
University of London
Imperial College of Science, Technology and INIedicine

Department of Computing

Modelling Contracts and Workflows
for Verification and Enactment

Andrew DH Farrell
BSc (Hons 1), T%, lSc (Dis), DIC

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the University of London and

the Diploma of Imperial College, 'March 2008

(

Abstract

The work presented in this thesis concerns some aspects related to the Modelling of Contracts and
Work-flows for Verification and Enactment. Worliflows help coordinate the enactment of business

processes. Lacking in most contemporary approaches to workflow is a formal grounding to the 00
semantics of workflow. A principal aim of this work is to address this shortcoming.

We provide formal characterisations of workflow using a number of formal tools, viz. Milner's

CCS, Cleaveland et al's Prioritised CCS (which we abbreviate to PCCS) and the Situation Cal-

culus (thanks mainly to Reiter), which is based on First-Order Logic. We define the Liesbet

meta-model for workflow to provide a reference ontology for the task of formalisation. We have

also implemented a framework for the verification and enactment of Liesbet workflow models.
Regarding verification, we are particularly interested in the key property of soundness, which is

concerned with an absence of locking and redundant tasks in a workflow model. Our framework

is capable of verifying this property of workflow models, as well as arbitrary temporal constraints

which are constraints whose satisfaction is determined over successive states of enactment of a

model.

It has been widely noted that traditional approaches to workflow are too rigid and brittle to 0
cope adequately with the typical operation of business processes. Thus, there is an evident need to

support workflows; that are able to be flexibly enacted and are better able to cope with exceptional
behaviour. We also seek to address this need.

We make novel use of Hierarchical Task Network (HTN)-based planning techniques in order to

provide a modelling, verification and enactment framework for flexible -. vorkflow. The framework

uses a planner, called Theodore, that we have defined. and implemented in this work. We define

a similar notion of soundness which the Theodore-based framework is able to verify, along with

arbitrary temporal constraints. We also support the modelling of collaborative workflow where

participating agents decide collectively how a prescribed task or process should be realised, as well

as the notion of "what may I do next" querying where an agent is able to reason over which actions
they may do next.

Finally, we have been interested in investigating how concepts inherent in workflow might apply
in the modelling of contracts. To achieve this, we have explicated a new perspective for workflow, 0
namely ail institutional perspective, and define the notion of Institutional Work-flow Modelling

The essence of 1XVNI lies (in part) in the identification that the structure of a workflow

model necessarily entails the existence of counts as relations. These relations prescribe how the

occurrence of certain actions, in the context of a particular -. vorkflow model, count as the occurrence

of other actions. We argue that INNIM should be considered as a foundational basis for contract

modellin-. We have also defined and implemented a framework for INNINI-based contract modelling

iii

verification and enactment, which reuses tools from our framework for flexible ivorkflow at its core.
We make available similar mechanisms for verifying the notion of soundness and arbitrary temporal C,
constraints for contract fragnients, and for performing "what may I do next" querying. 00

Acknowledgement s

To my wife, Natalie, for finding limitless reserves of patience in allowing me to do and complete 00
this thesis. To my (as yet) two children, whose names emblazon my work: Liesbet (Beth) and
Theodore (Theo) - you bring me so much joy and happiness. I love you all very much.

To my loving parents, for your unwavering belief in me. I thank you from my heart. To my

siblings, for making me determined and resolute. To Martin and Mariette, for your continued 00
support and encouragment. 0

To rny supervisor Alarek. Amongst your peers, you stand out as a person of great integrity and 00
ability. You bring humour and humility to an academic world that so often lacks both of these. I 0
am immensely honoured to have had the opportunity to work with you.

To my colleagues within BDINI at HP: Abdel, David, Athena, Alaher, Alathias and Claudio,
I will be forever grateful for the opportunities that you have afforded me, and I look forward to 0
future collaborations also.

To my new colleagues within ESSL at HP, especially Peter, Patrick and John, I thank you for 0
your patience in allowing me to finish working on this thesis, and look forward to a fruitful time

within my new team.

March 2008

V

For Natalie, Beth, Theo and
Forever yours ...

Contents

Introduction 1
1.1 Overview of Areas of Interest 2

1.1.1 Workilow: An Approach to the Automated Modelling of Business Processes 2 0
1.1.2 Providing a Formal Grounding to Workilow

.................. ID 0 5

1.1.3 The Need for Flexible Workilow
........................ 7

1.1.4 Contract Modellin 9

1.2 Contributions and Approach
.............................. 9

1.3 Structure of Thesis 11

1.4 Declaration .. 13

1.5 Publications Contributing to Thesis 0 13

2 Background on Traditional Workflow Modelling 15

2.1 YAWL NNorkflow Patterns
................................. 15

2.1.1 Parallel and Sequence Patterns 16

2.1.2 Choice Patterns 16

2.1.3 Synchronisation Patterns 16

2.1.4 INIultiple Instance Patterns 17

2.1.5 Cancellation Patterns
.............................. 17

2.1.6 Structural Patterns
........... 17

2.2 NVeb Services Business Process Execution Language WS-BPEL 00 18

2.2.1 Start Activities
.................................. 19

2.2.2 Standard Attributes and Standard Elements
................. 19

2.2.3 Information Concerning <f low> Activity Type
................ 19

2.2.4 Link Boundary Crossing Restrictions
...................... 21

2.2.5 -Link
Semantics

.................................. 21

2.2.6 Dead-Pat li-Eliminat ion 21

2.2.7 <scope> Types 22

2.3 Formal Alodelling Approaches for NNorkflow 22

2.3.1 Background Concerning Formal Approaches
.................. 22

2.3.2 Application of Formal Approaches to NNorkflow INIodelling 27

2.4 NN'orkflow Verification
.....................

I............. 30

ix

3 Liesbet Metamodel 33

3.1 Liesbet: An Information View Nleta-model for AN'orkflow
..............

34

3.1.1 Liesbet Fundamentals
.............................

34

3.1.2 Finite State 'Machine for Activity Instances
..................

37

3.1.3 Activity Visibility Horizons
...........................

38

3.1.4 Go and Stop Synchronisation Activity Types
.................

40

3.1.5 Seq and SeqCancel - Sequence and UnorderedSeq - Unordered Sequence
.

41

3.1.6 Par - Pirallel
...................................

42

3.1.7 Activity Join and Transition Conditions
....................

43

3.1.8 Def aultChoice, Choice - Exclusive Choice NN'ith and Without Default
..

44

3.1.9 MultiChoice - Multiple Choice
.........................

44

3.1.10 Def erredChoice - Deferred Choice
.......................

45

3.1.11 Empty
45

3.1.12 FreeChoice
45

3.1.13 Multimerge - Multiple Alerge
..........................

46

3.1.14 Discriminator - Discriminator m from n................... 46

3.1.15 Multi* - i%lultiple-Instance Activities
.....................

46

3.1.16 CancelActivity - Cancel Activity
.......................

48

3.1.17 Exit ..
48

3.2 Additional Constraints on the Intended Semantics for Liesbet
48

3.3 Synchronisation Rules
..................................

49

3.4 Liesbet Constructs as Abbreviations
.........................

51

3.5 Support for YAWL NN'orkflow Patterns
..........................

55

3.6 Alapping WS-BPEL to Liesbet
58

3.6.1 Mapping of Join and 'Ransition Conditions
..................

58

3.6.2 Alapping of Other Activity Types
........................

61

3.7 Concludin- Remarks
................................... 0

62

4 Liesbet Meta-model Examples 64

4.1 Synchronisation Example
................................

64

4.2 Distinct Query Example
............

65

4.3 Insurance Company
...................................

66

4.4 Complaints Handling 67

4.5 '17ravel Agency
68

4.6 Concludin- Remarks
...................................

72
0

5 CCS-based Characterisations of Liesbet 73

5.1 Using CCS to Provide an Operational Meaning to Liesbet
73

5.1.1 Par (Seq(A, B), Seq(C, D)) -A Simple Example
74

5.1.2 `Iýanslation of Liesbetl
78

5.1.3 A Complete Example 87

5.1.4 Model Checking CCS Characterised Liesbetl with Concurrency Workbench 91

5.1.5 Model Equivalence for CCS-characterised Liesbetl
92

5.2 Completion Result for Liesbetl Models 101

x

5.3 Discussion: CCS for Liesbeti 103

5.4 Using PCCS to Provide an Operational Meaning to Liesbet 104

5.4.1 PCCS: Liesbetl 104

5.5 Multi and MultiSeq 110

5.6 A Complete Example of Using PCCS for Liesbetl 112

5.6.1 A lode] Checking PCCS Characterised Lie sbet I with Concurrency lVorkbench 115
5.7 Concluding Remarks 116

6 Situation-Calculus Based Semantics 119

6.1 Introduction to the Situation Calculus jig
6.2 SitCaic-based Semantics for Liesbet 122

6.2.1 Par(Seq(A, B), Seq(C, D)) -A Simple Example 122
6.2.2 Introducing SitCalc-based Semantics for Liesbet 125
6.2.3 SeqCancel 134
6.2.4 Choice 'Iýrpes 136
6.2.5 Dynamic Adding of Activities by Multi/MultiSeq types Z, 141

6.3 Translation of Liesbet Models to SitCaic-based Characterisation
......... 142

6.4 Completion Result
.................................... 144

6.5 Model Equivalence Result
................................ 147

6.6 Concluding Remarks
................................... 153

7 Verification of Liesbet Workflows 154

7.1 Soundness of Liesbet Models
.............................. 154

7.2 Verification Runs and Options for Verification
.....................

155

7.3 Verification of Temporal Logic Constraints
....................... 158

7.4 Algorithm for Verification of Liesbet Models
...................... 161

7.5 Verification Complexity
................................. 162

7.6 Concluding Remarl-s
................................... 163 0

8 Flexible Workflow Modelling 164

8.1 Flexible Workilow Alodellina
........... 0 164

8.1.1 Case Handlin, - Systems CHSs 166

8.1.2 CrossFlow
..................................... 167

8.1.3 Collaboration Mana. gement, Infrastructure (CMI)
............... 167

8.1.4 Wainer and Colleagues
.............................. 168

8.1.5 Organisational Modellin
............................. 169

8.1.6 - Management of Agents
.............................. 169

8.1.7 Access Control to Enterprise Data 169

8.2 Flexible Workflow Modellin- usincr Theodore 170

8.2.1 Hierarchical 'Fask Network (HTN)-based Plannin
................ 170

8.2.2 The Theodore HTN-based Planner
........................ 173

8.3 Verification of and Plannin- over Flexible Workilow Models with Theodore 189

8.4 Concluding Remarks 192

xi

9 Institutional Modelling for tile Modelling of Contracts 195

9.1 Institutional Modelling for Workflow 196
9.1.1 The Essence of Institutional Modellin 196
9.1.2 Institutional Workflow Modelling (AN1, M) 197

9.2 Using INNI'M as a roundation for Normative Modelling 200

9.2.1 Normative Modelling 200

9.3 Contract Modellin 204

9.3.1 A Non-INNIIM Based Approach to Contract Modellin
...............

205

9.3.2 Other Related Work 213

9.4 An Approach to Contract Modelling Based on Institutional Workflow Modelling . 214

9.4.1 Legal Relations in a Theodore-based INNINI Protocol Ragment 215

9.4.2 Event Handling Logic 216

9.4.3 Verification of Contract Fragments 217

9.4.4 Derivation of Obligation Fulfilment 217

9.4.5 Transf erProperty- A Simple Example Pertaining to the'lYansfer of Property218

9.4.6 Further Comments Regarding Example of Mail Service Agreement
..... 220

9.5 ConcIudin- Remarks 0
220

10 ImpIementation

10.1 Eclipse Development Platform and Eclipse Modelling RameNvork .
10.2 Structure of Lie sbet /Theodore FYaniework
10.3 Liesbet Workflow Verification and Enactment Enaine 0
10.4 CTL* Constraint Clieckinc, En-ine

...................
M 1, q'i-d- P-; -

223

223

224

224

227

-m ý . -L Lb -., - -51,11 ***I*I-**I*II""

10.6 Service Selection Engine
.................................

10.7 Knowledge Base

11 Examples of Verifleation

11.1 Liesbet Examples
11.1.1 A Simple Workflow
11.1.2 Synchronisation Rules and Constraints
11.1.3 Simple POR Example
11.1.4 Dead Activity Instances
11.1.5 Deadlock

.....................................
11.1.6 'Ravel Ag-, ent Example, with Cancellation

...................
11.2 Theodore Examples

11.2.1 A Simple Workflow
11.2.2 Transf erProperty Contract with Power (on Vendee)

............
11.2.3 Transf erProperty Contract with No Power (on Vendee)

231
232
232

233

233

233

236

238

238

240

240

241

241

243

247

12 Conclusions and Riture Work 249

12.1 Formal Gromidiiia of ('lYaditional) Workflow, through Liesbet
250

C, 0
12.1.1 Approach

.....................................
250

12.1.2 A Minimal View of Workflow
..........................

250

xii

12.1.3 Comparison of Formalisms for Characterising Liesbet 251

12.1.4 CCS/PCCS-based Characterisat ions 251

12.1.5 SitCalc-based Characterisation
........................ 254

12.1.6 Shoe-horninI 255

12.1.7 An Appropriate Expressivity for Workflow
................... 256

12.1.8 Bespoke Formalism 257

12.1.9 Results Demonstrated for C haract eri sat ions of Liesbet 257

12.1.10Authoring, Verification and Enactment Framework for naditional Workflow 258

12.1.11 Synchronisation Rules -A First Attempt at Flexibility 260

12.1.12Streno, tlis and Weaknesses 260

12.2 A Flexible Approach To Workflow, through Theodore 260

12.2.1 Correspondence to HTN-based Planning 260

12.2.2 Providing Structure with Flexibility 261

12.2.3 Expressivity 261

12.2.4 Meaning Assignable to a Theodore Flexible Workflow Model 261

12.2.5 Authoring, Verification and Planned Enactment Framework for Flexible Work-

flow
.. 261

12.2.6 Stren-ths and Weaknesses
............................ 262

12.3 Workfl ow as a Basis for Contract Modelling, through Institutional Modelling
... 262

12.3.1 Institutional Workflow Modelling (III'Al) as a Foundational Basis for Nor-

niative and Contract Modellin
........................... 263

12.3.2 Mechanism for Relatin- Obligation Fulfilment to Extant Power and Privile-e 263

12.3.3 Authoring, Verification and Planned Enactment Framework for Contracts 263

12.3.4 Stren-ths and Weaknesses
............................ 264

12.4 Future Work
....................................... 264

A PCCS Characterisation - Additional Information 278

A. 1 Cancellation of Basic Instances 278

A. 2 SeqCancel ... 278

A. 3 Synchronisation 'I'ypes 279

A. 4 Model CheckjDg Example 282

A. 4.1 Dead Activity Instance Detection 282

A. 4.2 PCCS Example of Deadlock Detection
..................... 286

A. 5 Support for Non-monotonic and Distinct Reference Queries 289

A. 6 CancelActivity and Exit 291

A. 7 MultiLimit' and MultiLimitSeql 292

A. 8 Multiýerge .. 294

A. 9 Discriminator 295

B SitCalc: Characterisation - Additional Information 297
B. 1 Reinaining SitCaic Characterisation of Liesbet 297 0

B. 1.1 Completion and Cancellation Actions on Childless Structured Instances 297
B. 1.2 Distinct Querying 300
B. 1.3 UnorderedSeq 301

xiii

B. 1.4 Merge Types
302

B. 1.5 CancelActivity and Exit Types
305

B. 1.6 INfultiple-Instance Types
306

B. 2 Augmentations to MSjtc,,, &]
.............................

308

xiv

List of Tables

1.1 Some Principal Business Process Management Languages. Adapted froin [56] 4 0n0

2.1 Some WS-BPEL Activity Types (Section 5.2 of [871)
................... 18

3.1 Satisfaction of YAWL Workflow Patterns [125,641
................ I.. 56

3.2 Mapping of Some WS-BPEL Activity Types to Liesbet 62 C,

9.1 Scenario Unfolds: Stage 1................................ 210
9.2 Scenario Unfolds: Stage 2................................ 210
9.3 Scenario Unfolds: Staae 3................................ 211
9.4 Scenario Unfolds: Stage 4.....................

............ 211
9.5 Scenario Unfolds: Stage 5................................ 211
9.6 Scenario Unfolds: Stage 6................................ 211
9.7 Scenario Unfolds: Stage 7................................ 212

10.1 Definition of prog/3 and prog/2, for Progression of CTL* Propositions Through 00
States

.. 230

xv

xvi

List of Figures

1.1 Taxonomy for Workflow [70] 3
1.2 An Example Workflow Model 3

2.1 Simple Workflow Model
................................. 19

2.2 WS-BPEL Representations of the Simple Workflow NIodeI
...............

20

2.3 An Example Petri net 23

2.4 AND-split/join and XOR-split/join
........................... 28

3.1 EBNF Definition of Liesbet Easy Syntax
....................... 35

3.2 Simple Workflow Model
................................. 36

3.3 Isolated Scopes in Operation
.............................. 38

3.4 Reference Types in Operation
.............................. 39

3.5 Process Fragment Capturing Some 'Fricky WS-BPEL Link Semantics 61 00

4.1 Synchronisation Example [122]
............................. 65

4.2 Distinct Query Example
................................. 65

4.3 Insurance Company NN'orkflow as a YAWL ENU-net, from [8]
.............

66

4.4 Complaints Handling Workflow as a YAWL ENNIF-riet, from [8]
............

67

4.5 IYavel. Agency I Workflow as a YAWL ENNIF-iiet, from [8]
............... 69

4.6 Travel Agency 11 Workflow as a YAWL EWF-net, from [81
............... 70

4.7 Travel Agency III Workflow as a YAWL ENNIF-riet, from [8]
.............. 71

5.1 Par (Seq(A, B), Seq(C, D)) - SimpIe Workflow Model 74

6.1 Enactment State 0 of Par(Seq(A, B) Seq(C, D)) 123
6.2 Enactment State 1 of Par(Seq(A, B) Seq(C, D)) 123
6.3 Enactment State 2 of Par(Seq(A, B) Seq(C, D)) 123
6.4 Enactment State 3 of Par(Seq(A, B) Seq(C, D)) 123
6.5 Enactment State 4 of Par(Seq(A, B) Seq(C, D)) 123
6.6 Enactment State 5 of Par(Seq(A, B) Seq(C, D)) 124
6.7 Enactment State 6 of Par(Seq(A, B) Seq(C, D)) 124
6.8 Enactment State 7 of Par(Seq(A, B) Seq(C, D)) 124
6.9 Enactment State 8 of Par (Seq(A, B) , Seq(C, D)) 124
6.10 Enactment State 9 of Par(Seq(A, B) Seq(C, D)) 124
6.11 Representation of Par(Seq(A, B), Seq(C, D)) in SitCalc 126
6.12 SitCalc roundational Axioms for Workflow

......... I............. 127

xvil

6.13 Depiction of AlMescSiblingsFinished/3
129

6.14 Depiction of ExecuteNextChild/4
130

6.15 Executable Situation JYee for Par(Seq(A, B) Seq(C, D))
133

6.16 Depiction of PropagateCancelUp/4
135

6.17 Depiction of Cancelling Guard/Continuation Instance in Choice Type I...... 137

6.18 Depiction of Cancelling Guard/Continuation Instance in Choice Type II
......

138

6.19 Depiction of Completing Guard in Choice 'Iý, pe
139

6.20 Operation of Msiic,, I, J-] on Par(Seq(A, B), Seq(C, D))
143

6.21 Action 'IYee for Elaborated Characterisation of UnorderedSeq
150

6.22 Identical External Impact of Seq chara ct erisat ions
152

7.1 Verification Algorithm for Liesbet
161

0

8.1 Theodore Planning Framework
174

8.2 Criteria for Alethod-Realised Decomposition
179

8.3 First Decomposition Step for transf er-two-containers Task
180

8.4 Criteria for Complex Operator-Realised Decomposition
181

8.5 Further Decomposition Steps for transf er-two-containers Task
..........

182

8.6 Criteria for Operator-Realised Decomposition
183

8.7 Alternative Decomposition Steps for transf er-two-containers Task (1)
...... 184

8.8 Alternative Decomposition Steps for transf er-two-containers 'rask (II).
.... 185

8.9 Definition of soIj (n, kb, it, t, T.).............................. 186

8.10 Theodore Planning Algorithm
..............................

187

8.11 Output from Verifying a Theodore Planning Problem
191

9.1 Holifeld's Jural Relations
202

9.2 Relationship between ECSrA and Contract Visualiser
210

9.3 Final Stage of Mail Service Scenario
212

10.1 Theodore (left) and Liesbet Class Models
225

10.2 CTL* Constraint Checker Class Model
228

11.1 Par(Seq(A, B), Seq(C, D)) as Authored in ENIF
234

11.2 Par(Seq(A, B), Seq(C, D)) Verified Using Liesbet Verification Engine 234

11.3 Par(Seq(A, B), Seq(C, D)) Verified Using Liesbet Verification Engine, with por
Enabled ...

235

11.4 Par(Seq(A, B), Seq(C, D)) Verified Against a Given Constraint, with Synchronisa-

ti6n Rule ..
235

11.5 Par(Seq(A, B), Seq(C, D)) Verified Against a Given Constraint, Without Synchro-

nisation Rule ..
236

11.6 A Liesbet Model with Isolated Scope, and Potential for POR in Verification. .. 237

11.7 Output froin Verifying the Model Presented in Figure 11.6, Using Liesbet Verifi-

cation Engine, with por Enabled
237

11.8 Output froin Verifying a Model with a Dead Activity Instance
238

xvill

11.9 Output from Verifying a Model with a Source of Deadlock, and a Variant with the

Deadlock Removed
.................................... 239

11.100utput from Verifying a Liesbet Representation of the 3rd navel Agent Example

from Section 4.5 240

11.110utput from Veriý, ing a Theodore Representation whose Initial Task Network De-

composes to the Simple Workflow Model: Par(Seq(A, B), Seq(B, C)) 242

11.12Theodore Representation of the Transf erProperty Contract, Containing the Power

on the Vendee
....................................... 244

11.13AG (Completed-act (Payments) --+ Completed-act (Transf erProperty)), as Au-

thored in EINIF
...................................... 244

11.140utput from Verifying the Theodore Representation of the Transf erProperty Con-

tract, Containing the Power on the Vendee 245

11.150utput from Verifying the Theodore Representation of the Transf erProperty Con-

tract, NOT Containing the Power on the Vendee
.................... 246

11.160utput from Verifying the Theodore Representation of the Transf erProperty Con-

tract, NOT Containing the Power on the Vendee (ii)
................. 247

12.1 SPIN Output for Example Liesbet Model
........................ 259

12.2 Graphical Representation of Example Liesbet Model 259

B. I. InScope/5, Defining Visibility Horizons 299 C,

xix

xx

Chapter I

Introduction

This thesis concerns some aspects related to the Modelling of Contracts and Work-flows for Ver-

ification and Enactment. The term workflow (as will be elaborated) pertains to the automated

embodiment of business processes. Lacking in most contemporary approaches to workflow is a 0
formal grounding to the semantics of workflow. A principal aim of this work is to address this

shortcoming.
It has been widely noted (as we describe below) that traditional approaches to workflow are

too rigid and brittle to cope adequately with the typical operation of business processes. Thus,
there is an evident need to support workflows that are able to be flexibly enacted and are better

able to cope with exceptional behaviour. We also seek to address this need.
Finally, we have considered it of interest to see how our research on workflow might be reused

in other contexts. We have long field an interest in the modelling of contracts, such as agreements
between service providers and customers, which are in some contexts known as Service Level
Agreements [681. We are interested in investigating how concepts inherent in workflow, and thus 00
how workflow modelling techniques, might apply in the modelling of contracts. Studying contract 00C, 0
modelling has also been of interest in itself, irrespective of how Ave might reuse our other work. 00

In summary, the aims of the work described in this thesis are to address the issues of-

9 Providing a formal grounding of workflow. 006

*A inore flexible approach to workflow.

e How workflow concepts might apply in tile modelling of contracts, and looking at the mod- 0 el 0
elling of contracts generally. 00

In order to realise these aims, we have carried out a diverse array of investigative work. AVC

will elaborate on what we have done in the course of this introduction, which has tile following

structure. Firstly, we provide an overview of the areas of interest in our work. Then, we outline the

contributions of this thesis, followed by a description of the structure of the thesis. It is in these

two sections that the reader should get a flavour of how we have proceeded to realise our aims. We

conclude tile chapter with a declaration of originality and a list of publications contributing to the 00
Nvork described herein.

1

2 Chapter 1. Introduction

1.1 Overview of Areas of Interest

In this section, we start by looking at what is workflow, and how we might provide a formal

grounding to it. We then look at the need for flexible workflow modelling, followed by a brief
t' 00
synopsis of contract modelling.

1.1.1 Workflow: An Approach to the Automated Modelling of Business

Processes

NVorkflows are primarily concerned with the co-ordination of tasks comprising business processes.
The operation of companies and organisations is characterised by a number of business processes
that need to be carried out in a way that is strategically aligned with the objectives of the business.

The Workflow IManagement Coalition (NNTAIC) defines a business process to be "a set of one or more
linked procedures or activities which collectively realise a business objective or policy goal, normally

within the context of an organisational structure definin- functional roles and relationships" [136).

Business Process Management (BPI\I) is a term that has been used to refer to "aligning business

processes with an organisation's strategic goals, designing and implementing process architectures, 000 10
establishing process measurement systems that align with organisational goals, and educating and 00000
organising business managers so that they will manage processes effectively" [2]. In [74], BPI\l is

000
described as "process technolog enhanced with process management capabilities, implemented in

ly 0
a way that is appealing to business users". Although BPNI tends to be a term that is differently

applied, the consensus behind its use seems to be the notion of a managed automation of business

processes, where the management generally is meant to align the enactment of a process to the

objectives of the (business) enterprise.
Work-flow technologies [62,50) have become a key enabling technology for the implementation of

BPNI. They handle the co-ordination of activities in a business process by initiating their execution
through assigning agents at appropriate times to carry out the work. The term work-flow is defined

by the WFMC to be: "[tilie automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to another for action, according
to a set of procedural rules" [1361. Note that the term work-flow model refers specifically to the

machine representation of a business process.

The Ian-uaae used to express a workflow model is commonly referred to as a workflow Ianguage.
In the context of formalising such languages, the term work/low meta-model, or work-flow ontology,
is commonly used to refer to the collection of constructs used to represent a workflow model.
Finally, the term work-flow management system (WfAIS) (a. k. a. process engine) is used to refer to
the engine responsible for executing workflow models.

Referring to Figure 1.1, a distinction can be made between different sorts of workflows based

on their repetition, that is, how frequently a particular workflow is enacted by an enterprise [70].
Highly-repetitive workflows are called production work-flows, after the metaphor of a production
line. Less repetitive workflows are often called collaborative work-flows, capturing the notion that
they come about through ad hoc collaborat ions. Both sorts of workflows may be of high value to

a business. Notably, workflow technologies have focussed on providing automation for production C3 C,
workflow. In the literature, this sort of workflow is also known as traditional work-flow. It is the

processes to which such workflows correspond that implement the core business of the company;

LL Overview of Areas of Interest 3

r"y" Collaborative
Document creation

Business Brand Management
Value

I

Ad hoc
Review/ Approval
FYI Routing

Lowl
Low Repetition

Figure 1.1: Taxonomy for Workflow [70].
0

Par

Figure 1.2: An Example Workflow Model.

----p- High

and it is their efficient execution that provides a company with its competitive edge [70].

It is often convenient to divide the description of production workflows into several different

perspectives. There have been several suggested taxonomies for -, vorkflow perspectives, e. g., [62,

120]. We follow the one presented in [120]. Here, Van der Aalst describes a number of different

perspectives, but we shall concentrate on just two - the control and data perspectives. Automation,

through workflow technologies, has focussed primarily on these two perspectives. The control

perspective is arguably the most important in the definition of a -. vorkflow model. It is concerned

with the definition of a (partial) ordering by which activities should be executed (by a IWAIS).

Figure 1.2 is all example of a -, vorkflow model defined at the control perspective. In the example,

activity A is executed first. Once tile execution of A has completed, the execution of two sequences
is initiated, in parallel. The first sequence consists of activities B and C, tile second of D and E.
When initiation of the sequences occurs, tile execution of B and D, respectively, is initiated (at

the same time)". It ma occur that B and D do not complete together, but, as soon as either does y0

complete, tile next activity in its containing sequence is executed, i. e. C (following B) or E (following

D). Once either C or E completes, its containing sequence also immediately completes, and, once
both sequences have completed, not necessarily at the same time, execution of their containing

parallel artefact immediately completes. Then, once this occurs, the execution of activity F is

initiated, and, once that completes, execution of the workflow model completes.
The data perspective is concerned with the management of data during the enactment of the 0 C,

Production
Claims Handling
Loan Processing
Accounting

Administrative
Travel expense reports
Purchase Approvals

4 1. Introduction

I Name I Organisation I Typ

Business Process Modelling Notation (BPTNIN) [241 BNII Notation

UNIL Activity Diagram [46] O', \ IC Notation

WS Business Process Execution Language (WS-BPEL) [87] OASIS Orchestration

XML Process Definition (XPDL) Language [1351 WfNIC Orchestration

XLANG [103] Microsoft Orchestration

Web Services Flow Language (NN'SFL) [69] IBNI Orchestration

Web Services Choreography Interface Language (NN'SCI) [129]
0 -

NN13C Choreography 0 rNN
'ebServices Choreography Description Language (WS-CDL) [137]

1
NN3C Choreo graphy

Table 1.1: Some Principal Business Process Management Languages. Adapted from [56]. 000

workflow model. We can define two types of data: control and application (or production) data.

Control data is used to evaluate branching conditions, or, more generally, is used by the NNTIMS

to determine how execution should proceed [13]. It is usually declared, or allocated, within a

workflow model, and its scope of existence is the workflow model. It is simply meant to control
the enactment of the model. Application data, on the other liand, is data that primarily exists

outside of the model, but is imported and used by the model. For example, in the case of workflow

models, such data may be documents, forms and tables [120]; or, in the case of service composition
(see below), such data would be that sent and received in messages that are exchanged between

services [13).

Production workflows may be encapsulated as Web Services in order to make their functionality

readily available to other business logic within the same company, or within another company. Web

services are a key enabler of the Service- Oriented Architecture (SOA) [86]. They can be invoked

by applications or other web services using standardised XMIbased Internet protocols, such as
HTTP, SOAP, ANISDL and UDDI [32]. The SOA is a proposed means of improving the agility

and competitiveness of enterprises - business logic may be packaged as components, with standard
interfaces, and dynamically composed to provide new services which add value to a business' port-
folio. lVeb services are proposed as "the cornerstone for architecting and implementing business

processes and collaborations within and across organisational boundaries" [861. NN13C defines a

web service as "a software application identified by a URI, whose interfaces and bindings are ca-

pable of being defined, described and discovered as XNIL artefacts. A Web service supports direct

interactions with other software agents using XNIIbased messages exchanged via Internet-based

protocols" [139].

Web Services Composition (NNISC) is a principal aspect of the Web Services frainework, where

composite (web) services may be created by inter-connecting deployed web services from potentially

many different service providers. WS-BPEL [87] is a popular standardised language for (web)
C, 0

service composition. A composition is the equivalent of a workflow model in the context of SOA.

Just as for a workflow model, a composition is concerned with the co-ordination of activities and
the data that passes between them, except that these activities are now packaged as web services.
As compositions and workflows share many similarities, they are typically discussed to. gether when
talking about business process modelling

1.1. Overview of Areas of Interest 5

An important distinction should be made between Web Services Orchestration (NNIS-ORCH)

and Web Services Choreography (NNIS-CHOR). WS-ORCH is concerned with definiD., composite
web services from web services that may belong to the same enterprise, or many enterprises.
WS-CHOR is concerned with defining, collaborations between web services [86,1331. NNIS-ORCIls

are typically viewed as under-writing NAIS-CHORs, or facilitating the driving of IN'S-CHOR-style
interactions across enterprise boundaries. That is, the WS-ORCH is the private, end-point, or
local, perspective of the operation of a business process, which will need to support the public,

, grIobal view (NNIS-CHOR) of the collaboration between the business process and others. In this
work, we are solely concerned with Web Services Orchestration. An example of a WS-ORCII
language is NA'S-BPEL [871. An example of a NNIS-CHOR language is NNIS-CDL (Web Services
Choreography Description Language) [1371.

In Table 1.1, we present a summary of some of the principal languages for BPT%l, pertaining to
both workflow and service composition specification.

1.1.2 Providing a Formal Grounding to Workflow

In our work, we are interested in providing a formal -, rounding to workflow. In order to do so, 0 C,
it is incumbent to attempt to understand the true nature of workflow, and its representational

requirements, so that we may have a point of reference for any formal characterisation. In doing

this, it is worthwhile being minded of an important distinction between various abstractions or
views of workflow that may be used by different people or pieces of computer lo. ic.

* Presentation view: Business managers, executives, customers.

Authoring view: Business analysts and process authors - i. e. those responsible for captur- C,
ing/authoring workflows. This view would have an associated ontoIog whose constructs 00 Oy
would be considered to be intuitive to a process author. The ontolog would most likely

OY
be graphical in nature. For instance, Figure 1.2 might constitute a workflow model defined

using such an ontology-

e Information view: Serialisation (or file) format and reference point for the computational view
(see below), in that it fixes the sufficient and (as much as possible) necessary representational

requirements of the modelling approach. Note that in some modelling approaches, it may 00
be appropriate to divide this view into two, along these two themes. However, we have not

needed to make such a distinction in our modelling approach. 0
Note that the information view will typically be closely aligned to the authoring view (for

C, 0
ease of mapping between the two views) and will, as a consequence, make similar ontological 00
commitments to that of the authoring view, albeit they will likely be represented by distinct

ontoloaies. 0

Computational view: Process engine, or the process engine implementer.
(a. (b. c. sjd. e. sj-ff. -9. f))\jsj might be a computational view of a particular workflow 0
model, such as the one illustrated in Figure 1.2, where the ontology used would be CCS/7, -
calculus-likel.

'It is not important, at this stage, for the reader to necessarily understand the presented CCS process term. Just
to know that it is a possible representation of the model presented graphically is sufficient.

Chavter I. Introduction

Primarily, the computational view will define an ontology to provide a semantic characterisation

of the ontology defined at the information view. That is, the computational view fixes the precise

meaning of workflow models, by providing a semantic characterisation of information view models.

The definition of the computational view will be facilitated by the use of some formal too], such

as Petri nets or CCS/7, calculus.

A computational view workflow model may be directly executable by a workflow engine; that

is, the engine may directly understand and execute Petri nets or CCS/-,, -calculus. In this case,

a translator will map models serialised using the information view format to the computational

view. Or, as the computational view fixes the meaning of models, an engineer may implement

a process engine capable of understanding models written at the information view, and ensure C, 0
their enactment according to computational view semantics. In either case, it is imperative that

the computational view provides an intuitive and tidy characterisation of the information view

ontology-

The authoring, information and computational views of a workflow model may be represented

using the same ontology or using distinct ontologies. An example of the former is the use of

Petri nets for workflow modelling where the same formal too] is used for all views. In the case

where there are distinct ontolouies for different workflow views, it is typical for the information

and authoring views not to be defined formally, i. e. using some mathematical formalism. Rather,

they will usually be abstracting syntaxes, or ontologies, for the computational view.

The existence of the computational view is important for precision and robustness in the def-

inition of workflow models, and for verifying properties of workilow models, such as workflow

soundness (see below). It is a notable characteristic of most workflow languages that they lack

a robust semantics [121], which would be provided by the computational view, and a notable

characteristic of most commercial workflow products that they have no support for verification of

workflow models.
Indeed, recently, the lack of formal models for such languages has become a contentious issue in

workflow. Correspondingly, there has been a lot of confusion regarding the role of formal methods

per se. In fact, as Van der Aalst explains: '*[ilt seems that formal methods are used to advertise
languages rather than to improve their quality and applicability" [122].

The lack of any solid notion of a formal semantics - even for the control perspective - has not
been helped by the main contributor to the standardisation process for workflow: the Worliflow

Management Coalition (WRI IC). As [1241 notes: "[t1he lack of a forinal semantics [for tile work-flow

constructs defined by tile WBICI has resulted in different interpretations by vendors of even basic

control flow constructs, land] definitions in natural language such as provided by AVRI IC are not 00
precise enou-, h. " 0

The importance of a well-defined formal model for a workflow language is clear. It is only with

such a model that we can go on to prove desirable properties about workflow models that have

been specified using the associated workflow language.

Workflow soundness [120] is an essential property of the control perspective, corresponding to

an absence of certain deficiencies which would compromise the behavioural integrity of a Nvorkflow

model. These deficiencies are locking and redundant tasks, which can quickly creep into workflow

models as they are being defined. As [120] says: "errors [in the definition of workflow models] may
lead to angry customers, back-log, damage claims, and loss of goodwill". It is important, therefore, C, 0n

]. I. Oterileii, ofAreisofIiitere. st

that soundness of ivorkflow models is verified prior to model deployment.

In this thesis, we are concerned with capturing the computational view of workflow as an end
in itself, as well as for facilitating the verification of workflow properties. For these purposes it

is also appropriate to define an information view ontology, to serve as an abstract syntax which

can, on the one hand, act as a serialisation syntax, and on the other hand, act as a reference point
for the computational view ontology to target. Its primary purpose, however, is to fix concisely

what we are concerned with representing. As a result, it may closely resemble an authoring view

ontology - which we do not define in this thesis.

We have been interested in investi-atin- the use of existin- formal tools and Ian-ua-, es for the

characterisation of the computational view of workflow, as we describe in the Section 1.2. There

are a number of advantages to such an approach, including: 00

The availability of accompanying, tools provides a means of quickly validating characterisa-
tions.

9 They provide a quick means of specifying characterisations, in that one is freed from think- 0
ing about defining an appropriate representational device, and may concentrate instead on 00
thinking about the appropriate semantics for (in this case) workflow. 0

ip The characterisation of workflow can be used as a vehicle for understanding the representa-
tional weaknesses of these formal tools and Ianguages, in the sense of how efficacious they 0
are in characterising workflow in a succinct and clear way.

