ (t, ·)

∥
∥

L∞ ≤ ∥
∥(1 + |ξ |)α Q(t, ·)∥∥L∞ ≤ C K (t)

by (37). Since eξ−η ≤ eΔξ eξi −η for any (ξ, η) ∈ [ξi , ξi+1]2, we get

∥
∥(1 + |ξ |)α QΔξ (t, ·)

∥
∥

L1 ≤
∞∑

i=−∞

ξi+1∫

ξi

∫

R

(1 + |ξ |)αe−|ξi −η|(U 2q + h) dη dξ

≤ eΔξ
∞∑

i=−∞

ξi+1∫

ξi

∫

R

(1 + |ξ |)αe−|ξ−η|(U 2q + h) dη dξ

= eΔξ

∫

R

∫

R

(1 + |ξ |)αe−|ξ−η|(U 2q + h) dη dξ ≤ C K (t),

by (38). The corresponding results for P are established in the same way and this
concludes the proof of (55). �


In order to complete the discretisation in space, we have to consider a finite subspace
of FΔξ . Given any integer N , we denote R = NΔξ and we introduce the subset FR

of F defined as

FR = {Y ∈ F :
U (ξ) = q(ξ) = w(ξ) = h(ξ) = 0, for all ξ ∈ (−∞,−R) ∪ [R,∞),

ζ(ξ) = ζ∞, H(ξ) = H∞, for all ξ ∈ [R,∞),

ζ(ξ) = ζ−∞, H(ξ) = 0 for all ξ ∈ (−∞,−R),

where ζ±∞ and H∞ are constants}.

The set FR basically corresponds to functions with compact support (U, q, w and h
vanish outside a compact set). We do not require that the functions ζ and H have com-
pact support (ζ and H belongs to L∞ with no extra decay condition) but we impose
that they are constant outside the compact interval [−R, R]. We denote F{Δξ,R} =
FR ∩ FΔξ . The set F{Δξ,R} is not preserved by the flow of (44) because, as mentioned
earlier, P and Q do not preserve compactly supported functions. That is why we
introduce the cut-off versions of P and Q given by
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P{Δξ,R}(Y )(ξ) =
N−1∑

i=−N

P(Y )(ξi )χ[ξi ,ξi+1)(ξ),

Q{Δξ,R}(Y )(ξ) =
N−1∑

i=−N

Q(Y )(ξi )χ[ξi ,ξi+1)(ξ)

and define a third system of differential equations

ζt = γU,

Ut = −Q{Δξ,R},
Ht = U 3 − 2P{Δξ,R}U,

qt = γw, (56)

wt = γ

2
h +

(
3 − 2γ

2
U 2 − P{Δξ,R}

)

q,

ht = −2Q{Δξ,R}Uq + (3U 2 − 2P{Δξ,R})w,

or, shortly,

Yt = G{Δξ,R}(Y ).

It is clear from the definition that the system (56) preserves F{Δξ,R} and therefore,
since F{Δξ,R} is of finite dimension, the system (56) is a spatial discretisation of (14)
which allows for numerical computations. To emphasize that we are now working in
finite dimension, we denote

Yi (t) = Y{Δξ,R}(t, ξi ),

ζi = ζ{Δξ,R}(t, ξi ), Ui = U{Δξ,R}(t, ξi ) and so on for Hi , qi , wi , hi , Pi and Qi for
i = {−N , . . . , N − 1}. We have

Y{Δξ,R}(t, ξ) =
N−1∑

i=−N

Yi (t)χ[ξi ,ξi+1)(ξ).

Again, we can show that

I i
{Δξ,R}(Y ) := U 2

i q2
i + w2

i − qi hi (57)

are conserved quantities along the exact solution of problem (56). Finally, note that
F{Δξ,R} is contained in Fexp and Fα . Concerning the exact solution of (56), we have
the following theorem.

Theorem 8 For an initial values Y0 = (y0, U0, H0, q0, w0, h0) ∈ F, there exists
a time T , only depending on the norm of the initial values, such that the system of
differential equations (56) admits a unique solution in C1([0, T ], F).

This theorem is a consequence of point (i) in the following lemma.
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Lemma 5 The following statements holds

(i) The mapping G{Δξ,R} : F → F belongs to C1(F, F) and

∥
∥G{Δξ,R}(Y )

∥
∥

F +
∥
∥
∥
∥
∂G{Δξ,R}

∂Y
(Y )

∥
∥
∥
∥

L(F,F)

≤ C(M), (58)

for any Y ∈ BM .
(ii) For any Y ∈ Fexp, we have

∥
∥G{Δξ,R}(Y ) − GΔξ (Y )

∥
∥

F ≤ Ce−R, (59)

for some constant C which only depends on ‖Y‖Fexp .
(iii) For any Y ∈ Fα , we have

∥
∥G{Δξ,R}(Y ) − GΔξ (Y )

∥
∥

F ≤ C

(√
Δξ + 1

Rα/2

)

, (60)

for some constant C which only depends on ‖Y‖Fα .

Note that for Y (t) solution of (56), we have

sup
t∈[0,T ]

‖Y (t, ·)‖Fexp ≤ C and sup
t∈[0,T ]

‖Y (t, ·)‖Fα ≤ C,

where C depends on ‖Y0‖Fexp and ‖Y0‖Fα , respectively. This follows from (50), (51),
(59) and (60).

Proof of Lemma 5 For any function f ∈ L∞(R) ∩ L2(R), let PR( f ) be the func-
tion defined as PR( f )(ξ) = f (ξ)χ[−R,R). Thus, we can rewrite Q{Δξ,R}(Y ) and
P{Δξ,R}(Y ) as

Q{Δξ,R}(Y ) = PR[QΔξ (Y )] and P{Δξ,R}(Y ) = PR[PΔξ (Y )].

The operator PR is a projection from L∞(R) ∩ L2(R) into itself and therefore its
norm is smaller than one. Hence, (58) follows from (45). Let us prove (ii). We con-
sider Y ∈ Fexp. We have to prove

∥
∥Q{Δξ,R}(Y )−QΔξ (Y )

∥
∥

L2∩L∞ +∥
∥P{Δξ,R}(Y )−PΔξ (Y )

∥
∥

L2∩L∞ ≤ Ce−R . (61)

By (40), we have
∥
∥e|ξ |Q

∥
∥

L∞ + ∥
∥e|ξ | P

∥
∥

L∞ ≤ C . Hence,

∥
∥Q{Δξ,R} − QΔξ

∥
∥

L∞ = sup
|ξi |≥R

|Q(ξi )| ≤ C sup
|ξi |≥R

e−|ξi | = Ce−R .

We have

∥
∥Q{Δξ,R}−QΔξ

∥
∥2

L2 =Δξ
∑

|ξi |≥R

Q(ξi )
2 ≤ CΔξ

∑

|iΔξ |≥R

e−2|iΔξ | ≤C
2Δξ

1 − e−2Δξ
e−2R
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and therefore
∥
∥Q{Δξ,R} − QΔξ

∥
∥

L2 ≤ Ce−R . We prove in the same way the corre-
sponding result for P and it concludes the proof of (61). The estimate (59) follows
from (61). Let us prove (iii). We consider Y ∈ Fα . We have to prove that

∥
∥Q{Δξ,R}(Y ) − QΔξ (Y )

∥
∥

L2∩L∞

+ ∥
∥P{Δξ,R}(Y ) − PΔξ (Y )

∥
∥

L2∩L∞ ≤ C

(√
Δξ + 1

Rα/2

)

. (62)

By (41), we have ‖(1 + |ξ |)α Q‖L∞ + ‖(1 + |ξ |)α P‖L∞ ≤ C . Hence,

∥
∥Q{Δξ,R}−QΔξ

∥
∥

L∞ = sup
|ξi |≥R

|Q(ξi )|≤C sup
|ξi |≥R

(1 + |ξi |)−α =C(1 + R)−α. (63)

We have

∥
∥Q{Δξ,R} − QΔξ

∥
∥

L2(R)
= ∥

∥QΔξ

∥
∥

L2(R\[−R,R])
≤ ∥

∥QΔξ − Q
∥
∥

L2(R\[−R,R]) + ‖Q‖L2(R\[−R,R])

≤ C
(√

Δξ + ‖Q‖L2(R\[−R,R])
)

, (64)

from (47). Since

‖Q‖2
L2(R\[−R,R]) ≤ (1 + |R|)−α

∫

R\[−R,R]
(1 + |ξ |)α Q2 dξ

≤ C(1 + R)−α, by (41),

the estimate (62) follows from (63) and (64). �

Again, the system (56) preserves properties of the initial data:

Theorem 9 We consider an initial datum Y0 ∈ F and the corresponding short time
solution Y (t) of (56) given by Theorem 8. Then, Y (t) satisfy points (i)–(iv) as given
in Theorem 7.

Finally, for any initial datum in Y0 ∈ Fexp, resp. Y0 ∈ Fα , we obtain the following
error estimate for bounded solutions.