We define mapping functions, which translate workflow models specified at the information

view into models specified at the computational view. It is the definition of the mapping function,

together with the semantics of the pertaining computational view ontology, which are constrained by

the mapping function, that define a semantic characterisation of the information view meta-model.
Finally, the ontological commitments that any approach to business process modelling makes

should be sourýed from an understanding of the behavioural nature of business processes. Members

of the BPIM community have previously set about characterising the behavioural nature of business

processes, in the form of the YAWL (Yet Another Work-flow Language) workflow patterns [125,126,

123,64). We have used these patterns as a basis for modelling in our work.

1.1.3 The Need for Flexible Workflow

Although workflow technologies are generally considered to be an important tool for most business

enterprises, it is notable that their deployment has been limited to the support of simple and well-
defined business processes. It has been questioned whether workflow, with its roots in characterising

maim fact uri iia processes and consequential rigid pre-defined control structure, is suitable to be

applied to the representation of business processes generally [961.

Workflows and WRI ISs have problems dealing with exceptional circumstances constituting de-

viations from the set workflow. Often in contemporary WRT ISs, the only way to handle change is
to circumvent the system by going "behind its back". However, "if users are forced to bypass the
NMI IS quite frequently, the system is inore a liability that an asset" [127].

It is possible in some (mainly academic NNIRT ISs) to specify exception handlers for so-called

expected exceptions [28]. Expected exceptions, according to [251, are: "'those anomalous situations C,

Chaoter 1. Introduction

that are known in advance to the Nvorkflow desi-ner". Provision can be made in the specification 0
of a workflow for this kind of exception. Often this provision will be in the guise of active rules 0

(a. k. a. Event Condition Action (ECA) rules), as these exceptional situations cannot be efficiently
modelled and handled within the flow structure [25).

Notwithstanding the very few commercial NNIRT ISs providing some support for handling expected
exceptions, it is notable that thevast majority of commercial systems can only handle very simple
exceptions, such as task deadline expiration. Instead, the workflow designer is forced to model
exception handling using the flow constructs provided by the WfMS, which is not efficient, and
will most often lead to spaglietti-coding [27].

Another type of workflow exception is unexpected exceptions. These, rather self-explanatorily,
are exceptions that the workflow designer has not anticipated. They are typically handled by 0
halting process execution and modifying the workflow definition at the scherna or instance level in 0 C,
order to make it consistent with the actual process it represents [27].

In handling expected exceptions through active rules, or in handling unexpected exceptions
through stopping the workflow execution, some academic NNIRT ISs support the notion of flexible

workflows through allowing manual changes to the workflow definition at run-time. This form of
workflow flexibility constitutes a significant research effort within the workflow community, see,
for example, [39,26,95,134,36,1191. A variant on this notion is elaborated in [35,73,105],

wherein flexibility stems from the capability, at run-time, to determine how a workflow (according

to constraints) may be glued together using a selection of work-flow fragments. ID 0 4n
In our work, however, we are interested in a kind of workflow flexibility that has been proposed in

just a handful of academic research efforts, including: CrossFlow [55], Collaboration Management

Infrastructure (CMI) [107,51], Case Handling [127,16,961, and work by Wainer and colleagues
[131,132). The notion is to build flexibility into the specification of a workflow, rather than

specifying a rigid control structure that is to be followed at all costs. 00
Such flexibility means that, for any workflow instance, at any stage of its enactment, there will

be potentially many possible path continuations that may be pursued, any of which represents a

correct execution of the workflow. It is important not to confuse this sort of flexibility with the

possible path continuations that may exist within a traditional workflow specification. In the case

of traditional workflow, (it is usually the case that) only one path continuation is possible at any

one time. Which continuation is chosen depends on conditions that are specified on the branches

that come out of the current activity. In the flexible workflows that we are describing here, many

possible path continuations may be possible. Which is chosen depends on some criteria that are

applied during workflow enactment. For example, we may have a set of operational policies that

serve to constrain, or direct, the enactment of a workflow instance. Which path continuation is

chosen, at any one time, may be the one that best satisfies these policies.

This idea is neatly encapsulated by the slogan: Flexible lVork-flow = Abstract Model + Policies

for Refinement. That is, we define workflow in terms of a relatively abstract and flexible artefact,

which is grounded by the use of applicable policies. We identify a correspondence between the

refinement of abstract workflow to concrete workflow, through the use of a set of rules, and the

operation of a Hierarchical Task Network HTN-based planer, which refines abstract task networks
to concrete ones, through the use of decomposition rules. In identifying this correspondence, we

are able to make use of an HTN-based planner to effect flexible workflow verification and planning.

1.2. Contributions and Armroach 9

Our flexible workflow modelling approach also provides support for collaborative work-flows, where 0
agents are endowed with the capability to decide collectively how a prescribed task or process C,
should be realised.

1.1.4 Contract Modelling

In the field of contract modelling, there have been a number of research contributions, such as
[82,115,34,33,81,88,22,89,75,93], which have attempted to address the modelling of contracts
for a number of purposes including automating reasoning over them. Common to all of them is

the identification of normative concepts in contracts.
Rom [5], a norm may be defined as: "a principle of right action binding upon the members of

a group and serving to guide, controllor regulate proper and acceptable behaviour". A normative

concept is a conceptualisation of a norm. Obligation, Permission, Power, Entitlement are common
examples. (See also [63,92].)

In order to explicate a means by which our work oil workflow modelling may be reused in the

context of contract modelling, we identify a new perspective for workflow, namely an institutional

perspective. We call our institutional account of workflow Institutional Work-flow Modelling (IWAI).

The institutional perspective draws out the concepts of counts as and permission which we argue

are inherent in workflow. The concept of count as, as [631 identifies, is closely related to the

legal/contractual concept of power, in prescribing how powers may be exercised, arguably the

most important and useful aspect of tile concept.
Through identifying tile institutional concepts of counts as and permission in workflow, which 00

quite naturally map respectively onto the notions of power and permission, or privilege, in contracts,

we are able to propose a way in which IWINI may be reused in the modelling of contracts. Moreover,

we argue that INNINI should be considered as a foundational basis for both normative and contract

modelling.

1.2 Contributions and Approach

We consider the contributions made by this thesis to be ten-fold, viz.
so, we 1) We address the issue of providing a formal grounding; to traditional workflow. In doin., ?Dt,

contrast the suitability of a number of formal tools for this purpose, namely:

" Milner's Calculus of Communicating Systems (CCS) [78,80]
0

" Cleaveland et al's Prioritised CCS (PCCS) [30,29], which we shall call PCCS for conve-

nience

" Situation Calculus (SitCalc) [76,77,98], based on First-Order Logic (FOL)
0

We chose these formalisms as they provide an interesting contrast in approach when used 0
for modelling -. vorkflow, as will be elaborated in later chapters.

A key motivation in addressing the issue of formal modelling of workflow was to facilitate
00

verification of workflow models, as well as providing a point of reference for implementing

workflow engines. As described in the previous section, the verification of workflow models is
0

crucial in order to avoid costly errors in deploying workflow.

10 Chapter 1. Introduction

We have sourced the represent at ional requirements for our formalisations from the need to
be able to represent the YAWL patterns [125,126,123,64], which is a key benchmark in the
field of research in Business Process Management (13PINI), as well as being able to represent the

control flow perspective of WS-BPEL, which is the primary NAIS-ORCH language today.

2) We have provided an authoring, verification and enactment framework for traditional workflow
based on our formalisation. As van der Aalst and colleagues argue [1231 "any proposed language

should be supported by at least a running prototype in addition to a formal definition". We

are of the same opinion, and thus considered it essential to provide such a framework.

3) We have identified a reduced set of workflow patterns, using which (we have shown) all others

may be represented, which we believe is a first to be published. Being able to propose such a

set enables us to articulate the true nature of workflow and its fundamental represent ational

requirements, which is an important result.
4) We have demonstrated a number of important results using our formal characterisat ions of

traditional workflow.
5) NVe have proposed a characterisation of flexible workflow to be: Flexible Work-flow = Abstract

Model + Policies for Refinement, in order that we are able to support a more flexible approach
to workflow, including support for collaborative work-flows. In doing so, we have identified a cor-

respondence to Hierarchical Task Network (HTN)-based planning. This enables us to recommend
the use of an HTN planner for the verification and planned enactment of flexible workflows.

6) NVe have implemented our own HTN-based planner, which in itself is a useful contribution as it

provides many novel features.

7) NVe have provided an authoring, verification and planned enactment framework for flexible

workflow, which uses our HTN-based planner at its core. The term planned enactment means
that a domain expert may plan the enactment of an abstract workflow through policies that

are made available for its refinement.
8) NVe have proposed a new perspective of workflow, namely an institutional perspective. We call

our institutional account of workflow Institutional lVork-flow Modelling (INVNI). The institu-

tional perspective draws out the concepts of counts as and permission that we consider to be

inherent in workflow. By drawing out these concepts, we are able to identify how workflow C,
may be reused in other contexts. We consider our institutional interpretation of workflow to be

novel.
9) We have been keen to see how our work on workflow modelling might be usefully applied

elsewhere. By drawing out institutional concepts inherent in workflow, we have been able to

propose how workflow may be used in the modelling of contracts. We assert that INNINI should be

considered as a foundational basis for both normative and contract modelling. Our INVINI-based

view of contract modelling is novel, and we consider it to be an extremely useful contribution
to the field of contract modelling.

10) We have provided an INVINI-based frainework for contract authoring, verification and (planned)

enactment.

1.3. Structure of Thesis II

1.3 Structure of Thesis

The structure of this thesis is as follows. In Chapter Two, we present a comprehensive overview of
work that has been carried out regarding the modelling of traditional (i. e. production) workflows.
This provides important contextual information for the presentation of the remainder of the thesis.

In Chapter Three, we define a ineta-model for workflow called Liesbet, which constitutes an
information view abstraction of, or ontology for, workflow. In defining Liesbet, we have sought
to understand tile true nature of workflow, and thus the fundamental concepts that need to be

represented. We are then able to use this information view of workflow as a point of reference
for computational view formalisations of workflow. The representational requirements for Liesbet
have been sourced from the need to be able to represent the YAWL , vorkflow patterns, as well as
the control flow aspects of business process languages, such as WS-BPEL [871.

In this chapter, we also take our first step towards greater flexibility in workflow models through
the proposal of Synchronisation Rules. In contrast to tile view of flexible workflow that is principally

espoused in this thesis (i. e. abstract model + policies for refinement), the appropriate slogan in

this instance is more Flexible lVork-flow = Concrete Model + Policies for Constraint. That is

to say, the initial model is fully-specified and tile policies (i. e. synchronisation rules) constrain
enactment. The model may contain many possible enactment paths (in contrast to traditional

workflow, where typically only one will turn out to be possible). Which of tile multiple paths is

chosen is constrained by the policies.
Later in Chapter Three, we present a reduced set of patterns with which (we show) all patterns

may be represented. This is a useful result as it enables us to propose the true nature of workflow
to be this reduced set. We propose the reduction at the level of tile Liesbet meta-model. That is,

we define equivalences for the remaining constructs as definitions which make use only of constructs
from the reduced set. These equivalences are argued (and shown) to be sound in Chapter Six.

We finish the chapter by showing how Liesbet captures all of the YAWL patterns, as well as
describing its support for modelling the control flow perspective of WS-BPEL.

Chapter Four shows flow Liesbet can be used to represent some examples of workflow pro-
posed by members of the BPNI community. These chosen examples have been suggested as bench-

marks by which ontologies for workflow should be evaluated. The also provide a good coverage 0y00
of Liesbet's constructs, thus providing some examples for the interested reader to understand the

operation of the patterns.
In Chapter Five, we present our proposed CCS-based characterisations of the operational

semantics of Liesbet. We selected CCS/PCCS for two reasons:
1) There has been quite a lot of talk within the BPAI community as to whether Petri nets or CCS/7,

calculus is better suited for the characterisation of workflow, and specifically the YAWL patterns
[122]. While we do not seek to compare these two formalisms at length, by characterising YAWL

with CCS we are able to provide a contribution to this debate from one perspective. Note that

we do present some points regarding their respective suitability at the end of Chapter Five. 0 ID
2) The operational semantics of CCS/PCCS (in terms of facilitating compositional specifications

of behaviour) should lend themselves quite well to the representation of workflow, and this is a
point Ave seek to investigate.

Ultimately, we conclude that while CCS/PCCS is able to capture certain aspects of semantics
of Liesbet well, it is deficient in being able to capture st raight forwardly the additional constraints 00

12 Chapter 1. Introduction

specified for the intended semantics of Liesbet which are described above, and in Chapter Three.

In Chapter Six, Ave present our Situation Calculus-based characterisation of Liesbet. A

motivation for investigating the use of the Situation Calculus was that, as a logic-based formalism,

it is quite different to a process algebra based approach for characterising the behaviour of dynamic

systems. Moreover, we felt that certain aspects in which CCS/PCCS may be deficient may be better

addressed using the Situation Calculus, such as capturing the additional constraints to the intended

semantics. This intuition proved to be sound. It is interesting to note that the shortcomings of

using CCS/PCCS tend to be advantages when using the Situation Calculus and vice-versa, and 0 4: 1 0
thus presenting both in this thesis provides an insightful contrast. At the end of Chapter Six, -%ve

provide a discussion regarding the relative merits of each approach.

In Chapter Seven, we provide details regarding the verification approach for Liesbet models

that we have implemented in our work. We are able to verify both soundness (i. e. absence of

locking and dead tasks), and arbitrary temporal constraints written in a language such as CTL*.

We present a number of ways in which the complexity of verification may be ameliorated, and give

an interesting characterisation of the complexity of our verification approach.

In Chapter Eight, we address the particularly significant issues of traditional workflow iden-

tified earlier, that they are brittle in nature in the face of exceptional behaviour and ill-suited to

the definition of collaborative workflow. In collaborative workflows, agents should have the facility

to decide collectively how a prescribed task or process is to be realised. In this chapter, we provide

a contribution to the modelling of flexible workflows, in order to address these issues.

Our approach to flexible workflow modelling is based on the view that Flexible Work-flow

Abstract Model + Policies for Refinement. We identify a correspondence between refining (as

prescribed by our view on workflow) an abstract workflow (specified for flexible enactment) into

a concrete one, and the operation of an Hierarchical Task Network (HTN)-based planner, which

refines abstract task networks into concrete ones. In light of this correspondence, we make use of

an HTN-based planner in our work, implementing our own planner called Theodore.

A key theme in our work in flexible workflow modelling is the notion that we combine structure

with flexibility. That is, we start with an abstract workflow model which provides some initial

structure. Furthermore, Ave note there is structure inherent within the policies for refinement in that

they prescribe networks of actions which are acceptable refinements of tasks being decomposed.

Moreover, structure may be prescribed from the bottom-up, in specifying complete refinements

of tasks. All of these dispensations, with respect to structuring, help reduce the complexity of 0
-erif ication.

Our work on both traditional and flexible workflow modelling leads us to question how we might 00
apply this work in other contexts. We address this question in Chapter Nine. For our work, a

natural application is that of contract modelling, where contracts are often cast as protocols (i. e., 0
-. vorkflows) of behaviour between two or more parties. We have been motivated to look at the issue

of contract modellin- for its own sake as well. 0
In Chapter Ten, we present details of the implementation of the verification and enactment

frameworks for Liesbet (for traditional workflow modelling) and Theodore (for flexible workflow

modelling). In Chapter Eleven, we give examples of using our implementation to verify Liesbet-

specified and Theodore-based workflow models.

We conclude the thesis in Chapter Twelve with some salient points. We are able to propose

1.4. Declaration 13

a minimal view of workflow, which we propose as its fundamental and true nature. We conclude
that:

* Workflow is little more than parallel composition with arbitrary synchronisation constraints

on the progression of individual activities. 0

Expressivity of workflow rests with the choice/suitability of the language for the synchroni-

sation constraints.

We argue that process algebras (such as CCS/PCCS) and logic-based formalisms (such as
Situation Calculus) provide rather complementary features for the formalisation of workflow, as

we see it. As such, the most appropriate means of formalisation would need to lie somewhere
between the two. We specify a number of criteria that any bespoke formalism for workflow would

need to take into account. We conclude the chapter with a statement regarding future work 0
activities.

Two appendices provide additional information regarding the CCS- and SitCaic-based char-

acterisations of Liesbet.

1.4 Declaration

This thesis describes work carried out in the Department of Computing at Imperial College London
00

between 2003 and 2007.1 declare that the work presented in this thesis is my own, except where

acknowledaed. 0

Andrew Derrick Hotchkiss Farrell

1.5 Publications Contributing to- Thesis

The following publications are solely the work of the author of this thesis together with his supervi- C, ID
sor Professor IM SergOt. Other co-authors contributed by reviewing the works prior to publication. 00

Journal Articles

e Andrew D 11 Farrell, Marek J Sergot, Alathias SaI16, and Claudio Bartolini. Using the Event

Calculus for Racking the Nomative State of Contracts. International Journal of Cooperative

Information Systems (IJCIS), 14(2-3), 2005. World Scientific.

Andrew DH Farrell, Nlarek J SergOt and Claudio Bartolini. Fomalising Work-flow: A CCS-
inspired Characterisation of the YAWL Work-flow Patterns. Group, Decision and NeggOtiation
(GDN) Journal. 16(3): 213-254,2007. Springer. C,

14

Workshops

1. Introduction

Andrew DH Farrell, Marek J Sergot. Characterising Contracts and Work-flows for Static

Analysis and Enactment According to Strategic Objectives. Extended Abstract for FINIEC

(rornial Modelling in Electronic Commerce) 2005 Workshop, Bologna, 2005.

e Andrew DH Farrell, Marek J Sergot, Mathias SaI16, and Claudio Bartolini. Using the Event
Calculus for the Performance Monitoring of Service-Level Agreements for Utility Comput-
ing. Workshop on Contract Architectures and Languages (CoALaO4), 21 September 2004,
Monterey, CA, USA. 2004.

Andrew DH Farrell, Alarek J Sergot, Mathias SaI16, Claudio Bartolini, David 'Rastour, 0-
and Athena Christodoulou. Performance Monitoring of Service-Level Agreements for Utility

Computing Using the Event Calculus. In Proceedings of First IEEE International Workshop

on Electronic Contracting, 6 July 2004.
0

Chapter 2

Background on 'h-aditional

Workflow Modelling

We now present an overview of work related to the traditional modelling of workflow, i. e. pro-
duction workflow. It is necessary to do so in order to provide contextualising information that is

pertinent to the rest of the thesis. The layout of the chapter is as follows.

We start with a brief overview of the YAWL Worliflow Patterns, which constitute the principal

representational requirements for our work on workflow modelling. We follow that with an intro-

duction to the NVeb Service Composition language WS-BPEL which also contributes to the set of

representational requirements.
We then present an overview of other formal modelling approaches to workflow, in order that

we may later contrast our approach with these. Finally, as we are interested in verification, it is

interesting to note some approaches to the verification of WS-BPEL compositions. Z'

2.1 YAWL Workflow Patterns

The YAWL' Workflow PatternS2 are a collection of artefacts, for the control perspective of workflow.
We proceed with an overview of these patterns.

We cate-orise the presentation (slightly differently from [64]) into the following six categories: 0 CI 00
(1) Parallel and Sequence Patterns - Sequence, Interleaved Parallel Routing, Parallel Split.
(2) Choice Patterns - Exclusive Choice, Multiple Choice, Deferred Choice.
(3) Synchronisation Patterns - Synchronisation, Simple Merge, Synchronising Alerge, Multiple

Merge, Discriminator, Milestone.
(4) Multiple Instance Patterns.
(5) Cancellation Patterns - Cancel Activity, Cancel Case.
(6) Structural Patterns - Arbitrary Cycles, Implicit Termination.

We now describe each of these categories, in turn. The numbering associated with the pat-
tern definitions is that used in [64]. Tile descriptions here are quite concise. More information

concerning the patterns is given in Chapter Three.
I YAWL is an acronym for Yet Another Workflow Language.
2The collation of these patt erns preceded the definition of YAWL (by the same research group); but we choose to

label them as the YAWL patterns, as they constitute the fundamental representational criteria for the YAWL language.

15

16 Chapter 2. Background on naditional Illork-flow Modelling

2.1.1 Parallel and Sequence Patterns

The patterns in this category concern prescribing an ordering over the execution of activities: C, 00

* Sequence (Pattern #1 in [64]) prescribes a total ordering over (the running of) a collection

of activities.

9 Interleaved Parallel Routing (#17) which, in this thesis, ive intuitively call UnorderedSeq,

prescribes no ordering over a defined collection of activities, but stipulates that they may not 0
run concurrently.

a Parallel Split (a. k. a. AND-split) (#2) prescribes that a defined collection of activities may

run concurrently, without orderin. - constraints.

2.1.2 Choice Patterns

At a point, within a workflow model, execution may diverge along many branches. These patterns

pertain to this notion:

a Exclusive Choice (a. k. a. XOR-split) (#4) - execution continues alone-, one brancli of the

choice artefact.

Multiple Choice (a. k. a. OR-split) (#6) - execution may continue along :5n branches of the

choice artefact, where n is the number of branches of the artefact.

Deferred Choice (#16) - For the first two choice patterns, the choice of branches to follow

is made based on control data maintained within the model (at the data perspective). For

Deferred Choice, the choice of branch/es, along which execution may continue, is made by

an external agent.

2.1.3 Synchronisation Patterns

When execution, of a workflow model, has gone down one or more branches of a choice or par- 0
allel artefact, it would (typically) be desirable to (eventually) merge the pertaining threads of
execution at a synchronisation point, before continuing execution. These patterns relate to such C,
synchronisation:

Synchronisation (a. k. a. AND-join) (#3) - For merging the threads of a Parallel Split artefact. 00
That is, synchronisation is satisfied once all threads of the split have completed.

Simple Aferge (a. k. a. XOR-join) (#5) - ror synchronising on the completion of the single 0 0.
branch chosen for execution in an Exclusive Choice artefact.

9 Synchronising Alerge (a. k. a. OR-join) (#7) - For synchronising on the completion of the,

potentially, many branches chosen for execution in an Multiple Choice artefact.

e Multiple Merge (#8) - Whenever any branch chosen (for execution) in a Multiple Choice

artefact completes, execution of a named continuation activity is initiated. There will be a

separate instance of the continuation activity created for every branch that completes.

2.2. Web Services Business Process Execution Lan, -, uaffe WS-BPEL 17

4p Discriminator (#9) - Once a number of branches, chosen (for execution) in a Multiple Choice

artefact, have completed then tile execution of a named continuation activity is initiated.

Only a single instance of the continuation activity will be created. 0

Milestone (#17) -A synchronisation point, in a ivorkflow model, that is satisfied iff one

named activity has completed and another named activity is yet to start.

2.1.4 Multiple Instance Patterns

The following patterns allow a multiple number of instances of a named activity to be executed: 0

e Multiple Instances without Synchronisation (#12) -A number of instances of a named activ-
ity may be executed, without the need to synchronise continuation of the pertaining thread

of execution on their completion.

9 Multiple Instances with Synchronisation (#13-#15) -A number of instances of a named

activity need to be executed, with the need to synchronise continuation of the pertaining

thread of execution on their completion:

- Multiple Instances with a priori design-time knowledge (#13) - The number of instances

is known when the Avorkflow model is being authored. C,

- Multiple Instances with a priori run-time knowledge (#14) - Tile number of instances

is known only at run-time, but before execution of the inultiple-instance artefact has

been initiated.

- Multiple Instances without a priori run-time knowledge (#15) - The number of instances

is not known until execution of the multiple-instance artefact has been completed.

2.1.5 Cancellation Patterns

These patterns effect the cancellation of activities in a workflow model:

Cancel Activity (#19) - Effects cancellation of a named activity.

* Cancel Case (#20) - Effects cancellation of the entire instance of the workflow model bein. -

executed.

2.1.6 Structural Patterns

These patterns pertain to miscellaneous artefacts wbich are considered to be essential in making

the specification of workflow models as strai -lit forward as possible: 0

Arbitrary Cycles (#10) - Entails the need to allow a thread of execution to jump to arbitrary

points within a model.

* Implicit Termination (#11) -A thread of execution should be implicitly terminated when

there is nothina else for the thread to do.
0

18 Chapter 2. Back-ground on liaditional Illork-flow Modelling

<receive> Causes execution thread to wait for a (matching) message to arrive

<reply> Facilitates execution thread sending a message in reply to a message that was received

by an inbound message activity (INIA), i. e. <receive>, <onNlessage>, or <onEvent>

<invoke> Allows execution thread to invoke a one-way or request-response operation

<assign> Used to update the values of variables with new data

<exit> Causes process instance to end immediately

<wait> Causes execution thread to wait for a given time period or until some absolute time

<empty> "no-op7' activity, which trivially completes

<sequence> Defines a collection of activities to be performed sequentially, in lexical order

<if> Used to select exactly one activity for execution from a set of choices

<while> Used to define that its single child activity is to be repeated as long as the specified

<condition> is true

<repeatUntil> Used to define that its single child activity is to be repeated until the specified

<condition> becomes true, with at least one iteration

<forEach> Iterates its child scope activity a number of times, either sequentially or concurrently

<pick> Used to wait for one of several possible messages to arrive or for a time-out to occur.

When one of these triggers occurs, the associated child activity is performed

<flow> Used to specify one or more activities to be performed concurrently. <links> can

be used within a <flow> to define explicit control dependencies between nested

child activities

Table 2.1: Some WS-BPEL Activity Types (Section 5.2 of [87]).

2.2 Web Services Business Process Execution Language WS-BPEL

In this section, we introduce the Web Services Business Process Execution Language WS-BPEL t871.

WS-BPEL is an XNIL [130]-based language for specifying compositions of web services; and is quickly

emeraing as the language of choice for this purpose.
As presented in Section 1.1, WS-BPEL describes service compositions from an end-point, or local,

perspective. It is, thus, an orchestration language. It can describe business processes in two ways,

namely, as abstract processes, or as executable processes. Abstract processes model the multi-party

conversation protocol, by which an end-point may effect its apposite behaviour, pertaining to a

composition. Executable processes specify the implementation logic underwriting this end-point 0 C,
behaviour.

A WS-BPEL process is a nested specification of activities, consisting of a single root activit C, 0 Y_
Table 2.1 summarises a subset of the activity types of WS-BPEL. The set of activity types in

WS-BPEL is not minimal. There are cases where the semantics of one activity can be represented
using another activity. For example, sequential processing may be modelled using either the

000
<sequence> activity, or by a <flow> with properly defined links (as described in Section 11 of
[871).

The reason that the set is not minimal is due, in part, to the history of WS-BPEL. It is a
fusion of two approaches to workflow description, namely, graph- and block-structured specification.
A graph-structured specification is essentially a partial ordering over a collection of activities, 00

2.2. Meb Services Business Process Execution Language WS-BPEL 19

Pi
Par

SIS. Seq S2

D ABC;

Figure 2.1: Simple Workflow Model
0

0a- rise to constructs such as <flow> and <link> in WS-BPEL; whereas a block-structured villo
specification defines a workflow specification as a nested collection of workflow artefacts, using 0

consýtructs such as <flow> and <sequence>.
This can be seen in Figure 2.2, which shows WS-BPEL representat ions of a workflow model,

depicted in Figure 2.1, that will be used for illustration purposes throughout this thesis. The

model is a parallel composition (Pi) of two sequences (Si and S2), each consisting of two atomic

activities (A and B, and C and D, respectively). Tile first representation, shown in Figure 2.2, is the
block-structured version; and tile second representation is the graph-structured version.

In the block-structured representation, the two sequences are explicitly represented. In the

, graph-structured representation, tile partial orderings pertaining to the sequences are prescribed n C,
by links instead; thus, the sequencing is sornewhat obscured. V,

2.2.1 Start Activities

A WS-BPEL process instance is created whenever a start activity completes. A start activity is a
<receive> or <pick> activity whose createInstance attribute is set to yes. When a message
is received by such an activity, an instance of the business process is created if it does not already
exist. (Section 5.5 of [87].)

2.2.2 Standard Attributes and Standard Elements

All activities have two optional standard attributes: the name of the activity, and an attribute,
suppress JoinFailure, indicating whether the failureofajoin condition (described in Section 2.2.3)

should be suppressed. (Section 10.1 of [87].)
All activities, also, optionally have two standard elements: <sources> and <targets>, which

themselves contain standard elements: <source> and <target>, respectively. These elements
are used to establish synchronisation relationships through links (see Section 2.2.3). (Section 10.2

of (87].)

2.2.3 Information Concerning <flow> Activity Type

The <flow> activity provides for concurrent execution of activities, while facilitating the expres-

sion of synchronisation dependencies between activities that are nested within it to any depth. The

<link> construct, as well as the standard attributes and standard elements (2.2.2) for activities,

are used to express these dependencies. (Section 11.6 of [871). We have already seen an example

of the use of links, in Figure 2.2. 0

20 Chapter 2. Background on 7Yaditional Illork-flow Modelling

<process name="Simple Workflow, Block Structured">

<flow name="P1">
<sequence naLme="SI-->

<empty name="V/>

<empty name="B"/>

</sequence>

<sequence name="S2">
<empty name="C"/>

<empty name="D"/>
</sequence>

</flow>

</Process>

<Process name="Simple Workflow, Graph Structured">

<flow name="P1">

<links>

<link name="toB"/>
<link name="toD"/>

<Ainks>

<empty name="A">
<sources>

<source linkName="toB"/>

</sources>

</empty>

<empty name="B">

<targets>

<target linkName="toB"/>

</targets>

</empty>

<empty name="C">
<sources>

<source linkName="toD"/>

</sources>

</empty>

<empty name="D">
<targets>

. <target linkName="toD"/>

</targets>

</empty>

</flow>

</Process>

Figure 2.2: WS-BPEL Representations of the Simple Workflow Nlodel

2.2. Web Services Business Process Execution Language WS-BPEL 21

An activity may declare itself to be the source of one or more links by including one or more
<source> elements. Similarly, an activity may declare itself to be the target of one or more links

by including one or more <target> elements. 0
The source and target of a link may be nested arbitrarily deeply within the <f low> activity

in which the link is declared, except for some boundary-crossing restrictions, described below in
C,

Section 2.2.4.
Each <source> element may specify a <trans itionCondition>, as described in Section 2.2.5.

Moreover, the <targets> container, within an activity definition, may specify a <joinCondition>,

as also described in Section 2.2.5.

2.2.4 Link Boundary Crossing Restrictions

A link is said to cross the boundary of an activity iff its source, and/or target, is nested inside

the activity, at any level, but the link is not declared inside that construct at any level. A link

may not cross the boundary of a repeatable construct (<while>, <repeatUntil>, <f orEach>,
<eventHandlers>) element. That is, a link used within a repeatable construct must be declared

within a <f low> activity that is itself nested inside the repeatable construct. Also, links may not

create control dependency cycles. (Section 11.6.1 of [871).

2.2.5 Link Semantics

If an activity that is otherwise ready to start (e. g., it is the current activity to be executed in a

sequence) has incoming links then it may not start until the status of all its incoming links has

been determined and the, implicit or explicit, join condition has been evaluated. Evaluation of the

join condition may only be performed after the status of all incoming links has been determined.

The expression for a join condition is constructed using boolean operators and the status values

of the pertaining activity's incoming links. If no join condition is specified, its value is taken to be

the disjunction of the status values of all incoming links. (Section 11.6.2 of [87].)

A link may be in one of three states: true, false, or unset. When an activity A completes,

we must determine the effects that the links, of which A is the source, has on the join conditions

of activities which are the targets of the given links.

We determine, in sequence, the status of the outgoing links of A. To determine the status for

each link its transition condition is evaluated. If a transition condition has been omitted for a
link, its value is taken to be true. For each activity B that has a synchronisation dependency on
A, we check that B is otherwise ready to start and that the status of B's other links have been

determined. If both of these conditions are satisfied then we evaluate B's join condition. If it

evaluates to true, then execution of B is initiated. If false, then the (possibly inherited) value

of the suppre ss JoinFai lure attribute would determine what entails. For the purpose of our

work, we assume that this attribute is always set to true. In this case, we perform Dead-Path

Elimination, as described in Section 2.2.6.

2.2.6 Dead-Patli-Elimination

The status of the outgoing links of an activity B must be set to false whenever either of the 0
following conditions is satisfied (Sections 11.6.2 and 11.6.3 of [871):

22 Chapter 2. Back-ground on naditional Workflow Modelling

If B is not performed due to the value of its (implicit or explicit) join condition being evaluated

to false.

e If, during, the performance of an activity A, the semantics of A dictate that activity B nested 0
within A will not be performed as part of the execution of A.

However, to preserve semantic integrity, this rule is only applicable once the status values of

all of B's incoming links have been determined. An example where this additional criterion 0
applies is presented in Section 3.6.1.

2.2.7 <scope> Types

<scope> is an additional activity type, used in WS-BPEL. A <scope> container has a single 0
activity, which defines its primary behaviour. A scope may also specify a number of localised

handlers of various kinds, which come into effect when the scope begins to be executed. Some of C,
tile handlers that may be specified pertain to fault, compensation and termination liandling, which

are issues that we do not currently address in our work. One kind of handler we do accommodate
(from the control flow perspective) pertains to Event Handling. (Section 12 of [871.)

The type of events that an event handler may process are inbound message and timer events.
Whenever a matching event is received by a handler, the single scope which the handler defines 0 C3
is executed. Once the primary activity of a scope completes, its contained event handlers are
immediately disabled. Any outstanding instances of activities created by the scope's event handlers

0
are allowed to complete, and the completion of the scope as a whole is delayed until they complete.
(Sections 12.7 and 12.7.5 of [871.)

2.3 Formal Modelling Approaches for Workflow

In this section, we review a number of formal modelling approaches which have, and could, be used
to provide a formal semantics to workflow. We consider a handful in detail. However, it should
be noted that there exist many other approaches that have been used for workflow modelling 01
some of which will come to light when we review literature concerning workflow verification (see
Section 2.4)-

2.3.1 Background Concerning Formal Approaches

We proceed by giving an overview of the following formal approaches: Petri nets [971, CCS [78,80,
0 C, 0

79] and PCCS [30,29]. We defer presentation of the Situation Calculus [98] to Chapter Six.

Petri nets

A classical Petri net [97,18] is a directed bipartite graph, having two node types: places and C, 0
transitions. Places and transitions are connected to each other by directed arcs. Nodes of the

same type may not be directly connected. Graphically, places are represented by circles and
transitions are represented by rectangles. (See, for example, Figure 2.3). C, 0

From [120], a Petri net is a triple (P, T, F), where:

*P is a finite set of places.

2.3. Formal Modelling Approaches for Work-flow 23

Pi

pi
tj P2 '2

P4

Figure 2.3: An Example Petri net.

*T is a finite set of transitions (P n 7' =

9F C(P x 7')U(7'x P) is a set of arcs (flow relation).

Input Place, Output Place, Preset, Postset

oA place p is an input place of transition t iff there exists a directed arc from p to t.

aA place p is an output place of transition t iff there exists a directed arc from t to p.

9 The set of input places of a transition t is called its preset, and is denoted at.

a The set of output places of a transition t is called its postset, and is denoted to.

Marking, M-ansition Firing and Reachable

A place can contain an arbitrary number of tokens (graphically represented as black dots).

The distribution of tokens over places is called the net's marking.

The marking of a Petri net evolves according to transition firing. A transition t may fire iff
0 C,

each place in st has a token. When a transition fires, it consumes a single token from each 0
PE st and deposits a single token in each pE to. There are many enhancements of this

simple model, such as having arcs specify an arbitrary number of tokens (. 2! 1) to be removed
from a place when a transition fires - see, for example, [97,181.

In Figure 2.3, transition tj is ready to fire, on account of the single place in its preset, pi,

containing a token. On firing, the token is consumed from pi, and a token deposited in P2- 0 C,
After this occurrence, 12 is ready to fire. On firiDg, the tok-en in P2 is consumed, and a Single

token is deposited in each Of P3 and P4-

eA markin-, Al,, is reachable from a inarkin-M, iff there is a sequence of transition firings that 0 C, 0
takes the net from AI, to Al,,. There are two markin-s reachable from the initial markin- of C, 0
the net shown in Fiaure 2.3.

0

ccs

We present a brief overview of CCS. For readers unfamiliar with CCS, [49,78,80,79] are excellent

starting points. In our work, we use the Concurrency Workbench for the New Century (CWB-NC)
0

[11], for verification purposes. The use of CWB-NC prescribes certain syntactic conventions, which

will be highlighted as appropriate. 00

24 Chapter 2. Background on lhditional Work-flow Modelling

We assuine the availability of an infinite set of action nameS3 JV, ranged over by a, b,..., and a

corresponding set of co-names (or, co-actions) A7 = Jula E JVJ, where Ar and A-7 are disjoint and
in biject ion via and where =a = a. The set L=JV U A-7 is the set of labels, ranged over by I and
1, and -r is a distinguished silent action, such that -r V L. The set Act=, C U 7- is the set of actions
that may be performed by a CCS agent. We assign ce,, 3.... to range over Act.

The set 9 of CCS a ents is defined inductively. It is the smallest set which includes the following 9

expressions, where E and Ei are already in E (from [78]):

" agent constants

" a. E - prefix (a E Act). Note that in CWB-NC, Ia denotes 'U, an output on a

:j
Ej - summation, where the indexing set I may be empty, in which case we write 0 " EiE

0
(nil in CWB-NC) to indicate tile deadlocked agent

" E, 1E,, - composition

" E\L - restriction (L C L)

" E[f] - relabelling. The relabelling function f: Act - Act relabels action narnes, where
f (1) =f (1) and f (T) = -r.

Ail a ent constant is an agent whose meaning is given by a definin- equation. In the definition g ZI 000
AWE, A is an agent constant, and E an agent. The definitional mechanism is the means by ID 0
which recursive behaviour may be defined.

In CCS, a system is cliaracterised by a number of agents which may perform transitions. Note

that ive often use the tern) synchronisation for 7--transitions, in order to emPhasise the notion
that two agents are performing individual transitions in syncbrony. The transitions that a system

may make define a labelled transition system [781 (9, Act, (-c-'+}), where --4C ExE is a transition

relation for each ac Act. The operational semantics for the set of agents, C, is given by the
definition of each transition relation over E. The following set of transition rules enable us to
build the transition relations over each agent in S, using Act to be-in with.

Act Sumi
Ej 22+ Ej' EI

a. E -c-4 E
=,

Ei Ej

Com, Com" COM3

E --* E' F -"+ PE -'+ OF -'ý P

EIF -'-ý4 E'l F- EIF -Q-+ EIF' EIF -7-4 E'l P

Res Rel Con

E -"* E' (a, Z! V L) E -"* E' E E' (A cý-e-f E)

E\L -a) E'\L E[f] f (-) E'[f A E'

3Actions are also known as channels, conveying the notion of computation through communication.