Theorem 10 Given Y0 and Y0,Δξ,R in Fexp, let Y (t) and Y{Δξ,R}(t) be the short-time
solutions of (14) and (56), respectively, with initial datum Y0 and Y0,Δξ,R, respectively.
If we have

‖Y (t)‖Fexp ≤ M and
∥
∥Y{Δξ,R}(t)

∥
∥

F ≤ M for all t ∈ [0, T ],

then we have

sup
t∈[0,T ]

∥
∥Y (t, ·) − Y{Δξ,R}(t, ·)

∥
∥

F ≤ C
(∥
∥Y0 − Y0,Δξ,R

∥
∥

F + √
Δξ + e−R

)
, (65)
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where the constant C depends only on M. For Y0 and Y0,Δξ,R in Fα , we have that if

‖Y (t)‖Fα ≤ M and
∥
∥Y{Δξ,R}(t)

∥
∥

F ≤ M for all t ∈ [0, T ],

then

sup
t∈[0,T ]

∥
∥Y (t, ·) − Y{Δξ,R}(t, ·)

∥
∥

F ≤ C

(∥
∥Y0 − Y0,Δξ,R

∥
∥

F + √
Δξ + 1

Rα/2

)

. (66)

Proof We have

∥
∥Y (t, ·) − Y{Δξ,R}(t, ·)

∥
∥

F ≤ ∥
∥Y0 − Y0,Δξ,R

∥
∥

F

+
t∫

0

∥
∥G(Y (τ, ·)) − G{Δξ,R}(Y{Δξ,R}(τ, ·))

∥
∥

F dτ. (67)

By Proposition 1 and Lemmas 3 and 5, we get

‖G(Y (τ, ·)) − G{Δξ,R}(Y{Δξ,R}(τ, ·))‖F

≤ ∥
∥G(Y (τ, ·)) − GΔξ (Y (τ, ·))∥∥F

+ ∥
∥GΔξ (Y (τ, ·)) − G{Δξ,R}(Y (τ, ·))∥∥F

+ ∥
∥G{Δξ,R}(Y (τ, ·)) − G{Δξ,R}(Y{Δξ,R}(τ, ·))

∥
∥

F

≤ C
(
(Δξ)

1
2 + e−R + ∥

∥Y (τ, ·) − Y{Δξ,R}(τ, ·)
∥
∥

F

)

for a constant C which depends only on M . Hence, (65) follows from (67) after
applying Gronwall’s lemma. The proof of (66) is similar. �


6 Approximation of the initial data and convergence of the semi-discrete
solutions

6.1 Approximation of the initial data

The construction of the initial data Y0,Δξ ,R for (56) is done in two steps. First, we
change variable from Eulerian to Lagrangian, that is, we compute Y0 ∈ G such that
X = (y0, U0, H0) ∈ F satisfies

U0 = u0 ◦ y0. (68)

In the new set of variables, we can solve (14) or, rather, its discretisation (56). Note
that, given u0 ∈ H1(R), there exists several Y0 ∈ G such that (68) holds (this is a con-
sequence of relabeling invariance, see [18] and this fact will be used in the numerical
examples of Sect. 9). Here, we present a framework valid for general initial data in
H1(R). In Sect. 2, we defined the mapping L from D to F . For (u0, μ0) ∈ D, i.e., for
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u0 ∈ H1(R) and μ0 = (u2
0 + u2

0,x ) dx absolutely continuous, this mapping simplifies
and reads

y0(ξ) +
y0(ξ)∫

−∞
(u2

0 + u2
0,x ) dx = ξ, (69a)

U0 = u0 ◦ y and H0 = Id − y0. (69b)

Then, we set

q0 = y0,ξ , w = U0,ξ , h = H0,ξ . (69c)

As earlier, we denote v0 = 1 − q0 and ζ0 = Id − y0. We have

h0q0 =q2
0U 2

0 +w2
0, q0 + h0 =1, q0 >0, h0 ≥ 0 for almost every ξ ∈ R. (70)

The element Y0 = (y0, U0, H0, q0, w0, h0) belongs to G. The second step consists of
computing an approximation of Y0 in F{Δξ,R}. In the following theorem, we show how
the change of variable given by (69) deal with the decay conditions. For simplicity,
we drop the subscript zero in the notation. Let us introduce the Banach spaces H1,exp

and H1,α as the subspaces of H1 with respective norms

‖u‖2
H1,exp =

∥
∥
∥
∥e

∣
∣
∣ ξ

2

∣
∣
∣
u

∥
∥
∥
∥

2

L2
+

∥
∥
∥
∥e

∣
∣
∣ ξ

2

∣
∣
∣
ux

∥
∥
∥
∥

2

L2

and

‖u‖2
H1,α =

∥
∥
∥(1 + |ξ |) α

2 u
∥
∥
∥

2

L2
+

∥
∥
∥(1 + |ξ |) α

2 ux

∥
∥
∥

2

L2
.

Theorem 11 Given u and Y as given by (69), we have

(i) u ∈ H1,exp if and only if Y ∈ Fexp,
(ii) u ∈ H1,α if and only if Y ∈ Fα .

Proof Let us assume that u ∈ H1,exp. By definition, we have h = (u2 + u2
x ) ◦ yyξ .

Hence,
∫

R

e|ξ |h(ξ) dξ =
∫

R

e|ξ |(u2 + u2
x ) ◦ y(ξ)yξ (ξ) dξ

=
∫

R

e
∣
∣y−1(x)

∣
∣
(u2 + u2

x )(x) dx

=
∫

R

e
∣
∣y−1(x)−x

∣
∣
e|x |(u2 + u2

x )(x) dx

≤ e‖y(ξ)−ξ‖L∞
∫

R

e|x |(u2 + u2
x )(x) dx < ∞.
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Using (70), we get

∫

R

e|ξ |w2(ξ) dξ ≤ ‖q‖L∞
∫

R

e|ξ |h(ξ) dξ < ∞.

In order to prove that
∫
R

e|ξ |U 2 dξ is finite, we decompose the integral as follows:

∫

R

e|ξ |U 2 dξ =
∫

{ξ∈R|q< 1
2 }

e|ξ |U 2 dξ +
∫

{ξ∈R|q> 1
2 }

e|ξ |U 2 dξ.

We have

∫

{ξ∈R|q< 1
2 }

e|ξ |U 2 dξ ≤ ‖U‖2
L∞

∫

{ξ∈R|q< 1
2 }

e|ξ | dξ

≤ ‖U‖2
L∞

∫

{ξ∈R|h> 1
2 }

e|ξ | dξ, as q + h = 1,

≤ 2 ‖U‖2
L∞

∫

{ξ∈R|h> 1
2 }

he|ξ | dξ ≤ C
∫

R

e|ξ |h dξ < ∞

and

∫

{ξ∈R|q> 1
2 }

e|ξ |U 2 dξ ≤ 2
∫

{ξ∈R|q> 1
2 }

e|ξ | U 2

q
dξ

≤ 2
∫

{ξ∈R|q> 1
2 }

e|ξ |qh dξ, as U 2 ≤ qh by (70),

< ∞.

Hence,
∫
R

e|ξ |U 2 dξ < ∞. Let us now assume that Y ∈ Fexp. Then,

∫

R

e|x |(u2 + u2
x )(x) dx =

∫

R

e|y(ξ)|(u2 + u2
x )(y(ξ))yξ (ξ) dξ

=
∫

R

e|y(ξ)|h(ξ) dξ
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≤
∫

R

e|y(ξ)−ξ |e|ξ |h(ξ) dξ

≤ e(‖y(ξ)−ξ‖L∞ )

∫

R

e|ξ |h(ξ) dξ < ∞

and u0 ∈ H1,exp. The case (ii) is proved in the same way. �

As a consequence of this theorem and Theorem 4, we obtain

Theorem 12 The spaces H1,exp and H1,α are preserved by the hyperelastic rod equa-
tion: If u0 ∈ H1,exp, then u(t, ·) ∈ H1,exp for all positive time and, similarly, if
u0 ∈ H1,α , then u(t, ·) ∈ H1,α for all positive time.

To the best of our knowledge, these decay results are new, even for the Camassa–Holm
equation (case γ = 1). They have to be compared with [15] where it is established
that the only solution which has compact support for all positive time is the zero solu-
tion, i.e., the compactness of the support (which is a kind of decay condition) is not
preserved by the equation.

Let us now construct the approximating sequence for the initial data. From (70),
we get that

0 ≤ q ≤ 1, 0 ≤ h ≤ 1

and

Uξ = w ≤ √
hq ≤ 1

2
(h + q) = 1

2
. (71)

Given an integer n, we consider Δξ and R such that 1
n = 1

R + Δξ = 1
R + R

N so
that n → ∞ if and only if Δξ → 0 and R → ∞. We introduce the mapping
IΔξ : L2 → L2 which approximates L2 functions by piecewise constant functions,
that is, given f ∈ L2, let

f̄i = 1

Δξ

ξi+1∫

ξi

f (ξ) dξ

and set

IΔξ ( f )(ξ) =
∞∑

i=−∞
f̄i · χ[ξi ,ξi+1)(ξ).

We define Yn = (yn, Un, Hn, qn, wn, hn) as follows. Let

vn(ξ) = PRIΔξ (v), wn(ξ) = PRIΔξ (w), hn(ξ) = PRIΔξ (h).

123



32 D. Cohen, X. Raynaud

As usual, we denote q = 1 + v and qn = 1 + vn . Moreover, let us define the weighted
integrals

Ui,n =
∫ ξi+1
ξi

q2
nUn dξ

∫ ξi+1
ξi

q2
n dξ

.

We set

Un(ξ) =
N−1∑

i=−N

Ui,n · χ[ξi ,ξi+1)(ξ), for i = −N , . . . , N − 1.

We define

Hn(ξ) = P

⎛

⎝

ξ∫

−∞
hn dη

⎞

⎠ if ξ ∈ [−R, R]

and Hn(ξ) = ∫ −R
−∞ hn dη if ξ ∈ (−∞,−R), Hn(ξ) = ∫ ∞

R hn dη if ξ ∈ (R,∞). For
yn , we set

yn(ξ) = ξ − Hn(ξ) if ξ ∈ [−R, R]

and yn(ξ) = ξ − Hn(−R) if ξ ∈ (−∞,−R), yn(ξ) = ξ − Hn(R) if ξ ∈ (R,∞). The
definition of P is given in the proof of Lemma 3. The following theorem states that
Yn approximates Y in F{Δξ,R} and satisfies additional properties which will be useful
in Theorem 17, where we prove that the positivity of the energy is preserved by the
numerical scheme.