2.3. Formal Modelling Approaches for Work-flow 25

9 Act allows us to infer transitions for prefixed agents. That is, the agent a. E may make a 00
transition labelled with action a to the agent E. C,

e Given an aaent, Ej which makes an aj-labelled transition to agent E', we may, by SUMj, 00
infer an aj-labelled transition for a summation agent Ej., Ej, where j (=- I, such that it too C5
transitions to E'.

e Given an agent E which makes an a-labelled transition to agent E', Ave may, by Coml, infer an

a-labelled transition for a composed agent EIF such that it transitions to E' I F. Similarly,
C,

COM2 allows us to infer an a-labelled transition for the ri-lit-liand a-ent in a composition. C, 0

e Given two agents E and F that make complementary I-labelled transitions to E' and F', 0
respectively, we may, by COM3, infer a 7--transition for the composed agent E IF to E'IF'.

Given an agent E which makes an a-labelled transition to agent E', Ave may, by Res, infer

an a-labelled transition for the restricted agent E\L so long as a or its co-action, is not in

L. The restriction \L has the effect of restricting the scope of an action in E, when named
in L, to be E.

Given an agent E which makes an a-labelled transition to agent E' we ma', by Rel, infer
0 C, 73

an f (a) (relabelled) transition from E[f] (which is the result of relabelling names comprising

apnt E by f) to E'[f] (which is the result of a similar f-relabelling of E').
00

Given an agent E which makes an a-labelled transition to agent E', we may, by Con, infer

an a-labelled transition for A to E'just in case A is an agent constant whose definition is E.

PCCS

PCCS, as proposed in [29], is based on the prioritised calculus presented in [30]. It is essentially
CCS with priorities which are specified as natural numbers attached to actions. The smaller
the number, the higher the priority becomes, with zero having the highest priority. Note that

just T-transitions of a certain priority take precedence over transitions of a lower priority. Non--r

transitions are not capable of effecting any priority over other transitions.
The set of labels, L, of the PCCS language is the union of a family of pairwise-disjoint, countably

infinite sets of labels, 'Ck (for kc N). As documented in [29), Lk (ranged over by 1: k and 1: k)

contains the action names of priority k that agents may synchronise over. The set of actions of

priority k, ACtk, is defined as Lk U {-rk,), where rk. V 'Ck- 7-k may also be denoted as 7- : k, for

consistency. T: k actions represent internal computation steps of priority k within a model. The

set of actions, Act, is defined as UACtk-

The set 9 of PCCS agents is defined inductively. It is the smallest set which includes the

following expr6ssions, where E and Ej are already in E:

" agent constants

"a: LE (a :kE ACtk)

* Eic, Ej

El I E,,

26 Chapter 2. Back-ground on 'lYaditional Work-flow Modelling

" E\L

" Eff]

" El[> E2 - disable. E2 disables El as soon as it is able to make a transition.

The semantics of PCCS are given by a labelled transition system, in a similar way to that

presented for CCS, previously.
fck: kj)'

The transitions that a system may make define a labelled transition system (E, Act,
kk

where c-: + CExE is a transition relation for each a: kE Act. If E c--: + E, then we say that E

may en-age in action a of priority k and thereafter behave like agent E' [29]. 000
The followina transition rules allow us to infer transitions for agents, E, within the set of agents

Act

a: k
a: k. E +E

Sum, sum')
k a: k E 0': ý E' 7- :kdI, zJF) F --l F, r-k(? ý I- t, (E)

E+F': '-:) E' E+F>: > F'

Com, COM2

kk E '-': ý E' -r: kVI<k(EIF) F'-: ýF' T: ký I<k(E IF)

c,: k : k. EIF' EIF + El FE IF c'-+

C0M3

1: k 1: k E -, E'F - F' r. - k« I<k(EIF)

-r: k EIF ý E'IF'

Res Rel Con

E ct: k a: k or ke E' (a: k, Zý: kV L) E --+ E' E --+ E' (A t-f E)

,,: k f(ck: k) k E' E\L * E'\L E[f j+E if] A c-4

Disable, Disable2
k E 0-': + E' 7: kV I<k(F) F -% P 7-: kV I<k(E)

a: k a: k E[>F -ý E'[>F E[>F -4 P

The presentation of the given transition rules uses the notion of initial action sets, which are 0
inductively defined as follows.

Ik-(a: j. E) ý--ef { a: i1j=k}

Iký (E + F) 't f Ik. (E) Li Iký (F)
c lký (E[f 1) t-f 1f (a : k) 1a: kE Ik, (E)
f lký (E\L) t Ik- (E)\L U

2.3. Formal Modelling Approaches for Work-flow 27

Ik, (E I F) 4--ef Ik, (E) U Ik. (F) U(-r :kI Ik- (E) n 7k, (F) =/ 0}

Iký (A) tf Ik, (E) where A 4ef E

Ik, (E[> F) V Ik. (E) U Ik-(F)
I<k(E)tf UI Ij(E) Ij<k

Note that Ik-(E) denotes the set of all initial actions of E with priority k and I<k(E) denotes

the set of all initial actions of E with a higher priority than k.

We now explain some of these rules. The rest are intuitive. Refer to [29] for more information.

e Act - the agent a: k. E may perform an a-transition of priority k.

e Sum, and Sum,) - the agent E+F may perform an a-transition of priority k and behave

thereafter as E' (resp. F) if E (resp. F) may perform an a-transition of priority k to

yield E' (resp. P) and F (resp. E) does not pre-empt it by performing a higher priority n0
-r-transition.

e Com, and COM2 - the agent E IF may perform an a-transition of priority k and behave

thereafter as E'IF (resp. EIF') if E (resp. F) may perform an a-transition of priority
k to yield E' (resp. F') and EIF does not prc-empt it by performing a higher priority 00
T-trailsition.

0 COM3 - the agent EIF may perform a -r-transition of priority k and behave thereafter as 0
E'IF' if E may perform an 1-transition of priority k to yield E' and F may perform an
!
-transition of priority k to yield P and E IF does not pre-empt it by performing a higher

priority -r-transition.

e Disable, and Disable2 - the acrent E[> F may perform an a-transition of priority k and 0
behave thereafter as E'[> F (resp. F) if E (resp. F) may perform an a-transition of priority
k to yield E' (resp. F') and F (resp. E) does not pre-empt it by performing a higher priority V, 0
T-transition

2.3.2 Application of Formal Approaches to Workflow Modelling

We now proceed to give an overview of some formal-based approaches to workflow modelling.
Firstly, we look at WF-nets [120], and follow that with reviews of a number of contributions whose

common purpose is to formalise the YAWL patterns.
The advantage of using, well-established formal tools, such as Petri nets and CCS, for workflow 0 C,

modelling are the abundance of analysis techniques and automated tools that exist for them. This

point will be elaborated in the review section on verification, see Section 2.4.

WF-nets

In [120], a Petri net which models the control perspective of Nvorkflow is called a lVork-flow net
(WF-net). A Petri net (P, T, F) is a WF-net iff-

" There is one source (resp. sink) place iGP (resp. oE P) such that ei =0 (resp. o* = 0).

" Every node xEPUT is on a path from i to o.

28 Chapter 2. Background on 'Iýaditional Workflow Alodellin. -

AND-SPLIT AND-JOIN

XOR-SPLIT XOR-JOIN

Fioure 2.4: AND-split/join and XOR-split/join.

'17ransitions correspond to tasks, although only a subset of these will correspond to tasks required

of agents - tile others will pertain to internal housekeeping. Places are conditions oil the execution

of transitions, i. e. tasks.

The first condition ensures that it is clear how a case (i. e. execution instance of a workflow

model) enters, and exits, the model. The second condition ensures that there are no dangling

transitions (i. e. tasks), or conditions, in the definition of the model.
In FiCrure 2.4, we present example nets encoding AND-split/join and XOR-split/join behaviours, Z' 0

pertaining to YAWL patterns #2/#3 and #4/#5, respectively. In the first net, activity A is followed C,
by both B and C in parallel. When both B and C are finished, D is executed. In the second net,

only one of B or C is executed.

YAWL -A Petri net based Approach to Workflow Modelling

YAWL [125,126,123] is a Petri net-like graphical language, whose primary purpose is to facilitate C'
the specification of workflow models, from the control perspective. It uses the YAWL workflow

patterns as a basis for its definition; that is, tile patterns specify what the language should be able 00
to represent succinctly. Tile creators of YAWL highlight three patterns that they assert as being

00
problematic to model using Petri nets (similarly, WF-nets):

" Multiple-instance activity types - the burden of keeping track, splitting and joining of in-
00

stances is carried by the designer.
C,

" Advanced synchronisation patterns - for synchronising multiple paths, where it cannot be
C,

pre-determined]low many of the paths will require synchronisation.

* Cancellation patterns - it is hard to model cancellation patterns because it is not possible to

predict how many tokens should be removed froin each pertinent place.

2.3. Formal Modelling Approaches for 11"ork-flow 29

Interestingly, YAWL does not resolve the issue of advanced synchronisation particularly well, as
is evidenced by later efforts, such as [1401, which try to resolve the matter. The lack of proper

support for this issue goes against the desire, espoused in [1251, to not burden a workllow author

with subtle, low-level concerns.
YAWL defines EWF-nets, which extend WF-nets with direct support for multiple instances, com-

posite tasks, OR-joins and removal of tokens. It defines a Petri net-like graphical notation; but,

importantly, its semantics are not Petri net-based - rather, YAWL is based directly on a transition

system-based semantics, where a binding relation determines possible transitions. Through these

semantics, it also agrgrecrates support for AND/OR/XOR-splits and AND/OR/XOR-joins, in that

every task is a kind of join and a kind of split. This is in contrast to needing to explicitly wire this
functionality using regular Petri nets; that is, specifying workflow with Petri nets may be seen as

a more low-level representation.
A task in an EWF-net can have multiple instances; where it is possible to specify a lower bound

and an upper bound for the number of instances that may be created after initiating the task. It

is also possible to indicate that the task terminates the moment a certain threshold of instances
has completed'. If no threshold is specified, the task completes once all instances have completed.

The YAWL patterns (Section 2.1) are trivially supported, with the following caveats:

Discriminator (#9) - Facilitated as a multiple-instance activity, "under the assumption of
multiple instances of the same task" (125]. The threshold for instances completing, which will 0
cause the execution of the continuation activity, is set as desired. Any remaining instances, C,
still executing, are terminated. Its representation, as a multiple-instance activity, is not C,
necessarily the intended sense of tile Discriminator pattern, as elaborated in Section 3.1.14.

0 Implicit Termination (#11) - The authors of [125] make the point that this pattern should

not be supported so that workflow authors think properly about termination. Our impression

is that this is a Petri net-centric perspective, and whether an author should need to think

about termination really comes down to the authoring tool they are using. If they are using a
Petri net-based authorin tool, then this is a fair point - Petri nets naturally lend themselves

to this way of thinking. If they are using something more abstract, then it is often the case
that this pattern is justified. In our meta-model (see Section 3), it is arguably more natural
to allow implicit termination.

CCS-based Approaches to Modelling of YAWL Patterns

There have been a few approaches to the modelling of the YAWL workflow patterns using CCS-based
0

approaches, namely: Stefansen [117,1161, Dong and Slienslieng [371 and Pulilinan and Weske [94].

Arguably, the most mature of these, currently, would appear to be the work of Stefansen.

Some (slightly tweaked) examples of tile formalisation of the YAWL atterns that lie proposes are C, p

as follows [117] (olnitting tile agent terminator nil for convenience): C, 0

Sequence (#I) - (P[goldonel I go. Q)\Igo}. In Stefansen's fornialisation, an agent per-
taining to a piece of worliflow logic will signal on done when it is otherwise finished. When

'Although termination does not appear to be enforced by the semantics. That is to say, there is a transition

specified by binding that does force such termination; but it is not specified at a higher priority and, as such,
instances of the task may continue to execute, and complete, before the transition effecting termination occurs.

30 Chapter 2. Back-ground on Thditional Work-flow Modelling

using specific instances of agents, it is appropriate to rename done to something unique, so 00 4D
that its visibility is appropriately restricted. In this example, done is renamed to go, and

a synchronisation on go will indicate that P has otherwise finished, and that Q may be

progress.

" Parallel (#2) - P, I P'.

" Synchronisation (#3) - (Pi [okldonel I
...

I Pn[okldonel I ok ok. Q)\Iokl. There

needs to be n synchronisations on ok (indicating that all n parallel threads of execution have

completed) before Q may execute.

" See [1171 for patterns #4-#17.

" Milestone (#18) - P,, t I I, a, R I Q' I Milestone, where proc Q' = isOn. (Q I Q).

Here, P,, t is the agent P modified to output on set as its last action, irrespective of how it

evolves, and dearR is the agent R modified to output on clear after its first action. set (resp.

clear) sets (resp. clears) the milestone, i. e. starts (resp. stops) the period when execution of
instances of Q may be initiated. Milestone keeps track of whether the milestone is currently

set or cleared, and provides isOn to query whether it is set. The agent Q' is a wrapper for

Q which also yields another copy of Q' meaning that unlimited copies of Q may be created

while the milestone is set.

Cancel Activity (#19) - If it were intended that the execution of an activity b, say, may
be cancelled, then it would be represented as b. ('b + cancel), as opposed to b, otherwise.
Synchronisation on cancel would have the effect of pre-empting the completion of b, which

would, otherwise, be signified by the output on b. Note that in the example, given in [1171,
C, 0

where b is part of a three activity sequence, a. b. c, the remainder of the sequence is also

cancelled (which is not necessarily an appropriate interpretation of the intended semantics
for YAWL) -

Cancel Case (#20) - Each activity is split in the way stated for pattern (#19), with the

possibility of receiving a termination signal pertaining to case cancellation. 000

2.4 Workflow Verification

As we allude to in the introduction to this thesis (see Chapter One), it is important to analyse a

workflow model before it is used. Indeed, [120] states "[tjhe correctness, effectiveness and efficiency

of the business processes supported by [a] INIFTNIS are vital to [an] organ isat io n". van der Aalst

[120] enumerates three types of analysis:

Validation - testing whether the workflow behaves as expected; achieved through interactive

simulation.

Verification - establishing the correctness of a workflow. C,

PerfoT7nance Analysis - evaluating the ability to meet requirements with respect to through- 00
put times, service levels and resource utilisation.

2.4. Work-flow Veriflcatlon 31

These types of analysis are equally important when considering compositions of web services.
Additionally, it may be useful to be able to check the internal behaviour (i. e., in a WS-BPEL

context, executable process definitions) against the external business protocol that the participant
is committed to provide (i. e. abstract process definitions) [91]. Another property of interest is to

verify that two abstract processes are equivalent in their behaviour [1061.

Verification and Performance Analysis require quite advanced analysis techniques. Regarding

the work described in this thesis, we are only interested in verification, and will, thus, concentrate

our review on this property. A good introduction to Performance Analysis techniques is [118].

For verification, in this work, we are concerned with checking that a workflow satisfies general

properties such as freedom from locking; and, also, that we provide a facility for checking model-

specific properties, or constraints. Regarding the first of these, we note that an important property

of a WF-net is soundness. This property ensures that a WF-net will not be susceptible to locking,

will complete properly, and does not have dead tasks.
FYom [120), a WF-net N, with initial marking i (there is a single token at place i), is sound iff:

a For every marking M, reachable from marking i, there exists a firing sequence leading from C, 0 C, 0
AI to o (there is a single token at place o). This says that there is always the possibility of a
completing the workflow instance, i. e. an option to complete.

o is the only marking reachable from i with at least one token in place o. That is, once
a token appears in o, then all others places must be empty. This says that completion is
proper completion.

There are no dead transitions in N, given i as an initial marking. That is, for all transitions 00
t in N, there exists a marking M, reachable from i, where t is able to fire. This says that 0
there are no dead tasks (i. e. unused tasks) in the Nvorkflow instance.

The model-specific properties that -%ve seek to verify can be split into two classes (or may
be composites of properties that fall into these two classes): safety and liveness (where liveness

in the sense now described is different from that used in the context of Petri nets). Rom (59],

safety properties specify occurrences which should never happen, and liveness properties specify

occurrences that should eventually happen. In Linear Temporal Logic, Op is a safety property, and
Op is a liveriess property. These classes may be further subdivided. For example, Op and p -4 Oil

are both liveness properties, but the first may also be classified as guarantee and the second as

response. Typically a temporal logic, such as LTL, CTL, or CTL* [38,611 will be used to specify

safety and liveness properties.
We now review a number of contributions that look at the verification of WS-BPEL compositions,

as we have an interest in supporting this. These may be differentiated according to their respective
foci of interest:

" Koshkina and van Breti-el are concerned with verifying the integrity of individual composi-
tions.

" Nakajima / Fu and colleagues are concerned with verifying the interactions between compo-

sitions.

" Foster and colleagues are concerned with verifying that an abstract WS-BPEL specification C, C,
complies with a conversation specification represented using Message Sequence Charts (MSCs

32 Chapter 2. Background on Yhditional 11"ork-flon, Modelling C,

Koslikina and van Brengel introduce, in [65,66], a CCS-like process algebra called BPE-calculus,

which is capable of modelling a subset of activities of WS-BPEL. Given definitions of the syntax and
semantics of the BPE-calculus, the Process Algebra Compiler [113] is used to generate an extension
module to the Concurrency Workbench for the New Century (CWB-NC) [11] to allow for verification
of BPE-processes. Verification options that are supported by CWB-NC include model checking and
equivalence checking (as exemplified in Chapter Five).

Nakajima [83] presents a translation of WSFL [69] (a graph-structured predecessor of WS-BPEL)
into Promela, which is the input language of the SPIN [59) model checker. SPIN may then be used to

verify properties of WSFL compositions. [84] builds on the previous work in [831, in order to support
the verification of WS-BPEL compositions, which are similarly represented in Promela, and verified
using SPIN. Notabl in [84], the translation of WS-BPEL to Promela is divided into two phases. Y,
First WS-BPEL compositions are translated to representations based on finite automata. Then,

specifications in the latter representation are translated to Promela. This decoupling allows for the

support of alternative composition languages and for the use of different rnodeI-cliecking tools. The

work of Fu and colleagues [48,47] is similar to that of [84] in usinor an intermediary representation
and target output language Promela, for use with SPIN. The intermediary representation formalism,

used in Fu's work, is essentially the same as that used by Nakajima. Both works are also similarly
concerned with the verification of interacting compositions.

Foster and colleagues [45,44] propose a translation of a subset of WS-BPEL to FSP, which is a
process calculus that can be used to concisely describe, and reason about, concurrent programs.
The Labelled 7ý-ansition System Analyzer (LTSA) can be used to analyse, and verify properties of,
FSP specifications. In their work, they are able to check whether a WS-BPEL composition satisfies
a behavioural specification captured by Message Sequence Charts (MSCs). The WS-BPEL and MSC

specifications are translated to FSP. UFSA is then used to check compatibility between them.
In our work, we are concerned with verification of individual compositions only. In this sense,

our work aligns more with Koslikina and van Brengel than the others. If we concern ourselves
with the operation of a single end-point, that is, a single WS-BPEL composition, rather than the
interaction between multiple compositions, verification of the control perspective of WS-BPEL is
decidable. In this case, we abstract away from message queues. It is decidable because verification
can be divided into a number of runs, according to link boundary-crossing restrictions (e. g. the

contained activity within a <while> activity can be verified separately, and the <while> simply
replaced by an <empty> activity), where the verification state space of each of these runs is

necessarily finite - as there is no scope for infinite behaviour.

Having presented this review of related work, we now proceed with the definition of our infor- 0
ination view meta-model for traditional workflow, called Liesbet. This will be used to capture the

real essence of workflow, serving, as a point of reference for the computational view formalisations

to be presented in later chapters.

Chapter 3

Liesbet Metamodel

In this chapter, we define a meta-model for workflow called Liesbet, which constitutes an in-

formation view abstraction of, or ontology for, workflow. In defining Liesbet, we have sought
to understand tile true nature of workflow, and thus tile fundamental concepts that need to be

represented. NNe are then able to use this information view of workflow as a point of reference
for computational view formalisations of workflow. The representational requirements for Liesbet

have been sourced from the need to be able to represent the YAWL workflow patterns, as well as
the control flow aspects of business process languages, such as WS-BPEL [87].

We also present the definition of additional intended semantics for Liesbet, which prescribe
further constraints regarding the evolution of Liesbet models. We consider it to be appropriate
that internal behaviour is prioritised over external behaviour in the enactment of a workflow

model, and that tile effects of external behaviour on the internal evolution of the model is realised

atomically rather than allowing it to be interleaved with other (unrelated) internal behaviour. NN'e

provide examples that clarify this matter.

We take our first step towards greater flexibility in workflow models through the proposal of 00
Synchronisation Rules. In contrast to the view of flexible workflow that is principally espoused in

this thesis (i. e. abstract model + policies for refinement), the appropriate slogan in this instance
0

is more Flexible Work-flow = Concrete Model + Policies for Constraint. That is to say, the initial

model is fully-specified and the policies (i. e. synchronisation rules) constrain enactment. The model

may contain many possible enactment paths (in contrast to traditional workflow, where typically

only one will turn out to be possible). Which of the multiple paths is chosen is constrained by the

policies.

We present a reduced set of patterns with which (we show) all patterns may be represented.
This is a useful result as it enables us to propose the true nature of -. vorkflow to be this reduced set.
NN'e propose the reduction at the level of the Liesbet rneta-model. That is, we define equivalences
for the remaining constructs as definitions which make use only of constructs from the reduced set.
These equivalences are argued (and shown) to be sound in Chapter Six.

We also show how Liesbet captures all of the YAWL patterns, as well as describing its support 0
for modelling the control flow perspective of WS-BPEL, in order to usefully facilitate verification of 0
WS-BPEL compositions.

The layout of this chapter follows the presented description.

33

34 Chapter 3. Liesbet AIetamodel

3.1 Liesbet: An Information View Meta-model for Work-

flow

3.1.1 Liesbet Fundamentals

We have defined the Liesbet meta-model as an information view ontology for workflow. Its

constructs are as follows.

" Activity -Act.

" Synchronisation types - Go and Stop.

" Sequence and Unordered Sequence types - Seq, SeqCancel and UnorderedSeq.

" Parallel, and Priority Parallel - Par and PriPar.

" Exclusive Choice with and without default - Def aultChoice and Choice.

" Deferred Choice - Def erredChoice.

" JYiviaI Completion - Empty.

" Free Choice - FreeChoice.

" Multiple Choice - MultiChoice.

" Multiple Merge - Multimerge.

" Discriminator m from n- Discriminator.

" Multiple-Instance Activities - Multi*.

" Cancel Activity - CancelActivity.

" Cancel Case - Exit.

We define a syntax for Liesbet for the purposes of presenting it here. This is called Liesbet
Easy Syntax. Its use is fairly intuitive. It is given a formal characterisation in later chapters using
CCS/PCCS and the Situation Calculus. For the implei nentation of a verification and enactment

engine for Liesbet, we use a persistence framework (see Section 10.1) with which an XAIL-based

scrialisation syntax is defined. The definition of Liesbet Easy Syntax in Extended BNF (EBNF)

[90] is presented in Figure 3.1.

At this point, we introduce some terminology. A custornised activity type is a customisation

of a Liesbet nieta-model construct when used in the specification of a Liesbet workflow model.
In contrast, th6 term generic activity type is used synonymously with meta-model construct. For

example, in the Liesbet model Seq(A, B), the Seq is a "sequence" generic activity type which is

custornised to mean a sequence that contains two activity types, A and B.
A basic activity type, defined using the Liesbet nieta-model construct Act, corresponds to a

self-contained piece of work, where conceptually we would defer to the environment to inforni us

when the work of the activity type has finished. Instances of basic types may be completed, or

cancelled.

3.1. Liesbet: An Information View Aleta-model for Workflow 35

<Liesbet-Model> :: = <Activity-Type> I<Activity-Type-Def>) (<ISA-Decl>l

<Activity-Type-Def> :: = <Activity-Type-Name> = <Activity-Type>

<Activity-Type> :: = <Activity>(<ActConds>)

<ISA-Decl> :: = ctype(<Activity-Type-Name>) ISA ctype(<Activity_Type_Name>)
<Activity-Type-Name> :: = a 1PI-yj

...
<Activity> <Activity-Type-Name> I Act I <StructAct>

<ActConds> [join(<GuardAct>)1 [,] [trans(<GuardAct>)1 [,] [ctype(<Activity-Type-Name)]

<StructAct> <SyncActs> I <ParSeq> I <Choices> I <Merges> I

<CancelActs> I <MultiActs> I Empty I Exit I FreeChoice

<SyncActs> Go(<GoQuery>) I Go(<StopQuery>, <GoQuery>) I Stop (<StopQuery>) I

Stop(<StopQuery>, <GoQuery>)

<ParSeq> PriPar(<ExecActs>) I Par(<ExecActs>) I

Seq(<ExecActs>) I SeqCancel(<ExecActs>) I UnorderedSeq(<ExecActs>)

<Choices> Def aultChoice (<GuardContActs>, <ContAct>) I Choice (<GuardContActs>) I

MultiChoice(<GuardContActs>) I DeferredChoice(<ContActs>)

<Merges> Discriminator (<m>) (<GuardActs>, <ContAct>) I Multimerge (<GuardActs>, <ContActs>)

<CancelActs> CancelActivity(<Activity-Type-Name>) I

CancelActivity(<Activity-Type-Name> in <Activity-Type-Name>)

<MultiActs> MultiLimit(<n>)(<ExecAct>) I MultiLimitSeq(<n>)(<ExecAct>) I

Multi (<ExecAct>) I MultiSeq(<ExecAct>)

<Gua, rdContActs> :: = <GuardAct>, <ContAct> f; <GuardAct>, <ContAct>l

<GuardActs> <GuardAct> 1, <GuardAct>j

<ContActs> <ContAct> <ContAct>}

<ExecActs> <ExecAct> <ExecAct>}

<GuardAct> <Activity-Type-Name> I <Activity-Type>

<ContAct> <Activity-Type-Name> I <Activity-Type>

<ExecAct> <Activity-Type-Name> I <Activity-Type>

<n> : :=112... <m> :: = <n>

<GoQuery> :: = <Query>

<StopQuery> :: = <Query>

<Query> :: = <Query>l ... I<Query> I <Query>+.. . +<Query> I -<Query> I <QueryOnAct> True False

<QueryOnAct> :: = <StateQualification>-<QueryOnActStripped>

<StateQualification> Completed I Cancelled I Finished I Running I Initial

<QueryOnStrippedAct>
-Act

(<Act ivity-Typ e -Name>)
I

-All
Wct ivit y-Typ e -Name>)

-Act(<Activity-Type-Name> in <Activity-Type-Name>) I

-Act(<Activity-Type-Name>
dist in <Activity-Type-Name>)

-All(<Activity-Type-Name>
in <Activity-Type-Name>)

Figure 3.1: EBNF Definition of Liesbet Eas Syntax
0Y

36

Pi
Par

Sl se Seq S2

ABCD

Figure 3.2: Simple Workflow Model

er 3. Liesbet Aletamodel

4 In contrast, structured activity types, defined using any other Liesbet construct, exist mainly for 0

the purpose of marshalling instances of basic activity types (i. e. Act types), where the enactment 0
of instances of these other constructs (e. g., Par and Seq) is handled wholly within the realms of b
the workflow en-ine. 0

A workflow model will consist of a number of instances of custornised activity types. It is

through activity instances that work is realised in the enactment of a workflow model. If an 0
activity type is instantiated twice in a model, the work associated with that type will be carried
out twice.

Basic activity types defined in "Easy syntax" may either be simply defined in situ, or in a

separate definition which is then referred to when instantiating the activity type elsewhere. For
basic activities, defining them in situ is done simply by referring to them, e. g. A, or A(join(...

Defining them separately would be done thus: A= Act, or A= Act (join(
... Here,

A is the customised type name and Act is the (only) generic type for basic activity types. join(...
is one of three optional attributes that may be attached, in parentheses, to the right-hand side

of a (customised) activity type. The others are: trans(...) and ctype(...). The latter is not

applicable to basic activity types. These attributes will be elaborated as we go along.
Structured activity types which are defined in situ derive their custornised type name from the

use of such a ctype qualifier. An example might be Seq(C, D) (ctype W),
...

), where S2 is

the custoinised type name. Structured activity types can also be defined separately and assigned
a name, e. -. S1 = Seq(A, B). Here, S1 is the custornised type name.

A hierarchy of type names may be specified using ISA relations. For example, we may have

two sequences, S1 and S2, for which it is sometimes convenient to differentiate between them, and

other times count them as the same type of sequence, with (customised) type name, S, say. In this

situation, we may assert that: ctype(Sl) ISA ctype(S) and ctype(S2) ISA ctype(S). Type
hierarchies must be acyclic.

Activity types that are defined separately and not in situ are called defined types. Consider

the simple Liesbet model, depicted in Figure 3.2, which will be used for illustrative purposes
throughout this thesis. The model is a parallel composition (Pl) of two sequences (SI and S2), 0
each consisting of two atomic activities (A and B, and C and D, respectively). 0

This may be specified, using Liesbet Easy Syntax, as follows.

Par(SI, Seq(C, D)(ctype(S2))(ctype(Pl))

Sl = Seq(A, B)

Here, A, B, C and D are in situ definitions of basic activity types. We can tell this as they are

not defined types. The second argument of the Par is a structured activity type defined in situ,

3.1. Liesbet: An Information View Aleta-model for Workflow 37

with specified customised type name: S2. In contrast, the first argument, S1, is a defined type.

The definition of a workflow model will include just one defined type that is unnamed. This

is taken to be the top-level activity of the workflow model. A workflow model is a hierarchical

structure with this activity at its root. In the example, Par(Sl, Seq(C, D)) is the top-level workflow

activity type. The ctype annotation specifies that its type name is P1.

3.1.2 Finite State Machine for Activity Instances

The following Finite State Machine (FS', %I) is defined for the operation of an activity instance. An

activity instance may be in one of four states - Initial, Running, Cancelled or Completed. We

also consider an activity instance to be finished, if it is in a Cancelled or Completed state.

Initial -execute-> Running

Initial -cancel-> Cancelled

Running -complete-> Completed

Running -cancel-> Cancelled

An activity instance begins life in the Initial state. At some point, the parent of the activity
instance will initiate execution of the instance. The instance will be moved into the Running

state, by virtue of the execute action.

e When the work of the instance is done, it is moved to the Completed state, by means of the

complete action.

e Rom the Initial and Running states, the instance may be moved into the Cancelled state,
by means of the cancel action. This will have the effect of not only immediately cancellin.,

the activity instance itself, but also all of its descendants, in a single, atomic action.

Cancellation of an activity may happen because of the execution of a CancelActivity in-

stance (Section 3.1.16), because of a failed join condition (Section 3.1.7), or because of
dead-path elimination. An activity type may specify a join condition, which serves as a

pre-requisite for the execution of the pertaining activity. If the join condition fails, the activ-
ity is cancelled. Dead-path elimination [70] is performed in workflow model enactment when
it is identified that an activity instance will never be executed. This happens, for instance,

when executing a Choice activity instance. Those continuation activity instances within the

Choice instance that correspond to unselected branches are moved to the Cancelled state.

Note that, for most workflow modelling scenarios, the lifecycle of a basic instance is adequately

captured by th"e sequence of states: Initial-*Running--ýCompleted. In some scenarios, such as

those outlined in [211, it may be appropriate to model an additional, intermediate state between

Initial and Running. This would capture the notion that an activity has been enabled but is

not yet running. This may simply be modelled, in Liesbet, by inserting a dummy activity Init,

say, into a SeqCancel type (see later), thus: SeqCancel(Init, X), where X is the activity type

constituting the work to be done. The dummy activity Init completing would conceptually signify C, 00
the activity X moving to this intermediate state. 0

38

lisolated(P)

Cljaoter 3. Liesbet;. Aletamodel

Isolated(S)

join(Go(Completed-act(C-))-)-]

FC1
The join condition on activity type B will have a visibility horizon that is restricted to the isolated scope P
and its descendants, but not including the isolated scope S and its descendants. The only candidate instance

of activity type C for the query in the join condition of B is thus the instance marked *.

Figure 3.3: Isolated Scopes in Operation

3.1.3 Activity Visibility Horizons

As explained in Sections 3.1.4 (below), instances (of certain activity types) may query the state of

other activity instances, in order to synchronise their execution against these instances. However,

since the enactment of a workflow model may create multiple instances of the same activity type,

there is potential ambiguity about which specific instance is referred to in the query. In the example

shown in Figure 3.3, the join condition on activity B queries the state of activity C of which there

are three separate instances. Liesbet provides several methods for disambiguating such references,

of which the isolated scope declaration is the most fundamental.

Any activity may be marked as an isolated scope. In Easy Syntax this is achieved by encap-

sulating the definition of an activity type in the container Isolated. In the example below, both

activity types A and B are isolated scopes but C is not. The scope of an activity type is not isolated,

by default.

Par(Isolated(A), B)

A=...

B= Isolated(...
C= Seq(...)

This has the effect of creating a visibility hoHzon on the workflow state for activity instances that

exist within an instance of the isolated scopes A and B.
When an instance i exists within the scope of another activity instance which is isolated, the

instance i can only query the state of activity instances that are descendants of the isolated scope
instance that is the most immediate ancestor of i, and this isolated scope instance itself. 'Moreover,

if any of these descendant instances more immediately fall within the scope of a different isolated

scope instance, then these particular instances will not be visible to the querying instance i.

The visibility horizon for a querying instance is thus the sub-tree extending from its (immediate)

ancestor isolated scope instance, from which are pruned any sub-trees extending from further

isolated scope instances (as is demonstrated in the figure).

3.1. Liesbet: An Information View Aleta-model for Work-flow 39

Cl ID
, 'I-APar P

Seq Isolated

B

Fcý
join(Go(Completed act(C in P)))

Ijoin(Go(Completed_act(D)))

Since P is not an isolated scope in this example, the visibility horizon for the join condition on activity type
A extends beyond P; and thus includes the instance of type D marked *. For the join condition on activity
type B, its visibility horizon is determined according to type P, which is specified as a reference type. The
horizon, with respect to type C, is thus the same as previously, in Figure 3.3.

Figure 3.4: Reference Types in Operation

There is another way of specifying a visibility horizon, for a querying instance; a reference type

can be used to set the visibility horizon for a query on -, vorkflow state. There are two sorts of

reference types, "plain" and "distinct". For either sort, the idea is that the target instances of a

query (i. e. its visibility horizon) are limited to those which are descendant instances of an instance

of the specified reference type - the reference instance. F'urthermore, the querying instance must
be a descendant of the same reference instance. Thus, the reference instance is a common ancestor
to both querying and target instances; and acts as a scoping instance, enforcing a visibility horizon

for the query.
The use of a reference type is similar to that of an isolated scope, in that it is used to place

a limit on the instances that comprise a visibility horizon. A crucial difference, however, is that,

in contrast to the use of isolated scopes, we may specify within individual queries (of which a

querying instance may use several) what the visibility horizon for the query should be. That is,

multiple queries may be made by a single querying instance, all with different visibility horizons.
ID C,

As a result, we can set a much finer granularity for the visibility of certain queries, rather than

setting a universal visibility horizon for a whole tree of querying instances.
0n

For example, we may wish one query to be referenced according to a particular activity instance,

but if we made that reference instance an isolated scope, it may undesirably hinder the visibility
horizon of other querying instances that would exist within the isolated scope instance. However,

through using reference queries, we avoid such a problem. 00
Isolated scopes are used when we want to create a visibility horizon that is appropriate for

all descendant instances of that scope instance (which do not have a more immediate parent
instance that is also isolated). It is also necessary that marking an instance as isolated does

C,
not inappropriately prevent instances, existing outside the sub-tree rooted at the instance, from

C,
querying the state of instances within the sub-tree. Such pruning does not occur for scopes which 00
are not marked as isolated.

40 Chapter 3. Liesbet Aletamodel

Queries with reference types are useful when we want to achieve a finer level of granularity to
the visibility horizons of individual queries. A workflow model may arbitrarily use a mixture of
isolated scopes, and reference queries, notwithstandinO, the possibility of redundancy in certain
combinations of such scopes and queries. Figure 3.4 shows an example of using queries with
reference types.

We now elaborate the distinction between plain and distinct reference types. Queries that

make use of distinct reference types are the same as those using plain reference types, in the sense 0
that the visibility horizon of a query is limited to the ancestor instance of the reference type; but

there is the added criterion that the particular target instance, that satisfies a query, can not have 0
been used before to satisfy distinct queries made with respect to the same reference instance. We

ensure this by marking the reference instance with the instances that have been used, thus far, in

satisfying queries within its scope. This allows us yet further granularity in satisfying queries, and 0 ID 0
ensures that multiple querying instances that are satisfied according to a common query, such as Z' 0
join condition instances in a Multi type - see Section 4.2 for an example, are satisfied by distinct
target instances. C,

3.1.4 Go and Stop Synchronisation Activity Types

The synchronisation activity types of Liesbet represent synchronisation points in the workflow

model, i. e. their completion or cancellation is blocked until some query on current workflow state is

satisfied. An example is Go (StopQuery, GoQuery) in which StopQuery and GoQuery are queries

on workflow state. Here, there is a race between which of these queries is satisfied first, which

ultimately determines whether the synchronisation activity itself completes successfully or not.

Easy Syntax

Stop(StopQuery, GoQuery)

Stop(StopQuery)

Go(StopQuery, GoQuery)

Go(GoQuery)

A StopQuery or GoQuery query is a blocking query on current workflow state that must be

satisfied. That is, a query blocks until it is satisfied. A query is any boolean compound (11sing 0
for conjunction, "+" for disjunction and "-" for negation) of the following (where ctype is a

customised type name):

* Simple Queries

- Completed-act (qtype) - This query is satisfied if and only if an instance of the activity
type qtype, within the visibility horizon of the querying instance, has cornpleted. 0

- Completed-all(qtype) - This query is satisfied if and only if all extant instances of
the activity type qtype, within the visibility horizon of the querying instance, have

completed.

o Reference Queries

3.1. Liesbet: An Information View Aleta-model for Work-flow 41

- Completed-act (qtype in rtype) - This query is the same as Completed-act (qtype)

except that it specifies a plain reference type, rtype, in order to (further) constrain tile

visibility horizon for the query.

- Completed-act (qtype dist in dtype) - This query is the same as Completed-act (qtype)

except that it specifies a distinct reference type, dtype, in order to (further) constrain
the visibility horizon for tile query.