Theorem 13 Given Y ∈ G, there exist a sequence Yn ∈ F{Δξ,R} such that

lim
n→∞ ‖Yn − Y‖F = 0, (72a)

and

qnhn ≥ U 2
n q2

n + w2
n, qn + hn = 1, for all n ≥ 0 and for all ξ. (72b)

Moreover, we have

‖Yn‖Fexp ≤ C ‖Y‖Fexp and ‖Yn‖Fα ≤ C ‖Y‖Fα (72c)

for Y ∈ Fexp, resp. Y ∈ Fα , and where the constant C which does not depend on
Y and n.
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Proof Let us first prove (72b). Since q + h = 1 [see (70)], we obtain qn + hn = 1
from the definitions of vn (recall that qn = 1 + vn) and hn . We consider a fix given
interval I = [ξi , ξi+1] and, for convenience, denote by an integral without bound-
ary the weighted integral

∫
f (ξ) dξ = 1

Δξ

∫ ξi+1
ξi

f (ξ) dξ so that, for ξ ∈ I, qn =
∫

q dξ, wn = ∫
w dξ and hn = ∫

h dξ . Using Jensen’s inequality, we get that

q2
n + U 2

n q2
n + w2

n =
(∫

q dξ

)2

+ U 2
n

(∫
q dξ

)2

+
(∫

w dξ

)2

≤
∫

q2 dξ + U 2
n

∫
q2 dξ +

∫
w2 dξ

=
∫

q2 dξ + U 2
n

∫
q2 dξ +

∫
(q(1 − q) − q2U 2) dξ

= qn + U 2
n

∫
q2 dξ −

∫
(q2U 2) dξ. (73)

Using the Cauchy–Schwarz inequality and the definition of Un , we obtain

U 2
n

∫
q2 dξ = (

∫
q2U )2 dξ
∫

q2 dξ
≤

∫
q2 dξ

∫
q2U 2 dξ

∫
q2 dξ

=
∫

q2U 2 dξ.

Hence, (73) yields

q2
n + U 2

n q2
n + w2

n ≤ qn

which, as qn + hn = 1, is equivalent to qnhn ≥ U 2
n q2

n + w2
n . Let us now prove (72a).

A direct computation shows that
∥
∥PRIΔξ ( f )

∥
∥

L2 ≤ ‖ f ‖L2 , (74)

for any f ∈ L2(R) and any n. Since limn→∞
∥
∥PRIΔξ ( f ) − f

∥
∥

L2 = 0 for any smooth
function f with compact support, we obtain, by density and (74), that the same result
holds for any f ∈ L2(R). Hence,

lim
n→∞ ‖qn − q‖L2 = 0, lim

n→∞ ‖wn − w‖L2 = 0 and lim
n→∞ ‖hn − h‖L2 = 0.

On the interval I = [ξi , ξi+1], we have

|Un(ξ) − U (ξ)| =
∣
∣
∣
∣
∣

∫
q2(η)(U (η) − U (ξ)) dη

∫
q2 dη

∣
∣
∣
∣
∣
≤ Δξ

2

as
∣
∣Uξ

∣
∣ ≤ 1

2 , see (71). Hence, ‖Un − U‖L∞(−R,R) ≤ Δξ
2 and

‖Un − U‖L∞ ≤ ‖Un − U‖L∞(−R,R) + ‖U‖L∞((−∞,−R)∪(R,∞))

≤ Δξ

2
+ ‖U‖L∞((−∞,−R)∪(R,∞)) . (75)

Since U ∈ H1(R), limξ→±∞ Un = 0 and (75) yields limn→∞ ‖Un − U‖L∞ = 0.
We have
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‖Un − PR(U )‖2
L2 =

N−1∑

i=−N

ξi+1∫

ξi

(∫ ξi+1
ξi

q2U dη
∫ ξi+1
ξi

q2 dη
− U (ξ)

)2

dξ

≤
N−1∑

i=−N

1
∫ ξi+1
ξi

q2 dη

ξi+1∫

ξi

ξi+1∫

ξi

q2(η)(U (ξ)−U (η))2 dξ dη, (76)

after applying Cauchy–Schwarz. For ξ, η ∈ I , we have

(U (ξ) − U (η))2 =
⎛

⎝

ξ∫

η

Uξ (η̄) dη̄

⎞

⎠

2

≤ Δξ

ξ∫

η

Uξ (η̄)2 dη̄ ≤ Δξ

ξi+1∫

ξi

U 2
ξ dη̄.

Hence, (76) yields

‖Un − PR(U )‖2
L2 ≤

N−1∑

i=−N

(Δξ)2

∫ ξi+1
ξi

q2 dη

ξi+1∫

ξi

q2 dη

ξi+1∫

ξi

U 2
ξ dη̄ ≤ (Δξ)2

∥
∥Uξ

∥
∥2

L2 .

It follows that

‖Un − U‖L2 ≤ ‖Un − PR(U )‖L2 + ‖U − PR(U )‖L2

≤ Δξ
∥
∥Uξ

∥
∥

L2 + ‖U‖L2((−∞,−R)∪(R,∞))

and therefore limn→∞ ‖Un − U‖L2 = 0. The function h belongs to L1(R) because
h = h2 + U 2q2 + w2, by (70). A direct computation shows that

∥
∥PRIΔξ ( f )

∥
∥

L1 ≤ ‖ f ‖L1 , (77)

for any f ∈ L1(R) and any n. Since limn→∞
∥
∥PRIΔξ ( f ) − f

∥
∥

L1 = 0 for any smooth
function f with compact support, we obtain, by density and (77), that the same result
holds for any f ∈ L1(R). Hence, limn→∞ ‖hn − h‖L1 = 0 and therefore

lim
n→∞ ‖Hn − H‖L∞ = 0.

Since yn = ξ − Hn and y = ξ − H , we get also that limn→∞ ‖yn − y‖L∞ = 0. Let
us look at the bounds on the decay of Y . We assume Y ∈ Fe. We have

∫

R

e|ξ | |hn| dξ = 1

Δξ

N+1∑

i=−N

ξi+1∫

ξi

ξi+1∫

ξi

e|ξ | |h(η)| dη dξ

= 1

Δξ

N+1∑

i=−N

ξi+1∫

ξi

ξi+1∫

ξi

e|ξ |e−|η|e|η| |h(η)| dη dξ
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≤ 1

Δξ

N+1∑

i=−N

ξi+1∫

ξi

ξi+1∫

ξi

e|ξ−η|e|η| |h(η)| dη dξ

≤ eΔξ
N+1∑

i=−N

ξi+1∫

ξi

e|η| |h(η)| dη ≤ 3 ‖Y‖Fexp ,

after assuming, without loss of generality, that Δξ ≤ 1. Similarly one proves that∫
R

e|ξ |w2 dξ ≤ C ‖Y‖Fexp . It remains to estimate
∫
R

U 2
n e|ξ | dξ . For any η, ξ ∈

[ξi , ξi+1], we have

U 2(η) = U 2(ξ) + 2

η∫

ξ

UUξ (ξ̄ ) d ξ̄

≤ U 2(ξ) +
ξi+1∫

ξi

(U 2 + (Uξ )
2)(ξ̄ ) d ξ̄ = U 2(ξ) +

ξi+1∫

ξi

(U 2 + w2)(ξ̄ ) d ξ̄ .

Hence,

U 2
i,n =

(∫ ξi+1
ξi

q2(η)U (η) dη
∫ ξi+1
ξi

q2(η) dη

)2

≤
∫ ξi+1
ξi

q2(η)U 2(η) dη
∫ ξi+1
ξi

q2(η) dη
(by Cauchy–Schwarz)

≤ U 2(ξ) +
ξi+1∫

ξi

(U 2 + w2)(ξ̄ ) d ξ̄

for any ξ ∈ [ξi , ξi+1]. Then,

∫

R

e|ξ |U 2
n dξ =

N−1∑

i=−N

ξi+1∫

ξi

e|ξ |U 2
i,n dξ

≤
N−1∑

i=−N

ξi+1∫

ξi

⎛

⎜
⎝e|ξ |

⎛

⎜
⎝U 2(ξ) +

ξi+1∫

ξi

(U 2 + w2)(ξ̄ ) d ξ̄

⎞

⎟
⎠

⎞

⎟
⎠ dξ

≤
∫

R

e|ξ |U 2(ξ) dξ +
N−1∑

i=−N

ξi+1∫

ξi

ξi+1∫

ξi

(U 2 + w2)(ξ̄ )e|ξ | dξ d ξ̄
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≤ ‖Y‖Fexp +
N−1∑

i=−N

eΔξ

ξi+1∫

ξi

ξi+1∫

ξi

(U 2 + w2)(ξ̄ )e|ξ̄| dξ d ξ̄

≤ (1 + 2ΔξeΔξ ) ‖Y‖Fexp ≤ (1 + 2e) ‖Y‖Fexp .