- Completed-all (qtype in rtype) - This query is a combination of Completed-all (qtype)

and Completed-act (qtype in rtype).

We inay also write True for the query that is trivially satisfied, and False for the query that

call never be satisfied (i. e. it forever blocks).

Queries can also be inade to ascertain the existence of activity instances in tile Initial,

Running, or Cancelled states, as well as finished instances (those in Completed or Cancelled

states). 'ro use such queries, the keyword Completed is replaced with the keywords: Initial,

Running, Cancelled or Finished, as appropriate.

In the following exaniple, the query is satisfied if either all instance of activity type A or B has

cornpleted, and all instance of activity type C has conipleted.

(Completed-act(A) + Completed_act(B))I Completed-act(C))

Informal Operational Semantics

When an instance of the activity type Go (StopQuery, GoQuery) is running, and StopQuery is 0
satisfied before GoQuery, then the synchronisation activity instance goes to Cancelled. If GoQuery C,
is satisfied, and StopQuery is not satisfied beforehand, then the synchronisation activity instance

a goes to Completed. While neither query is satisfied, the instance remains in the Running state.
There is a priority at work here in that, whenever we try to progress a Go instance, GoQuery is 0

evaluated ahead of StopQuery. To effect the opposite, the author may use a Stop activity type,

where the StopQuery is evaluated first. Thus, whether a Go or a Stop type is used in a particular

circumstance depends on the appropriate priority regarding which of the queries is evaluated first.

An instance of the activity type Go (GoQuery) will remain in the Running state until the GoQuery

query is satisfied, whereupon it will move to Completed. Go(GoQuery) is thus equivalent in

behaviour to Go(False, GoQuery). Similarly, an instance of Stop(StopQuery) will remain in

the Running state until the Stopquery query is satisfied, whereupon it will move to Cancelled.

Stop(StopQuery) is thus equivalent in behaviour to Stop(StopQuery, False).

3.1. "5 Seq and SeqCancel - Sequence and UnorderedSeq - Unordered Se-

quence

The Seq/SeqCancel and UnorderedSeq Liesbet constructs are a direct facilitation of two of
tile YAWL workflow patterns, viz. Sequence (#1) and Interleaved Parallel Routing (IPR) (#17),

respectively. [125,64] characterises Sequence as a pattern where "[aln activity in a workflow process
is enabled after the completion of another activity in the same process"'. For lPR [125,641, c4la]

set of activities is executed in an arbitrary order: Each activity in the set is executed, tile order is

decided at run-time, and no two activities are executed at the same moment".

42 Chapter 3. Liesbet Aletamodel

Easy Syntax

Seq(Actl, ..., Actn)

SeqCancel(Actl, ..., Actn)

UnorderedSeq(Actl, ..., Actn)

Informal Operational Semantics

When a sequence (Seq/SeqCancel) instance is running, it executes each constituent activity in

the order specified, waiting for each to get to a finished (Completed or Cancelled) state. ror

Seq, if a constituent activity is cancelled, then tile sequence continues as normal. For SeqCancel,

tile sequence is immediately cancelled. When the last constituent activity finishes, Seq goes to

Completed, and SeqCancel goes to Completed if the last constituent activity completed successfully

and to Cancelled otherwise.
For UnorderedSeq, the child instances contained therein may be executed in any order, but

not concurrently. When all instance of such a type is set Running, one of its child instances is

non-deterministically put into a Running state. The choice could be made by tile workflow engine,

or could be made by the environment (in a deferred choice sense, see later). When the chosen
instance eventually moves to a finished state (Cancelled, or Completed), another child instance is

selected and put into the Running state. When all child instances have finished, the UnorderedSeq
instance is completed.

3.1.6 Par - Parallel

The Par Liesbet construct is a direct facilitation of the Parallel Split YAWL workflow pattern,
which is [125,641 "[a] point in the workflow process where a single thread of control splits into

multiple threads of control which can be executed in parallel, thus allowing activities to be executed
simultaneously or in any order".

We also support a Priority Parallel (PriPar) construct. PriPar allows arbitrarily complex
structured activities to be specified as running in parallel, but the progression of child instances of 00
a PriPar occurs according to a total priority ordering.

Easy Syntax

PaLr(Actl, ..., Actn)

PriPar(Actl, ..., Actn)

Informal Operational Semantics

When the parallel instance (Par) is running, it starts the execution of each child instance in parallel.
Once all have reached a finished state (Completed or Cancelled), the parallel instance goes to

Completed. Note that cancelling child instances does not cancel the Par activity.
For PriPar, progression of Act, occurs at the highest level of priority, then Act), and so on,

until Actn, which has the lowest priority. In terms of what is puslied to agents by the NMIS',
0

'A standard deployment configuration, which uses a WMIS, is where agents are offered items of -%vork in Nvork
lists. An agent may accept an item of their choice from the work list, while it remains in their Nvork list. Once

accepted, the agent marks the work item as finished at some later time.

3.1. Liesbet: An Information View Meta-model for llorkfloiv 43

a basic instance which is a descendant of, or is, Acti, say, can only be offered, or continue to be

offered, if a basic instance which is a descendant of, or is, Actj, where j<i, is not offered. If
it becomes possible to offer a basic instance "from" Actj, at a particular point in time, then all
basic instances pertaining to children of the PriPar instance with a lower priority than j must be 0
blocked (i. e. temporarily withdrawn from agent work lists). The PriPar construct captures the C,
notion that certain work items will need to be completed more expediently than others. Its utility
is contingent on appropriate role assignment. 00

3.1.7 Activity Join and Transition Conditions

An activity definition in Liesbet may optionally specify a join condition and/or a transition

condition for the activity type.
A join condition may be any activity type, although it would rarely be anything but a synchro-

nisation activity type (Go or Stop). They are used to specify conditions under which execution of
an activity may occur. When execution of an activity instance is initiated, the join condition, if

specified, is evaluated. Once a join condition returns a result -a condition may block for some
time, the pertaining activity is executed (moves to Running) if the join condition is satisfied, and 0
cancelled otherwise.

A transition condition for an activity A is used to specify a number of activities that must be

executed after the main work item constituting A. Notably, these activities are considered to be

part of A, i. e. A is not considered to have completed until these activities have themselves finished.

For example, a transition condition may specify one or more synchronisation conditions that must
be satisfied before the pertaining activity may complete.

Activity types that are used as join conditions may not themselves specify join or transition

conditions. The same applies to transition conditions. Moreover, it is not permitted to specify join

or transition conditions for the root activity of a Liesbet Nvorkflow model.

Easy Syntax

Join and transition conditions, when specified, sit to the right of an activity type definition. They
C,

are given in a separate set of parentheses, and enclosed in the containers join and trans. There

are thus three possible forms (besides an activity definition without join and transition conditions).

A(join(AJoin))

AJoin = ...

A(trans(ATrans))

ATrans = ...

A(join(AJol-n), trans(ATrans))

AJoin = ...
ATrans =

Informal Operational Semantics

An activity type with a join condition should be considered as being equivalent to a SeqCancel

activity type containing (in order) the join condition activity type and the actual activity type. This

44 Chapter 3. Liesbet AIetamodel

realises the desired behaviour, namely: that if the join condition does not complete successfully,

the activity instance that it is attached to is not executed. If a transition condition is specified,
then the join condition (if any) and the actual activity type are run first, followed by the transition

condition. Even if the join condition or the instance of the actual activity type get cancelled, the

transition condition will still be evaluated.
In summary, the following rnappingS should be applied, at the level of the meta-model (that is,

at the information view). Note that as there exist mappings for join and transition conditions at

the level of the meta-model, they do not necessitate specific treatment at the computational vieW2.

eA (join(Ajoin) trans (ATrans)) maps to Seq(SeqCancel(AJoin, A) , ATrans).

e A(join(AJoin)) iiiaps to SeqCancel(AJoin, A).

eA (trans (ATrans)) inaps to Seq (A, ATrans).

3.1.8 Def aultChoice, Choice - Exclusive Choice With and Without De-

fault

The DefaultChoice/Choice Liesbet constructs are a direct facilitation of the YAWL workflow

pattern Exclusive Choice, which is [125,64] "[a] point in the workflow model where, based on a

decision or workilow control data, one of several branches is chosen7'.

Easy Syntax

DefaultChoice(Guardl, ContActl; ... ; Guardn, ContActn; ContActd)

Choice(Guardl, ContActl; ... ; Guardn, ContActn)

Informal Operational Semantics

Each Guardi is a guard activity type, and each ContActi a continuation activity type. A guard

will usually be a synchronisation activity type (Section 3.1.4), althou. -h it could actually be any

activity type. ror exaniple, Empty, which is the basic activity type that trivially cornpletes (see

Section 3.1.11), can be used to effect a non-deterministic choice.
The first guard instance that goes to Completed initiates its corresponding continuation in-

stance. All other continuation instances go to Cancelled. In the case of Def aultChoice, if all of
the Guardi activities go to Cancelled, then an instance of the default continuation activity type,

ContACtd, is executed. In the case of Choice, which has no default activity type, the Choice

will itself go to Cancelled. The Def aultChoice/Choice instance cornpletes once the executed 0
continuation instance has finislied.

3.1.9 MultiChoice - Multiple Choice

The MultiChoice Liesbet construct is a direct facilitation of the YAWL workflow pattern Multiple
Choice, which is [125,64] "[a] point in the workflow model where, based on a decision or workflow

217or the most part, although many Liesbet constructs (as discussed in Section 3.4) may be given a characteri-
sation at the information view (in terms of a minimal set of Liesbet constructs), we elect to characterise them at
the computational view (as discussed in later chapters). This enables us to discuss equivalences between characteri-
sations. For simplicity's sake, join and transition conditions and DeferredChoice are exceptions to this convention.

3.1. Liesbet: An Information View Aleta-model for llorkfloiv 45

control data, a number of branches are chosen".

Easy Syntax

MultiChoice(Guardl, ContActl; ... ; Guardn, ContActn)

Informal Operational Semantics

MultiChoice is similar to Choice, except that there is no race between guard instances to complete
first. For MultiChoice, those guard instances that complete successfully have their corresponding 00
continuation instances executed. Those that go to cancelled have their corresponding instances 00
cancelled.

3.1.10 DeferredChoice - Deferred Choice

The Def erredChoice Liesbet construct is a direct facilitation of the Deferred Choice YAWL work-
flow pattern, which is [125,64] "[a] point in the . vorkflow process where one of several branches
is chosen. In contrast to the XOR-split [i. e. Exclusive Choice], the choice is not made explicitly
(e. g. based on data or a decision) but several alternatives are offered to the environment ... This

means that once the environment activates one of the branches the other alternative branches are
withdrawn. It is important to note that the choice is delayed until the processing in one of the

alternative branches is actually started, i. e. the moment of choice is as late as possible. "

Easy Syntax

DeferredChoice(ContActi, ContActn)

Informal Operational Semantics

The conceptual meaning of the Def erredChoice construct is that of an exclusive choice made
by the environment between executing instances of continuation activity types ContActi, 0
ContActn. A Def erredChoice instance goes to Completed when the chosen continuation instance

0
has finished. For simplicity, we model the Def erredCho. ice constructs at the information view, as

presented in Section 3.4.

3.1.11 Empty

Do nothing but trivially complete! Useful, for example, for an empty default branch in a Def aultChoice

activity.

Easy Syntax

Empty

3.1.12 FreeChoice

Non-deterininistically complete or cancel.

46

Easy Syntax

FreeChoice

3.1.13 Multimerge - Multiple Merge

Chavter 3. Liesbet AIetamodel

The Multimerge Liesbet construct is a direct facilitation of the Multiple Aferge YAWL workflow
pattern, which is [125,641 "[a] point in a workflow process where two or more branches reconverge CD
without synchronisation. If more than one branch gets activated, possibly concurrently, the activity
following the merge is started for every activation of every incoming branch".

00Z,
[125,641 determines that the same continuation activity instance be executed for each path

that merges. We can facilitate this, but more flexibly we allow the specification of many different

continuation activities.

Easy Syntax

Multimerge(Guardl, ..., Guardn; ContActl, ..., ContActm)

Informal Operational Semantics

When running, any of the Guardi going to Completed will cause an instantiation and execution

of one of the continuation activities - tile first to be completed initiates ContActl, tile second
to complete initiates ContACt2, and so on. Note, however, the number of continuation activities,

m, may be less than (or equal to) the number of Guardi activities, n. Once the m continuation
instances have been set running, the remaining guard instances are cancelled. Any Guardi instances

a- to cancelled do not result in the execution of a continuation activity. going

3.1.14 Discriminator - Discriminator m from n

The Discriminator Liesbet construct is a direct facilitation of the DiScHminator M from n YAWL

workflow pattern, which is [125,64] "[a] point in a workflow process that waits for ?n of the incoming

branches to complete before activating the subsequent activity".

Easy Syntax

Discriminator(m)(Gua, rdl, ..., Guardn; ContAct)

Informal Operational Semantics

When the Discriminator is running, it Avaits until m of the narned Guardi instances have gone C, 0
to Completed, and then executes an instance of ContAct. Any outstanding guard instances are
then cancelled. The discriniinator instance goes to Completed when the continuation activity and

guard instances have finished. If a sufficient nuinber of guard instances fail for the threshold never o0
to be reached, the discriminator instance is cancelled.

3.1.15 Multi* - Multiple-Instance Activities

Alultiple-instance activities enable the creation of multiple instances of the same ExecAct activity.
There are four types of multiple-instance activity, which can be classified as four quadrants specified

3.1. Liesbet: An Information View Aleta-model for Workflow 47

along two axes. One axis is whether the number of child instances that may be created is limited,

or not, and the other axis is whether child instances must execute sequentially, or not. This

classification leads to the following types.

Easy Syntax

MultiLimit(n)(ExecAct(join(ExecActJoin)))

Multi(ExecAct(join(ExecActJoin)))

MultiLimitSeq(n)(ExecAct(join(ExecActJoin)))

MultiSeq(ExecAct(join(ExecActJoin)))

Informal Operational Semantics

When a multiple-instance activity is set running, an initial instance of ExecAct is created. It will 0
necessarily specify a join condition which is set running. The join condition would be in most 0
cases an instance of a synchronisation type whose GoQuery would only be satisfiable in a distinct

way from previous instances of the synchronisation type, for the same inultiple-instance activity.
To this end, it would make use (not necessarily exclusively) of distinct sub-queries in the GoQuery

part - see Section 3.1.4. This would ensure that the same satisfaction of ExecActJoin can not be

used to create multiple instances of ExecAct.

If the join condition completes successfully, its pertaining ExecAct instance is set running.
Once this has occurred, for Multi and MultiLimit types, another instance of ExecAct is created,

and its join condition is set running. For MultiSeq and MultiLimitSeq types, we must wait until
the instance of ExecAct has finished before another is created.

If the ExecActioin instance fails (i. e. goes to Cancelled), at any time, the i-nultiple-instance

activity will not allow the creation of any more ExecAct instances, and goes to Completed once

all its children have finished.

We now describe the informal semantics for each of the Liesbet types introduced above.

MultiLimit(n)(ExecAct(join(ExecActioin)))

The threshold, n, specified for MultiLimit determines a maximum number of instances of
ExecAct that may be created. The activity goes to completed when all created instances of
ExecAct have finished executing.

Multi(ExecAct(join(ExecActJoin)))

Multi instantiates ExecAct instances according to ExecActJoin, but there is no firnit on the CD
number of instances that may be created.

MultiLimitSeq(n)(ExecAct(join(ExecActJoin)))

As MultiLimit, but instances of ExecAct are executed sequentially.

MultiSeq(ExecAct(join(ExecActJoin)))

As Multi, but instances of ExecAct are executed sequentially.

48 Chaoter 3. Liesbet Aletamodel

3.1.16 CancelActivity - Cancel Activity

The CancelActivity Lie sbet construct is a direct facilitation of the Cancel Activity YAWL workflow
pattern [125,641, where an activitY is cancelled.

Easy Syntax

CancelActivity(qtype)

CancelActivity(qtype in rtype)

Informal Operational Semantics

A CancelActivity instance will cancel all running (i. e. Running) and all possible future running
(i. e. Initial) instances of the named activity type, qtype, within its visibility horizon. Optionally,

CancelActivity may specify a plain reference type, rtype, see Section 3.1.3, to constrain the

visibility horizon.

3.1.17 Exit

The Exit Liesbet construct is a direct facilitation of the Cancel Case YkWL workflow pattern
[125,64], where a process instance is removed completely.

Easy Syntax

Exit

Informal Operational Semantics

An Exit activity instance cancels the root instance of the given Nvorkflow instance, which has the

effect of cancelling the whole instance.

3.2 Additional Constraints on the Intended Semantics for
Liesbet

At this point, it is necessary to augment the definition of the Liesbet meta-model, presented in

the previous section, with some further prescriptions regarding the intended semantics of Liesbet.

We consider it to be appropriate that internal behaviour is prioritised over external behaviour,

and that the effects of external behaviour on the internal evolution of the model is realised atomi-

cally rather than allowing it to be interleaved with other (unrelated) internal behaviour.
0

a Internal. behaviour is prioritised over external behaviour, that is, the progression of structured
instances takes priority over the progression of basic activity instances.

Elaborating, a workflow model should be seen, in enactment, as commencing with a number 0 C,
of basic activities, or work items, that are offered by the Workflow Nlanagenient, System 0
(NMIS), for completion by agents'. When one of these activities is completed, the MINIS C,
offers a new set of activities to agents. Typically, this list will be an extension of the previous C,

'A WRNIS may also support cancellation of basic instances by an agent.

3.3.51, nchronisation Rules 49

list (with the completed instance withdrawn), where the extension may include some or no

new instances. The process then repeats - i. e. completion, then a new offer of instances

- until there is no work left to be done. Every time a basic instance is completed, it is

appropriate that structured instances within the model (i. e. the marshalling activities) are 0
advanced as far as possible, before any new offer of (basic) activities to (complete) is made.
This includes prior to the first offer of basic instances.

e The effects of external behaviour on the internal evolution of the model is realised atomically
rather than allowing it to be interleaved with other (unrelated) internal behaviour.

That is, whenever a childless instance (i. e., an instance of childless structured type, such
as FreeChoice, or a basic instance) completes, or is cancelled, the effects of this should be

atomically propagated as much as possible through the activity instance hierarchy.

By this, we mean:

- If the childless instance completes, then completion should be propagated up the in-
0

stance tree as far as possible. For every parent instance (starting with the parent of the 0
instance being completed), iff all its other children have finished we may, in turn, mark
it as completed.

- If the childless instance is cancelled, then completion is propagated in the same way, 0
unless the instance is a child of a SeqCancel instance, in which case cancellation is

propagated upwards until a parent instance is reached which is not a SeqCancel, then

completion continues to be propagated, according to the description in the previous
bullet.

- Once we reach a parent instance whose other children have not all finished, we advance
this instance as much as possible. For example, if it is a Seq, we propagate execu- 0
tion down through the instance sub-tree whose root is the next child of the Seq to be 0
executed.

According to these semantics, child-bearing instances are only ever progressed as a side-effect 0n0
of the initial execution of the workflow instance, and of the subsequent completion/cancella-
tion. of childless instances. We consider such side-effects to be a true reflection of the nature
of the operation workflow.

These notions will be crystallised in subsequent chapters.

3.3 Synchronisation Rules

We now introduce the notion of synchronisation rules. These are meant as a first step in providing a

capability for the specification of flexible work-flow models. At the start of this chapter, we asserted
that the kind of flexibility that we capture with synchronisation rules may neatly be expressed by

the slogan: Flexible Work-flow = Concrete Model + Policies for Constraint. Synchronisation rules

capture the policies, constraining the enactment of the workflow model which will have a number

of possible enactment paths.
The format for a synchronisation rule is:

SyncRule(RType, CondQuery, GoQuery)

50 Chapter 3. Liesbet. AIetamodel

where:

* RType (rule type) specifies the type of instances to which this synchronisation rule pertains.

" CondQuery is (in effect) a filter on states - for states which do not match the CondQuery,
instances of the given RType may be advanced without constraint (by a single step to the

next state)-

" GoQuery specifies a query that must be satisfiable in the current state, if the current state

satisfies the CondQuery, for any instance of RType (including descendants thereof) to be

advanced in the current state.

Both CondQuery and GoQuery are constrained to be boolean compositions of simple queries
(i. e. those without reference types), see Section 3.1.4.

There is also a four-argunient variant, viz. SyncRule (Ref , RType, CondQuery, GoQuery).
In this case, Ref is a reference type which acts as a scope for RType, CondQuery and GoQuery,
in much the same way as reference types are used in queries within synchronisation types (see
Section 3.1.4). That is, for any instance of RType in a model, we ascertain its ancestral instance

of type Ref, which is then used to scope the queries CondQuery and GoQuery. The SitCalc-based

characterisation that we afford synchronisation rules is presented in Appendix Section B. 2.
To illustrate the utility of synchronisation rules, we present the following example (which is C,

also used in Chapter Eleven to demonstrate verification of a model constrained with a synchro-
nisation rule). Given the workflow model (which we use throughout this thesis for illustrative

purposes): Par(Seq(A, B) , Seq(C, D)), it may be the case that we have a business rule that says
that once activity A has been completed, further progression of activities C and D must be blocked

until execution of B completes. Flexibility would come from enablinddisablirig this business rule,
accordina to current priorities. A specific example might be where activity A corresponds to a
customer returning a complaints form, and B corresponds to the processing of the form. In this

case, we may seek to prioritise completion of B over C and D, which may relate to general Customer
Relationship Management activities, such as making offers to the customer. 0 C5

The described business rule would be effected as a synchronisation rule, viz. SyncRule(S2,
Completed-act (A) , Completed-act (Sl)), where SI=Seq(A, B) and S2=Seq(C, D). The rule stipu-
lates that as soon as the (only) instance of A is in the Completed state, descendants of S2 (namely,
the instances of C and D), and S2 itself, may not advance until the sequence S1 (containin- A and
B) has completed.

Synchronisation rules may be used to effect Liesbet's PriPar construct. PriPar(AO,..., A,,)

will effect the running of basic activities within Aj at a higher priority than those in Ai, for j<i.
For example, in the case of

PriPar(Seq(A, Go(...), B), Seq(C, D))

A and C are both set running; but, to be-in with, only A may be completed. However, once A has 00
been completed, and while the Go synchronisation instance is still running (and thus B has not
been started), we may complete C, and then, even, complete D.

This would be expressed as a Liesbet model, using a regular Par type, thus: 00
P=Par(SI, S2), where Sl=Seq(A, Go(...) B) and S2=Seq(C, D),

with the model bein- constrained according to the following synchronisation rule: 000

3.4. Liesbet Constructs as Abbreviations 51

SyncRule(S2, -Finished-act(Sl in P), -Riinning-act(A in P) A-Running-act(B in P))
The rule says that if the current state is one where S1 has not finished executing, then for S2

to be advanced then A and B cannot be Running. (For all states that do not match the CondQuery
filter, i. e. those where S1 has finished, S2 may be advanced).

A workflow author needs to be careful with the use of synchronisation rules, as it may be

unclear how they will behave in the context of a particular workflow model. However, these rules
have a natural cliaracterisation in our Situation Calculus-based semantics for Liesbet, and con-

sequently are easily incorporated into our verification engine, meaning that workflow models that
incorporate their use can strailit forwardly be checked for properties such as workflow soundness
(see Section 7.1).

3.4 Liesbet Constructs as Abbreviations

Many of the constructs of Liesbet, i. e. those in a set labelled Liesbetabbrv7 may be cast as

abbreviations. This means that they may alternatively be expressed in terms of other Liesbet

constructs from a fundamental set of constructs, labelled Liesbetprim. This intuition (captured

at the information view) is confirmed in Section 6.5, where we argue the following definitions of

these abbreviations to be sound. This is an important contribution as it allows us to propose a

fundamental set of primitives as embodying the real essence of ivorkflow.

Liesbetabbrev Consists Of- Join/transition conditions, Seq, UnorderedSeq, Choice, DefaultChoice,

MultiChoice, DeferredChoice, FreeChoice, Empty, Multimerge, Discriminator, MultiLimit,

MultiLimitSeq, MultiSeq and Exit.

Liesbetp, i,, which may be considered to be primitive, or fundamental to the expression of

Liesbet models, consists of. Act, SeqCancel, Par, Go, Stop, Multi and CancelActivity.

Mapping Liesbetabbrev to Liesbetprim

We now present Liesbetp, i,, -based clia ract erisat ions for each of the constructs in Liesbetabbrev-
Note that we have used constructs in Liesbetabbrev in some of the following characterisat ions, such 0

as Choice for the definition of DeferredChoice. However, their use can simply be replaced for

the presented Liesbetri,,, -based charac t erisat ions, such as that for Choice. We have presented
the clia rac terisat ions, in this way, for simplicity.

In the following, we omit a presentation of the Liesbetpri, -based characterisations for join

and transition conditions, as we have already presented these, in Section 3.1.7.

9S= Seq(A, B, C)

S= PaLr(A, B1, C2)

B' = SeqCancel(Go(Finished_act(A in S)), B)

Cl = SeqCancel(Go(Finished_act(B in S)), C)

The execution of activity instance B (i. e. moving B to the Running state) (resp. C) is blocked

until A (resp. B) has finished.

oU= UnorderedSeq(A, B, C)

52 Chapter 3. Liesbet AIetaniodel

U Par(A', B', Cl)

A' SeqCancel(AJoin, A)

BI SeqCancel(BJoin, B)

Cl SeqCancel(CJoin, C)

AJoin = Go(-Running-act(B in U) -Running-act(C in U))

BJoin = Go(-Running-act(A in U) -Running-act(C in U))

CJoin = Go(-Running-act(A in U) -Running-act(B in U))

The execution of any of the activity instances, A, B, or C, is blocked whenever one of its

siblings is in the Running state. 0

9C= DefaultChoice(G1, Cl; ... ; Gn, Cn; De)

C= Par(GCICancel, GCIMain,..., GCnCancel, GCnMain, Del)

GCICancel = SeqCancel (Stop (-Initial-act (Cl in C) + Cancelled-act(GCIMain in C),

-Initial-act(C2 in C) + ... +

-Initial-act(Cn in C) + -Initial-act(Del in W,

CancelActivity(GClMain in C))

GCIMain SeqCancel(Gl, ClJoin, Cl)

ClJoin Go(Initial-act(C2 in C) I ... I Initial-act(Cn in C))

De' = SeqCancel(DeJoin, De)

DeJoin = Stop(-Initial-act(Cl in C) ++ -Initial-act(Cn in C),

Cancelled-act(Gl in C) 1 Cancelled-act(Gn in C»

The execution of any of the continuation instances (not including the default instance) may 0
only occur if its guard has been completed, and none of the other continuation instances
have moved from an Initial state. The default instance may be executed iff all of the guard
instances have been cancelled.

oC= Choice(GI, Cl; ... ; Gn, Cn)

The characterisation is the same as that for DefaultChoice, except that Nve define the De
type ourselves, viz.

De = CancelActivity(C in C)

This has tile effect of cancelling the Choice if all of the guard instances get cancelled. 0 C, 0

eM= MultiChoice(Gl, Cl; ... ; Gn, Cn)

M= Par(SeqCancel(Gl, Cl), ..., SeqCancel(Gn, Cn))

aC= DeferredChoice(Cl, ..., Cn)

C= Par(Chl, C11, ..., Chn, Cn')

C11 = SeqC&ncel(Stop(Completed-act(Ch2) + ... + Completed-act(Chn),

Completed-act(Chl)), Cl)

3.4. Liesbet Constructs as Abbreviations 53

The environment signals a choice by completing one of JChl,
..., ChnJ. Once a choice is

0 C,
made, the corresponding branch is executed and the rest are cancelled, by virtue of their join

conditions.

eM= Multimerge(Gl, ..., Gn; CI, ... ' CM)

M= Par(Gl', ..., Gn', C1', ... ' Cm')

Gil = Par(GICanc, GO

GICanc = SeqCancel(Stop(Finished-act(G1 in Gil),

-Initial-act(Cl in M) I ... I -Initial-act(Cn in M)),

CancelActivity(Gll in M))

C11 = SeqCancel(ClJoin, Cl)

C2' = SeqCancel(C2Join, C2)

ClJoin = Go(Finished-act(Gl in M) Finished-act(Gn in M),

Completed-act(Gl dist in M) + ... + Completed-act(Gn dist in M))

Moin = Go(Finished-act(GI in M) I ... I Finished-act(Gn in M),

-Initial-act(Cl in M) I

(Completed-act(Gl dist in M) + ... + Completed-act(Gn dist in M)))

The first continuation instance may be set running if any of the guard instances has com-

pleted. We use distinct queries so a record of which guard instance was used to satisfy the

join condition for the continuation instance is kept. The second continuation instance may
be set running only if the first continuation instance has already been set running and an-

other guard instance has been satisfied. Once all guard instances have finished, we cancel the

remaining continuation instances that are yet to be set running. Once all the continuation

instances are no longer in the Initial state, we cancel outstanding guards. 00

oD= Discriminator(m)(GI, ..., Gn; C)

D= Par(Gl, ..., Gn, DJoin, C', Ti)

DJoin = Go(Cancelled-act(GI dist in D) ++ Cancelled-act(Gn dist in D)

... (n-m+l) times ... I

Cancelled-act(GI dist in D) ++ Cancelled-act(Gn dist in D),

Completed-act(Gl dist in D) ++ Completed-act(Gn dist in D)

... m times ... I

Completed-act(Gl dist in D) ++ Completed-act(Gn dist in D))

Cl = SeqCancel(CJoin, C))

CJoin = Go(Completed-act(DJoin in D))

Ti = Choice(Cancelled-act(DJoin in D), TiCanc, Completed-act(DJoin in D), TiComp)

TiCanc = CancelActivity(D in D)

TiComp = CancelActivity(Gl in D) CancelActivity(Gn in D)

Here, we use the synchronisation activity DJoin to assess whether the threshold for guard
instances completing successfully has been reached, or whether it will necessarily not be

54 Chapter 3. Liesbet Aletamodel

reached. Once m guards have completed successfully, the instance of DJoin completes. But,

if n-m+1 -uard instances cret cancelled, then m instances will never get completed. Thus,
0 ID

the instance of DJoin gets cancelled. The join for the continuation instance depends on the 0
status of Djoin - once a result for DJoin is determined, a result for Cioin will be established.
If DJoin completes, completion of Cioin will follow, causing the execution of C. In this case, 0
Ti ensures that the remaining running guard instances are cancelled. If DJoin gets cancelled, 00C,
Ti ensures that the whole discriminator activity is cancelled.

o ML = MultiLimit(n)(E(join(J)))

ML = Par(El, J(ctype(Jl)), E2, J2,..., En, Jn)

El = SeqCancel(Go(Cancelled-act(Jl in ML), Completed-actOl in ML)), E)

J2 = SeqCancel(Go(Cancelled-act(Jl in ML), Completed-act(Jl in ML)), J)

E2 = SeqCancel(Go(Cancelled-act(J2 in ML), Completed-act(J2 in ML)), E)

J3 = SeqCancel(Go(Cancelled-act(J2 in ML), Completed-act(J2 in ML)), J)

n instances of E (the ExecAct) and J (the join condition) are created. Tile first join condi-
tion, which is declared to be of type naine ii in the characterisation of ML, is immediately

set running. If it gets cancelled, then El's join fails, as well as J2's. Cancellation is propa-

gated through the remaining join and execution activity instances. If the first join condition 0 C,
completes successfully, the first execution activity instance, El, is set running, as well as the 0
next join condition, J2. If J2 fails, then cancellation is propagated to the remaining join and

execution activity instances, as before.

e MSL = MultiLimitSeq(n)(E(join(j)))

MSL = Par(EI, J(ctype(Jl)), E2, J2,..., En, Jn)

El = SeqCancel(Go(Cancelled-act(Jl in MSQ, Completed-act(JI in MSL)), E)

J2 = SeqCancel(Go(Cancelled-act(Jl in MSQ, Finished-act(El in MSL)), J)

E2 = SeqCancel(Go(Cancelled-act(J2 in MSQ, Completed-act(J2 in MSL)), E)

J3 = SeqCancel(Go(Cancelled-act(J2 in MSQ, Finished-act(E2 in MSL)), J)

As MultiLimit, except that when the first join condition completes successfully, the instance

of El is set running, but the instance of J2 has to wait until El has finished before it is set 0
running, and so on. 0

9 MS = MultiSeq(E(join(j)))

MS = Multi(E(join(J')))

JI = SeqCancel(Go(Finished-act(E dist in MS) + Running-act(MS dist in MS)), J)

A MultiSeq type may be considered an abbreviation for a Multi type whose join is a corn-
posite condition, which prescribes firstly that either:

3.5. Support for YAWL Work-flow Patterns 55

- This is the first join condition instance, as determined by a distinct query on MS being
0

in the Running state, or

- The previous execution activity instance must have finished, as determined by a distinct

query on an instance of E finishing

And secondly, that the original join condition on the execution activit instance, J, holds. 0y

o Exit

CancelActivity(Root)

Root is a distinguished custornised type name, defined by Liesbet, for the root instance of
a workflow model.

e Erapty

Go (True)

o FC = FreeChoice

FC = Choice(Empty, Empty; Empty, CancelActivity(FC in FC))

There is a race between which of the two Empty guard instances, in the Choice, will complete
first. If the left-hand Empty guard instance wins out, then the continuation instance to be

executed is an instance of Empty, which trivially completes. Thereafter, the Choice trivially
completes. If the right-hand Empty guard instance whis out, then the continuation instance 00
to be executed is an instance of CancelActivity, which cancels the Choice instance.

3.5 Support for YAWL Workflow Patterns

In Table 3.1, we present an overview of how the Liesbet meta-model supports the YAWL workflow
patterns [1251.

We provide tile following. comments to accompany this table:
(i) Synchronisation, i. e. XOR/AND/OR-join behaviour, is supported thus:

* Implicit Synchronisation when activity completes.

o Arbitrary Synchroniser can run in parallel.

(ii) Our version of the Discriminator pattern is more general than that presented in [1251. In [125],

Discriminator is supported by means of a threshold on the number of completed instances

of a multiple instance activity. While we also support this sort of Discriminator, our main
support for the Discriminator pattern is through the Discriminator activity type, which
can be used to synchronise on arbitrary activity instance executions, not just those of a
continuation activity type belonging to a single multiple-instance activity instance. 0 43 0

(iii) Liesbet comprehensively supports the definition of arbitrary cycles, by virtue of Multi types.
Liesbet disallows the specification of cycles which may otherwise occur in a Liesbet model,
as they may always be replaced by the use of Multi types. This restriction provides greater
clarity and simplicity to the semantics of Liesbet. For example, the model A=Seq(A, B)

56 Chapter 3. Liesbet AIetamodel

Workflow Pattern Satisfied Howý? ý

1 Sequence Seq
2 Parallel Split Par
3 Synchronisation, a. k. a. AND-JOIN yes(i)
4 Exclusive Choice DefaultChoice, Choice
5 Simple Merge, a. k. a. XOR-JOIN Yes(i)
6 Multiple Choice MultiChoice
7 Synchronising Merge, a. k. a. OR-JOIN yes(i)
8 Multiple Merge Multimerge
9 Discriminator Discriminator(")
10 Arbitrary Cycles yes(iii)
11 Implicit Termination Yes(iv)
12 Multiple Instances (Nils) Without Synchronisation Par, MultiLimit, MultiM
13 Nils With A Priori Design Time Knowledge Seq with Par(10
14 Nils Instances With A Priori Run Time Knowledge MultiLimit or Muiti(v")
15 Nils Without A Priori Run Time Knowledge MultiLimit or Multi(viii)
16 Deferred Choice DeferredChoice
17 Interleaved Parallel Routing (Unordered Sequence) UnorderedSeq
18 Milestone Stop or Go(")
19 Cancel Activity CancelActivity(x)
20 Cancel Case Exit(Xi)

Table 3.1: Satisfaction of YAWL Workflow Patterns [125,64]

contains a cycle, which may instead be written as Seq(Multi (A), B). A cycle check is made
by the verification tool that we have implemented for Liesbet - see Section 10.3 - to ensure
that cycles that may be introduced into a Liesbet model, other than through the use of C,
Multi types, are not present. Note that the use of arbitrary cycles (by means of Multi
types) should be carefully marshalled by an authoring tool, as their collective effect is often

unclear.
(iv) Liesbet operates on the basis of implicit termination. Unlike in Petri-net formalisations, for

instance, where there is a need to aggregate tokens, and a useful way of doing this is to have 00 00
an explicit end place for a construct, implicit termination is a good choice for Liesbet as it

promotes an intuitive and succinct way of way of authoring Liesbet models. 0
(v) We consider the following interpretations of this workflow pattern (#12):

0

The number of instances is known a pioii at design-time, in which case we can effect 0
the pattern according to the following Liesbet coding. 0 ?D

Par(ExecAct, ..., ExecAct, Cont)

The execution of the ExecAct instances and the continuation of the workflow model
(Cont) is initiated at the same time. That is, we do not synchronise Cont on the
instances havin- finislied.

0

3.5. SuDDort for YAWL Work-flow Patterns 57

The number of instances is unknown at design time, in which case we can effect the 0
pattern with either a MultiLimit, or Multi, as follows. Again, we do not synchronise
Cont on the ExecAct instances having finished.

Par(MultiLimit(T)(ExecAct(join(ExecActJoin))), Cont)

Par(Multi(ExecAct(join(ExecActJoin))), Cont)

(vi) Pattern# 13 has the following simple coding in Liesbet and does need any additional Lie sbet C,
construct. The execution of the continuation instance is synchronised on the completion of
ExecAct instances.

Seq(Par(ExecAct, ..., ExecAct), Cont)

(vii) For pattern #14, we do not know how many instances will be created a priori at design-
0

time. However, this does not mean that we cannot bound the number of instances that may
be created. By imposing a bound, we arrive at a simpler semantics for the pattern. The

appropriate Liesbet construct, in this case, is MultiLimit (or MultiLimitSeq). If we do

not wish to impose a bound, the appropriate Liesbet construct is Multi (or MultiSeq)-

In order to represent a lower limit on the number of instances created, as described in [125],

we could define a new Liesbet type as a macro, which would elaborate to:
Par(ExecAct, ... 1 instances ExecAct, MultiLimit(m-1)(ExecAct(join(ExecActJoin))))

Here, there are I instances of ExecAct which are created alongside a MultiLimit which
specifies a limit for further instances of m-1, where I is the least number, and rn is the

maximum number, of instances that may be created overall.
In order to place a threshold on completion, after which all outstanding instances get can- r,
celled, as described in [125], we could define another new Liesbet type as a macro, which

would (in tile case of Multi) elaborate to:

P=PriPar(CancelActivity(M in P)(join(CAJoin)), M)

M=Multi(ExecAct(join(ExecActJoin)))

The join condition CAJoin, for the CancelActivity type, would be a Go activity type which

would complete successfully once the given number of instances of the ExecAct success-
fully completes. To see bow this may be expressed, refer to the elaborated definition of the

Discriminator pattern, described in Section 3.4.