Thus we have proved that ‖Yn‖Fexp ≤ C ‖Y‖Fα for a constant C which does not
depend on Y and n. One proves in the same way that ‖Yn‖Fα ≤ C ‖Y‖Fα . �


6.2 Convergence of the semi-discrete solutions

Let Y (t) and Y{Δξ,R}(t) be respectively the solution of (14) with initial data Y0 and
the solution of (56) with initial data Y0,Δξ,R . We assume Y0 ∈ Fexp. Given T > 0, we
consider the fixed time interval [0, T ]. Since Y0 ∈ G, the solution Y (t) exists globally
and

sup
t∈[0,T ]

‖Y (t, ·)‖Fexp ≤ M

for a constant M which depends only on T and ‖Y0‖Fexp , see Theorems 3 and 4. The
solution Y{Δξ,R} does not necessarily exist globally in time. However, we claim that
there exists n > 0 such that for any Δξ and R such that Δξ + 1

R ≤ 1
n , we have

sup
t∈[0,T ]

∥
∥Y{Δξ,R}(t, ·)

∥
∥ < 2M. (78)

It implies in particular that the solution Y{Δξ,R} is defined on [0, T ]. Let us assume the
opposite. Then, there exists a sequence Δξk, Rk and tk < T such that limk→∞ Δξk =
0, limk→∞ Rk = ∞,

sup
t∈[0,tk ]

∥
∥Y{Δξ,R}(t, ·)

∥
∥ = 2M.

From (65), we get

sup
t∈[0,tk ]

∥
∥Y (t, ·) − Y{Δξk ,Rk }(t, ·)

∥
∥

F ≤ C(M)
(∥
∥Y0 − Y0,Δξk ,Rk

∥
∥

F + √
Δξ + e−Rk

)
.

(79)

The constant C(M) depends on M but not on Δξk and Rk . Thus, we have

2M = sup
t∈[0,tk ]

∥
∥Y{Δξk ,Rk }(t, ·)

∥
∥ ≤ ‖Y (tk, ·)‖ + ∥

∥Y (tk, ·) − Y{Δξk ,Rk }(tk, ·)
∥
∥

≤ M + C
(∥
∥Y0 − Y0,Δξ,R

∥
∥

F + √
Δξk + e−Rk

)

which leads to a contradiction as the right-hand side in the last inequality above tends
to M when k tends to infinity. Once (78) is established, Theorem 14 follows from (65).
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The same estimates can be obtained for Y0 ∈ Fα . Without loss of generality, we assume
that the approximating sequence satisfies

∥
∥Y0 − Y0,Δξ,R

∥
∥

F ≤ C(M)
2M where C(M) is

given in (79), so that Y{Δξ,R} exists on [0, T ]. Then, we have the following theorem.

Theorem 14 Given Y0 ∈ Fexp, for any T > 0, there exists a constant n > 0 such
that, for all Δξ and R such that Δξ + 1

R ≤ 1
n , we have

sup
t∈[0,T ]

∥
∥Y (t, ·) − Y{Δξ,R}(t, ·)

∥
∥

F ≤ C
(∥
∥Y0 − Y0,Δξ,R

∥
∥

F + √
Δξ + e−R

)
.

The constant C depends only on ‖Y0‖Fexp and T . Correspondingly, given Y0 ∈ Fα ,
we have

sup
t∈[0,T ]

∥
∥Y (t, ·) − Y{Δξ,R}(t, ·)

∥
∥

F ≤ C

(∥
∥Y0 − Y0,Δξ,R

∥
∥

F + √
Δξ + 1

Rα/2

)

and C depends only on ‖Y0‖Fα and T .

7 Discretisation in time

In this section, we deal with the numerical integration in time of the system of differen-
tial equations (56) which corresponds to the semi-discretisation in space of system (14).
The flow of this system of differential equations has some geometric properties and
it is of interest to derive numerical schemes that preserve these properties. Such inte-
grators are called geometric numerical schemes, see for example the monograph [14].
Thus we will look for numerical schemes preserving the invariants (57) of our system
of differential equations. Moreover, this last property will enable us to show that the
numerical schemes preserve the positivity of the energy density. These invariants are
quartic functions of Y and we are not aware of schemes preserving quartic polyno-
mials, this is why we first split the system of equations (56) into two pieces. Each
sub-system will then have quadratic invariants and we can use a numerical scheme
preserving these invariants. The following sub-systems read

ζi,t = 0

Ui,t = 0

Hi,t = 0

qi,t = γwi i = −N , . . . , N − 1 (80)

wi,t = γ

2
hi +

(
3 − 2γ

2
U 2

i − Pi

)

qi

hi,t = (3U 2
i − 2Pi )wi ,

or shortly

Ȳt = Ḡ1(Ȳ ),
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where Ȳ (t) = (Y{Δξ,R}(t, ξi ))
N−1
i=−N and similarly for Ḡ1. We also define the system

of differential equations

ζi,t = γUi

Ui,t = −Qi

Hi,t = U 3
i − 2PiUi

qi,t = 0 i = −N , . . . , N − 1 (81)

wi,t = 0

hi,t = −2QiUi qi ,

or shortly

Ȳt = Ḡ2(Ȳ ).

The space F{Δξ,R} is finite dimensional. We denote F̄ = R
2N×6. The mapping from

F̄ to F{Δξ,R}

{
Ȳi = (ζ̄i , Ūi , H̄i , q̄i , w̄i , h̄i )

}N−1
i=−N 
→ Y = (ζ, U, H, q, w, h)

is a bijection, where we define

ζ(ξ) =
N−1∑

i=−N

(
ζ̄iχ[ξi ,ξi+1)(ξ)

) + ζ̄−N χ(−∞,−R](ξ) + ζ̄N χ[R,∞](ξ)

and similar definitions for the other components of Y . This mapping is in addition an
isometry if we consider the norm

∥
∥Ȳ

∥
∥

F̄ = ∥
∥ζ̄

∥
∥

l∞(R2N )
+ ∥

∥Ū
∥
∥

l2(R2N )
+ ∥

∥Ū
∥
∥

l∞(R2N )
+ ∥

∥H̄
∥
∥

l∞(R2N )

+‖v̄‖l2(R2N ) + ‖w̄‖l2(R2N ) + ∥
∥h̄

∥
∥

l2(R2N )
, (82)

where

‖z̄‖l2(R2N ) =
(

Δξ

N−1∑

i=−N

z̄2
i

) 1
2

for any z̄ ∈ R
2N . In the remaining, we will always consider the norm given by (82)

for F̄ so that the bounds found in the previous sections directly apply. In particular,
we have the following lemma, which is a consequence of Proposition 1 and the same
arguments that lead to Lemmas 3 and 5.
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Lemma 6 The mappings Ḡ1 : F̄ → F̄ and Ḡ2 : F̄ → F̄ belong to C1(F̄, F̄) and

∥
∥Ḡ1(Ȳ )

∥
∥

F̄ +
∥
∥
∥
∥
∂Ḡ1

∂Ȳ
(Ȳ )

∥
∥
∥
∥

L(F̄,F̄)

≤ C(M),

and

∥
∥Ḡ2(Ȳ )

∥
∥

F̄ +
∥
∥
∥
∥
∂Ḡ2

∂Ȳ
(Ȳ )

∥
∥
∥
∥

L(F̄,F̄)

≤ C(M),

for any Ȳ ∈ B̄M , where

B̄M = {Ȳ ∈ F̄ | ∥
∥Ȳ

∥
∥

F̄ ≤ M}.

As this was done in the last sections, one can show that both systems posses Īi (Y ) =
U 2

i q2
i + w2

i − qi hi , see (57), as first integrals. That is Ī ′
i (Y )Ḡk(Y ) = 0 for all Y , for

k = 1, 2 and for i = −N , . . . , N − 1. In particular, this implies that every solutions
of (80) or (81) satisfy Īi (Ȳ (t)) = Īi (Ȳ (0)) for i = −N , . . . , N −1 and t ≥ 0. Having
a closer look at the differential equations (80) and (81), one sees that the invariants
are now quadratic functions [Ū is constant for (80) and q̄ is constant for (81)] and we
therefore use a numerical scheme that preserves quadratic invariants.

Proposition 2 Let us apply a Runge–Kutta scheme with coefficients satisfying

bi ai j + b j a ji = bi b j for all i, j = 1, . . . , s (83)

to the system (80), then it conserves exactly the invariants Īi (Y ) = U 2
i q2

i +w2
i −qi hi

for i = −N , . . . , N − 1. The same holds if we apply the scheme to (81).

Proof The proof of this proposition is a simple adaptation of the proof of Theorem
2.2 from [14, Chapter IV]. Let us start with system (80). Dropping the indexes and
the bars for ease of notations, we first write the invariant I (Y ) as

I (Y ) = Y T D(Y )Y + d(Y )T Y

with Y = (ζ, U, H, q, w, h), D(Y ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 U 2 0 −1/2
0 0 0 0 1 0
0 0 0 −1/2 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and d(Y ) = 0T .

For the Runge–Kutta method, we write Y1 = Y0 + h
∑s

j=1 b j K j with Ki = G1(Y0 +
h

∑s
j=1 ai j K j ). From the definition of the method, of the matrix D(Y ) and of the

vector d(Y ), it follows that
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I (Y1)=Y T
1 D(Y1)Y1+d(Y1)

T Y1 =
(

Y0 + h
s∑

i=1

bi Ki

)T

D(Y0)

⎛

⎝Y0+h
s∑

j=1

b j K j

⎞

⎠

= Y T
0 D(Y0)Y0 + h

s∑

i=1

bi K T
i D(Y0)Y0 + h

s∑

j=1

b j Y
T
0 D(Y0)K j

+h2
s∑

i, j=1

bi b j K T
i D(Y0)K j .

Writing Ki = G1(Ỹi ) with Ỹi = Y0 + h
∑s

j=1 ai j K j , we obtain that

I (Y1) = Y T
0 D(Y0)Y0 + 2h

s∑

i=1

bi Ỹ
T
i D(Y0)G1(Ỹi )

+h2
s∑

i, j=1

(bi b j − bi ai j − b j a ji )K T
i D(Y0)K j .

The last term in the above equation vanishes due to condition (83). By definition of
the problem and of the matrix D(Y ), we have D(Y0) = D(Ỹi ) because U is preserved
and since I (Y ) is a first integral for (80), we get Ỹ T

i D(Ỹi )G1(Ỹi ) = 0. It thus follows

I (Y1) = Y T
0 D(Y0)Y0 + 0 = I (Y0)

and the Runge–Kutta scheme applied to (80) conserves the invariant I (Y ).

The proof for system (81) is similar, take D(Y ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 q2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and d(Y ) =

(0, 0, 0, 0, 0,−q)T . �

Let us consider the following differential equation yt (t) = f (y(t)). The implicit
midpoint rule

y1 = y0 + Δt f

(
y1 + y0

2

)

satisfies the condition (83) and thus preserves quadratic invariants. The implicit mid-
point rule will be the building block for the construction of the schemes we will
use for the numerical experiments in Sect. 9. For other schemes preserving quadratic
invariants, we refer to [14] for example.

As a direct consequence of Proposition 2, we have the following result.
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Theorem 15 Let us apply a Runge–Kutta scheme Φ1
Δt , resp. Φ2

Δt , with coefficients
satisfying (83) to the system (80), resp. (81), with time step size Δt . Then the Lie–Trot-
ter splitting

ΦΔt := Φ2
Δt ◦ Φ1

Δt

has order of convergence one and preserves all the invariants Īi for i = −N , . . . ,

N − 1. The Strang splitting

ΦΔt := Φ1
Δt/2 ◦ Φ2

Δt ◦ Φ1
Δt/2

is symmetric, has thus order of convergence two and preserves all the invariants Īi

for i = −N , . . . , N − 1.

If we take for Φ i
Δt , i = 1, 2, the implicit midpoint rule, we obtain a first order split-

ting scheme for (56) that preserves exactly the invariants (a second order scheme is
obtained using the Strang splitting). This will be the schemes that we will consider in
the numerical experiments of Sect. 9.

8 Full discretisation

Our concern is now to combine the results from the last two sections and to show
that our numerical schemes converge to the exact solution of the system of Eqs. (14).
We integrate Ȳ (t) on the time interval [0, T ] and obtain Ȳ j for the time steps jΔt,
j = 0, . . . , NT where Δt = T

NT
. We have the following convergence result.

Theorem 16 Given initial values Y0 in Fexp and Ȳ0 ∈ FR, for the Lie–Trotter splitting
we have

max
j∈{0,...,NT }

∥
∥S jΔt (Y0) − Φ jΔt (Ȳ0)

∥
∥

F ≤ C
(∥
∥Y0 − Ȳ0

∥
∥

F + √
Δξ + e−R + Δt

)
,

(84)

where we recall that St stands for the semigroup of solutions to (14) and, where the
constant C depends only on ‖Y0‖Fexp ,

∥
∥Ȳ0

∥
∥

Fexp and T . Correspondingly, given initial
values Y0 in Fα and Ȳ0 ∈ FR, we have

max
j∈{0,...,NT }

∥
∥S jΔt (Y0) − Φ jΔt (Ȳ0)

∥
∥

F ≤ C

(∥
∥Y0 − Ȳ0

∥
∥

F + √
Δξ + 1

Rα/2 + Δt

)

,

(85)

where the constant C depends only on ‖Y0‖Fα ,
∥
∥Ȳ0

∥
∥

Fα and T . The same results hold
for the Strang splitting with second order accuracy in time, that is, when we replace
Δt with Δt2 in (84).
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Let us denote Y (t) = St (Y0) and

Φt (Ȳ0) = (( j + 1)Δt − t)Φ jΔt (Ȳ0) + (t − jΔt)Φ( j+1)Δt (Ȳ0)

Δt

for t ∈ [ jΔt, ( j + 1)Δt]. We can rewrite (84) as

max
t∈[0,T ]

∥
∥St (Y0) − Φt (Ȳ0)

∥
∥

F ≤ C
(∥
∥Y0 − Ȳ0

∥
∥

F + √
Δξ + e−R + Δt

)
.

Proof of Theorem 16 To estimate the total error

∥
∥S jΔt (Y0) − Φ jΔt (Ȳ0)

∥
∥

F

we split it in time and in space. Let us start with the error in time. The proof follows
basically the steps of the standard proof of the convergence of numerical scheme for
ordinary differential equations. The crucial point is that we guarantee here that the
convergence rate in time is independent of the discretisation step in space. Let us first
prove the following claim: Given M > 0, for any Ȳ ∈ B̄M and Z̄ ∈ B̄M , we have

ΦΔt (Ȳ ) − ϕΔt (Z̄)

= Ȳ − Z̄ + Δt
(

Ḡ1(Ȳ ) − Ḡ1(Z̄) + Ḡ2(Ȳ ) − Ḡ2(Z̄)
)

+ OΔt2, (86)

where ϕΔt (Z̄) stands for the exact flow of (56) at time Δt with starting values Z̄ . Here,
and in the following, the O-notation stands for an element in F̄ satisfying

‖O(ε)‖F̄ ≤ C(M)ε

for all ε > 0, where the constant C(M) depends on M but is independent on R and
on the space grid size Δξ . We first show that the midpoint rule

Φ
j
Δt (Ȳ ) = Ȳ + Δt Ḡ j

(
Φ

j
Δt (Ȳ ) + Ȳ

2

)

,

applied to Eq. (80), resp. (81), is at least first order accurate. To do this, let us introduce
the mapping K : F̄ × F̄ → F̄ given by

K (Z̄ , Ȳ ) = Z̄ − Ȳ − Δt Ḡ1

(
Z̄ + Ȳ

2

)

.

We have K (Φ1
Δt (Ȳ ), Ȳ ) = 0. Since

∂K

∂ Z̄
(Ȳ ) = Id − Δt

2

∂Ḡ1

∂Ȳ

(
Z̄ + Ȳ

2

)
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and
∥
∥
∥ ∂Ḡ1

∂Ȳ
(Ȳ )

∥
∥
∥

F̄
≤ C(M) (by Lemma 6), there exist C(M) such that, for Δt ≤ 1

C(M)
,

we have that ∂K
∂ Z̄

(Ȳ ) is invertible. By the implicit function Theorem, we get that Φ1
Δt (Ȳ )

is well-defined. Moreover, also following from the implicit function Theorem, we get
that

∥
∥
∥Φ1

Δt (Ȳ )

∥
∥
∥

F̄
≤ C(M).

Then,

Φ1
Δt (Ȳ ) = Ȳ + Δt Ḡ1

(

Ȳ + Δt

2
Ḡ1

(
Φ1

Δt (Ȳ ) + Ȳ

2

))

= Ȳ + Δt Ḡ1(Ȳ ) + O(Δt2)

by Lemma 6. Using Lemma 6 again, we obtain for the exact flow of (80) that

ϕ1
Δt (Z̄) = Z̄ + Δt Ḡ1(Z̄) + O(Δt2).

Following the same arguments, we obtain that

Φ2
Δt (Φ

1
Δt (Ȳ )) = Φ1

Δt (Ȳ ) + Δt Ḡ2(Φ
1
Δt (Ȳ )) + O(Δt2)

and for the composition of the exact flows

ϕ2
Δt (ϕ

1
Δt (Z̄)) = ϕ1

Δt (Z̄) + Δt Ḡ2(ϕ
1
Δt (Z̄)) + O(Δt2).

Hence,

Φ2
Δt (Φ

1
Δt (Ȳ )) − ϕ2

Δt (ϕ
1
Δt (Z̄))

= Φ1
Δt (Ȳ ) + Δt Ḡ2(Φ

1
Δt (Ȳ )) − ϕ1

Δt (Z̄) − Δt Ḡ2(ϕ
1
Δt (Z̄)) + O(Δt2)

= Ȳ − Z̄ + Δt (Ḡ1(Ȳ ) − Ḡ1(Z̄))

+Δt
(

Ḡ2(Ȳ + Δt Ḡ1(Ȳ ) + O(Δt2)) − Ḡ2(Z̄ + Δt Ḡ1(Z̄) + O(Δt2))
)

+O(Δt2)

= Ȳ − Z̄ + Δt (Ḡ1(Ȳ ) − Ḡ1(Z̄) + Ḡ2(Ȳ ) − Ḡ2(Z̄)) + O(Δt2). (87)

We consider now the splitting error. We have

ϕΔt (Z̄) − Z̄ = Δt Ḡ(Z̄) + O(Δt2)

and

ϕ1
Δt (Z̄) − Z̄ = Δt Ḡ1(Z̄) + O(Δt2)
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and thus

ϕ2
Δt (ϕ

1
Δt (Z̄)) = ϕ1

Δt (Z̄) + Δt Ḡ2(ϕ
1
Δt (Z̄)) + O(Δt2).

Hence,

ϕ2
Δt (ϕ

1
Δt (Z̄)) − ϕΔt (Z̄) = Δt Ḡ(Z̄) − Δt Ḡ1(Z̄)

−Δt Ḡ2(Z̄ + Δt Ḡ1(Z̄) + O(Δt2)) + O(Δt2)

= Δt (Ḡ(Z̄) − Ḡ1(Z̄) − Ḡ2(Z̄)) + O(Δt2)

= O(Δt2), (88)

as Ḡ = Ḡ1 + Ḡ2. Combining (88) and (87), we obtain (86) and the claim is proved.
Let us now set

M = sup
t∈[0,T ]

∥
∥ϕt (Ȳ0)

∥
∥

F .