Tile purpose of the CancelActivity activity is to cancel tile Multi once enough instances

of its contained ExecAct type have completed. This behaviour is prioritised, as specified
b using PriPar. It is notable that the formalisation in [125] does not appear to enforce y0

such a prioritisation. That is, even though it specifies cancellation of remaining instances as

a possible next transition (according to its transition systern-based semantics), it does not

enforce such a transition as necessarily occurring next.
(viii) Ibid, for pattern #15.

(ix) Using the Stop and Go synchronisation types, in Liesbet, a workflow author has much

greater expressivity in capturing intended synchronisation behaviour than just the Milestone
0

behaviour in YAWL. See also the conclusions to this thesis (Chapter Twelve) for more discus-

sion, regarding this matter. 0 C,
The Milestone YAWL workflow pattern is where (125,64] "[tllie enabling of all activity depends

0
oil the case being in a specified state, i. e. the activity is only enabled if a certain milestone

58 Chapter 3. Liesbet AIetamodel

has been reached which did not expire yet. Consider three activities named A, B, and C.
Activity A is only enabled if activity B has been executed and C has not been executed yet,
i. e. A is not enabled before the execution of B and A is not enabled after the execution of
C. Iý
The behaviour described in the example of the three activity types, A, B and C, can be effected

with a Stop, thus: Stop (Completed-act (C) , Completed-act (B)).

(X) In Liesbet, cancellation is achieved by moving the implicit state machines for target activity
instance/s, and the machines of their descendant instances, to the Cancelled state.

(xi) In Liesbet, cancellation of the process instance is achieved by cancelling the root instance,

which has the effect of propagating cancellation to all extant activity instances.

3.6 Mapping WS-BPEL to Liesbet

Having shown how we support the YAWL workflow patterns, it is instructive to consider how we 0
might support (the verification of) the Web Services Composition language WS-BPEL. We present C' 01
a mapping for the control flow aspects of WS-BPEL to Liesbet, omitting fault, compensation and 00
termination handling, as well as correlation, in order to provide a means of verifying properties of 00
WS-BPEL compositions, such as workflow soundness (see Sections 1.1 and 7.1).

Note that the mapping, described here, will strip away all information that is not relevant to 0
verifying WS-BPEL at the control perspective. As such, the resultant Liesbet model, while sufficient
for some verification functions, does not represent a complete formalisation of the semantics of
WS-BPEL. For instance, information pertaining to the data perspective of WS-BPEL models is not r,
accounted for. In this case, we will assume that execution may proceed down any branch of
<pick> construct, for example. This would not be a limiting assumption, but may be overly

cautious for individual instances of the construct.

3.6.1 Mapping of Join and Transition Conditions

We assume that all links and activities within a composition are uniquely named, and that implicit

join and transition conditions (see Section 2.2.3) are made explicit. If not, this would be trivially

enforced by an assumed pre-processor.
When an activity specifies incoming links, in WS-BPEL, then it is specifying a join condition on

its execution. Such an activity is mapped, to Liesbet, as we would map the specification of a
join condition in Liesbet, i. e. to a two-child SeqCancel, where the first child is the join activity
type, as presented in Section 3.1.7. When an activity specifies outgoing links then it specifies a

number of accompanying transition conditions. These are collected together, when mapped to

Liesbet, in tlib Seq containing the join/inain activity and transition condition types, described in

Section 3.1.7.

Elaborating, for an activity with incoming and outgoing links, the Liesbet mapping would be:
n00n

Seq(SeqCancel(JC, A) , LTC,, LTC,), where JC is the mapped join condition type, A is the

mapped main activity, and LTC,, LTC,, are the mapped transition conditions of the activity,
in the order that the appear in the original <sources> WS-BPEL container. For an activity with y
just incoming links, the Liesbet mapping would be: SeqCancel (JC, A). For an activity with just

3.6. Alapping WS-BPEL to Liesbet 59

outgoing links, the Liesbet mapping would be: Seq(A, LTC,, ..., LTC,). For an activity with 0ý0
no links, the Liesbet inapping would be: A.

For an activity with outgoing links, any of the mapped transition condition types, LTC,,

LTC, is derived as follows. If tile link transition condition is simply the expression true, then

tile mapped type will be a named Empty type. This will trivially complete. Otherwise, as tile

transition condition has tile possibility of evaluating to either true or false, the mapped type

will be a named FreeChoice type, which will non-deterministically complete or get cancelled. The

name given to a mapped transition condition type is its (unique) pertaining link name.
We now consider the mapping of join conditions. As all example, which will make the reading

of the following description easier to follow, consider tile WS-BPEL process fragment in Figure 3.5.
Ignoring the "tricky" labelling afforded to this fragment for the time being, we note the top-level 000n0
<f low> activity contains a pair of . <link> definitions and three activities, which use these links.

The <empty> activity, contained within the <if > activity, is a target of tile toSkipped link,

whose source is contained within the <receive> activity. Its implicit join condition is that the

toSkipped link evaluates to true. The mapping of tile source of this link would be a link transition

condition, as described above, attached to the mapping of the <receive> activity. 0
In general tern-is, the join condition of all activity is mapped to a Go type. Its GoQuery is a

direct i-napping of the join condition specified in the original WS-BPEL source. Each query on link

status, participating in the original join condition, will be mapped to a Completed-act MINKNAME

in FLOWACT) query, where LINKNAME is the unique name given to the link, and FLOWACT is the

name of the <f low> activity which defines the link. In WS-BPEL terms, this has the effect of

querying whether the status of the link is true. In the source presented in Figure 3.5, the implicit 00
join condition of the <empty> activity would be mapped to a Go type with GoQuery (in part):
Completed-act(toSkipped in foobar).

Arbitrary join conditions are mapped to a Liesbet expression tLiesbetiC by the mapping 0
function, MBPELg-J, defined thus. Without loss of generality, or expressivity, we cast a join 0
condition as an arbitrarily nested expression that makes use of just one- and two-argument boolean

operators.

-MBPELI-C] ý -MBPELJCý

-'%4BPELjCj
A C21 ý A4BPEL[Cil I MBPELIC21

MBPELICI V C21 ý MBPELICII + MBPELIC21

MBPELjQuery on link: LINKNAME, flow: FLOWACT] = Completed-act(LINKNAME in FLOWACT)

The inapped Go type, effecting the join condition, is: Go (allLinksIn, tLiesbetJC I allLinksIn),
where allLinksIn is a query which is only satisfied if all of the inapped incoining links have a
value, that is all of tile pertaining source activities (either FreeChoice, or Empty, as inapped) have
finished. The definition of allLinksIn is thus: Finished-act (LINKNAME, in FLOWACTI) I ... I
Finished-act (LINKNAME,, in FLOWACTn) 7 where there is an occurrence of Finished-act (LINKNAMEj
in FLOWACTi) for every link, i, whose status is queried within tile join condition.

The specification of allLinksIn in the GoQuery ineans that all links have to have a
before the query, i. e. join condition, call return a result. The specification of allLinksIn as the
StopQuery means that, once all links have a value, if the GoQuery cannot be satisfied then tile join

condition inust be false. Thus, Nve fail (i. e. cancel) the join condition (i. e. Go type).

60 Chapter 3. Liesbet Aletamodel

It is worth making a note about the criterion, specified at the end of Section 2.2.6; namely, that

an activity's incoming links must all have had their values determined before outgoing links can be

set to f alse (as part of dead-path elimination). Ali example of the pertaining issue is as follows. It
is taken, nearly verbatim, from Section 11.6.2 of [87]. In the example, tile toSkipped link creates
a control dependency from the <receive> activity to the <empty> activity in the <if >. The
f romSkipped link creates a dependency from the <empty> activity to the <reply> activity. These
two links create a transitive dependency from the <receive> activity to tile <reply> activity.
Even though the <if> condition evaluates to false, thus skipping the <empty> activity, the
transitive dependency is retained; and the status of f romSkipped is not set to false until after
the status of toSkipped is known.

The semantic charact erisat ions for Liesbet, in the forms presented in Sections 5 and 6, are

not capable of accounting for this criterion. To do so requires a non-trivial extension to these

characterisat ions, which is not interesting from the point of view of this thesis. However, we have ID
accommodated it in our implementation of the verification engine for Liesbet, and details of the 0
required extensions to the semantic characterisations of Liesbet is presented in the documentation

for the engine, which is available from the author on request. 0

Some further notes are appropriate. WS-BPEL scopes may be marked as isolated, which does

not carry quite the same meaning as our use of the word in a Liesbet context. For the discussion
0

here, it suffices to say that for a WS-BPEL marked as isolated, the status of links leaving the scope 0
will not be visible to targets outside the scope until tile scope has completed (see Section 2.2.7). In

mapping this criterion, the allLinksIn expression, for join conditions having incoming links which

cross isolated scope boundaries, will include further Fini shed-act (SCOPE in FLOWACT) queries on
the given scopes, where FLOWACT for any such query is the name of the <flow> activity defining

tile link.

The mapping from WS-BPEL includes the generation of a number of synchronisation rules,

which prevents the execution of activities, which are not start activities, until a start activity has

completed (see Section 2.2.1). We identify all of tile activities, in a composition, which could

count as start activities. We then divide this group into those activities which are marked as

start activities (by virtue of their createInstance attribute being true), and those that are not.
For every activity in the latter group, we write a synchronisation rule indicating that it may not

advance until an activity from the former group has been executed. Instances of a synchronisation

rule, applied for this purpose, would look as follows.

SyncRule(Acti, True, Finished-act(Act,, I) + ... + Finished-act (Act,,,))

Here, Acti. is the name of an activity from the set of non-starters, and each Act,, j is one of the

start activities. The rule says that a non-starter may only advance once a starter has finished.

A scope with event handlers is mapped to: S=Par (A, EvHal, ..., EvHa,,), where A is the main

activity of the scope, and each EvHai is an event handler. An Event Handler is a Multi activity
type, whose join condition is a Stop activity type whose StopQuery is Finished-act (A in S),

which will have the effect of disabling the event handler from creating further instances once A has

finished (see Section 2.2.7).

3.6. AlaDDinz WS-BPEL to Liesbet 61

<flow name="foobar">

<links>

<link name="toSkipped" />

<link name="fromSkipped" />

</links>

<receive ...
<sources>

<source linkName="toSkipped"

</sources>

</receive>

<if>

<condition>

... <! -- evaluates to false

</condition>

<empty name="skipped">
<targets>

<target linkName="toSkipped">

</targets>

<sources>

<source linkName="fromSkipped">

</sources>

</empty>

</if>

<reply ... >

<targets>

<target linkName="fromSkipped"

</targets>

</reply>

</flow>

Figure 3.5: Process Fragment Capturing Soine'Ricky WS-BPEL Link Semantics

3.6.2 Mapping of Other Activity Types

The inapping for the other activity types, presented in Table 2.1, is presented in Table 3.2.

We also note that WS-BPEL provides no direct support for YAWL patterns: Multiple Merge,

Discriminator, Arbitrary Cycles, Interleaved Parallel Routing and Milestone. In many cases, where

use of one of these patterns would be desirable to a workflow model author, the specific functionality

required would still be able to be captured in WS-BPEL. However, to do so may be non-trivial. The

common cause behind the said modelling difficulty for all five listed patterns is WS-BPEL's link

semantics. For WS-BPEL to more easily support these patterns, modification of its link semantics

62 ter 3. Liesbet Aletamodel

<receive>, <reply>

<invoke>, <assign>, <, wait>

Abstracted as Empty activity type

<exit> Exit

<empty> Empty

<sequence> Seq

<if> Choice, DefaultChoice

<while> MultiSeq

<repeatUntil> MultiSeq with "free iteration"

<forEach> MultiLimit, MultiLimitSeq, Multi, MultiSeq

<pick> Choice

<flow> Par

Notes:

9 For <repeatUntil>, its mapping is a MultiSeq with a "free iteration", meaning that

the join condition on the contained execution activity (ExecAct) is a distinct query on

the MultiSeq having been started, in disjunction with the mapping of <repeatUntil>'s

condition.

e For <pick>, the onMessage and onEvent conditions are mapped to Empty, which trivially

completes.

Table 3.2: Mapping of Some WS-BPEL Activity Types to Liesbet 0

would be necessary.

3.7 Concluding Remarks

In defining Liesbet, we have sought to understand the true nature of workflow, and thus the
fundamental concepts that need to be represented with Liesbet. We have presented the constructs
of Liesbet, along with a specification of their informal operational semantics. In Chapters Five

and Six, we will provide formal characterisations of the semantics of these constructs. We have

also presented the definition of additional intended semantics for Liesbet, which prescribe further

constraints regarding the evolution of Liesbet models. 00
We have taken our first step towards greater flexibility in workflow models through the proposal

of Synchronisation Rules, which may be used to provide a notion of flexibility that may be captured
as Flexible lVork-flow = Concrete Model + Policies for Constraint. We have described how such
rules may be useful. For instance, we are able to capture the behaviour of Liesbet's PriPar

construct using such a rule.
We have also presented a reduced set of patterns with which (we show) all patterns may be

represented. This is a useful result as it enables us to propose the true nature of workflow to be

captured by (the semantics of) this reduced set. We provide further elaboration of this point in

the conclusions to this thesis, presented in Chapter Twelve.

We have also documented how Liesbet captures all of the YAWL patterns, as well as describing

3.7. Concluding Remarks 63

its support for modelling the control flow perspective of WS-BPEL, in order to usefully facilitate
0

verification of WS-BPEL compositions.

In the next chapter, we present some example workflows represented using Liesbet in order C,
that the reader may gain some insight into how it is used. C, 0

Chapter 4

Liesbet Meta-model Examples

In this chapter, we show the use of Liesbet to represent some examples of workflow, proposed
by members of the Business Process Management (BPNI) community. It is insightful to consider 0 C,
the modelling of these examples using Liesbet as most of them (as indicated by [8] citations) 00
have been su--ested as benchmarks by which ontologies for workflow should be evaluated. The

nO 0y
also provide a good coverage of Liesbet's constructs, which is useful for the interested reader in

00
understanding the operation of the patterns.

The Synchronisation Example (4.1) provides a simple example of synchronisation between
the execution of one activity instance and the completion of another, where these instances

execute in parallel threads. This is a motivating example from [122]. 0

e The Distinct Query Example (4.2) provides an example of the need for distinct reference
queries. This sort of query is principally required within Multi* activity types (but may also
be required in other types, such as Multimerge) to differentiate between instances of activity
types in satisfying a query.

9 Examples (4.3), (4.4) and (4.5) are some benchmark examples from [8].

4.1 Synchronisation Example

This is an example of where we need to synchronise the execution of one activity instance to

occur after another has finished. As can be seen from Figure 4.1, we execute A, then execute the

sequences B, C, D and E, F, G in parallel, and after both sequences have completed, we execute H.

There is a join condition on the execution of F that (the instance of) C must have completed first.

The Liesbet definition is st ra ight forward, viz.

Seq(A, Par(Seq(B, C, D), Seq(E, F, G», H)

F= Act(join(Go(Completed-act(C»»

We start by representing the workflow model without the additional synchronisation. This is
0

accounted for by the first line, which is a sequence of a basic instance A, a parallel instance, followed

by a basic instance H. The parallel instance consists of two sequences of three basic instances: B,

C and D, and E, F and G.

64

4.2. Distinct Query Example 65

Par'. #ý

Figure 4.1: Synchronisation Example [122]

MultiLimit(2)

A

Par B
P MultiLimit(2)

3. Lim M mult. ultiLimit(2)

join (Go (Completed act(A dist in P) I Completed_act(B dist in

Figure 4.2: Distinct Query Example

The synchronisation is added in the second line, where it says that F is a basic activity instance

that has a join condition, which is a Go activity type with GoQuery Completed-act(C), which

means that the join condition will block until the instance of C has been completed.

4.2 Distinct Query Example

In Figure 4.2, we present an example illustrating the need for distinct querying. Here, we use 00n
distinct querying in order to appropriately satisfy the join condition on basic instance C, which is C,
the execution activity type (ExecAct) in a MultiLimit instance.

The Liesbet definition of the model is as follows.

P= Par(MLA, MLB, MLC)

MLA= Multi-Limit(2)(A)

MLB= MultiLimit(2)(B)

MLC= MultiLimit(2)(C(join(Go(Completed-act(A dist in P) I Completed-act(B dist in P)))))

The join condition on C, in MultiLimit instance MLC, is only satisfied when distinct instances

of A and B (as created by MLA and MLB instances) liave completed. If distinct querying were not

used then any completed instance of A and any completed instance of B could be used to satisfy

the join conditions of the two instances of C, created by MLC.

66 Chapter 4. Liesbet Aleta-model Examples

chtck insufance

, Aij D-- -sp 1it At ID-j 0 in

phone garage

start register classify

check insurance check damage history phon-ý gjraq, ý

letter

&Cidý Z-ý
end

Pay

Fi-ure 4.3: Insurance Company Workflow as a YAWL EWF-net, from [8]
0

4.3 Insurance Company

The following example is of an Insurance Claim Handling Procedure, adapted from [8).
0

An insurance company processes claims from its drivers for traffic accidents, using the following

procedure. Every claim made is Registered, and then Classified. There are two categories

of classification: simple and complex claims. For simple claims two activities need to be

executed: Check Insurance and Phone Garage. These activities are independent of each other.
The complex claims require three activities to be executed: Check Insurance, Check Damage

History and Phone Garage. These activities need to be executed sequentially in the order

specified. Then, having completed the two (for simple), or three (for complex), activities, a
Decision regarding paying the claim is made. If the decision is to pay, then Payment will be

made. Then, in any event, a letter will be Sent to the claimant outlining the decision.

A representation of this example, as a workflow model, using a YAWL ENNIF-net is shown in 0
Figure 4.3. A representation in Liesbet is as follows. Note that, for simplicity, we do not include 0
a specification for the decision activities: SimpleClaimDecision and PayDecision. These would
likely be elaborated to Go or Stop types.

Seq(Register, Classify, SimComChoice, PayChoice, SendLetter)

SimComChoice= DefaultChoice(SimpleClaimDecision, Par(CheckInsurance, PhoneGarage);

Seq(CheckInsurance, CheckDamageHistory, PhoneGarage))

PayChoice= DefaultChoice(PayDecision, Pay; Empty)

At the top-level, we simply have a sequence, largely consisting of the basic activities given
in italics in the example text. Tile two activity types in the Seq that are not basic activities

are SimComChoice and PayChoice. The first, SimComChoice, makes a Def aultChoice based oil

whether the claim is classified as simple or not (i. e. complex claim). This is respectively determined

by whether theguard activity, SimpleClaimDecision, completes successfully, or is cancelled. If it is

a simple claim then tile given Par of basic activities CheckInsurance and PhoneGarage is executed.
If it is a complex claim then tile given Seq of basic activities CheckInsurance, Che ckDamageHi story

and PhoneGarage is executed. PayChoice is simply another Def aultChoice based on whether the
Insurance Company decides to pay the claim or not. This is respectively determined by whetber
tile guard activity, PayDecision, completes successfully, or is cancelled. If the claim is to be paid,
Pay is executed, otherwise we do nothing (as reflected by Empty). 0

4.4. Comolaints Han

Figure 4.4: Complaints Handling Workflow as a YAWL EWF-net, from [81
0 C,

4.4 Complaints Handling

The followin., example is of a Complaints Handling Procedure, adapted from [8].

A travel agency has a complaints department. Each complaint is first Registered. After

registration a form is Sent to the customer with questions about the nature of the complaint.
There are Vwo possibilities: the customer returns the form within a stipulated time or not.
If the form is returned in time, it is Processed automatically resulting in a report which can
be used for the actual processing of the complaint. If the form is not returned on time, a
time-out occurs resulting in an empty report. Note that this does not necessarily mean that

the complaint is discarded.

After registration and in parallel with the form handling, the preparation for the actual pro-

cessing is started. First, the complaint is Evaluated to ascertain whether further processing is

needed or not. Note that this decision does not depend on the form handling. If no further

processing is required and the form is handled, the complaint is Archived. If further processing
is required, the activity Process Complaint is executed, in which certain further actions may
be proposed. For the processing of the complaint, the report resulting from the form handling

is used. The result of the Process Complaint activity is Checked for quality. If the result of the

check is not satisfactory, the Process Complaint and Check activities are repeated until the

result is satisfactory. If the result is satisfactory, an employee Executes the proposed actions.
After this the processed complaint is Archived.

67

A representation of this example, as a workflow model, using a YAWL ENN'r-net is shown in
Figure 4.4. A representation of this example in Liesbet is as follows. Note that, for simplicity,
we do not include a specification for the decision activity: EvaluateDecision. This would likely
be elaborated to some Go or Stop type. Tile TimeOut activity is a timer, which completes once
its implicit expiry time has elapsed. FormReturned completes once the complainant has returned
their complaint form. We do not model these activity types further either.

Seq(Register, HandleProcessPar, Archive)

68 Chapter 4. Liesbet Aleta-model Examples

HandleProcessPar = Par(Seq(SendForm, HandleFormPar),

Seq(Evaluate, DefaultChoice(EvaluateDecision, PCMultiSeq; Empty)))

HandleFormPar= DefaultChoice(Go(TimeOut, FormReturned), HandleForm; EmptyReport)

PCMultiSeq= MultiSeq(PCSeq(join(Go(Completed-act(Check in PCMultiSeq),

Cancelled-act(Check dist in PCMultiSeq) +

Completed-act(HandleFormPar dist in HandleProcessPar)))))

PCSeq= Seq(ProcessComplaint, Check)

The workflow model, at the top-level, consists of a sequence of Register and Archive activities

with some other processing, given by HandleProcessPar in between. HandleProcessPar is a

parallel activity consisting of handling, and processing, the complaint.
For handling the complaint, we first execute SendForm, and then HandleFormPar to handle

the form, if returned. HandleFormPar executes a DefaultChoice whose single guard activity

completes successfully if the form is returned. In this case, HandleForm will be executed. If the

guard instance gets cancelled, which would occur if a time-out for return of the form expires first,
D C,
then EmptyReport, instead, will be executed. The result of executing HandieForm will be a report

used in the processing of the complaint. The result of executing EmptyReport will be the generation

of an empty report.
For processing the complaint, we evaluate the complaint in Evaluate. We then make a decision,

on the basis of the evaluation, to proceed with processing the complaint or do nothing further

with it, regarding processing. If we decide to proceed with processing, the MultiSeq activity,
PCMultiSeq, is executed. This activity type handles the possible multiple iterations of processing
the complaint and the result of the processing being checked as to whether it is satisfactory. Its

execution activity type is PCSeq, which consists of basic activities ProcessComplaint and Check,

in sequence. The first instance of PCSeq, i. e. the first iteration of the process complaint loop, will
be executed once the HandleFormPar activity has completed. That is, once a report, either empty

or completed by the complainant, has been filed. Future instantiations of PCSeq depend on the

outcome of Check. If Check completes successfully then PCMultiSeq will not instantiate further

iterations of PCSeq and will instead complete. If Check gets cancelled, then another instance of
PCSeq is executed.

4.5 Travel Agency

Adapted from [8]:

Consider a fragment of a Travel Agent's process for booking trips, which involves five steps:

Register, (Booking of) Flight, (Booking of) Hotel, (Booking of) Car and Pay. The process

starts with activity Register and ends with Pay. The booking activities Flight, Hotel and Car,

which may succeed or fail, occur in between, in parallel. Cancellation of the instance of the

booking process will occur in the event of a failed booking activity.

Presented in the following sub-sections are a number of variants of the Travel Agency scenario. 0 C,

Travel Agency 1

Adapted from [8]:

4.5. 'Havel Agency 69

Figure 4.5: Týravel Agency I Workflow as a YAWL ENU-net, from [8]
C, 0

Every trip involves all three booking activities. If all three succeed, payment follows. Otherwise
0

the process instance is cancelled. Cancellation is delayed until all three booking activities have

finished.

A representation of this example, as a workflow model, using a YAWL EWF-net is shown in

Figure 4.5. A representation of this example in Liesbet is as follows.
0

Seq(Register, Book, PayCancelChoice)

Book = Par(Flight, Hotel, Car)

PayCancelChoice = DefaultChoice(PayDecision, Pay; Exit)

PayDecision = Stop(Cancelled-act(Flight) + Canc6lled-act(Hotel) + Cancelled_act(Car),

Completed-act(Flight) I Completed_act(Hotel) I Completed-act(Car))

Here, we execute basic activity Register and structured activities Book and PayCancelChoice
in sequence. Book consists of the basic activities of booking a Flight, a Hotel and a Car, C,
which are carried out in parallel. Once Book has finished, PayCancelChoice is executed. It is

a Def aultChoice activity whose single guard is completed iff all three booking activities complete
successfully but fails (i. e. gets cancelled) iff any of the booking activities fails. If the former hap-

pens, Pay is executed. If the latter happens the Liesbet activity Exit is executed, which has the

effect of cancelling the process instance.
0

Travel Agency II

This example is the same as JYavel Agency 1, except that (adapted from [81):

CNOK canrel

70 Chapter 4. Liesbet AIeta-inodel Examples

cNOK

Figure 4.6: 'IYavel Agency II NNorkflow as a YAWL ENVF-iiet, froin [8]
06

Cancellation of the process instance should occur the moment the first activity fails and, at
the same time, all outstanding booking activities should be withdrawn.

A representation of this example, as a workflow model, using a YAWL ENNIF-net is shown in CI
Figure 4.6. A representation of this example in Liesbet is as follows.

Par(Seq(Register, Book), PayCancelChoice)

Book = ... as Travel Agency I

PayCancelChoice = ... as Travel Agency I

PayDecision = ... as Travel Agency I

This representation differs from that for Travel Agency I, in that the choice of whether to

pay or cancel the process instance is inade in parallel with the Book activity, meaning that the

process instance may be cancelled once any of the booking attempts fail. That is, if at any time a
PayDecision gets cancelled (due to one of the booking activities failing , Exit, which has the

effect of cancelling the process instance, will be executed. 0

Travel Agency III

This example is the same as 'IYavel Agency II, except that (adapted from [8]):

A trip may omit any of the booking activities, but clearly must involve at least one. If all

of the attempted bookings activities succeed, the payment follows. Otherwise, the process
instance is cancelled.

4.5. 'Ihivel

cNOK

Figure 4.7: 'lYavel Agency III Workflow as a YAWL ENNIF-net, from [8]
00

71

A representation of this example, as a workflow model, using a YAWL ENNIF-ilet is sbown in
Figure 4.7. A representation in Liesbet is as follows. Note that, for simplicity, we do not in-

clude a specification for the decision activities: BookFlightDecision, BookHotelDecision and
BookCarDecision. Tliese would likely be elaborated to Go or Stop types.

... Root act as Travel Agency II

Book = MultiChoice(BookFlightDecision, Flight;

BookHotelDecision, Hotel;

BookCarDecision, Car)

PayCancelChoice ... as Travel Agency II

PayDecision = Stop(

(Cancelled-act(Flight) Completed-act(BookFlightDecision)) +
(Cancelled-act(Hotel) Completed-act(BookHotelDecision)) +
(Cancelled-act(Car) I Completed_act(BookCarDecision)) +
(Cancelled-act(Flight) I Cancelled-act(Hotel) I Cancelled-act(Car)),

(Completed-act(Flight) + Cancelled-act(BookFlightDecision))

(Completed-act(Hotel) + Cancelled-act(BookHotelDecision))

(Completed-act(Car) + Cancelled_act(BookCarDecision))

)

This representation differs froin that for 'Ravel Agency II, in that the Book activity is now a
MultiChoice, meaning that not all booking activities have to be executed. As such, PayDecision

0 C,
is adjusted accordingly, to account for booking activities not being executed. PayDecision will 000

72 Chapter 4. Liesbet; Meta-model Examples

succeed iff all of the attempted booking activities succeed. It will fail iff an attempted booking

activity fails, or no booking activity is attempted at all.

4.6 Concluding Remarks

It is interesting to note that the YAWL representation of this example is not quite the same as the

Liesbet one. This is of note because the representation in YAWL would actually be significantly

more complex to match the Liesbet representation. The difference lies in what happens if all
three activities get cancelled. It would be bizarre if the Pay activity were still executed in this

instance. This is what happens in the YAWL model, however.

We argue that the increase in complexity is significant because there would be a need to

specify a number of additional places and transitions in order to capture the desired semantics. In

contrast, in our Liesbet representation, it is an extra line in the StopQuery of the Stop type, i. e.,
(Cancelled-act (Flight) I Cancelled-act (Hotel) I Cancelled-act(Car)). We assert that

the advantage of using a single artefact (the Stop instance) to model whether we Pay or not, with
the capacity for arbitrarily complex querying on -, vorkflow state, is quite evident when compared

with the YAWL model. An example of this even in the presented figure is the additional 'bypass'

transitions that are needed to capture the choice of whether a booking activity is carried out or not.
Such transitions are replicated for each activity. By admitting the possibility that activities may
be cancelled as a fundamental aspect of the semantics, there would be no need to explicitly model

cancellation (or bypassing) as they have done. NVe consider YAWL, and Petri riet-based approaches
generally, to be too low-level for modelling workflow, as we argue in the conclusions to this thesis,

in Chapter Twelve.

F'urther examples of Liesbet workflow models are presented in Chapter Eleven.

In the next chapter, we consider the CCS/PCCS-based cliaracterisation of the Liesbet meta-

model. This is the first of the two main approaches, that Ave have taken in our work, for the formal

characterisation of Liesbet.

Chapter 5

CCS-based Characterisat ions of
Liesbet

We now present two formal characterisations of Liesbet using Milner's CCS [78,80,79] and
Cleaveland's et al's Prioritised CCS (PCCS, for short, hereafter) [30,29].

We selected CCS/PCCS as appropriate formalisms to investicrate for two reasons:
1) There has been quite a lot of talk within the BPINI community as to whether Petri nets or CCSI-r, -

calculus is better suited for the characterisation of Nvorkflow, and specifically the YAWL patterns
[1221. While we do not seek to compare these two formalisms at length, by characterising YAWL

with CCS we are able to provide a contribution to this debate from one perspective. Note that

we do present some points regarding their respective suitability at the end of Chapter Five.

2) The operational semantics of CCS/PCCS (in terms of facilitating compositional specifications

of behaviour) should lend themselves quite well to the representation of workflow, and this is a
point Ave seek to investigate.

We start with CCS, presenting a description of how we have used it to provide a characterisation
of Liesbet, and how we have used the Concurrency Workbench for the New Century (CWB-NC) [11]

for the purpose of verifying properties of Liesbet models. We also present a result regarding the

completion of CCS-characterised Liesbet workflow models. Then, we briefly discuss the utility

of CCS for capturing the semantics of Liesbet, and for facilitating verification. The discussion

also motivates the use of PCCS for capturing the semantics of Liesbet. We then proceed with a

presentation of some aspects of the PCCS characterisation that we have given to Liesbet, deferring

the presentation of remaining aspects to Appendix A, in order to save space. We conclude the

chapter with a further discussion.

5.1 Using CCS to Provide an Operational Meaning to Liesbet

We present our CCS-based characterisation for just a subset of Liesbet, which we label Liesbet 1.
It is possible to give a CCS-based characterisation to the whole of Liesbet, as we discuss in
Section 5.7. We define Liesbetl to consist of the following constructs:

* Basic Activities: A, B, C,

73

74 Chapter 5. CCS-based Characterisations of Liesbet

Pi
Par

Sl Se Seq S2

CD ABA

Figure 5.1: Par(Seq(A, B), Seq(C, D)) - Simple Workflow Model
0

o Sequence: Seq.

* Parallel Split: Par.

e Default and Exclusive Choice: Def aultChoice and Choice.

* Multiple Choice: MultiChoice.

9 Empty: Empty.

e FreeCliolce: FreeChoice.

5.1.1 Par(Seq(A, B), Seq(C, D)) -A Simple Example

We start by introducing the characterisation of a sim le example Liesbet model in CCS, shown in p
Figure 5.1. The model is Par(Seq(A, B) Seq(C, D)), and is used for illustrative purposes through-

out this thesis.

Informally, enactment of this model proceeds as follows. The root instance (Pl) is executed,

and eventually this execution is propagated to S1, S2, as well as to basic instances A and C. When

either one of the basic instances completes (or cancels), the next basic instance in the parent Seq is

executed. Whenever both instances in one of the Seqs have finished (i. e. have been completed, or

cancelled), the respective Seq instance itself is completed. Once both sequences have completed,
the root Par is completed.

A possible representation of the given workflow in CCS could be, simply: a. b. nil I c. d. nil.
This adequately captures the intended semantics of the given workflow. Here, we are representing
the completion of workflow tasks as CCS transitions. However, there are a number of dispensations

that we have to make in representing Liesbet models, which mean that, even for the simplest

workflow models, their representation in CCS will not be as simple as this. Chief amongst these

are:

The need to support arbitrary querying of workflow state. This means that we need to

maintain agents for activity instances, which can be queried as to the state of their pertaining
instances.

A means of prioritising tile evolution of structured instances over basic instances. This is a

requirement of any characterisation of Liesbet, as described in Section 3.1. In the absence

of all explicit notion of priority in CCS, Nve need to effect some kind of sclieduler for the

progression of structured instances over basic instances.
0

5.1. Using CCS to Provide an Operational Aleaning to Liesbet 75

The general form of our CCS characterisation of Liesbet, in light of these requirements, is as
follows.

tracker agents I generic type agents I scheduling agents
Racker agents maintain the state of activity instances, viz. Initial, Running, Completed, or

Cancelled. A tracker agent is an instance of one of the following agent schemas: InitialState, 0 43 0
RunningState", CompletedState and CancelledState. In these schemas, n is the number of

child instances of the pertaining instance and r is a (run-time) count of the number of child
instances yet to finish. There will be an instance of one of these agents for every activity instance

in a Liesbet model.
Generic type agents maintain the logic for the various Liesbet types, Seq, Par etc. There will

be an instance of one of these agents for every structured instance in a Liesbet model. Finally, the

scheduling agents ensure the priority, in enactment, of structured instances over basic instances.
00

Tracker and generic type agents employ a number of channels, which are now briefly enumer-

ated.

State Channels - used to update and query a tracker aprit, regarding the state of its pertaining 000C,
activity instance:

- exec (resp. comp, canc, pcanc) - used to instruct the instance to move to the Running
(resp. Completed, Cancelled, Cancelled) state.

runn (resp. cotd, cald, f ind, ninit) - used to query whether the instance is in the

Running (resp. the Completed, the Cancelled, a finished (Completed or Cancelled),

or not Initial) state. An answer will follow on the yes or no channel (as appropriate).
Note that for our CCS-based characterisation of Liesbet, presented here, we restrict
the support for state querying within synchronisation activities (i. e. Go and Stop types

to just monotonic querying, with no support for distinct queries. Monotonic queries are

queries that, once satisfied, are never able to not be immediately satisfiable. This means
that the queries within synchronisation types are able to be satisfied gradually, as the

workflow model evolves, safe in the knowledge that once we have marked component

sub-queries of a query as being satisfied, they will remain so. This also necessitates that

the use of ne-ation not be allowed in queries; and we remove the capability of specifying

queries on Running and Initial. To conipe nsate, we add the possibility of specifying
NotInitial queries, such as NotInitial-act, in Liesbet models. These queries would

refer to an instance not being in an Initial state. Such querying is supported, by

tracker agents, on ninit. Note that we do allow Running queries, on runn, at some

points within the characterisation of Liesbet, on the basis that their use is necessarily

sound.

- yes, no - for responses to queries.

9 Completion channels - used to signal to a parent instance that a child instance has finislied: 0

- pprec - used by a child instance to signal to its parent that it has finished. 0

- prec - used by a parent instance to listen for a child instance to signal that it has

finished - corresponds to the pprec channel in child instances

76 Chapter 5. CCS-based Characterisations of Liesbet

Propagation of execution occurs by virtue of both tracker and generic type agents; whereas

propagation of completion occurs solely by virtue of tracker agents.
A representation of the model, presented in Figure 5.1, in CCS (according to our CCS-based

C,
characterisation of Liesbet) is as follows.

lInitialState 21 lInitialState 2 lInitialState 21

Par 2 ISeq 21 Seq2 I

InitialStateo lInitialStateo lInitialStateo I InitialStateo

Note that the tracker agents for P1, S1 and S2 occupy the first line of the presented process
term (from left to right, respectively). The generic type agents occupy the second line. The

tracker agents for the basic activity instances, A, B, C and D, occupy the third line (frorn left to

right, respectively). There are also some auxiliary agents, which are represented by ellipsis
In what follows, we present a narrative of one possible way in which this model may be enacted.

There are, in fact, several ways. The boxes that surround some of the CCS agents indicate that
the agent is involved in the next sequence of transitions to be presented for the narrative.

Briefly, the tracker agent for P1 is put into a Running state, by a synchronisation (with a
scheduling agent) on its exec channel, execpl, the result of which is as follows. 00

T(CXCCP1)

RunningState 2-2 lInitialState 2

Par 21 Iseq 2

InitialStateo lInitialStateo

lInitialState2 I

I Seq2 I

lInitialStateO lInitialStateo I

In the generic type agent for Pl, i. e. Par2' t' C, we clieck that Pi is in a Running state, by synchro-
nising on runripl, which is offered by its tracker agent. C, 0

-r(runnpl)

RunningState2-2 IlInitialS IlInitialState2l I
Eifl I Seq2 I Se(42 I

InitialStateo lInitialStateo lInitialStateo lInitialStateo I

Given that it is running, the Par2 0 executes both of its child Seq instances, by synchronisin, on
the exec channels, execsi and execs2, of their tracker agents. 0

T(execsl) r(execs2)

RunningState 2-2 RunningState 2-2 RunningState 2-2

nil Se7q-
jInitialSta InitialStateo I-InitialStat lInitialStateo I

Then, the generic type agents for the Seq instances identify that they have been set running (by
t' 00

synchronising on runnsl and runns2 and respectively synclironise on the exec channels, execa

and execc, of the tracker agents of their first child instances, which are basic instances. Both of C,
the Seq 2 agents evolve to a new agent called Seq 2f, which is responsible for executing the next C, CD n
child instance as appropriate (but not yet).

5.1. Using CCS to Provide an Operational Aleaning to Liesbet 77

-r(runnsl) T(excca) r(runns2) -r(execc)

RunningState 2-2 IlRunningState 2-2 1 IRunningState 2-2 1

nil I Seq 2f I Seq2f I
I RunningStat-e0"] lInitialStateo IRunningStateo-O lInitialStateo I

Basic instances are completed (resp. cancelled) by synchronising on the comp (resp. canc) ID
channels of their pertaining tracker aprits. In what follows, we complete A by synchronising on

compa, which is provided by its tracker agent (the first agent on the last line).
00

7-(compa) -r(precsl)
----+ ---- 4

RunningState 2-2

nil

CompletedState

lRunningState 21

Seq qf

InitialSta

RunningState2-2

Seq2f I

RunningStateo-O IlInitialStateO

Whenever an instance (basic or structured) finishes, completion is propagated upwards, through 0 C,
the tracker agents, as far as possible. That is, when an instance finishes, its tracker agent synchro-

nises with its parent tracker agent, on pprec, to indicate as much to the parent. In the presented

process term, the tracker apnt for A uses the channel precs1. This causes the count ofyet-to-finish
instances to be decremented, as can be seen for the tracker agent for S1 (the second agent on the

first line), which goes from RunningState 2.2 to RunningState 2-1.

In the example, once a basic instance in one of the sequences has finished, the pertaining Seq2f 0
agent will execute the next child instance, by synchronising on the exec channel offered by the in, 0
child instance's tracker agent. 0

7-(execb) T(compc) T(precs2) T(execd)

I RunningSta IlRunningState 2-1 RunningState2-1 I

nil I nil nil I

CompletedState IlRunningstateo-O lCompletedState I RunningStateo-f) I

When a parent tracker agent has been notified that all of its children have finished, it completes
itself and notifies its parent of it finishing. This occurs for S1 as now shown. C,

-r(compb) T(precsl) T(prccpl)
---- 4

IRunningSta

nil
CompletedState

CompletedState

nil
CompletedState

RunningftateE

nil
lCompletedState Ru=ingStateo-O

The synchronisation occurring on precsl causes a synchronisation on precpi, followed by the

tracker agent for SI moving to CompletedState. Finally, the tracker agent for the Par instance

will transition to CompletedState once both of its child Seq instances have finished, and have

notified it as much (on precpl), viz.

T(compd) T(precs2) T(precpl)

78 Chapter 5. CCS-based Characterisations of Liesbet

CompletedState lCompletedState

nil nil
CompletedState lCompletedState

ICompletedState

I nil
ICompletedState lCompletedStatel

We now proceed to describe how we translate a workflow inodel written in Liesbet into one
in CCS, which will serve to present our CCS characterisation of Liesbet.

5.1.2 Translation of Liesbetl

The translation process comprises two steps-

1. Firstly, we work on the Liesbetl workflow model definition, which constitutes a tree of

activity types, composing the CCS workflow as we work down from the root of the model 0
tree to its leaves. The result of translating a node within the model tree, is a collection of 0
aaents (for the node) which run in parallel with the translation of the rest of the workflow 0
model.

2. Finally, we add a few housekeeping agents, which mainly concern the scheduling of structured ý0C,
and basic activity instances.

Step 1

We define a translation function, M ... 1-1, which we apply to the root activity type of the workflow

model. It recurses its way down the workflow model tree. On translating a node within the model
tree, we allocate a collection of state channels for each of the node's children (if it has any). In

applying M ...
I-], we pass the state channels of the node that we are translating, along with the

precompletion channel, prec, of its parent instance.

For convenience, in the following definition, we abbreviate the channel list:
0

exec, comp, canc, pcanc, ninit, runn, cotd, cald, find, yes, no

by st-chs --ý, corresponding to a collection of state channels and a

execi, compi, canci, pcanci, niniti, runni, cotdi, caldi, findi, yesi, noi

by st-chsi --ý.
We also abbreviate the relabellino, of state channels in an a-ent: 0 C,
[execilex,

c,
compi /comp, canci /canc pconci /pcancin initi /ninit

'runni
/runn cotdi Icotd

'caldi
/cald, findi /find,

y not es, /Yes
,

/no]

by (SCil and where both sets are indexed:
[execi/Cýecj'COMPI, /co canct pcancj . niniti runnt cotdi /cot

'cold&
findi

M PjI
/cancj

7
/pcancj, /ntnttj

,
/runnj

, dj Idj ,
/findi,

y"S'/YCjj'no' /nojl

by [SCi, j].
Finally, let a, b, c in allocates channel names a, b, c, not used before in the translation pro-

cess, for use in the subsequent agent definition.
In the following presentation of A4 ... I-], we assume that a Liesbet model has been pre-

processed in order to replace the use of defined types by in situ definitions, see Section 3.1.

5.1. Using CCS to Provide an Operational Aleaning to Liesbet 79

" M,,, jAct (-) ý (st-chsi ý, ppreci)

InitialStateo[SCi. Pp"c/ppr. cl

" M, cý[Seq(Chl,.. . 'Chn)I(st-chsi ppreci)=

let st-chsi, --+ in ... st-chsi. ý in let preci in

Seq' (SCi, SCi. j, ..., SCii,.]

InitialState n [SC,
,

pprecl/pp,. c ,
prec, /prec

Mccý[Chlj(st-chsjj ý, precj) I ... I A4 .. [Chn](st-chsi. --+, preci)

" McýýJPar(Chl, ... Chn)](st-chsi ý, ppreci)=

let st-chsii ý in ... st-chsi. --+ in let preci in

ParnIsci, Scii'll
....

sci.,.]

I

InitialState" (SCj, pprec, /pprec
,

preci /prec I

I

.
Mccý[Chlj(st-chsii ý, preci) I ... I Mcc, [Chn](st-chsi. ý, precj)

" Mccs[DefaultChoice(Chgi, . .. Chgn, Chcl, ..., Chcn, Chd)i(st-chsi --+, ppreci)=

let st-chsig, ý in ... st-chsi, -4 in let st-chsic, - in ... st-chsic. ý in let st-chSid

in let preci in

DefaultChoice'[SCi, SCjgj, gj, ---p
SCign,

gnp
SCicl,

cls
SCic.,

cn ,
SCid,

d)

InitialState2n+l ISCi, Pp"C'/ppr. ý , pr, c, /,,. c

Mcc, EChg1ý(sLchsj, j --+, preci) I
...

I A4ccsEChgnj(sLchsjgn ---+, preci)

Mccý[Chc1j(sLchsjcj -, preci) I
...

I MccsEChcnj(sLchSicn --+, preci)

.
A4cc, jChdj(sLchsid

, preci)

" Mcc, jChoice(ChgI,
...

Chgn, Chcl,
...

Chcn)](st-chsi -+, ppreci)=

let st-chsig, ---ý in
... st-chsi.. ý in let stxhsjýj'ý in

... st-chsicn in let preci in

Choice'[SCi, SCjgj,
gj, ---,

SCig-,
gn,

SCicl,
cl, ...,

SCicn,
cn)

InitialState 2n (SC,, pproc, /pprec
,

proc, /prec

.
A4cc, EChgIj(sLchsjg, -, preci) I

...
I MccýjChgnj(sLchsi,

, preci)

Mccýjchc1j(sLchsj, j --+, preci) I
...

I A4,, jChcnj(sLchsjcý ý, precj)

4o MccýEMultiChoice(Chgl,
...

Chgn, Chcl,
...

Chcn)](st-chsi
, pprecj)=

let st-chsigi ý in
... st-chsig, in let st-chsic, ý in

... st-chsic. ý in let preci in

MultiChoice n (SC,, scigý,,
ý,

SCign,
gn.

SCicl,
cl.

SCi-,
c.

]

I

InitialState 2n [SC,
,

pprec, /ppr.
ý

prec, /prec

80 Chapter 5. CCS-based Characterisations of Liesbet

.
A4, ýEchgl](st-chsj, j ý, precj) I ... I M, ýEChgnj(st-chsi, --+, preci)

M, ý[Chclj(st-chsj, j --+, preci) I MccsýChcn](st-chsj, ý --+, preci)

a M,,, JEmptyj(st-chsj ý, ppreci)=

Empty(SCil

InitialStateo [SCi, pp, ec, /pp...]

9 Mcc, lFreeChoice](st-chsi
, ppreci)=

FreeChoice(SCil

InitialState ocsci, Ppreci/pp. l

For the definition of A4 ... E-ý, for the types presented here, Nve note:

" Mcc8j-jj for basic instances, will output a single state tracker agent (which starts life as
InitialStateo).

" Mccsl-]) for structured types, such as Seq, will output an InitialStaten tracker agent
(where n is the number of children of the type), as well as an agent which will effect the
logic of the type (a generic type agent), such as Seq', and the output from translating the

children (if extant).

The definitions of the various tracker and generic type agents are now presented and explained. 0 C,
Note that as Ave have used CWB-NC [11] to simulate workflow models, the definitions are presented
in the input syntax of the workbench.

The general form of a tracker agent will be to:

nt li, vin " Vo accept a cancellation demand on canc and evolve to the CancelledState age a

cancelled its children (if any).

" To accept a cancellation demand from its parent tracker agent on pcanc and evolve to the 0
CancelledState agent having cancelled its children (if any). This applies to just Initial

and Running state tracker agents. 0

" Indicate appropriate yes or no answers to queries regarding its state, and then to evolve back

to the same agent.

For specific tracker agents, there may be some additional behaviour that it admits, as will be

i-nade clear.
For any particular CCS workflow model, there will exist an aggent definition (output by the

translator) of (the tracker agent) InitialState n 0 for every distinct number, n, of child types that

an activity type has within the model. In the case of the model presented in Figure 5.1, there are 0
types with two and zero children - hence the definitions of InitialState 2 and InitialStateo.

proc InitialStateO =

canc. lpprec. pyes. lyes. CancelledState +

pcanc. lyes. CancelledState +

5.1. Using CCS to Provide an Operational Aleaning to Liesbet 81

exec. RunningStateO-O +

runn. Ino. InitialStateO +

ninit. 'no. InitialStateO +

cotd. Ino. InitialStateO +

cald. Ino. InitialStateO +

find. Ino. InitialStateO

proc InitialState2 =

canc. lpprec. pyes. 'pcanci. yesl. lpcanc2. yes2. lyes. CancelledState +

pcanc. lpcancl. yesl. lpcanc2. yes2. lyes. CancelledState +

exec. RiinningState2-2 +

riinn. Ino. InitialState2 +

ninit. Ino. InitialState2 +

cotd. Ino. InitialState2 +

cald. Ino. InitialState2 +

find. Ino. InitialState2

InitialState' accepts a synchroilisation on:

" canc and becomes CancelledState - which corresponds to the state Cancelled, once we
have signalled oil pprec to indicate to the parent instance that the instance in question has

moved to a finished state, and received all acknowledgement back on pyes, then, signalled to 0 Z,
the instance's children (if extant) that they should cancel (on pcanci) and have responded
to the initial synchronisation on yes. We elaborate further with respect to pprec in the
description of the RunningState" agents. 0
Note that the acknowledgement on yes is appropriate, as we need to force the described
intermediate steps before we can allow the agent initiating the cancellation to continue.

" pcanc, signifying that the parent instance's tracker agent has been cancelled, and that the 000
instance should itself move to a cancelled state after cancelling its own children.

pcanc is used by a tracker agent to signal to the tracker agents of the pertaining instance's 0000
children that they too should cancel. canc, on the other hand, is used within generic type

agents. Tile difference being that, in response to canc, we signal to the parent state tracking
instance that we have finished. In the case of pcanc, as the cancellation is initiated by the

parent, there is no need to do this.

e exec and beconies RunningState" - which corresponds to the state Running.

9 ninit, runn, cotd, cald, f ind and becomes InitialStatel again - querying whether 00
its corresponding instance is in a not Initial, Running, Completed, Cancelled, or finished

(i. e. Completed or Cancelled) state. The answer is no to all - as signalled. 0

There will exist agent definitions (output by the translator) of RunningState" for every
distinct number, n, of child types that an activity type has within the model, and for all r such
that 0<r<n, if n>0, and for r=0, if n=0. ror the same workflow model, then, we have

copies of RunningState2-2, RunningState2-1 and RunningStateO-O.

proc RunniiagStateO-O =

82 Chapter 5. CCS-based Characterisations of Liesbet

canc. lpprec. pyes. lyes. CancelledState +

pcanc. lyes. CancelledState +

comp. lpprec. pyes. lyes. CompletedState +

ninit. lyes. RunningStateO-O +

runn. lyes. RiinningStateO-O +

cotd. Ino. RunningStateO-O +

cald. Ino. RiinningStateO-O +

find. 'no. RunningStateO-O

proc RunningState2_1 =

canc. lpprec. pyes. lpcancl. yesl. lpcanc2. yes2. lyes. CancelledState +

pcanc. lpcanci. yesl. lpcanc2. yes2. lyes. CancelledState +

prec. lpprec. pyes. lyes. CompletedState +

ninit. lyes. RunningState2-l +

runn. lyes. RunningState2-l +

cotd. 'no. RunningState2_1 +

cald. Ino. RiinningState2-l +

find. Ino. RunningState2-l

proc RunningState2-2 =

canc. lpprec. pyes. lpcanci. yesl. lpcanc2. yes2. lyes. CancelledState +

pcanc. lpcancl. yesl. lpcanc2. yes2. lyes. CancelledState +

prec. lyes. RiinningState2-l +

ninit. lyes. RunningState2-2 +

runn. lyes. RiinningState2-2 +

cotd. Ino. RunningState2-2 +

cald. Ino. RunningState2-2 +

find. Ino. RunningState2-2

When running, instances of childless types will have copies of RunningStateo-O as their tracker C,
ag, ents. This agent constant offers the possibility of it transitioning to CompletedState, by accept-
ing a synchronisation on comp, reflecting the completion of its pertaining activity instance. When

000
a synchronisation on comp occurs, the parent is instructed to perform a precompletion step, as
described below.

Running instances of child-bearing types will have copies of RunningState" its their tracker

ao, ents, where n>I and r>1. The occurrence of a child finishina will cause as nchronisation 0--0y
on prec to occur. This causes a precompletion step to take place. When r, the count of child
instances yet-to-finish, is greater than one, performing a preconipletion step means evolving to the

agent RunningStaten-r-1. When r=1, this means reporting completion to its respective parent
tracker agent on pprec, and evolving to the agent CompletedState.

There will also exist definitions of CompletedState and CancelledState, which report that

their associated instances are in Completed and Cancelled states, respectively. Note that, in

CancelledState, we support a synchronisation on exec, as attempting to execute a cancelled
instance is allowed, albeit it has no effect. This would occur if, for instance, a Seq instance had

had some of its children cancelled by a CancelActivity instance (see Section 3.1.16).

proc CompletedState =

5.1. Using CCS to Provide an Operational Aleaning to Liesbet 83

canc. CompletedState +

ninit. lyes. CompletedState +

runn. Ino. CompletedState +

cotd. lyes. CompletedState +

c'ald. Ino. CompletedState +

find. lyes. CompletedState

proc CancelledState =

canc. CancelledState +

ninit. lyes. CancelledState +

runn. 'no. CancelledState +

cotd. Ino. CancelledState +

cald. lyes. CancelledState +

exec. lyes. CancelledState +

find. lyes. CancelledState

We now present the definitions of the various agents for generic activity types, starting with 000
Seq. For Seq, there will be a Seq' agent, and Seq'f agents, for every distinct number, n, of 00
children of Seq types in a model and for all r such that 2>r>n, whose definitions are output
by the translator.

A Seq' agent first ascertains that it is not cancelled and that it is running, then it executes
its first child instance, labelled n, and then transitions to a "finishing" agent, Seqlf, which effects

the remaining logic. Note that child instances of a sequence are numbered in decreasing order, so

the first to be executed is n, the second n-1, and so on. This convention simplifies the definition

of the agents.
Seq'f waits for the first instance to finish, and then executes the next child instance. After

that, the agent Seq n-If is exposed. And so on, until Ave reach Seq 2f
, whereon, we wait for the

penultimate instance to finish, and then execute the last. Following that, we expose the agent

Idle, to effect idling, which is necessary for scheduling purposes. We explain this further in Step

2 of the translation process, where we also explain the use of the channels lock, idle, prog and

reset.

proc Seq2 =
lock. Icald. (yes. lidle. reset. Idle + no. 'riinn. (yes. 'exec2. lprog. Seq2f +

no. lidle. reset. Seq2))

proc Seq2f =
lock. Ifind2. (Yes2. lexecl. lprog. Idle + no2. lidle. reset. Seq2f)

proc Idle =
lock. lidle. reset. Idle

For Par, there will be a Par' agent for every distinct number, n, of children of Par types in
0

a model, whose definitions are output by the translator. We present the agent definition for the 0
case where n is 2. A Par' agent will simply execute all of its children together (within the same 0 C,
execution window, see Step2).

84 ChaPter 5. CCS-based Characterisations of Liesbet

proc Par2 =
lock. Icald. (Yes. lidle. reset. ldle + no. 'runn. (Yes. 'execl. 'exec2. lprog. Idle +

no. 'idle. reset. Par2))

For Def aultChoice, there will be Def aultChoicen, Def aultChoice"f and Def aultChoicenf COMP

agents, for every distinct number, n, of continuation child types (not including the default) of
Def aultChoice types in a model, whose definitions are output by the translator. We present the

agent definitions for the case where n is 2.

In DefaultChoice 2f, which is exposed once we ascertain that the choice activity type has

been put into a running state (by its parent) and the guard instances of the choice type have

been set running, we check to see whether any of the guard instances have completed. If so, we 43 ?ý

expose Def aultChoice2f CoMp, which serves to execute a continuation instance pertaining to one
of tile completed guard instances. It also cancels the remaining continuation instances (including

the default instance). If, on the other hand, none of the guard instances have completed; but,

commensurately, none of them are running either, then all of them must have been cancelled. In 0
this case, we execute the default continuation instance. If none of these possibilities obtain, we
expose another copy of Def aultChoice 2f.

proc DefaultChoice2 =
lock. Icald. (Yes. lidle. reset. Idle +

no. 'runn. (Yes. 'execgl. lexecg2. lprog. DefaultChoice2f +

no. lidle. reset. DefaultChoice2))

proc DefaultChoice2f =
lock. Icotdgl. (yesgl. DefaultChoice2fComp +

nogl. lcotdg2. (yesg2. DefaultChoice2fComp +

nog2. lrtlnngl. (yesgl. lidle. reset. DefaultChoice2f +

nogl. lriinng2. (yesg2. lidle. reset. DefaultChoice2f +

nog2. lcanccl. yescl. Icancc2. yesc2.
lexecd. lprog. Idle))))

proc DefaultChoice2fComp =
'cotdgl. (yesgl. (Iwin. 'execcl. Itidy. nil + 'lose. 'canccl. yesci. Itidy. nil) +

nogl. llose. Icancci. yesci. Icancgi. yesgl. ltidy. nil)
'cotdg2. (yesg2. (Iwin. 'execc2. ltidy. nil + 'lose. Icancc2. yesc2. ltidy. nil) +

nog2. 'lose. 'cancc2. yesc2. lcancg2. yesg2. ltidy. nil)

win. tidy. lose. tidy. Icancd. yesd. lprog. Idle)\Iwin, lose, tidyI

For Choice', which has no default continuation instance, we do much the same. However, in

the case that all guard instances get cancelled, we cancel tile choice instance, as shown. 0 ID

proc Choice2 =

lock. 'cald. (Yes. lidle. reset. Idle +

no. 'runn. (yes. 'execgl. lexecg2. lprog. Choice2f +

no. lidle. reset. Choice2))

proc Choice2f =
lock. 'cotdgl. (yesgl. Choice2fComp +

5.1. Using CCS to Provide an Operational Aleaning to Liesbet 85

nogl. lcotdg2. (yesg2. Choice2fComp +

nog2. lriinngl. (yesgl. lidle. reset. Choice2f +

nogi. Iriinng2. (yesg2. lidle. reset. Choice2f +

nog2. lcanc. yes. lprog. Idle))))

proc Choice2fComp

'cotdgl. (yesgi. (Iwin. 'execcl. Itidy. nil + Ilose. Icanccl. yescl. Itidy. nil) +

nogl. 'lose. Icanccl. yescl. Icancgl. yesgl. ltidy. nil)
'cotdg2. (yesg2. (Iwin. 'execc2. ltidy. nil + Ilose. Icancc2. yesc2. ltidy. nil) +

nog2. llose. Icancc2. yesc2. lcancg2. yesg2. ltidy. nil)
win. tidy. lose. tidy. 'prog. Idle)\Iwin, lose, tidy}

For MultiChoice, there will be MultiChoice' and MultiChoice'f agents, for every distinct 0
number, n, of continuation child types of MultiChoice types in a model, whose definitions are
output by the translator. We present the agent definitions for the case where n is 2.

For MultiChoicen, once it is running, and we have executed its guard instances, we proceed to
MultiChoic, nf, whereon, we check for continuation instances that are still in the Initial state.
For those that are, we check their guard instances and act appropriately - for those which have

now completed successfully, we execute their corresponding continuation instances, for those which 0
have been cancelled, we cancel their corresponding continuation instances, and for those which are
still running, we do nothing.

proc MultiChoice2 =

lock. Icald. (Yes. lidle. reset. Idle +

no. 'riinn. (yes. 'execgl. lexecg2. lprog. MultiChoice2f +

no. lidle. reset. MultiChoice2))

proc MultiChoice2f =
lock. ('ninitcl. (yescl. ldone. nil +

nocl. Icotdgl. (yesgl. lexeccl. lwork. ldone. nil +

nogl. 'caldgl. (yesgl. lcanccl. yescl. lwork. ldone. nil +

nogl. 'done. nil))

Ininitc2. (yesc2. ldone. nil +

noc2. lcotdg2. (yesg2.2execc2. lwork. ldone. niI +

nog2. 'caldg2. (yesg2. 'cancc2. yesc2. lwork. ldone. nil +

nog2. ldone. nil))

done. done. Ifindgl. (yesgl. lfindg2. (yesg2. lreport. Idle +

nog2. lreport. MultiChoice2f) +

nogl. lreport. MultiChoice2f)

work. (report. lprog. nil I work. nil) + report. lidle. reset. nil
)\Iwork, report, done}

Finally, the definitions of FreeChoice and Empty are presented. In the first case, we inay
either cornplete or cancel the instance -a non-deterniinistic choice. In the second case, we trivially

86 Chapter 5. CCS-based Characterisations of Liesbet

complete the instance.

proc FreeChoice =
lock. Icald. (Yes. 'idle. reset. Idle +

no. 'runn. (yes. (Icomp. yes. 'prog. Idle + Icanc. yes. lprog. Idle) +

no. 'idle. reset. FreeChoice))

proc Empty =
lock. Icald. (yes. lidle. reset. Idle +

no. 'runn. (yes. Icomp. yes. lprog. Idle +

no. lidle. reset. Empty))

Step 2

In step 2, xve add three agents to run at the top-level:

A sinale instance of BasiCSb, C, where b is the number of basic activity instances in the workflow
model. This agent is called the basics arbiter because it arbitrates the completion of a single 00
basic instance. In the case of the model presented in Figure 5.1, the value of b would be four,

and the agent constant that we would add would look much as follows.

Basics4[comp-2/compl, yes-2/yesi, comp-3/comp2, yes-3/yes2,

comp-5/comp3, yes-5/yes3, comp-6/comp4, yes-6/yes4l

Here, we relabel the comp and yes channels to be those of the basic activity instances. The
definition of Basics4 is as follows.

proc Basics4 =
bas. (Icompl. yesl. lbas. Basics4 + 'comp2. yes2. lbas. Basics4 +

'comp3. yes3. lbas. Basics4 + 'comp4. yes4. 'bas. Basics4)

We complete exactly one running' basic activity instance, deferring completion of any others
that are running.

aA single instance of Scheduler", where s is the number of sh-actured activity types in the 0
workflow model. ror a model with three structured activity instances, the agent added would
be Scheduler3' prefixed by an exec action, to be carried out on the root instance of the
workflow model, viz.

)exec-O. Scheduler3

The Scheduler$ agent effects a lock on execution rights for (the generic type agents pertaining C, 0 C, 0
to) structured activity instances. Only one instance may hold the lock at any time; and
instances may only progress when the hold the lock. Scheduler' allows any structured ID y

activity instance to claim such a right, which the instance will later yield. In the following 00
example definitions, we consider the case where m is 3, i. e. there are three structured activity
instances in the model.

'Communication on comp is not offered by tracker agents if the instance is not running.

5.1. Using CCS to Provide an Operational Aleaning to Liesbet 87

proc Scheduler3 =
'find-O. (yes-O. Irfind. nil +

no-O. Ilock. (idle. Ilock. (idle. Ilock. (idle.

lbas. bas. 'reset. 'reset. 'reset. Scheduler3 +

prog. 'reset. 'reset. Scheduler3) +

prog. 'reset. Scheduler3) +

prog. Scheduler3))

In Scheduler3' we first check whether the root instance of the workflow model has finished.

If it has finished, we expose the action I rf ind (explained further in Section 5.1.4), and,

thereafter, evolve to nil. Otherwise, we signal on I lock to indicate to the structured activity
instances that one of them may claim the lock (on execution rights). Then, the instance that

claims the lock, signals on I prog to indicate that it has made progress, or signals on I idle

to say that it has not. If all instances signal on I idle, then none of them can currently

progress. It is then appropriate to try to complete a single basic activity instance. We

do so by synchronising on 'bas with the Basics b agent, which causes the latter agent to
000

expose logic to effect the completion of a basic instance. When that has occurred, a further

synchronisation takes place on bas to hand control back to the scheduler. We then reset

all of the structured instances so that they may attempt to reclaim execution rights, and

re-expose the Scheduler3 agent. If progress was made by a structured instance, previously,

then we signal on reset just as many times as there were structured instances that reported

idle. Then, we re-expose the Scheduler3 agent, in order that we may try the full set of

structured instances again (before trying the basics, if that becomes appropriate

9 Finally, Ave add the acrent, pprec. lpyes. nil, to run in parallel at the top-level. This effects

a synchronisation on pprec with the root instance's tracker agent, which will be a progressed 00
copy of RunningStatel-D (and returns acknowledgment on pyes). Essentially, this allows C,
the root instance's tracker agent to signal that it has finished and, thereafter, evolve to 00
CompletedState, or CancelledState. All other activity instances signal to their respective 0
parent instances. As the root instance has no parent, we need to make this dispensation.

5.1.3 A Complete Example

We now present the output of M ... 1-1, in full, for the workflow model shown in Figure 5.1, which
has the definition in Liesbet: Par(Seq(A, B) , Seq(C, D)). Note that the file has been generated

automatically using the support that we provide in our verification framework for Liesbet, which
is documented in Section 10.3.

* *** *s*** ** ****** ******** ** *** ** ** ** **

* CCS Verification Run

#0

Generated from: file: samples/LiesbetTest. liesbet

On: Fri Jul 14 11: 52: 13 BST 2006

proc InitialStateO =

88 Chapter 5. CCS-based Characterlsations of Liesbet

caLnc. lpprec. pyes. 'yes. CancelledState +

pcanc. lyes. CancelledState +

exec. RunningStateO-O +

riinn. 'no. InitialStateO +

ninit. Ino. InitialStateO +

cotd. 'no. InitialStateO +

cald. Ino. InitialStateO +
find. 'no. InitialStateO

proc InitialState2 =

canc. lpprec. pyes. 'pcancl. yesl. lpcanc2. yes2. lyes. CancelledState +

pcanc. lpcanci. yesl. lpcanc2. yes2. lyes. CancelledState +

exec. RiinningState2-2 +

riinn. Ino. InitialState2 +

ninit. Ino. InitialState2 +

cotd. 'no. InitialState2 +

cald. 'no. InitialState2 +

find. Ino. InitialState2

proc RunningStateO-O =

canc. lpprec. pyes. lyes. CancelledState +

pcanc. lyes. CancelledState +

comp. lpprec. pyes. lyes. CompletedState +

ninit. 'yes. RunningStateO-O +

runn. lyes. RunningStateO-O +

cotd. Ino. RunningStateO-O +

cald. 'no. RunningStateO-O +

find. 'no. RunningStateO-O

proc RunningState2-1 =

canc. lpprec. pyes. lpcancl. yesl. lpcanc2. yes2. lyes. CancelledState +

pcanc. lpcancl. yesl. lpcanc2. yes2. lyes. CancelledState +

prec. lpprec. pyes. lyes. CompletedState +

ninit. lyes. RiinningState2-l +

runn. lyes. RunningState2-1 +

cotd. Ino. RunningState2-l +

cald. Ino. RunningState2-l +
find. Ino. RunningState2-l

proc RunningState2-2 =

canc. lpprec. pyes. lpcancl. yesl. lpcanc2. yes2. lyes. CancelledState +

pcanc. lpcancl. yesl. lpcanc2. yes2. lyes. CancelledState +

prec. 'yes. RunningState2-l +

ninit. 'yes. RiinningState2-2 +

runn. 'yes. RunningState2-2 +

cotd. Ino. RunningState2-2 +

cald. Ino. RunningState2-2 +

5.1. Using CCS to Provide an Operational Meaning to Liesbet 89

find. Ino. RiinningState2-2

proc CompletedState =

canc. CompletedState +

ninit. lyes. CompletedState +

runn. 'no. CompletedState +

cotd. lyes. CompletedState +

cald. Ino. CompletedState +

find. lyes. CompletedState

proc CancelledState =

canc. CancelledState +

ninit. lyes. CancelledState +

riinn. Ino. CancelledState +

cotd. Ino. Ca. ncelledState +

cald. lyes. CancelledState +

exec. 'yes. CancelledState +

find. lyes. CancelledState

proc Basics4

bas. (

'compl. yest. lbas. Basics4 +

'comp2. yes2. lbas. Basics4 +

'comp3. yes3. lbas. Basics4 +

'comp4. yes4. 'bas. Basics4)

proc Idle =
lock. lidle. reset. Idle

proc Scheduler3 =
'find-O. (yes-O. 'rfind. nil + no-O. Ilock. (idle. Ilock. (idle. Ilock. (idle. lbas. bas.

Ireset. 'reset. 'reset. Scheduler3 +

prog. 'reset. 'reset. Scheduler3) +

prog. 'reset. Scheduler3) +

prog. Scheduler3))

proc Seq2 =
lock. Icald. (yes. lidle. reset. Idle +

no. 'riinn. (yes. 'exec2. lprog. Seq2f +

no. lidle. reset. Seq2))

proc Seq2f =
lock. Icald. (Yes. lidle. reset. Idle +

no. Ifind2. (Yes2. lexecl. lprog. Idle +

no2. lidle. reset. Seq2f))

90

proc Par2 =
lock. Icald. (yes. lidle. reset. Idle +

ter 5. CCS-based Characterisations of Liesbet

no. 'riinn. (yes. 'execl. 'exec2. lprog. Idle +

no. lidle. reset. Par2))

proc WorkflowO

***Instance: O: Pl

InitialState2[yes-0/yes, no-0/no, runn-0/runn, cald-0/cald, cotd-0/cotd,
find-0/find, ninit-0/ninit, comp-0/comp, pcanc-0/pcanc, canc-0/canc, exec_O/exec,

prec-0/prec,

pcanc-1/pcancl, yes-1/yesl, pcanc-4/pcanc2, yes-4/yes2l I

Par2[yes-O/yes, no-0/no, runn-0/runn, cald-0/cald, cotd-0/cotd,
find-0/find, ninit-0/ninit, comp-0/comp, pcanc-0/pcanc, canc-0/canc, exec-0/exec,

exec-1/execl, exec-4/exec2l I

***Insta, nce: I: Sl

InitialState2[yes-1/yes, no-1/no, runn-1/runn, cald_l/cald, cotd-1/cotd,
find-1/find, ninit-1/ninit, comp-1/comp, pcanc-1/pcanc, canc-1/canc, exec-1/exec,

prec-1/prec, prec-0/pprec, yes-0/pyes,

pcanc-2/pcancl, yes-2/yesl, pcanc-3/pcanc2, yes-3/yes2l I

Seq2[yes-1/yes, no-1/no, runn-1/runn, cald-1/cald, cotd_l/cotd,
find-1/find, ninit-1/ninit, comp-1/comp, pcanc_l/pcanc, canc-1/canc, exec-1/exec,

exec-2/exec2, find-2/find2, yes-2/yes2, no-2/no2, exec-3/execil I

***Instance: 2: A

InitialStateOEyes-2/yes, no-2/no, runn-2/runn, cald-2/cald, cotd-2/cotd,
find-2/find, ninit-2/ninit, comp-2/comp, pcanc-2/pcanc, canc-2/canc, exec-2/exec,

prec-1/pprec, yes-1/pyes] I

***Instance: 3: B

InitialStateO(yes-3/yes, no-3/no, runn_3/runn, cald_3/cald, cotd_3/cotd,
find-3/find, ninit-3/ninit, comp-3/comp, pcanc-3/pcanc, canc-3/canc, exec-3/exec,

prec-1/pprec, yes-1/pyes] I

***Instance: 4: S2

InitialState2[yes-4/yes, no-4/no, runn-4/runn, cald_4/cald, cotd-4/cotd,
find-4/find, ninit-4/ninit, comp-4/comp, pcanc-4/pcanc, canc-4/canc, exec-4/exec,

prec-4/prec, prec-0/pprec, yes-0/pyes,

pcanc-5/pcancl, yes-5/yesl, pcanc-6/pcanc2, yes-6/yes2l I

Seq2(yes-4/yes, no-4/no, runn-4/runn, cald_4/cald, cotd-4/cotd,
find_4/find, ninit_4/ninit, comp-4/comp, pcanc-4/pcanc, canc-4/canc, exec-4/exec,

exec-5/exec2, find-5/find2, yes-5/yes2, no_5/no2, exec-6/execil I

5.1. Usiniz CCS to Provide an Overational Aleanimr to Liesbet 91

***Instance: 5: C

InitialStateO[yes-5/yes, no-5/no, runn-5/runn, cald-5/cald, cotd-5/cotd,
find-5/find, ninit-5/ninit, comp-5/comp, pcanc-5/pcanc, canc-5/canc, exec-5/exec,

prec-4/pprec, yes-4/pyes) I

***Instance: 6: D

InitialStateO(yes-6/yes, no-6/no, runn-6/runn, cald_6/cald, cotd-6/cotd,
find-6/find, ninit-6/ninit, comp_6/comp, pcanc-6/pcanc, canc-6/canc, exec-6/exec,

prec-4/pprec, yes-4/pyes) I

Basics4[comp-2/compl, yes-2/yesi, comp-3/comp2, yes-3/yes2,

comp-5/comp3, yes-5/yes3, comp-6/comp4, yes-6/yes4l I

'exec-O. Scheduler3 I pprec. lpyes. nil

Af
rurin-0, cald-0, cotd-0, find-0, ninit-0, COMP-0, pcanc-0, canc_O, exec-0, prec-0, yes-0, no-0,

runn_1, cald-1, cotd-1, find-1, ninit-1, comp-1, pcanc-1, canc_1, exec-1, prec-1, yes-1, no-1,

runn-2, cald-2, cotd_2, find-2, ninit-2, comp-2, pcanc-2, canc-2, exec-2, prec_2, yes-2, no_2,

runn-3, cald-3, cotd-3, find-3, ninit-3, comp_3, pcanc-3, canc_3, exec-3, prec-3, yes-3, no_3,

runn-4, cald-4, cotd-4, find-4, ninit-4, comp_4, pcanc_4, canc-4, exec-4, prec-4, yes-4, no-4,

runn-5, cald-5, cotd-5, find-5, ninit-S, comp-5, pcanc-5, canc_5, exec-5, prec-5, yes-5, no-5,

runn_6, cald-6, cotd-6, find-6, ninit-6, comp-6, pcanc-6, canc-6, exec-6, prec_6, yes_6, no_6,
bas, pprec. pyes, lock, idle, prog, reset}

5.1.4 Model Checking CCS Characterised Liesbetl with Concurrency

Workbench

For the CCS characterisation of Liesbet, we describe a single, simple test. We wish to check
that along all enactment paths, tile root instance will reach a finished state (either Completed, or
Cancelled); and thus the workilow model as a whole will complete successfully along all paths.
This is a key property to check in verifyin., the soundness of workflow models, as described in

Section 7. L

In the definition of the scheduling agent, Scheduler-, once we have identified that tile root
instance has reached a finished state, we signal on the channel rf ind. For the time being, this
is the only unrestricted channel of a CCS Liesbet model. The test that we write is the simple

modal-nm formula: /A. <->ttA [- I rf ind] X, which is written, for use in CWB-NC, as follows. Note

that we name the proposition that we are testing cotd, as the proposition holding signifies that

the model completes successfully alon., all paths.

prop cotd =
min X= <->tt A [-Irfind]X

This says that along all enactment paths the action rf ind must eventually occur. The output 0
from running this test under CWB-NC for the example model is presented.

>cwb-nc. bat ccs

92 Chapter 5. CCS-based Characterisations of Liesbet

cwb-nc. bat ccs

Currently supported languages are : ccs, pccs, SCCS, tccs, csp, lotos

The Concurrency Workbench of the New Century

(Version 1.2 --- June, 2000)

cwb-nc> load test. ccs

Execution time (user, system, gc, real): (0.008,0.000,0.004,0.012)

cwb-nc> load test. mu

Execution time (user, system, gc, real): (0.000,0.000,0.000,0.002)

cwb-nc> chk WorkflowO find

Invoking alternation-free model checker.

Building automaton...

States: 833

Transitions: 977

Done building automaton.

TRUE, the agent satisfies the formula.

Execution time (user, system, gc, real): (1.872,0.048,0.372,1.919)

cwb-nc>

5.1.5 Model Equivalence for CCS-characterised Liesbetl

The question of when two work-flows are equivalent is an important issue in the study of -%vorkflow.
As reported in [57], it may be non-trivial to arrive at a formalisation of equivalence for some

approaches to workflow representation. A key issue lies with how to treat internal actions - those

actions which progress the model but are not concerned with tile fulfilment of (basic) activity
instances.

Prioritising the execution of internal actions (i. e., in the case of Liesbet, progressing structured

activities over basic activities) helps to resolve this issue (in part), and some examples, presented
in [57], would not occur under this assumption.