For a given Δt , we define

jΔt = max{ j ∈ {0, . . . , NT − 1} |
∥
∥
∥Φ j̄Δt (Ȳ0)

∥
∥
∥

F̄
≤ 2M for all j̄ ≤ j}. (89)

For j ≤ jΔt , we get from (86) that

∥
∥Φ( j+1)Δt (Ȳ0)−ϕ( j+1)Δt (Ȳ0)

∥
∥

F ≤(1+C(M)Δt)
∥
∥Φ( j)Δt (Ȳ0)−ϕ( j)Δt (Ȳ0)

∥
∥

F +O(Δt2).

By induction, it follows that

∥
∥Φ( j+1)Δt (Ȳ0) − ϕ( j+1)Δt (Ȳ0)

∥
∥

F ≤
∥
∥
∥O(Δt2)

∥
∥
∥

j∑

k=0

(1 + C(M)Δt)k

≤
∥
∥
∥O(Δt2)

∥
∥
∥

1

C(M)Δt

and therefore

Φ( j+1)Δt (Ȳ0) = ϕ( j+1)Δt (Ȳ0) + O(Δt). (90)

We claim that there exists a constant C(M) such that for all Δt ≤ 1
C(M)

, we have
jΔt = NT − 1 and therefore (90) holds for all j ≤ NT − 1. Let us assume the
opposite. Then, there exists Δtk such that limk→∞ Δtk = 0 and jΔtk < NT − 1. By

definition (89), we have
∥
∥
∥Φ( jΔtk +1)Δtk (Ȳ0)

∥
∥
∥

F̄
> 2M . Then, (90) implies

2M ≤
∥
∥
∥Φ( jΔtk +1)Δtk (Ȳ0) − ϕ( jΔtk +1)Δtk (Ȳ0)

∥
∥
∥

F
+

∥
∥
∥ϕ( jΔtk +1)Δtk (Ȳ0)

∥
∥
∥

F

≤ O(Δtk) + M
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which leads to a contradiction when k tends to ∞. Finally, for the total error in space
and time, we have:

∥
∥S jΔt (Y0) − Φ jΔt (Ȳ0)

∥
∥

F ≤ ∥
∥S jΔt (Y0) − ϕ jΔt (Ȳ0)

∥
∥

F + ∥
∥ϕ jΔt (Ȳ0) − Φ jΔt (Ȳ0)

∥
∥

F ,

where all the functions are evaluated at time jΔt for j ≤ NT . The first term can be
estimated using Theorem 14 and we thus obtain

max
j∈{0,...,NT }

∥
∥S jΔt (Y0) − ϕ jΔt (Ȳ0)

∥
∥

F ≤ C
(∥
∥Y0 − Ȳ0

∥
∥

F + √
Δξ + e−R

)
.

For the second one we use (90) and this concludes the proof of the theorem for the
Lie–Trotter splitting. If we had taken the Strang splitting instead, we would have
obtained an error in time of order two since this scheme is symmetric. The proof for
initial data in Fα is the same. �


Our next task will be to show that our schemes preserve the positivity of the particle
density and of the energy density as does the exact solution of (14) with initial data
given by Theorem 13. In order to prove this result, we introduce F∞ defined as

F∞ = {Y = (y, U, H, q, w, h) ∈ F | ‖q‖L∞ + ‖w‖L∞ + ‖h‖L∞ < ∞}

with the norm

‖Y‖F∞ = ‖Y‖F + ‖q‖L∞ + ‖w‖L∞ + ‖h‖L∞ .

We know that the space F∞ is preserved by the governing equations (14), see Lemma 2.
Using the semilinear structure of (14d)–(14f) with respect to q, w, h, one can show
in the same way that (18) was shown, that, for a given M > 0,

‖G(Y )‖F∞ +
∥
∥
∥
∥
∂G

∂Y
(Y )

∥
∥
∥
∥

L(F∞,F∞)

≤ C(M) (91)

for any Y ∈ B∞
M = {Y ∈ F∞ | ‖Y‖F∞ ≤ M}. The same result holds for the mappings

GΔξ , GΔξ,R, Ḡ1 and Ḡ2. In particular we can prove, as in Theorem 16 for the proof
of (86), that

ΦΔt (Ȳ ) − ϕΔt (Z̄)

= Ȳ − Z̄ + Δt
(
Ḡ1(Ȳ ) − Ḡ1(Z̄) + Ḡ2(Ȳ ) − Ḡ2(Z̄)

) + O(Δt2),

where the definition of O(·) is replaced by

‖O(ε)‖F̄∞ ≤ C(M)ε.

Here, F̄∞ = F̄ = R
2N×6 but equipped with the norm derived from ‖·‖F∞ , see (82).

123



46 D. Cohen, X. Raynaud

Theorem 17 We consider an initial datum which satisfy

q0
i h0

i ≥ (U 0
i q0

i )2 + (w0
i )2, q0

i ≥ 0, h0
i ≥ 0 and q0

i + h0
i ≥ c

for all i = −N , . . . , N − 1, for some constant c > 0. Then, given T > 0, there exists
n > 0, which depends only on c,

∥
∥Ȳ 0

∥
∥

F∞ and T , such that, if Δξ + 1
R + Δt < 1

n ,the
positivity of the particle density 1/q and of the energy density h are preserved by our
numerical discretisation, that is,

q j
i ≥ 0 and h j

i ≥ 0,

for i = −N , . . . , N − 1 and j = 1, . . . , NT .

Proof The main idea of the proof is to control the growth of 1/(qk
i + hk

i ). To do so we
adapt the proof of Lemma 2 to this discrete situation. Let M =2 supt∈[0,T ]

∥
∥ϕt (Ȳ0)

∥
∥

F∞ .
As in the proof of Theorem 16, we can prove that for Δt small enough (the bound
depending only on M), we have

∥
∥ΦkΔt (Ȳ0)

∥
∥

F∞ ≤ 2M

for all k = 0, . . . , NT . For k < NT , we have, by definition of our scheme, that

1

qk+1
i + hk+1

i

− 1

qk
i + hk

i

= − qk+1
i − qk

i + hk+1
i − hk

i

(qk+1
i + hk+1

i )(qk
i + hk

i )

= −Δt (γwk
i − 2Q(Y k)U k

i qk
i + (3(U k

i )2 − 2P(Y k))wk
i ) + O(Δt2)

(qk+1
i + hk+1

i )(qk
i + hk

i )
.

Hence, using the bounds (91), we get

∣
∣
∣
∣
∣

1

qk+1
i + hk+1

i

− 1

qk
i + hk

i

∣
∣
∣
∣
∣
≤ ΔtC(M)

∣
∣
∣qk+1

i + hk+1
i

∣
∣
∣

(∣
∣wk

i

∣
∣ + ∣

∣qk
i

∣
∣ + Δt

∣
∣qk

i + hk
i

∣
∣

)

. (92)

Let us prove by induction that, for Δt small enough (depending only M),

1

qk
i + hk

i

≤ 1

c
e2C(M)T + 1, qk

i ≥ 0 and hk
i ≥ 0 (93)

for i = −N , . . . , N − 1, all k = 0, . . . , NT and where C(M) is the constant given in
(92). By definition of our initial data, these assumptions hold for k = 0. We assume
now that (93) holds for k = 0, . . . , j and we want to prove that it also holds for
j +1. We set M̄ = 1

c e2C(M)T +1. Since the numerical schemes preserve the invariant
qk

i hk
i = (U k

i qk
i )2 + (wk

i )2, we obtain in particular that

qk
i hk

i ≥ (U k
i qk

i )2 + (wk
i )2 (94)
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for all k = 0, . . . , NT . From this, it follows that
∣
∣wk

i

∣
∣ ≤ 1√

2
(qk

i + hk
i ) as qk

i ≥ 0 and

hk
i ≥ 0. For k ≤ j , we get from (92) and our induction hypothesis that

∣
∣
∣
∣
∣

1

qk+1
i + hk+1

i

− 1

qk
i + hk

i

∣
∣
∣
∣
∣
≤ ΔtC(M)

∣
∣
∣qk+1

i + hk+1
i

∣
∣
∣

(

1 + 1√
2

+ M̄Δt

)

. (95)

From the above equation, we get

∣
∣
∣
∣
∣

1

qk+1
i + hk+1

i

∣
∣
∣
∣
∣
≤ 1

1 − 2C(M)Δt − M̄C(M)Δt2

∣
∣
∣
∣
∣

1

qk
i + hk

i

∣
∣
∣
∣
∣

and therefore
∣
∣
∣
∣
∣

1

q j+1
i + h j+1

i

∣
∣
∣
∣
∣
≤ 1

(1 − 2C(M)Δt − M̄C(M)Δt2) j

∣
∣
∣
∣
∣

1

q0
i + h0

i

∣
∣
∣
∣
∣

≤ 1

c(1 − 2C(M)Δt − M̄C(M)Δt2)
T
Δt

.

We have

lim
Δt→0

1

c(1 − 2C(M)Δt − M̄C(M)Δt2)
T
Δt

= 1

c
e2C(M)T < M̄ .

Therefore, by taking Δt small enough, depending only on the value of M and not on
the number of induction steps j , we get

∣
∣
∣
∣
∣

1

q j+1
i + h j+1

i

∣
∣
∣
∣
∣
≤ M̄ .