Orthogonally, we may consider the observable behaviour of a workflow model to be sufficient
for defining equivalence. This is the view taken in many approaches, such as [64]. There, two

workflows are considered to be equivalent iff they are observationally equivalent (as defined by

Milner for CCS [781). Activity completions are considered to be the only observable actions; and
there is an additional requirement that all enactment paths within the workflow models must lead

to completion of the workflow instance.

The definition of Observational Equivalence requires some additional notation. The transition

E =a=>E', for aE Act, means that E may transition to E' through an a-transition prefixed and

postfixed by >0 7--transitions. That is, E =cW if E(--T+)P(-"+)(-T+)q, where p, q ý-f
0. Also, for

A
tE Act*, tE& is the sequence gained by deleting all occurrences Of T from t.

43 0

Observational Equivalence (or Weak Bisimilarity), from [781, is the largest symmetric relation
A
Ck

such that E : z- F iff whenever E I% E' then F E'.

Elaborating, two CCS agents are observationally equivalent iff, whenever either agent can make 000
an a-transition, the other agent can perform a sequence of transitions f (a); and the agents which

5.1. Using CCS to Provide an Operational Meaning to Liesbet 93

result (from carrying out these transitions) are themselves observationally equivalent. If ck is a

non-T transition, f (a) is the same non-7-transition, prefixed and postfixed by >- 0 7-transitions.
If a is a T-transition, f (a) is >0 7--transitions.

In order to be able to define an appropriate notion of equivalence between Liesbet models, we

need to make visible transitions pertaining to the completion of basic activities. To this end, we

au-ment Bas iCSb C, as follows (here, for the case that n is 4). We add an additional output, for each
completion option compi, on a visible channel eyesi. This will make the completion option (which

is only offered by the corresponding tracker agent if the pertaining instance is running) visible in

assessing observational equivalence. C,

proc Basics4

bas. (

compl. yesl. 'eyesl. bas. Basics4 +

comp2. yes2. 'eyes2. bas. Basics4 +

comp3. yes3. 'eyes3. bas. Basics4 +

comp4. yes4. 'eyes4. bas. Basics4)

Thus, the only transitions made visible to the environment are reIabelled eyesi transitions, for
basic activity instances, and a rf ind transition to indicate that the workflow model is finished. In

this context, we may define two CCS-characterised Liesbet models to be model equivalent iff they

are observationally equivalent (according to these offered transitions). 0
The concept of model equivalence is demonstrated in the following examples.

Liesbet Model Equivalence, Example 1: v Strong Equivalence

Observational equivalence is a weaker notion than strong equivalence. For strong equivalence, we
do not abstract away from T-actions. An example that highlights this distinction is tile following

simple one.
Let Liesbet Model Workf lowo be defined as: A, and Liesbet Model Workf lowl be defined as

Par(A). These two models are model equivalent, as they both effect just A. However, they would
not be equivalent if we were to define model equivalence oil the basis of strong equivalence. This
is because, for model Workflowl, there is more internal activity in encapsulating A within a Par

activity type.
We present results of checking observational and strong equivalences between Workf lowO and

Workf lowl. Tile CCS source for these workflow models follows. In presenting the source, we mostly
omit tile definition of tracker and generic type agents for brevity. Their definitions are identical to 6 C,
those presented in Section 5.1.2.

CCS Verification Run

#0

Generated from: file: samples/LiesbetEquivTestAO. liesbet

On: Tue Jul 11 14: 24: 13 BST 2006

appropriate tracker and generic type agents

94

proc Basicsl =
bas. Icompl. yesl. leyes-a. 'bas. Basicsl

5. CCS-based Characterisations of Liesbet

proc SchedulerO =
'find-O. (Yes-O. Irfind. nil + no-O. Ibas. bas. SchedulerO)

proc Schedulerl =
'find-O. (Yes-O. Irfind. nil + no-O. Ilock. (idle. lbas. bas. 'reset. Schedulerl +

prog. Schedulerl))

proc WorkflowO

***Instmce: O: A

InitialStMeO[yes-0/yes, no-0/no, runn-0/runn, cald-0/cald, cotd-0/cotd,
find-0/find, ninit-0/ninit, comp-0/comp, pcanc-0/pcanc, canc-0/canc, exec-0/execl I

Basicsl(comp_O/compl, yes-0/yesi, eyes-a/eyesil I

'exec-O. SchedulerO I pprec. lpyes. nil

Al
runn-0, cald-0, cotd-0, find-0, ninit_O, comp_O, pcanc_O, canc-0, exec-0, prec-0, yes-0, no-O,
bas, pprec, pyes, lock, idle, prog, reset)

proc Workflowl

***Instance: O: Pl

InitialStatel(yes-0/yes, no-0/no, runn-0/runn, cald-0/cald, cotd-0/cotd,
find-0/find, ninit-0/ninit, comp-0/comp, pcanc-0/pcaLnc, canc-0/canc, exec-0/exec,

prec-0/prec, pcanc-1/pcancl3 I

Pari(yes-0/yes, no_o/no, runn-0/runn, cald_O/cald, cotd-0/cotd,
find-0/find, ninit-0/ninit, comp_o/comp, canc_O/canc, exec-0/exec,

exec-1/execil I

***Instance: l: A

InitialStateO[yes-1/yes, no-1/no, runn_l/runn, cald_l/cald, cotd-1/cotd,
find-1/find, ninit-1/ninit, comp-1/comp, pcanc-1/pcanc, canc_l/canc, exec-1/exec,

prec-0/pprec, yes-0/pyes] I

Basicsl(comp-1/compl, yes-1/yesl, eyes-a/eyesil I

, exec-O. Schedulerl I pprec. lpyes. nil

M
runn-0, cald-0, cotd-0, find-0, ninit_O, comp_O, pcanc_O, canc-0, exec-0, prec-0, yes-0, no-O,

5.1. Using CCS to Provide an Operational Meaning to Liesbet; 95

runn-1, cald-1, cotd_1, find_1, ninit_1, comp-1, pcanc-1, canc-1, exec-1, prec-1, yes-1, no-1,

bas, pprec, pyes, lock, idle, prog, reset}

If we check the observational equivalence of these workflow models under CWB-NC, we can see
that they are found to be equivalent.

cwb-nc> eq -S obseq WorkflowO Workflowl

Building automaton...
States: 42

Transitions: 40

Done building automaton.
Transforming automaton...
Done transforming automaton.
TRUE

Execution time (user, system, gc, real): (0.012,0.000,0.000,0.011)

cwb-nc>

But, if we check for strong equivalence, we can see that they are not found to be equivalent. 0
Strong equivalence is too strong a notion for workflow model equivalence. That is, the internal

behaviour of a model is not important, as Ion-, as the observable behaviour in terms of basic
0

instances offered for completion, and in terms of completion of the model as a whole, is the same.

cwb-nc> eq -S bisim WorkflowO Workflowl

Building automaton...
States: 42

Transitions: 40

Done building automaton.
FALSE...

WorkflowO satisfies:
<t><t><t><t><t><t><t><t>[t)ff

Workflowl does not.
Execution time (user, system, gc, real): (0.008,0.004,0.000,0.012)

cwb-nc>

Liesbet Model Equivalence, Example 2: v Trace Equivalence

Observational equivalence is a stronger notion than trace equivalence. For trace equivalence, we are

concerned solely with comparing the possible sequences of basic activity completion of workflow

models. For ob servational equivalence, however, we seek to compare the choices of basic activities
to complete at corresponding stages of evolution of workflow models.

An example that highlights this distinction is the following simple one. Let Liesbet model
Workf lowO be defined as Seq(A, Choice(Empty, B, Empty, C)), aiidletLiesbetiiiodelWorkflow1
be defined as Choice (Empty, Seq(A, B), Empty, Seq(A, C)). ForWorkf1ow0, wedonotmake

a commitment on the choice between B and C until after we have performed A. For Workf lowl,

in contrast, we make the choice before we execute A. These models do not maintain the same

choices of activities to complete at corresponding points in their evolution. That is, after A has

96 5. CCS-based Characterisations of Liesbet

been completed, both B and C are available in Workf lowO, whereas only one of B or C is available
in Workf lowl. However, the two models are trace equivalent, as they both manifest the sequences

of activity completion: A, B and A, C.

We present results of checking observational and trace equivalences between Workf lowO and
Workf lowl. The CCS source for these workflow models follows. In presenting the source, we mostly

omit the definition of tracker and generi c type agents for brevity. Their definitions are identical to

those presented in Section 5.1.2.

CCS Verification Run

#0

Generated from: file: samples/LiesbetEquivTestBO. liesbet

On: Wed Jul 12 16: 41: 00 BST 2006

appropriate tracker and generic type agents

proc Basics3

bas. (

'compl. leyesi. yesl. lbas. Basics3 +

'comp2. leyes2. yes2. lbas. Basics3 +

'comp3. leyes3. yes3. lbas. Basics3)

proc Basics4

bas. (

'compl. leyesl. yesl. lbas. Basics4 +

'comp2. leyes2. yes2. lbas. Basics4 +

'comp3. leyes3. yes3. 'bas. Basics4 +

'comp4. leyes4. yes4. lbas. Basics4)

proc Scheduler =
'find-O. (Yes-O. Irfind. nil + no-O. Ilock. (idle. Ilock.

(idle. Ilock. (idle. Ilock. (idle. lbas. bas. 'reset. 'reset. 'reset. 'reset. Scheduler +

prog. 'reset. 'reset. 'reset. Scheduler) +

prog. 'reset. 'reset. Scheduler) +

prog. 'reset. Scheduler) +

prog. Scheduler))

proc Schedulerl =
'find-O. (Yes-O. Irfind. nil + no-O. Ilock. (idle. Ilock.

(idle. Ilock. (idle. Ilock. (idle. 'lock. (idle. 'bas. bas. 'reset. 'reset. 'reset. 'reset. 'reset. SchedulerI +

prog. 'reset. 'reset. 'reset. 'reset. Schedulerl) +

prog. 'reset. 'reset. 'reset. Schedulerl) +

prog. 'reset. 'reset. Schedulerl) +

prog. 'reset. Schedulerl) +

prog. Scheduleri))

5.1. Using CCS to Provide an Operational Aleaning to Liesbet 97

proc WorkflowO

***Instance: O: Sl

InitialState2[yes-0/yes, no-0/no, runn-0/runn, cald-0/cald, cotd-0/cotd,

find-0/find, ninit_O/ninit, comp-0/comp, pcanc-0/pcanc, canc-0/canc, exec-0/exec,

prec-0/prec,

pcanc-1/pcancl, yes-1/yesl, pcanc-2/pcanc2, yes-2/yes2l I

Seq2[yes-0/yes, no-0/no, runn-0/runn, cald-0/cald, cotd-0/cotd,
find-0/find, ninit_O/ninit, comp-0/comp, pcanc-0/pcanc, canc_O/canc, exec-0/exec,

exec-1/exec2, find-1/find2, yes_l/yes2, no-1/no2, exec-2/execil I

***Instance: I: A

InitialStateO[yes-1/yes, no-1/no, runn_l/runn, cald_l/cald, cotd_l/cotd,
find-1/find, nirlit-1/ninit, comp-1/comp, pcanc-1/pcanc, canc-1/canc, exec_l/exec,

prec-0/pprec, yes-0/pyes] I

***Instance: 2: CH

InitialState4[yes-2/yes, no-2/no, runn-2/runn, cald_2/cald, cotd_2/cotd,
find-2/find, ninit-2/ninit, comp-2/comp, pcanc-2/pcanc, canc-2/canc, exec-2/exec,

prec-2/prec, prec-0/pprec, yes-olpyes,

pcanc-3/pcancl, yes_3/yesl, pcanc_4/pcanc2, yes-4/yes2,

pcanc-5/pcanc3, yes-5/yes3, pcanc-6/pcanc4, yes-6/yes4l I

Choice2(yes-2/yes, no-2/no, runn-2/runn, cald_2/cald, cotd-2/cotd,
find-2/find, ninit_2/ninit, comp_2/comp, pcanc-2/pcanc, canc_2/canc, exec_2/exec,

exec-3/execgi, exec-4/execcl, canc_3/cancgl, canc_4/canccl, yes-4/yescl, cotd-3/cotdgl,

runn-3/runngl, yes-3/yesgl, no-3/nogi, cald-3/caldgl,

exec_5/execg2, exec-6/execc2, canc-5/cancg2, canc_6/cancc2, yes-6/yesc2, cotd_5/cotdg2,

runn_5/runng2, yes-5/yesg2, no-5/nog2, cald-5/caldg2l I

***Instance: 3: Eml

InitialStateO[yes-3/yes, no-3/no, runn-3/runn, cald-3/cald, cotd-3/cotd,
find-3/find, ninit-3/ninit, comp-3/comp, pcanc-3/pcanc, canc-3/canc, exec_3/exec,

prec-2/pprec, yes-2/pyes] I

Empty(yes-3/yes, no-3/no, runn-3/runn, cald-3/cald, cotd-3/cotd,
find-3/find, ninit-3/ninit, comp-3/comp, pcanc-3/pcanc, canc-3/canc, exec-3/execl

***Instance: 4: B

InitialStafeO[yes-4/yes, no-4/no, runn-4/runn, cald-4/cald, cotd_4/cotd,
find-4/find, ninit-4/ninit, comp-4/comp, pcanc-4/pcanc, canc-4/canc, exec-4/exec,

prec-2/pprec, yes-2/pyes] I

***Instance: 5: Em2

InitialStateO[yes-5/yes, no-5/no, runn-5/runn, cald_5/cald, cotd_5/cotd,
find_5/find, ninit-5/ninit, comp-5/comp, pcanc-5/pcanc, canc-5/canc, exec-5/exec,

98 ter 5. CCS-based Characterlsations of Liesbet

prec-2/pprec, yes-2/pyes] I

Empty[yes-5/yes, no-5/no, runn_5/runn, cald_5/cald, cotd-5/cotd.
find_5/find, ninit-5/ninit, comp-5/comp, pcanc-5/pcanc, canc-5/canc, exec-5/execl I

***Instance: 6: C

InitialStateO(yes-6/yes, no-6/no, runn_6/rurin, cald-6/cald, cotd-6/cotd,

find-6/find, ninit-6/ninit, comp-6/comp, pcanc-6/pcanc, canc-6/canc, exec-6/exec,

prec-2/pprec, yes-2/pyes3 I

Basics3[comp-1/compl, yes-1/yesl, eyes_a/eyesl,

comp-4/comp2, yes-4/yes2, eyes-b/eyes2,

comp-6/comp3, yes-6/yes3, eyes-c/eyes3l I

'exec-O. Scheduler I pprec. lpyes. nil

Af
runn_O, cald_O, cotd-0, find-0, ninit-0, comp-0, pcanc_O,

runn-1, cald_I, cotd-1, find-1, ninit-1, comp-lo pcanc-1,

runn-2, cald-2, cotd-2, find_2, ninit-2, comp-2, pcanc-2,

runn-3, cald-3, cotd_3, find-3, ninit-3, comp_3, pcanc-3,

r=_4, cald_4, cotd-4, find-4, ninit-4, comp-4, pcanc-4.

runn_5, cald_5, cotd-5, find-5, ninit-5, comp_5, pcanc_5,

runn_6, cald-6, cotd-6, find-6, ninit-6, comp_6, pcanc-6,
bas, pprec, pyes, lock, idle, prog, reset}

canc_O, exec-0, prec-0, yes-0, no-O,

canc-1, exec-1, prec_l, yes_l, no_l,

canc-2, exec-2, prec_2, yes_2, no-2,

canc_3, exec-3, prec_3, yes_3, no-3,

canc-4, exec-4, prec-4, yes-4, no-4,

canc-5, exec-5, prec-5, yes-5, no-5,

canc-6, exec-6, prec-6, yes_6, no-6,

proc Workflowl

***Instance: O: CH

InitialState4[yes-0/yes, no-0/no, runn-0/runn, cald-0/cald, cotd-0/cotd,
find-0/find, ninit-0/ninit, comp-0/comp, pcanc-0/pcanc, canc_O/canc, exec-0/exec, prec-0/prec,

pcanc-1/pcancl, yes-1/yesi, pcanc-2/pcanc2, yes-2/yes2,

pcanc-5/pcanc3, yes-5/yes3, pcanc-6/pcanc4, yes-6/yes4l I

Choice2[yes-0/yes, no-0/no, runn-0/runn, cald-0/cald, cotd_O/cotd,
find O/find, ninit-0/ninit, comp-0/comp, pcanc-0/pcanc, canc-0/canc, exec-0/exec,

exec_l/execgl, exec_2/execcl, canc_l/cancgl, canc-2/canccl, yes-2/yescl, cotd-1/cotdgl,

runn-1/runngl, yes-1/yesgi, no-1/nogl, cald-1/caldgl,

exec-5/execg2, exec_6/execc2, canc_5/cancg2, canc-6/cancc2, yes-6/yesc2, cotd-5/cotdg2,

runn-5/runng2, yes-5/yesg2, no-5/nog2, cald-5/caldg2l I

***Instance: l: Eml

InitialStateOEyes-1/yes, no-1/no, runn-1/runn, cald-1/cald, cotd_l/cotd,

find I/find, ninit-1/ninit, comp-1/comp, pcanc-1/pcanc, canc-1/canc, exec-1/exec,

prec-0/pprec, yes-0/pyes] I

5.1. Using CCS to Provide an Opera tioijal. Aleaning to Liesbet; 99

Empty[yes-1/yes, no-1/no, runn-1/runn, cald-1/cald, cotd-1/cotd,
find_l/find, ninit-1/ninit, comp-1/comp, pcanc-1/pcanc, canc-1/canc, exec-1/execl I

***Instance: 2: Sl

InitialState2[yes-2/yes, no-2/no, runn-2/runn, cald-2/cald, cotd-2/cotd,
find_2/find, ninit_2/ninit, comp-2/comp, pcanc-2/pcanc, canc-2/canc, exec-2/exec,

prec-2/prec, prec-0/pprec, yes-0/pyes,

pcanc-3/pcancl, yes-3/yesl, pcanc-4/pcanc2, yes-4/yes2l I

Seq2[yes-2/yes, no-2/no, runn-2/runn, cald-2/cald, cotd-2/cotd,
find_2/find, ninit-2/ninit, comp-2/comp, pcanc-2/pcanc, canc-2/canc, exec-2/exec,

exec-3/exec2, find-3/find2, yes-3/yes2, no-3/no2, exec-4/execl] I

***Instance: 3: A

InitialStateO[yes-3/yes, no-3/no, runn-3/runn, cald_3/cald, cotd-3/cotd,
find-3/find, ninit-3/ninit, comp-3/comp, pcanc-3/pcanc, canc-3/canc, exec-3/exec,

prec-2/pprec, yes-2/pyes) I

***Instance: 4: B

InitialStateO[yes-4/yes, no-4/no, runn-4/runn, cald-4/cald, cotd-4/cotd,
find_4/find, ninit_4/ninit, comp-4/comp, pcanc-4/pcanc, canc-4/canc, exec-4/exec,

prec-2/pprec, yes-2/pyes] I

***Instance: 5: Em2

InitialStateO[yes-5/yes, no-5/no, runn-5/runn, cald-5/cald, cotd-5/cotd,
find-5/find, ninit-5/ninit, comp-5/comp, pcanc-5/pcanc, canc-5/canc, exec-5/exec,

prec-0/pprec, yes-0/pyes] I

Empty[yes-5/yes, no-5/no, runn-5/runn, cald-5/cald, cotd-5/cotd,
find-5/find, ninit-5/ninit, comp-5/comp, pcanc-5/pcanc, canc-5/canc, exec-5/execl I

***Instance: 6: S2

InitialState2[yes-6/yes, no-6/no, runn-6/runn, cald_6/cald, cotd-6/cotd,
find-6/find, ninit-6/ninit, comp-6/comp, pcanc-6/pcanc, canc-6/canc, exec-6/exec,

prec-6/prec, prec-0/pprec, yes-0/pyes,

pcanc-7/pcancl, yes_7/yesl, pcanc_8/pcanc2, yes-8/yes2l I

Seq2[yes-6/yes, no-6/no, runn-6/riinT,, cald-6/cald, cotd-6/cotd,
find-6/find, ninit_6/ninit, comp-61comp, pcanc-6/pcanc, canc-6/canc, exec-6/exec,

exec-7/exec2, find_7/find2, yes-7/yes2, no-7/no2, exec-8/execl] I

***Instance: 7: A

InitialStateOEyes-7/yes, no-7/no, riinn_7/runn, cald_7/cald, cotd-7/cotd,
find_7/find, ninit-7/ninit, comp-7/comp, pcanc-7/pcanc, canc-7/canc, exec-7/exec,

prec-6/pprec, yes-6/pyes] I

***Instance: 8: C

100 ter 5. CCS-based Characterlsations of Liesbet

InitialStateO[yes-8/yes, no-8/no, runn-8/runn, cald-8/cald, cotd-8/cotd,
find-8/find, ninit-8/ninit, comp-8/comp, pcanc-8/pcanc, canc-8/canc, exec-8/exec,

prec-6/pprec, yes-6/pyes] I

Basics4[comp_3/compl, yes-3/yesl, eyes-a/eyesl,

comp-4/comp2, yes-4/yes2, eyes-b/eyes2,

comp-7/comp3, yes-7/yes3, eyes-a/eyes3,

comp-8/comp4, yes-8/yes4, eyes-c/eyes4l I

, exec-O. Schedulerl I pprec. lpyes. nil

Af
r=-O, cald_O, cotd-0, find-0, ninit_O, comp-0, pcanc_O, canc-0, exec-0, prec-0, yes-0, no-O,

runn-1, cald-1, cotd-1, find-1, ninit-1, comp-1, pcanc-1, canc-1, exec-1, prec-1, yes_1, no-1,

runn-2, cald-2, cotd-2, find-2, ninit-2, comp-2, pcanc-2, canc-2, exec-2, prec-2, yes_2, no-2,

runn-3, cald-3, cotd-3, find_3, ninit-3, comp-3, pcanc-3, canc-3, exec-3, prec-3, yes-3, no-3,

runn-4, cald_4, cotd-4, find-4, ninit-4, comp_4, pcanc_4, canc-4, exec-4, prec-4, yes-4, no-4,

runn_5, cald_5, cotd-5, find-5, ninit-5, comp_5, pcanc-5, canc-5, exec-5, prec-5, yes-5, no-S,

runn-6, cald-6, cotd-6, find_6, ninit-6, comp-6, pcanc-6, canc-6, exec-6, prec_6, yes_6, no-6,

runn-7, cald-7, cotd-7, find_7, ninit-7, comp-7, pcanc-7, canc-7, exec_7, prec-7, yes-7, no-7,

runn-8, cald-8, cotd-8, find-8, ninit-S, comp-8, pcanc-8, canc-8, exec_8, prec-8, yes-8, no-8.
bas, pprec, pyes, lock, idle, prog, reset}

If we check the observational equivalence of these workflow models under CWB-NC, Ave can see
that they are not found to be equivalent. As reported, Workf lowO is capable of completing either
B or C after completing A, but Workf lowl is not capable of this.

cwb-nc> eq -S obseq WorkflowO Workflowl

Building automaton ...

......... 1000 2000 3000 4000 5000

......... 6000 7000
States: 7955

Transitions: 10570

Done building automaton.
Transforming automaton...
Done transforming automaton.
FALSE...

WorkflowO satisfies:

<<'eyes-a>>(<<'eyes-b>>tt A <<Ieyes_c>>tt)

Workflowl does not.
Execution time (user, system, gc, real): (646.728,65.880,383.524,712.701)

cwb-nc>

But, if we clieck for trace equivalence, we can see that they are found to be equivalent. 'Iyace

equivalence is too weak a notion for workflow model equivalence. That is, two (or more) models

may demonstrate trace equivalence when their observable behaviour is not tile same.

5.2. Completion Result for Liesbetl Models

cwb-nc>eq -S trace WorkflowO Workflowl

Building automaton ...

......... 1000 2000 3000 4000 5000

......... 6000 7000
States: 7955

Transitions: 10570

Done building automaton.
Transforming automaton...
Done transforming automaton.
TRUE

Execution time (user, system, gc, real): (22.201,0.640,5.216,22.842)

cwb-nc>

5.2 Completion Result for Liesbetl Models

Result:

A Liesbetl model (constructed according to the syntactical constraints defined by the

rneta-model) is guaranteed to complete (that is, all instances report completion, or
cancellation) in a finite number of steps.

Proof.

101

Base cases We work inductively from the base case of a Liesbeti model consisting of one

activity instance. Such an instance must be of a childless generic type, namely, a basic

activity, FreeChoice, or Empty.

In the case of a basic activity instance, the CCS-based model that the translator outputs

would be as follows.

InitialStateOCSC-ol I Basicsi[SC-o, t] I 'exec-O. SchedulerO I pprec. lpyes. nil

Here, Basicsl has the definition:

proc Basicsl =
bas. Icompl. yesl. 'bas

And, SchedulerO:

'find-O. (Yes-O. 'rfind. nil + no-O. Ibas. bas. SchedulerO)

With reference to the definition of InitiaiftateO, presented in Section 5.1.2, and to the

foregoing, it is clear that the only transitions that the model is capable of making can be

characterised by a single chain of synchronisations, followed by a visible (output) transition

on rf ind, indicating that the root instance (and thus the model enactment) has completed. 0
The single chain is made up of the following synchronisations on channels (in order): exec-0, 43 0
f ind-0, no-O, bas, comp-0, pprec, pyes, yes-0, bas, f ind-0, yes-0, followed by an output
transition on rf ind.

102 Chapter 5. CCS-based Characterisations of Liesbet

In the case of structured childless activity types, such as FreeChoice, the single-act CCS-
based model output from the translator would look as follows.

InitialStateO[SC-ol I FreeChoice(SC_ol I 'exec-O. Schedulerl-NoBasics I pprec. lpyes. nil

FreeChoice bas the definition presented in Section 5.1.2, namely:

proc FreeChoice =
lock. Icald. (Yes. lidle. reset. Idle +

no. 'riinn. (yes. (Icomp. yes. lprog. Idle + Icanc. yes. lprog. Idle) +

no. lidle. reset. FreeChoice))

Note that, there is no BasiCSb agent, as there are no basic instances in the model. The 0
scheduler agent needs to reflect this also. Its definition would be as follows.

'find-O. (yes-O. Irfind. nil + no-O. Ilock. prog. SchedulerO)

In the case of a single FreeChoice instance, there are two possible enactment chains. They
diverge depending on whether the FreeChoice instance is completed, or cancelled. The

chains have a common prefix of synchronisations on channels (in order): exec-0, f ind-0,

no-0, lock, cald-0, no-0, runn-0, yes-0.

Having established the FreeChoice is running, we may either cancel or complete it. There- C,
after, both enactment chains have the same suffix of synchrou isat ions: pprec, pyes, yes-0,
prog, f ind-0, yes-0, followed by an output transition on rf ind.

For Empty, there is a single enactment cliain, as we may only complete the instance. 0
Clearly, for all of the base cases, the instances need to be have been set running for them
to complete, or cancel. We have shown that once such an instance has been set running,
it will eventually finish (complete, or cancel). There is no possibility of locking for the
cliaracterisations of the base cases.
Moreover, we propagate the finishing (completion, or cancellation) of the instance up to the 60
parent by means of pprec. (In the case of a sin. -le-act model, there is no parent so the

synchronisation occurs with the dummy agent pprec. lpyes. nil.

For completed childless instances, it is imperative that their generic types agents forever idle ID 0
so that they never starve other instances of the opportunity to progress. As FreeChoice and
Empty both evolve to the agent Idle, this behaviour is assured.

e Induction step:

We proceed by showing that the introduction of any instance of a child-bearing generic activ- C, 0 ID
ity type does not affect the completion result that we are seekingo to prove. By introduction,

we mean that the instance coalesces a number of distinct Liesbet models, for which com-

pletion is guaranteed (by the induction hypothesis), as children. An example might be to 00
coalesce two models, MI and M2, as children of a Par type, viz. Par(MI, M2).

When introducin- a child-bearing instance, we need to ensure the following behaviour. The 00r,
instance must eventually propagate execution (or cancellation) to each of its children. It 0
niust otherwise idle until all of its children have finished, at which point the instance should

5.3. Discussion: CCS for Liesbetl 103

itself complete, and propagate completion upwards. Its generic type agent should thereafter

forever idle. The idling ensures that instances elsewhere are not starved of the opportunity
to progress.

Fýrorn inspection, it is clear that all of the child-bearing types effect the required behaviour,
It,

in their agent definitions. For example, Par propagates execution to all of its child instances,

and thereafter reports idle until all of them have finished, whereon it completes itself and

propagates completion up to its parent. 0

0

As completion is guaranteed for Liesbetl modeIs, there can be no source of Iocking in such 0
models. Furthermore, enactment is guaranteed to be finite.

5.3 Discussion: CCS for Liesbetl

As stated in Section 3.2, any characterisation of Liesbet must prioritise the progression of struc-
tured activity instances over the progression of basic instances. In the absence of an explicit notion

of priority in CCS, the only way to effect such a priority is to use a scheduler for activity instances.

The operation of such a scheduler would be to interrogate (potentially) all structured instances

to ascertain whether they can progress, and to only progress a basic instance if the structured
instances cannot.

The use of an explicit scheduler is rather costly in terms of the state space that is entailed.
Often, it will be the case that an activity instance will be incapable of progressing in the current

state, but there will still be the cost (in terms of transitions and states) of identifying as much.
However, its cost can be somewhat offset by the use of a locking mechanism on execution rights.

In enabling structured activity instances to make numerous transitions without interleaved tran-

sitions pertaining to other activity instances - tile instance enjoys an execution window, we effect

a partial-order reduction (POR) on the state space [38,59]. A POR removes certain permutations

of transitions from a state space. Through a POR, we are seeking to institute a greater degree

of total-orderino, between the transitions that may be made between any two states, which serves
to reduce the state space between tile two states. This will reduce the complexity of verification,

which is proportional to the size of the state space entailed by a CCS model.
However, the complexity of verification remains punitive, for even the simplest of models (as can

be seen from the example of Section 5.1.3, when checked against a proposition in Section 5.1.4). A

significant improvement can be made in the verification complexity by using a variant of CCS which
has built-in support for the expression of priority, viz. PCCS. In the next section, we present a

characterisation of Liesbet, using PCCS. The capability of expressing priorities of certain actions

over others removes tile need for all explicit scheduler, and as a consequence considerably reduces
the size of state spaces that are entailed from PCCS-characterised Liesbet models compared with
their respective C CS-charact erisat ions.

As we argue in the concluding remarks to this chapter (in Section 5.7), it is possible to provide

a mapping for the whole of Liesbet into CCS. We omit the presentation of such a mapping due

to space constraints. We do present such a mapping in our presentation of PCCS-based semantics
for Liesbet, which is now given. C3

104 Chapter 5. CCS-based Characterisations of Liesbet

5.4 Using PCCS to Provide an Operational Meaning to

Liesbet

We are motivated to use PCCS to provide a formal characterisation of Liesbet because of the

punitive verification complexity of our CCS-based characterisation. The capacity for expressing

priority in PCCS means that the use of an explicit scheduler is not required. Instead, we can use
transitions of differing priorities to ensure that structured instances get progressed ahead of basic

0 t5 0
instances. The absence of an explicit sclieduler should greatly improve the efficiency of verification
for all but the simplest of models.

In this section, Nve present our PCCS-based characterisation of Liesbeti. We defer the presen-
tation of our PCCS characterisation of the rest of Liesbet to Appendix A, in order to save space
here.

5.4.1 PCCS: Liesbetl

In our PCCS characterisation of Liesbet, we maintain the notion of an execution window, where

activity instances claim a lock on execution rights in order to progress meaningfully before yielding

so that another instance may grab the lock. This is effected without the use of an explicit scheduler
(as in our CCS-based characterisation) by specifying that activity instances specify transitions at

a certain priority level when seeking to claim the lock, and subsequently specify transitions at a
higher priority level in order to maintain ownership of the lock. Eventually, an instance will yield C,
such rights implicitly by not effecting further synchronisations at this elevated level of priority. C, 0

In summary, we make use of the following priority levels (where the higher the number, the 00
lower the priority). Note that it is the relative ordering of priorities that is important, not the

specific numbers.

9 20 - For tile basic activity arbiter to claim execution rights. It is appropriate for the arbiter
to claim execution rights at the lowest level of priority, as it should not operate unless work 0
cannot be done otherwise in the model. However, once it has claimed execution rights, all 0
of its subsequent behaviour operates at the highest levels of priority (3-6) until the arbiter

wishes to yield execution rights.

10 - The initial action of a structured instance will execute at this level to clairn execution

rights, i. e. at a higher level of priority than the arbiter for basic instances, but at a lower
00

level of priority than 3-6, which are the levels at which agents who have already claimed

execution rights operate.

-., pertaining to a structured instance, or basic e 3-6 - Actions which are part of an agent
instance arbiter) which has claimed execution rights. The varying levels are used to cut
down tile number of possible patlis between pairs of states, where these various paths are

unimportant to the global evolution of the model. Thus, tile variety of levels lielp in effecting

a POR. Note that levels 3 and 5 are the levels that are principally used.

-6- Used within synclironisation types - which largely run at 5- to specify a lower

priority for the success of StopQuerys (resp. GoQuerys) compared with GoQuerys (resp.

StopQuerys) which take precedence in Gos (resp. Stops).

5.4. Using PCCS to Provide an Operational Meaning to Liesbet 105

-5- The principal priority level used within synchronisation activity types. As described

in the characterisation of Liesbet2, their queries get satisfied over the course of the

enactment of the workflow model; but, for better POR, it is appropriate for this to occur
between activity instances of other types holding execution rights. As a result, they do

not hold the same priority level as actions of those instances that hold execution rights
(i. e. 3); but they hold a higher priority than actions of those instances that seek to

claim execution rights (i. e. 10, or 20)-

-4- This is a level used within synchronisation types for handshaking synchronisations.
These communicate to an agent effecting subsequent behaviour that a precursive agent 000
has completed its activity. The priority level is used wholly for effecting POR between

actions pertaining to handshaking and those not.

-3- This is the main priority level used for activity instances that have previously claimed
execution rights. While sync] ironisat ions are possible at this level, logic pertaining to 000
other activity instances may not be advanced. This is because all such other logic will
be guarded by actions which have priorities set to 10 or 20, as the pertaining activity 00
instances are yet to successfully claim execution rights, or, set to 5, in the case of
synchronisation types.

The definition of the translation function, A4,,,,, j-j, for PCCS Liesbetl is largely the same

as that presented in Section 5.1.2, for CCS. The only difference is that we pass the name of an
instance's cancellation channel, cald, to MpccsE-j when translating one of its child instances, so
that a child instance may detect when its parent has been cancelled, and, as a consequence, cancel
itself. This pull approach is different to that taken in the CCS characterisation, where instances

explicitly push cancellation to their children using pcanc. Now, we remove the use of pcanc actions

which makes the definitions of agents simpler. In the CCS characterisation, without being, able to

specify priorities for transitions, there is no simple way of implementing a pull approach.
We omit a presentation of Mpccsj-j for Liesbetl types as it is the same as the CCS charac-

terisation, save for this one aspect. However, as an example of its definition for PCCS, we show
Mpcc,, I-] applied to the Seq activity type, where st-chs --+ is defined as it was for the CCS cliar-

acterisation, but without a pcanc channel, and without answer channels yes and no. That is, for

the PCCS characterisation, we abbreviate the channel list: exec, comp, canc, ninit, runn,

cotd, cald, f ind by st-chs --+.

MpccsjSeq(ChI,
... Chn)](st-chsi --+, ppreci, pcaldi)=

let st-chsi, --+ in ... st-chsi. ý in let preci in

See [SCj, SCi.,,, SCjj, j

InitialStiten [SC, ppr. ci/,,,., prec, /prec
v
Pca'd ý /pc-Id

Mpccs[Ch I] (st-chsi, --+, pre ci caldi) I... I MpccjjChnj(st-chsjý ý, pre ci caldi)

The definition of the state tracking agent, InitialState', where n is 2, is as follows. 00

proc InitialState2 =
Ipcald: 5. CancelledState +

106

canc: 3. lpprec: 5. CancelledState +

canc: 10. lpprec: 5. CancelledState +

exec: 3. RunningState2

ter 5. CCS-based Characterisations of Liesbet

Notably, in using a blocking paradigm, we do not need to facilitate synchronisation on all of

an activity instance's state channels. We do need to support a number of priority levels, however,

which differ for the various channels.
This agent accepts:

9A synchronisation on I pcald, allowing us to detect when the parent instance has been can- 0
celled. Its priority is set at level 5 to make sure that it takes place in between an agent. 0
yielding execution rights and another claiming thern.

A synchronisation on canc, at levels 3, and 10, to effect a cancellation. Level 3 is the main

priority level used when an agent pertaining to an activity instance holds execution rights.
Level 10 is used for agents seeking to claim execution rights. 00C,
Having synchronised on canc, the InitialStaten agent signals to its parent that it has

00C,
finished on pprec (at level 5), and then moves to a Cancelled state. A priority of 5 is

used for pprec, as it should have a IoNver priority than other possible synchronisations of
the activity instance holding execution rights; but it should occur before execution rights are

yielded. This distinction effects a POR.

A synchronisation on exec may occur once an agent has execution rights (level 3), which

exposes a RunningState2 agent. C,

The definition of RunningStater, where r is 0-2 is as follows. Note that RunningState agents,
in the PCCS characterisation, are not annotated by the pair n-r. This is because we do not need
to keep track of n any longer, as we do not push cancellation on to child instances. We simply o
decrement the r count whenever a child instance signals that it has finished (on prec). 0

proc RunningStateO =

comp: 20. lpprec: 5. CompletedState + comp: 10. lpprec: 5. CompletedState +

comp: 3. lpprec: 5. CompletedState +

runn: 10. RunningStateO + runn: 5. RunningStateO + runn: 3. RunningStateO +

ninit: 5. RunningStateO +

Ipcald: 5. CancelledState +

canc: 3. lpprec: 5. CancelledState + canc: 10. lpprec: S. CancelledState

proc RunningStatel =

prec: 5. lpprec: 5. CompletedState +

runn: 10. RunningStatel + runn: 5. RunningStatel + runn: 3. RunningStatel +

ninit: 5. RunningStatel +

'peald: 5. CancelledState +

canc: 3. lpprec: 5. CancelledState + canc: 10. lpprec: 5. CancelledState

proc RunningState2 =

prec: 5. RunningStatel +

5.4. Using PCCS to Provide an Operational Aleaning to Liesbet 107

runn: 10. RunningState2 + runn: 5. RunningState2 + runn: 3. RunningState2 +

ninit: 5. RunningState2 +

)pcald: 5. CancelledState

canc: 3. lpprec: 5. CancelledState + canc: 10. lpprec: 5. CancelledState

0 In RunningStateO, we support the completion of childless activity instances, at levels 20 -
for basic instances, 10 - for structured instances where we are seeking to claim execution

rights, and 3- where we already have execution rights. We further support confirmation
that we are running at 10 - to gain execution rights, 5- for synchronisation types, and 3-

when we already have execution rights, and confirmation at 5 that the instance is not in the

Initial state. Also, as well as supporting querying whether the parent is alread cancelled, 00y
at 5, we support cancellation of the instance at 3 and 10.

e For RunningStatel, compared with RunningStateO, we disallow explicit completion, as

we did in our CCS-based characterisation (see Section 5.1.2). Instead, when a (final) child
instance signals that it has finished on prec (at priority 5), we propagate completion upwards 00
(on pprec), and then move to CompletedState.