Using the above inequality and (95), we obtain

− 1

q j+1
i + h j+1

i

+ 1

q j
i + h j

i

≤ M̄ΔtC(M)

(

1 + 1√
2

+ M̄Δt

)

so that 1
q j+1

i +h j+1
i

≥ 0 for a sufficiently small Δt . By (94), we have that q j+1
i h j+1

i ≥ 0

and therefore

q j+1
i ≥ 0 and h j+1

i ≥ 0,

which concludes our proof by induction. �

Now we go back to the original set of coordinates. Given an initial datum u0 ∈

H1,exp(R) or H1,α(R), we construct the initial datum Y0 as given by (69). Then the
function u(t, x) defined as
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u(t, x) = U (t, ξ) for y(t, ξ) = x (96)

is well-defined, is a weak solution to (3) which corresponds to the global conservative
solution. The definition (96) of u(t, x) means that for any given time t the set of points

(y(t, ξ), U (t, ξ)) ∈ R
2 for ξ ∈ R

is the graph of u(t, x). Let 1
n = Δξ + 1

R + Δt so that n tends to infinity if and only if
Δξ,Δt tend to zero and R tends to infinity. We consider an approximating sequence
Y0,n which satisfies the conditions (72a) and (72c) of the sequence of initial values
which is constructed in Sect. 6. Let Yn(t) = Φ(Y0,n). From Theorem 16, we obtain
the following convergence theorem.

Theorem 18 The full discretised scheme provide us with points which converge to the
graph of the exact conservative solution u(t, x). Indeed, if u0 ∈ H1,exp(R), we have

max
i=−N ,...,N−1

j=0,...,NT

∣
∣(yn(t j , ξi ), Un(t j , ξi )) − (y(t j , ξi ), U (t j , ξi ))

∣
∣

≤ C
(∥
∥Y0 − Ȳ0

∥
∥

F + √
Δξ + e−R + Δt

)
,

where the constant C depends only on ‖u0‖H1,exp and, if u0 ∈ H1,α(R),

max
i=−N ,...,N−1

j=0,...,NT

∣
∣(yn(t j , ξi ), Un(t j , ξi )) − (y(t j , ξi ), U (t j , ξi ))

∣
∣

≤ C

(∥
∥Y0 − Ȳ0

∥
∥

F + √
Δξ + 1

Rα/2 + Δt

)

, (97)

where the constant C depends only on ‖u0‖H1,α .

Since

|y(t, ξi+1) − y(t, ξi )| =

∣
∣
∣
∣
∣
∣
∣

ξi+1∫

ξi

q(t, ξ) dξ

∣
∣
∣
∣
∣
∣
∣
≤ CΔξ,

where C depends only on ‖Y0‖F∞ , we have an a priori upper bound on the density of
points of the graph of u we can approximate by our scheme.

In the case where u0 does not belong to H1,α(R), we can approximate u0 by func-
tions u0,k ∈ H1,α(R), which converge to u0 in H1(R). From [18], we know that
the change of variable (69) produces sequences Y0,k and Y0 such that limk→0

∥
∥Y0,k−

Y0‖F = 0. In this way, by using the results done for functions in Fα , we can approx-
imate the exact solution Y (t) and prove convergence. However, since

∥
∥Y0,k

∥
∥

Fα is not
uniformly bounded with respect to k, we lose the control on the error rate (the term

1
Rα/2 ) which is given by (97).
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Fig. 1 Traveling waves with decay with speed c = 1 : smooth (γ = 0.2), peakon (γ = 1), cuspon (γ = 5)

9 Numerical experiments

In this section, we present some numerical experiments for the hyperelastic rod wave
equation (1). In order to demonstrate the efficiency of our schemes, we will numer-
ically compute three types of traveling waves with decay, see Fig. 1. The derivation
of the cusped (γ > 1), resp. smooth (γ < 1), solutions follows the lines of [21]. We
refer for example to [23] for a thorough discussion on the peakon case (i.e., γ = 1).

Let us first start by giving some details related to the implementation of our numer-
ical schemes.

9.1 Algorithm flowchart

• Let us consider a space interval [−R, R] together with an equidistant grid of mesh
size Δξ . Let Δt denote the time step of our numerical integrator.

• Given u0 ∈ H1(R) an initial value for the hyperelastic rod wave equation (1), we
use (69) to compute the initial values

Y0,Δξ,R = (y0,Δξ,R, U0,Δξ,R, H0,Δξ,R, q0,Δξ,R, w0,Δξ,R, h0,Δξ,R)

for the discretised system (56).
• We solve (80), and (81) by using an implicit midpoint rule defined as follows

Ȳt+Δt := Φ i
Δt (Ȳt ) = Ȳt + Δt Ḡi

(
Ȳt+Δt + Ȳt

2

)

(98)

for i = 1, 2. We use fixed point iterations to solve the nonlinear system of equations
given by (98).

• We finally obtain a symmetric and second-order accurate Strang splitting,

Φ1
Δt/2 ◦ Φ2

Δt ◦ Φ1
Δt/2,

for (56). This numerical integrator preserves all the invariants (57).
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Fig. 2 Exact and numerical solutions of a smooth traveling wave with decay. Solid line exact, dashed line
upwind scheme, dashdotted line ODE45, stars explicit Euler, square Lie–Trotter, diamond Strang

9.2 Smooth traveling waves with decay (γ < 1)

According to the classification presented in [21], for a fixed γ �= 0, traveling waves
u(x −ct) are parametrised by three parameters, M, m and the speed c. Moreover, they
are solutions of the following differential equation

u2
x = F(u) = (M − u)(u − m)(u − z)

c − γ u
. (99)

For positive values of γ , a smooth traveling wave with decay with m = infx∈R u(x)

and M = maxx∈R u(x) is obtained if z = m < M < c/γ , where z := c − M − m.
For our purpose, we have to set m = 0 so that the solution decays at infinity. This
gives us the conditions c = M and γ < 1. We thereby obtain the initial values for our
system of differential equations (56) by solving (99) numerically. To do this, some
care has to be taken as u 
→ √

F(u) is not Lipschitz. We instead solve uxx = F ′(u)/2.
Once this is appropriately done we get the initial values U0 = u, w0 = ux . We then
set y0 = ξ, q0 = 1, h0 = U 2

0 + w2
0 and H0 = ∫ y0

−∞ h0. These initial values do
not correspond to the ones defined by (69) but they are equivalent via relabeling and
therefore can be used for computation, see [18] for details on the relabeling. We have
implemented an upwind scheme based on the original formulation of the Eq. (1), as
in [1] but without adaptivity. Figure 2 displays the exact solution together with the
numerical solutions given by the upwind scheme, the ODE45 solver from Matlab, the
explicit Euler scheme, the Lie–Trotter and the Strang splitting schemes at time T = 7.
We plot the points

(y(t, ξi ), U (t, ξi )), for i = −N , . . . , N − 1,

which approximate the graph of the exact solution u(t, x) for t = T . The initial value
is a smooth traveling wave with parameters γ = 0.2, m = 0, M = c = 1, see Fig. 1.
We took relatively large discretisation parameters Δξ = 0.25 and Δt = 0.1. For the
upwind scheme, we compute the solution u(t, x) in the original space coordinate x . In
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Fig. 3 Error in the infinity norm
of the explicit Euler scheme
(stars), the Lie–Trotter scheme
(square) and the Strang scheme
(diamond) at time T = 1 for the
smooth solution. The dashed
lines have slopes one, resp. two

this experiment and the others that follow, we consider for this scheme a space discret-
isation step Δx which is ten times smaller than Δξ and we set Δt = Δx/(2 max(u0)).
We observe that the explicit Euler scheme gives a less accurate solution than the other
schemes and that dissipation occurs for the scheme using the formulation (1). We also
observe that, even for these large discretisation parameters, the splitting schemes have
the same high as the exact solution, thus following it at the same speed. We do not
observe any dissipation. Since both splitting schemes give relative similar results, in
what follows, we will only display the results given by the Strang splitting scheme.
We finally note that all schemes preserve the positivity of the particle density but only
the splitting schemes conserve exactly the invariants from Sect. 7 (these results are not
displayed). Let us conclude this subsection with a loglog plot of the temporal order
of convergence of the numerical schemes. One can see from Fig. 3 that the order of
convergence for the explicit Euler scheme and for the Lie–Trotter splitting scheme is
one and the one for the Strang splitting scheme is two, as predicted by Theorem 18.
The parameters for this simulation are the same as above, except that T = 1 and
Δξ = 0.04.

We finally want to mention that for negative values of γ , smooth traveling waves
with decay also exist. They are obtained if c/γ < m = M < z.

9.3 Peakon (γ = 1)

The Camassa–Holm equation, i.e., Eq. (1) with γ = 1, possesses solutions with a
particular shape: the peakons. A single peakon is a traveling wave which is given by

u(t, x) = c e−|x−ct |.

We note, that at the peak, the derivative of this particular solution is discontinuous.
We set the initial values as

y0(ξ) = ξ, U0(ξ) = u(0, ξ), w0(ξ) = ux (0, ξ),

q0 = 1, h0 = U 2
0 + w2

0, H0 =
ξ∫

−∞
h0(η) dη.
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Fig. 4 Exact and numerical
solutions at time T = 5 for a
peakon. Solid line exact, dashed
line upwind scheme, stars
explicit Euler, diamond Strang
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In Fig. 4, we display the numerical solutions given by the scheme from [1], the explicit
Euler scheme and the Strang splitting for a single peakon traveling from left to right
with speed c = 1, see Fig. 1. For readability reason, we do not display the solution
given by the ODE45 solver, but we note that this numerical solution is very similar to
the one given by the splitting scheme. Due to the discontinuity of the derivative, we
have to take smaller (in space) discretisation parameters: Δξ = 0.05 and Δt = 0.2.
We note more grid-points before the peak and very few just after it, but the speed of
the wave is still relatively close to the exact one. This is not the case for schemes based
on the Eulerian formulation (1), as illustrated by the numerical solution given by the
scheme from [1]. As in the preceding case, only the splitting schemes preserve exactly
the invariants of our problem.

The benefit of computing the solutions via an equivalent system in Lagrangian
variables becomes clear when comparing the upwind scheme, applied to the original
Eq. (1), and an explicit Euler scheme, applied to the system in Lagrangian variables.
We compare these two methods as they have the same order of convergence. Then,
we observe that the explicit Euler scheme—even with a time and space discretisation
step which is ten times larger—gives much better results than the upwind scheme.
This has to be balanced with the fact that the system in Lagrangian variables consist
of six variables instead of one for the original equation. However this disadvantage
becomes marginal as the solution becomes more irregular, as we can see for the cusped
traveling wave below.

We would also like to note, that the order of convergence of the numerical schemes
are the same as for the smooth solution, see Fig. 3. The results are however not dis-
played.

9.4 Cusped traveling waves with decay (γ > 1)

Let us now turn our attention to cusped traveling waves. For γ > 0, according to
the classification given in [21], cusped solutions with c/γ = maxx∈R u(x) and m =
infx∈R u(x) are obtained if z = m = 0 < c/γ < M . This gives us the condition
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c = M and thus γ > 1. The cuspon u(x) satisfies (99), which yields for the indicated
values of the parameters

ux = −√
F(u) = −

(
M − u

c − γ u

) 1
2

u (100)

for x ≥ 0 and with the boundary value at zero given by u(0) = c
γ

. For such boundary
value, the differential equation (100) is not well-posed and the slope at the top of
the cuspon (that is x = 0) is indeed equal to infinity. However, we can find a trip-
let X = (y, U, H) in F which corresponds to this curve, that is, such that (u, u2 +
u2

x dx) = M(X), see (9) for the definition of the map M . The representation of the
curve (x, u(x)) is not unique: For any diffeomorphism (ϕ(ξ), u(ϕ(ξ))), we obtain an
other parameterization of the same curve. Here, we look for a smooth ϕ(ξ) (and we
set y(ξ) = ϕ(ξ)) such that U = u(ϕ(ξ)) = u(y(ξ)) is smooth, even if u is not. We
introduce the function

g(u) = −
u∫

c
γ

dz√
F(z)

.

Since dx
du = − 1√

F(u)
, by (100), if we choose

U (ξ) = c

γ
− ξ, y(ξ) = g(U (ξ))

then we get, at least for ξ ∈ [0, c
γ
], a triplet for which U (ξ) = u(y(ξ)). We set the

energy density by using (7c) and get

Hξ = U 2 yξ + U 2
ξ

yξ

.

However, in this case,

yξ = g′(U )Uξ =
(

c − γU

M − U

) 1
2 1

U

so that Hξ (0) = ∞ and it is incompatible with the requirement that all the derivatives
in Lagrangian coordinates are bounded in L∞(R), see (7a). Thus, we take

U (ξ) = c

γ
− ξ2, y(ξ) = g(U (ξ)), Hξ = U 2 yξ + U 2

ξ

yξ

.

In this case, we have

yξ (ξ) = g′(U )Uξ = 2

U (ξ)

(
c − γU (ξ)

M − U (ξ)

) 1
2

ξ = 2
√

γ

U (ξ)(M − U (ξ))
1
2

ξ2

and
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Fig. 5 The function y(ξ) (left picture) and the function U (ξ). Note that these functions are smooth while
u0(x) is not Lipschitz, see Fig. 1

Hξ (0) = 2c

γ 2 (Mγ − c)
1
2

is finite. The problem we face now is that the functions are given only on the inter-
val [0, c

γ
) and limξ→ c

γ
y(ξ) = ∞. We know that the tail of the cuspon behaves as

u(x) ≈ c
γ

e−
√

M
c x as x tends to ∞, see [21]. Since we require that y(ξ) − ξ remains

bounded, we would like to have U (ξ) ≈ c
γ

e−
√

M
c ξ for large ξ . Therefore we introduce

the following partitions functions χ1 and χ2 defined as

χ1(ξ) =

⎧
⎪⎨

⎪⎩

1 if ξ < a

− 1
b−a (ξ − b) for ξ ∈ [a, b]

0 if x > b

and χ2(ξ) = 1 − χ1, where a < b are two parameters. We finally set

U (ξ) = χ1(ξ)

(
c

γ
− ξ2

)

+ χ2(ξ)
c

γ
e−

√
M
c ξ

and

y(ξ) = g(U (ξ)), Hξ = U 2 yξ + U 2
ξ

yξ

.

By a proper choice of the parameters a and b, we can guarantee that yξ (ξ) ≥ 0 for
all ξ ≥ 0. We extend X (ξ) = (y(ξ), U (ξ), H(ξ)) on the whole axis by parity and
we obtain an element in F such that (9) is satisfied. Figure 5 displays y(ξ) and U (ξ).
Figure 6 displays the exact solution together with the numerical solutions given by
the upwind scheme, the explicit Euler scheme and the Strang splitting scheme at time
T = 6. As before, we note that the numerical solution given by the ODE45 solver
is very similar to the one given by our splitting scheme. The initial value is a cusped
traveling wave with parameters γ = 5, m = 0, M = c = 1, see Fig. 1. For the
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Fig. 6 Exact and numerical
solutions of a cusped traveling
wave with decay. Solid line
exact, dashed line upwind
scheme, stars explicit Euler,
diamond Strang
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Fig. 7 Peakon–antipeakon
collision for γ = 1. Stars
explicit Euler, diamond Strang
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discretisation parameters, we take Δξ = 0.1 and Δt = 0.1. We see that, even for
initial data with infinite derivative ux (0) = ±∞, the spatial discretisation converges.
For the time discretisation, as expected, explicit Euler is less accurate than the other
schemes. Note that he oscillation that appears on the left of the peak will disappear as
the mesh get finer. We also remark that only the splitting schemes preserve the positiv-
ity of the particle density and conserve the invariants. The upwind scheme performs
badly because the solution is not regular. The schemes based on the reformulation in
Lagrangian variables do not suffer of that. We also observe that the order of conver-
gence of the numerical schemes are the same as for the smooth solution, see Fig. 3.
The results are however not displayed.

We finally note that, for negative values of γ , an anticusped traveling wave with
c/γ = minx∈R u(x) and m = supx∈R u(x) is obtained if c/γ < m = M < z.

9.5 Peakon–antipeakon collisions

In Fig. 7 we display a collision between a peakon and an antipeakon for γ = 1.
For this problem, the initial value is given by
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Fig. 8 Peakon–antipeakon collision for γ = 5 at time T = 2 (left) and energy density (right) at the first
time, where the numerical solution given by ODE45 is not positive (q = −1.7394e − 05). Dashdotted line
ODE45, stars explicit Euler, diamond Strang

u(0, x) = e−|x | − e−|x−1|.

The numerical solutions are computed with grid parameters Δξ = 0.1 and Δt = 0.1
until time T = 8. Once again we notice that the spatial discretisation converges. Let
us now see what happens for a peakon–antipeakon collision with γ �= 1. In Fig. 8 we
present a similar experiment as the above one, but where we use γ = 5 and T = 2.
Here, we plot the graph given by the points

(y(t, ξi ),
h

q
(t, ξi )), for i = −N , . . . , N − 1

for t = T . From the right part of Fig. 8 we see that only the splitting schemes preserve
the positivity of the energy density. As always, only the splitting schemes conserve
exactly the invariants.

9.6 Collision of smooth traveling waves

We want now to study the behaviour of the numerical schemes when dealing with a
collision of smooth traveling waves, as this in an important feature of our numerical
scheme to be able to handle such configuration. To do so, we consider the following
initial value

u(0, x) = −xe−x2/2.

Figure 9 displays the exact solution (i.e., the numerical solution with very small dis-
cretisation parameters) for γ = 0.8. It is remarkable to see that even for such solution,
our scheme performs very well. In order to get a better understanding of this problem,
we look at the evolution of the waves with time. Figure 10 shows this evolution together
with a zoom close to the collision time. We now present the results given by the numer-
ical schemes with grid parameters Δξ = 0.25 and Δt = 0.1 in Fig. 11. We have also
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Fig. 9 Collision of smooth traveling waves: Initial datum (left) and exact solution at time T = 11
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Fig. 10 Collision of smooth traveling waves: evolution in time (left) and zoom of the evolution close to
the collision

Fig. 11 Collision of smooth
traveling waves: numerical
solutions at time T = 11.
Dashdotted line ODE45, stars
explicit Euler, diamond Strang
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checked that only the splitting schemes preserve the positivity of the particle density
and conserve the invariants of our problem. Finally, in Fig. 12 we display, with the
same parameter values as above, the evolution in time of the energy density along the
numerical solution given by the Strang splitting scheme. We can observe the concen-
tration of the energy and then its separation in two parts, following the waves. With all
these numerical observations, we can conclude that the proposed spatial discretisation

123



58 D. Cohen, X. Raynaud

−10
−5

0
5

10

2
4

6
8

10
−1

−0.5

0

0.5

1

x

t

h/q

−10
−5

0
5

10

1

2

3

4
0

10

20

30

40

x
t

h/q

Fig. 12 Evolution of the energy density (left picture) along the numerical solution given by the Strang
splitting and close up look at the blow up time (right)

is robust and qualitatively correct. The time integrators are relatively comparable but
only the splitting schemes have the additional properties of maintaining the positivity
of the energy density and conserve exactly the invariants of our partial differential
equation.
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