The single change for RunningState', where r>1, from RunningStatel again Concerns 0
prec. When a child signals that it has finished on prec, we decrement the count of outstand-
ing child instances that are running. Thus, the agent to be exposed is RunningStater-1. C, 0

For CompletedState and CancelledState, we support a number of querying actions at levels C,
10 - an agent does not have execution rights, and 5- for queries within Liesbet s nchronisation 00y
types. We do not need to support querying at level 3, as there is never a need for it (in our charac-
terisations of the Liesbet generic activity types). However, sometimes, an instance may attempt
to cancel one of its children when the child instance has already been cancelled, or completed. As

such, we support a cancel action at level 3. Similarly, it may be the case that an instance attempts
the execution of one its children when the child instance has already been cancelled, as already
described in Section 5.1.2. As such, we support an execute action at level 3, for CancelledState.

proc CompletedState =

cotd: 10. CompletedState +

cotd: 5. CompletedState +

find: 10. CompletedState +

find: 5. CompletedState +

ninit: 5. CompletedState +

canc: 3. CompletedState

proc CancelledState =

cald: 10. CancelledState +

cald: 5. CancelledState +

108

find: 10. CancelledState +

find: 5. CancelledState +

canc: 3. CancelledState +

ninit: 5. CompletedState +

exec: 3. CancelledState

5. CCS-based Characterisations of Liesbet

The definitions of the agents effecting tile various Liesbet generic activity types are now C, C, 0
presented. For Par' and Seq, when it is 2:

proc Par2 =
Irunn: 10. lexecl: 3. lexec2: 3. nil + Icald: 5. nil

proc Seq2 =
)r, lnn: 10. 'exec2: 3. Seq2f + 'cald: 5. nil

proc Seq2f =
Ifind2: 10. lexecl: 3. nil + Icald: 5. nil

As can be seen, an agent such as Par2 attempts to claim execution rights at priority level 10, 00
by establishing that its pertaining instance is in a Running state. If the attempt is successful, it

Z, 0
thereafter operates at level 3 as it has these rights. Alternatively, to claiming execution rights, the

agent may with higher priority synchronise on cald (at 5), which would occur if its tracker agent
had moved into a Cancelled state. In this case, the logic effecting the generic activity type should
be garba ge- collected, as it is no longer pertinent.

Notably, these are much simpler definitions, thanks to the use of the blocking paradium, with

priority, than those presented for the standard CCS characterisation.
For Par', we simply initiate the execution of all child instances in turn. As execution rights

are solely held by this agent, these actions will happen contiguously.
For Seql, child instances are indexed in decreasing order, which makes for simpler agent defini-

tions. We start by initiating the execution of the first child instance, it. Then, we expose a Seef

agent, and yield execution rights. Seqf is responsible for waiting for the running child instance

to finish, claiming execution rights once this occurs, and initiating the execution of tile next child
instance. After that, if n>2, tile agent constant See-' is exposed, or nil, if n=2.

Note that completion of child-bearing activity instances is effected within the pertaining state
tracking agent, as done in the CCS-based characterisation.

The Def aultChoicen and Choicen types look as follows when n is 2.

proc DefaultChoice2 =
Irlinn: 10. lexecgl: 3. lexecg2: 3. DefaultChoice2f + Icald: 5. nil

proc DefaultChoice2f

'cotdgl: 10. lexeccl: 3. lcancg2: 3. lcaLncc2: 3. nil +

5.4. Using PCCS to Provide an Operational Meaning to Liesbet 109

Icaldgl: 10. lcanccl: 3. llose: 3. nil
I

'cotdg2: 10. lexecc2: 3. lcancgl: 3. lcanccl: 3. nil +

)caldg2: 10. lcancc2: 3. llose: 3. nil

I
lose: 3. lose: 3. lexecd: 3. nil

)\Ilose) (> Ifind: 5. nil)

proc Choice2 =
Prunn: 10. lexecgi: 3. lexecg2: 3. Choice2f + Icald: 5. nil

proc Choice2f

'cotdgl: 10. lexeccl: 3. lcancg2: 3. lcancc2: 3. nil +
'caldgl: 10. lcanccl: 3. llose: 3. nil

Jcotdg2: 10. lexecc2: 3. lcancgl: 3. lcanccl: 3. nil +
'caldg2: 10. lcancc2: 3. llose: 3. nil

I
lose: 3. lose: 3. lcanc: 3. nil

)\(lose) [> 'find: 5. nil)

For both Def aultChoice' and Choice', we initiate the execution of the guard instances.
Then, in Def aultChoicenf and Choice'f, if a guard instance completes successfully, we initiate
the execution Of its continuation instance and cancel all other guard and continuation instances. If
the guard instance gets cancelled, we signal on lose. As detection of completion, or cancellation,
is set at priority 10, and subsequent actions are set at 3, these transitions will occur contiguously.
For DefaultChoice2f, if all the guard instances get cancelled then sufficient synchronisat ions on 0 t3
lose will take place for the execd action to be exposed. This action is subsequently effected, which
causes the execution of the default continuation instance to be initiated. In Choice2f, in the same
eventuality, the Choice instance as a whole is cancelled.

proc MultiChoice2 =
Iriinn: 10. 'execgl: 3. lexecg2: 3. MultiChoice2f + Icald: 5. nil

proc MultiChoice2f =
'cotdgl: 10. lexeccl: 3. nil + Icaldgl: 10. lcanccl: 3. nil + Icald: 5. nil

'cotdg2: 10. lexecc2: 3. nil + Icaldg2: 10. lcaacc2: 3. nil + Icald: 5. nil

Similarly, for MultiChoicen, we start by executing the guard instances. Then we seek to 0 ?ý
execute or cancel each continuation instance based on whether its pertaining guard instance has

completed successfully, or has been cancelled.

proc FreeChoice =
'runn: 10. (Icomp: 3. nil + Icanc: 3. nil) + Icald: 5. nil

110

proc Empty =
Prunn: 10. 'comp: 3. nil + Icald: 5. nil

5. CCS-based Characterisations of Liesbet

For a FreeChoice instance, we make a non-deterministic choice between completing the in-

stance, or cancelling it. Empty instances are necessarily completed. 0
The definition of Basics' is similar to the standard CCS characterisation of Liesbet. We

do not need to synchronise on a channel (bas) to claim execution rights, as we did for the CCS
0

version, as we claim execution at a lower level of priority (20) than for structured instances. We

simply complete one of the outstanding basic instances.
0

proc Basics4 =
'compl: 20. Basics4 +

'comp2: 20. Basics4 +

'comp3: 20. Basics4 +
'comp4: 20. Basics4

5.5 Multi and MultiSeq

Although they are not part of Liesbetl, it is sufficiently interesting to consider the characterisation 00

of Multi/MultiSeq types in the main text. The primary novelty in their characterisation is that

they may have an unlimited number of child instances. This means that we need to maintain

an auxiliary counter agent in order to keep track of the number of such instances (yet to finish). 0
This is in contrast to the approach used for all other types where the count of such instances is

maintained by virtue of which tracker agent currently obtains for the instance.

The translation of Multi and MultiSeq is defined by the following extensions 0 to MPCCSJ-j-

The definition of the translation function makes use of auxiliary functions, AIT and AITS, which

will be explained in due course.

Mp ... iMulti(ExecAct(join(ExecActJoin)))](st-chsi --+, ppreci, pcaldi) -
let st-chsij --+ in let st-chsie --4 in

AIT(Mp, c.,
jExecActJoin] (st-chsij --, preci, caldi) ,

MpccsEExecAct] (st-chsi. ---), preci, caldi)) [SCj, SCij, j , SCie, e] I

InitialState [SCj, pprec, /pprec
P

pcaldi /pcald]

MpccsiMultiSeq(ExecAct(join(ExecActJoin)))I(st-chsi -, ppreci, pcaldi)
let st-chsij -+ in let st-chSie ---ý in

,
AITS(Mp, c,,

IExecActJoin] (st-chsij -+, preci, caldi) ,

.
Mp,,,, ýExecActi(st-chSie--), preci, caldi))[SCi, SCij, j, SCie,.] I

InitialS"tate [SCi, pprec, /pprec
t pcald, /pcald]

Recall from Section 3.1.15, a multiple-instance activity type defines an execution activity type,

ExecAct, of which several instances may be executed. Whether an instance of ExecAct is executed
depends on its associated join condition, ExecActJoin. When a Multi* instance is set running,
it creates an instance of ExecAct and its join condition. If the join condition is evaluated to hold
(at some point subsequently), the ExecAct instance is executed. Also, another ExecAct instance

5.5. Multi and MultiSeq ill

and join condition instance are created. For Multi, the join condition is set running immediately.
For MultiSeq, we wait until the previously executed ExecAct instance has finished. Once a join

condition instance fails (i. e. goes to Cancelled) its pertaining ExecAct instance is cancelled, and Iz ?3
no more child instances are created. When all ExecAct instances have finished, the Multi instance
is completed.

For the characterisation of Multi* types, we maintain a counting agent, which starts life as
ZeroCount, representing the number of outstanding ExecAct instances yet to finish. For the tracker

agents, we make use of a reduced set of just four: InitialState, RunningState, CompletedState

and CancelledState. This is sufficient because we make use of the counting agent to keep track of
the number of outstanding child instances. CompletedState and CancelledState have the same
definitions as presented in Section 5.4.1. The definition of InitialState is identical to that of
InitialStateO, presented there, except that whenever the agent evolves to InitialStateO (resp.

RunningftateO), it now evolves to InitialState (resp. RunningState).
The RunningState agent is a parallel composition of RunningStateAgent and ZeroCount

agents. The definition of RunningStateAgent is identical to that of RunningState', from Sec-

tion 5.4.1, except that:

0 The agent evolves to RunningStateAgent whenever it evolved back to RunningState' before.

41 The handlinar of prec, indicating the completion of a child, is now handled elsewhere (within
06

agents output by All' and AITS). 0

0 There is now a capability to complete the agent also, once we identify that (i) a join condition
for an ExecAct has failed (i. e. has gone to cancelled), and (ii) there are no outstanding ?D0
ExecAct instances to finish (as identified by a synchronisation on zero).

The agent ZeroCount, together with OneCount, is used to keep a count of the number of

outstanding - i. e. yet to finish - instances of ExecAct. When the count is increased from zero
to one, the agent ZeroCount evolves to the parallel composition: OneCount I ZeroCount. The

presence, at any time, of n instances of OneCount indicates that the value of the counter is n. The

definitions of ZeroCount and OneCount are from [80].

proc RunningState =
RuriningStateAgent I ZeroCount

proc RunningStateAgent =

runn: 10. RunningState2 + runn: 5. RunningState2 + runn: 3. RunningState2 +

ninit: 5. RunningState2 +

)pcald: 5. CancelledState +

canc: 3. lpprec: 5. CancelledState + canc: 10. lpprec: 5. CancelledState +

comp: 5. lzero: S. Ipprec: 5. CompletedState

proc ZeroCount =
inc: 5. (OneCount[il/i, zl/z, dl/dl I ZeroCount[il/inc, zl/zero, dl/dec])\Iil, zl, dl} +

zero: 5. ZeroCount

proc OneCount =
inc: 5.1i: 5. OneCount + dec: S. ('d: 5. OneCount + Iz: 5. ZeroCount)

112 Chaoter 5. CCS-based Characterisations of Liesbet

The auxiliary function All' (resp. AITS) is used to construct a Multi (resp. MultiSeq) agent, 0
which is customised for the particular ExecActJoin and ExecAct types used within the multiple-
instance type being translated. AIT (resp. AITS) takes two parameters, which are agents that

result from applying. A4
00 0 p,,, J-] to the given ExecActJoin and ExecAct types. In the following, we

denote these agents by the names pExecActJoin and pExecAct. 0
All' inserts the following customised agent into the output of translating a Multi type using

mpCCSI-ý-

Irunn: 10. Multi-cust + Icald: 5

. AlTalso inserts a number of customised agent definitions into the main PCCS source, including 0 C,
a definition for Multi-cust, viz.

proc Multi-cust =
MultiExec-cust I pExecActJoin I lexecj: 3

proc MultiExec-cust =
'cotdj: 10. (pExecAct I lexece: 3. linc: 5. prece: 5. ldec: 5. nil I Multi-cust) +

Icaldj: 5. (Icald: 5. nil + 'comp: 5. nil)

In the foregoing, an instance of the join condition, ExecActJoin, is initially set running. This

occurs as a result of the I execj :3 action synchronising with its complementary action in the tracker

agent for the join condition instance, InitialState'(SCjl, which is part of pExecActJoin. If

the join condition instance completes successfully, we execute an instance of the execution activity

of the Multi type, ExecAct, and increase the counter for outstanding child instances. At the same
time, we execute another instance of ExecActJoin. Eventually, an execution activity instance

will finish (as indicated on prece), and, when this occurs, we decrement the counter. If an
ExecActioin instance gets cancelled, at any stage, we signal completion of the Multi instance t3 C3 C,
on comp, as long as the Multi instance has not already been cancelled. On synchronising on comp,
RunningStateAgent will wait until all existing child execution activity instances have finished (as

determined by synchronising on zero), and then evolve to CompletedState.

The characterisation of MultiSeq in PCCS is the same, except that in the definition for

MultiExec-cust, output by AITS, we do not expose a fresh Multi-cust agent until we identify
C,

that the previous ExecAct instance has finished executing. The definition of MultiExec-cust is
thus as follows.

proc MultiExec-cust =
'cotdj: 10. (pExecAct I lexece: 3. linc: 5. prece: 5. ldec: 5. Multi-cust) +
Icaldj: 5. (Icald: 5. nil + 'comp: 5. nil)

5.6 A Complete Example of Using PCCS for Liesbetl

We present the PCCS-based characterisation of the same example used in Section 5.1.3 for the

standard CCS characterisation of Liesbetl, namely Par(Seq(A, B) , Seq(C, D)).

5.6. A Complete Example of Using PCCS for Liesbeti 113

PCCS Verification Run

#0

Generated from: file: samples/LiesbetTest. liesbet

On: Mon Jul 31 15: 29: 07 BST 2006

proc InitialStateO =
)pcald: 5. CancelledState +

canc: 3. lpprec: 5. CancelledState +

canc: 10. lpprec: 5. CancelledState +

exec: 3. RunningStateO

proc InitialState2 =
spcald: 5. CancelledState +

canc: 3. lpprec: 5. CancelledState +

canc: 10. lpprec: 5. CancelledState +

exec: 3. RiinningState2

proc RunningStateO =

comp: 20. lpprec: 5. CompletedState + comp: 10. lpprec: 5. CompletedState +

comp: 3. lpprec: 5. CompletedState +

runn: 10. RunningStateO + runn: 5. RunningStateO + riinn: 3. RunningStateO +

ninit: 5. RiinningStateO +

Ipcald: 5. CancelledState +

canc. 3. lpprec: 5. CancelledState + canc: 10. lpprec: 5. CancelledState

proc RunningStatel =

prec: 5. lpprec: 5. CompletedState +

riinn: 10. RunningStatel + riinn: 5. RunningStatel + runn: 3. RunningStatel +

ninit: 5. RunningStatel +

spcald: 5. CancelledState +

canc: 3. lpprec: 5. CancelledState + canc: 10. lpprec: 5. CancelledState

proc RunningState2 =

prec: 5. RiinningStatel +

runn: 10. RunningState2 + runn: 5. RunningState2 + riinn: 3. RunningState2 +

ninit: 5. RiinningState2 +

)pcald: S. CancelledState +

canc: 3. lpprec: 5. CancelledState + canc: 10. lpprec: 5. CancelledState

proc CompletedState =

cotd: 10. CompletedState + cotd: 5. CompletedState +

find: 10. CompletedState + find: 5. CompletedState +

ninit: S. CompletedState +

canc: 3. CompletedState

114 5. CCS-based Characterisations of Liesbet

proc CancelledState =

cald: 10. CancelledState + cald: 5. CancelledState +

find: 10. CancelledState + find: 5. CancelledState +

ninit: 5. CancelledState +

exec: 3. CancelledState +

canc: 3. CancelledState

proc Basics4 =
'compl: 20. Basics4 +

'comp2: 20. Basics4 +

'comp3: 20. Basics4 +

'comp4: 20. Basics4

proc Seq2 =
'runn: 10. 'exec2: 3. Seq2f + Icald: 5. nil

proc Seq2f =
Ifind2: 10. lexecl: 3. nil + Icald: 5. nil

proc Par2 =
Yrunn: 10. 'execl: 3. lexec2: 3. nil + 'cald: 5. nil

proc WorkflowO

***Instance: O: Pl

InitialState2[runn_O/riinn, cald-0/cald, cotd-0/cotd,
find-0/find, ninit-0/ninit, comp-0/comp, canc-0/canc, exec_o/exec,

prec-0/prec, cald-0/pca: Ldl I

Par2[runn-0/runn, cald-0/cald, cotd_O/cotd,
find-0/find, ninit-0/ninit, comp-0/comp, canc-0/canc, exec-0/exec,

exec-1/execl, exec-4/exec2l I

***Instance: l: Sl

InitialState2(runn_l/runn, cald_l/cald, cotd-1/cotd,
find-1/find, ninit-1/ninit, comp-1/comp, canc-1/canc, exec_l/exec,

prec-1/prec, prec-0/pprec, cald-0/pcald] I

Seq2[runn-1/runn, cald_l/cald, cotd_l/cotd,
find-1/find, ninit-1/ninit, comp-1/comp, canc-1/canc, exec-1/exec,

exec-2/exec2, find_2/find2, exec-3/execl] I

***Instance: 2: A

InitialStateO[runn-2/riinn, cald_2/cald, cotd-2/cotd,
find-2/find, ninit-2/ninit, comp-2/comp, canc-2/canc, exec-2/exec,

prec-1/pprec, cald-1/pcald] I

5.6. A Complete Example of Using PCCS for Liesbeti 115

***Instance: 3: B

InitialStateO(runn-3/runn, cald-3/cald, cotd-3/cotd,
find-3/find, ninit-3/ninit, comp-3/comp, canc-3/canc, exec-3/exec,

prec-1/pprec, cald-1/pcald] I

***Instance: 4: S2

InitialState2[runn_4/runn, cald_4/cald, cotd-4/cotd,
find_4/find, ninit-4/ninit, comp-4/comp, canc-4/canc, exec-4/exec,

prec-4/prec, prec-0/pprec, cald-0/pcald) I

Seq2[rjjnn-4/runn, cald-4/cald, cotd-4/cotd,
find_4/find, ninit-4/ninit, comp-4/comp, canc-4/canc, exec-4/exec,

exec-5/exec2, find_5/find2, exec-6/execl] I

***Instance: 5: B

InitialStateO[runn-5/runn, cald-5/cald, cotd-5/cotd,
find-5/find, ninit-5/ninit, comp-5/comp, canc_5/canc, exec-5/exec,

prec-4/pprec, cald-4/pcald) I

***Instance: 6: C

InitialStateO[runn-6/runn, cald-6/cald, cotd-6/cotd,
find_6/find, ninit-6/ninit, comp-6/comp, canc-6/canc, exec-6/exec,

prec-4/pprec, cald-4/pcald) I

Basics4[comp-2/compl, comp-3/comp2, comp-5/comp3, comp-6/comp4l I

'exec-0: 3. pprec: 5. nil I 'find-0: 10. lrfind: 10. nil

M
runn-0, cald_O, cotd-0, find_O, ninit-0, comp-0, canc-0, exec-0, prec-0,

runn-1, cald_l, cotd-1, find-1, ninit-1, COMP-1, canc-1, exec-1, prec-1,

runn-2, cald_2, cotd-2, find_2, ninit-2, comp_2, canc-2, exec-2, prec-2,

runn-3, cald_3, cotd-3, find-3, ninit-3, comp-3, canc-3, exec-3, prec_3,

runn-4, cald-4, cotd-4, find_4, ninit-4, comp-4, canc-4, exec-4, prec_4,

runn-5, cald-5, cotd-5, find_5, ninit_5, comp-5, canc-5, exec-5, prec_5,

runn-6, cald-6, cotd-6, find_6, ninit-6, comp_6, canc_6, exec-6, prec-6,

pprec, pcald}

5.6.1 Model Checking PCCS Characterised Liesbetl with Concurrency

Workbench

For a simple model-checking test, with CWB-NC, we test the same proposition as that used in
0

Section 5.1.4, save for the priority level, viz.

prop cotd =

116 Cljar)ter 5. CCS-based Characterisations of Liesbet

min X= <->tt A [-Irfind: 10]X

This proposition asserts that, along all enactment paths, the model will reach a completed 0
state. The result of the model checking exercise follows. A significant reduction in states and
transitions is evident over the corresponding standard CCS model, viz. 53 v 833 in states, and 57

v 977 in transitions.

cwb-nc> chk WorkflowO find

Invoking alternation-free model checker.
Building automaton...
States: 53

Transitions: 57

Done building automaton.
TRUE, the agent satisfies the formula.

Execution time (user, system, gc, real): (4.078,0.000,0.093,4.078)

cwb-nc>

5.7 Concluding Remarks

In this chapter (together with Appendix A), we have presented a comprehensive formalisation of
the Liesbet meta-model using PCCS. The formalisation represents a contribution to the Business

Process Management community. We argue that it trivially follows from this that a full CCS

characterisation of the Liesbet meta-model is possible. That is, the only fundamental difference

between the CCS- and PCCS-based characterisations is the use of the explicit scheduler in the CCS

characterisation. As the issue of the scheduler is orthogonal to all other aspects of the respective

characterisat ions, it stands to reason that a full CCS characterisation would trivially follow from the

PCCS characterisation. We decided against explicitly defining a full CCS-based characterisation

of Liesbet, as we believe it to not be sufficiently important to do so, in light of our PCCS-based
0

characterisation.
As may be seen from the model checking example for Liesbeti, presented in Section 5.6.1,

we are able to characterise Liesbet models using PCCS that have a significantly lower verifica-
tion complexity (in terms of the size of the entailed state space) than models characterised using
CCS. Tile principal reason for such a reduction is the absence of all explicit scheduler in the

PCCS characterisation to enforce the intended semantics of Liesbet, presented in Section 3.2.

Improved verification complexity was a key motivation for investigating the use of PCCS for the

characterisation of Liesbet over CCS.

There is an interesting dichotomy at play in our PCCS-based characterisation of Liesbet. We

could make the verification complexity of PCCS-characterised Liesbet models even better by using

further prioritý levels to achieve an even better partiaI-order reduction (POR) on the state space.

However, these are not strictly necessary to capture the intended semantics of Liesbet, which are

sufficiently captured without their use, and they would greatly obscure the clarity of the PCCS-

based cliaracterisation of Liesbet. For instance, in the characterisation of synchronisation types,

presented in Appendix Section A. 3, we use many handshaking actions. These could be mutually-

differently prioritised to effect better POR, but the order in which they occur is not important

for the characterisation to be sound. In fact, we could remove some of the use of priorities in the

5.7. Concluding Remarks 117

current characterisation, and still have a sound characterisation. These handshaking actions occur

at a distinct level of priority from all other actions. We could soundly remove this dispensation,

which arguably would make for better clarity in specification but at the cost of increased verification

complexity.
Notably, even when we opt for maximising POR in order to reduce verification complexity

as much as we can, the performance of verification under CWB-NC is still painfully slow for all
but the simplest PCCS-characterised examples. An example is that of the Travel Agent model,

presented in Section 4.5, which took several hours to return a result for checking whether the

model completes along all enactment pathS2 CI . The principal reason for this is the inability of the

CCS-based cli arac t erisat ions to practicably capture the intended semantics for Liesbet, presented
in Section 3.2.

Our PCCS-based characterisation of Liesbet exposes the real weaknesses of using process 0
algebra, such as CCS/PCCS, for the representation of workflow. Formalisms such as these suffer

on at least two principal counts:

It is not possible to arrive at the intended semantics for Liesbet without a lot of abstraction.
It is only through abstraction that we may count more that one transition occurring at a time

to be atomic, which is a key requirement of the intended semantics (in propagating effects of 0 C,
completing/cancelling childless instances up tile tree, for instance). Although, CCS/PCCS
has a notion of abstraction in distinguishing internal (T) transitions from external ones, it is 00
not possible to instruct CWB-NC to take account of this difference in constructing the state
space of models. The lack of such a capability is hardly surprising, i. e., a CCS/PCCS model
is fundamentally characterised by all of its transition types, the distinction between external
and internal transition types is purely cosinetic. As such, to perform model checking on a
CCS/PCCS, as CWB-NC does, it would always be necessary to construct the state space for a
model accounting for all transition types, at least initially. It is tile construction of the entire
space that kills CWB-NC when used for verification of PCCS-characterised Liesbet models.

The efficiency (and clarity) of performing queries as part of progressing synchronisation types

is not good. In order to carry out a single atomic query, there is no limit to the number of
instances that may be need to be queried as to their state. All of these individual queries
themselves require several transitions. The state space for querying alone quickly explodes.
Again, this is behaviour that needs to be captured as atomic, together with the consequences

of completing/cancelling synchronisation instances being atomically propagated. C, C, 00

Interestingly, it is quite evident that Petri nets would not fair any better in characterising C, C,
Liesbet than our CCS-based characterisations do. The principal reason lies in us making the 0
recording of the state of activities explicit. Because of this, Petri nets would handle the character-
isation of Liesbet in largely the same way in having tracker, generic type and scheduler agents. C, 0 CD 0
Moreover, the same shortcomings in the expression and evaluation of syncbronisation conditions

would exist
It is also notable that none of the problems asserted (in Section 2.3.2) for Petri net-based charac-

terisations of the YAWL patterns would exist in a Petri net-based characterisation of Liesbet. These

20n a 3.2GIlz Linux box with 1GB RANI.

118 Chanter 5. CCS-based Characterisations of Liesbet

problems were concerned with: tracking multiple-instances, advanced synchronisation and cancel-
Iation. This is because we resolve these issues at the information view (i. e. in defining Liesbet)

prior to any characterisation using Petri nets/CCS/PCCS. This is a point that is discussed further

in the conclusions to this thesis, in Chapter Twelve.

It is worth noting, purely subjectively, that the specification of semantics for the generic type

agents is quite clear and succinct. It is evidently appealing to be able to express the semantics

using the programmin-like, compositional constructs of CCS/PCCS. Tile down-side of using such

a language is that we would want the operational semantics that are associated with it to admit
the notion that multiple transitions may occur atomically, as we have stated. We would imagine

that this would be quite difficult to achieve in a process algebra such as CCS/PCCS. Thus, we have

some clarity (especially when compared with the Situation Calculus characterisation, presented in

the next chapter) at the cost of atornicity, which is another apparent dichotomy.

We carry our experiences of using CCS/PCCS to characterise Liesbet over to the next chapter

where we consider the characterisation of Liesbet usinc, a louic-based formalism, namely the 0 it,
Situation Calculus. It proves interesting to see how the two evidently contrasting formalisms differ

in the characterisation of Liesbet.

Chapter 6

Situation- Calculus Based

Semantics

In this chapter, we present our Situation Calculus-based characterisation of Liesbet. A motiva-
tion for investigating the use of the Situation Calculus was that, in being a logic-based formalism,

000 ID
it is quite different to a process algebra based approach for characterising the behaviour of dy-

namic systems. Moreover, we felt that certain aspects in which CCS/PCCS may be deficient may
be better addressed using the Situation Calculus, and vice-versa, making the investigation of us-
ing the Situation Calculus to characterise Liesbet complementary to the investigation of using
CCS/PCCS.

We proceed with an introduction to the Situation Calculus (SitCalc), followed by a presen-
tation of our SitCalc-based characterisation of Liesbet, deferring some aspects of the presen-
tation to Appendix B to save space. Then, we present the definition of a translation function,

.
A4sjjc,, j, j-j, which translates Liesbet models to SitCaic, as well as a couple of results: one

regarding the completion (in enactment) of SitCaic-based Liesbet models; and the other demon-

strating that the chara cterisat ions presented in Section 3.4 of Liesbet constructs as abbreviations,
Liesbetabbrev, are sound. At the end of the chapter, we present a discussion as to the relative

merits of a logic-based approach, i. e. using, the Situation Calculus, versus one based on process

algebra such as CCS/PCCS.

6.1 Introduction to the Situation Calculus

The Situation Calculus (SitCaic), originally thanks to McCarthy [761 and McCarthy and Hayes

[77], is a framework for the description of dynamic domains. A significant contribution to the

definition of SitCaic has been made by Reiter, and a number of his colleagues, over many years.
A good summary of these efforts is presented in [981.

The language, Lsijc, ýI,, is second-order with equality; although from a domain engineer's per-

spective, it is essentially a first-order framework - it prescribes just a single second-order axiom. It

is many-sorted, having three distinguished sorts: action, situation and object; where object counts 00
as an aggregating sort for an unbounded number of other doniain-dependent sorts.

Actions are the only means by which changes are made to the world. They have prescribed 0

119

120 Chapter 6. Situation-Calculus Based Semantics

effects on fluents, which are mutable domain properties. Situations are defined inductively from

the initial situation So, using the distinguished function do. The application do(a, s) denotes

the situation that follows from performing the action a in situation s. Thus, situations represent
histoHes of actions on the initial situation. The notion of situation is not synonymous with that

of domain state; two situations may be different and yet may assign the same truth values to all
fluents comprising the state of a domain. This is a distinguishing feature of Reiter's formulation

of SitCalc [98].

Assuming a standard alphabet of connectives and quantifiers, L,, jt,,, j, has the following alphabet
[98]:

a Countably infinitely many individual variable symbols of each sort. For actions (resp. situa-
tions), we use a (resp. s), and subscripted and superscripted variations thereof. For variables

of sort object, we use lower-case roman letters other than a and s, with possible sub/super-

scriptin.. In addition, Csitcalc includes countably infinitely many predicate variables of all

arities.

e Two function symbols of sort situation: the constant So and do : action x situation -+
situation.

a Two binary predicate symbols: E:: situation x situation, defining in ordering relation on n0

situations (that is, s E: s' means that s is a sub-history of s'); and Poss : action x situation
meaning that it is possible to perform the action a in situation s. 0

a For each n>0, countably infinitely many predicate symbols of sort (action U object)', for

situation-independent relations like human(Joe), oddNumber(m).

9 For each n>0, countably infinitely many function symbols of sort (action U object)' --+
object, for situation-independent functions like sqrt(x), height (. AftEverest).

e ror each n>0, a finite, or countably infinite, number of function symbols of sort (action U

object)n --+ action. These are action functions, and denote actions such as pickup(x) and

move(A, B). They are distinguished by the requirement that they be axiomatised by action

precondition axioms, as described below. In most applications, they are finite in number.

e ror each n>0, a finite, or countably infinite, number of function symbols of sort (action U

object)' x situation --+ action U object. These are functional fluents and denote functions

whose value is situation-dependent, such as age(Alary, s), or primeAlinister(Italy, s).
Functional fluents always take just one argument of sort situation, and it is always the
last argument. In most applications, they are finite in number. C,

For each n>0, a finite, or countably infinite, number of predicate symbols with arity 71 +1

and sort (actionUobject)' x situation. These are relational fluents and denote relations whose

value is situation-dependent, such as ontable(x, s), or husband(Alary, John, s). Relational

fluents always take just one argument of sort situation, and it is always the last argument.
In most applications, they are finite in number.

Note that, in this cliapter, the scope of quantifiers should be taken to be remainder of the
formula, from where they are used, up to the quantifier name being used agam.

6.1. Introduction to the Situation Calculus 121

There are four domain-independent, foundational axioms, E, described for SitCaic [98], wbere

s E: s' is an abbreviation for sC s' Vs= s', viz.

do(al, sl) = do(a2, S2) Dal =a2 As, = S2

(VP). P(So) A (Va, s)[P(s) D P(do(a, s))] D (Vs)P(s) (6.2)

SO (6.3)

s E: do(a, s') -= s E: s' (6.4)

The first of these axioms (1) is a unique names axiom for situations, defining a necessary

condition for txvo situations to be equal; namely that they be derived from ail application of the

same action to the same situation.
The second of these (2) is the single (prescribed) second-order axiom, and defines the domain

of situations to be the smallest set which includes the initial situation, So, that is closed under
the application of the function do to an action and a situation. This captures the notion that

situations are finite sequences of actions.
From [981, we note that any model of these two axioms will have as its domain of situations

the smallest set S satisfying: 0

* co E S, where co is the interpretation of So in the model.

a If uES, and AEA, then do(A, a) E S, where A is the domain of actions in the model.

The first two axioms imply that two situations will be the same iff they result from the same

sequence of actions applied to the initial situation, So. The other two axioms, (3) and (4), capture
the notion of a sequence of actions preceding another - that is, the notion of a sub-history. The

operator [:: provides an ordering on situations, where s E: s' means that the action sequence, or

situation, s' can be obtained from s by applying one or more actions to s.
aom E, it can be shown that the situations in any model M of E can be represented as a tree

-a situation tree, where every node branches on all elements of Act (which, along with OIJ and
Sit partition the domain of M, according to the sorts action, object and situation, respectively).

A basic SitCalc action theory (BAT), D, consists of the foundational axioms, E, as well as a

number of other domain- dependent axioms, viz.

e Action Precondition Axioms, constituting D,, p, with the form:

Poss(A(xl,..., Xn), S) ý rIA(Xl,
... 1 Xni S)i

where A is an n-ary action function symbol and lIA(X1,
... 1 Xni S) is a formula that is uniform

in s (that is, determined according to the current situation s, alone) and whose free variables

are among xi, ..., Xn, S- 0

* Successor-state Axioms, constitutin4g, Dssa:

- For relational fluents, with the form:

F (x 1, ..., x, do(a, s)) ý- (IýF (X 11 x, a, s),

where F is an+ 1-ary predicate symbol and 'I'F(, 'rl,
.... x, a, s) is a formula which is

uniform in s, and whose free variables are among xi, ... 7
Xn7 a, s.

0

122

- For ftinctional fluents, with the forin:

er 6. Situation- Calculus Based Semantics

f (X,,..., x, do(a, s)) =y =- Of (xl,..
-, Xn, y, a, s),

where f is an+ 1-ary function symbol and of (xl,..., x, y, a, s) is a formula which is

uniform in s, and whose free variables are among xi, ... 7 Xn9 y, a, s. C,

e Unique-name axioms for actions, constituting 'D,,,,,, which state that for any two actions to 0
be identical, they must have identical function symbols and identical arguments:

For distinct action names, A and B,
AG) =/- B(V)

Identical actions have identical arguments 0
x�) =A (yl,

---, Y,) D XI ý Yl, ---, Xn ý Yn-

* VS., the initial state of the domain -a set of first-order sentences, uniform in the initial

situation So.

We also require that models of basic action theories satisfy the following fluent consistency

property, which ensures that a functional fluent has just one value y for a given set of parameters 0
and situation. Suppose that f is a functional fluent whose successor state axiom in D,,,, is:

(xi,..., x, do(a, s» =y -=
Of (xi,..., x, y, a, s).

Tlien,

D h-- (V;) (3y) Of (xi....
iXniy, a, s) A

«VY7Y,)ý5f(Xll
... lXn7y, a, s) A Of(xi,..., x�, y', a, s) D y=y')

Situation trees represent the evolution of situations, according to the application of all actions

within the domain of actions. Notably, the application of an action to a particular situation may

not always be possible, according to D,, p, This means that certain sequences of actions, i. e. "ghost"

situations, within the situation tree may not be possible. '1ý, pically, it is desirable to ignore these

sequences within models of a SitCalc theory. To mark those sequences that should not be ignored, 0
we define the notion of an executable situation. All of the actions named within such a situation

must be executable, according to 1),, p, in their respective situations of application. We include the
following abbreviation in the axiomatisation of SitCalc, which defines an executable situation to
be one where it is possible to execute all of the actions occurring in the action sequence:

ef executable(s) 't (Va, s'). do(a, s') C; sD Poss(a, s).

6.2 SitCalc-based Semantics for Liesbet

In this section, we concentrate on presenting the SitCalc-based characterisation of just a handful

of Liesbet constructs so as not to disrupt the presentation with too many small points of detail.

A presentation of the SitCalc characterisation for the remaining constructs is given in Appendix

B.

6.2.1 Par(Seq(A, B), Seq(C, D)) -A Simple Example

We start this section with an example, in order to ground the presentation of the SitCalc se-

mantics for Liesbet. In Figure 6.1, we see a graphical representation of a simple workflow model: 00

6.2. SitCalc-basedSernantics for Liesbet 123

Pi
Par 0

Sl Se Seq S2
00

A

Initial state

0 -Running state

V- Completed state

X- Cancelled state

Figure 6.1: Enactment State 0 of Par(Seq(A, B) Seq(C, D))
Possible Successor States: I

Pi
Par 0

SIS,
ý

Seq S2
00

000 ABD

Initial state

0 -Running state

q-
Completed state

X- Cancelled state

FiOure 6.2; Enactment State 1 of Par(Seq(A, B) Seq(C, D))
Possible Successor States: 2,8

Pi
Par

s1s. Seq S2

AB

0- Initial state

Running state

Completed state

X -Cancelled state

Figure 6.3: Enactment State 2 of Par(Seq(A, B) Seq(C, D))
Possible Successor States: 3,6

Pi
Par 0

Sl Se Seq S2

AB

0- Initial state

0 -Running state

q-
Completed state

X- Cancelled state

Figure 6.4: Enactment State 3 of Par(Seq(A, B) Seq(C, D))
Possible Successor States: 4

Pi
Par 0

Sl Se Seq S2

ABc

0- Initial state

0 -Running state

NI - Completed state

X- Cancelled state

Figure 6.5: Enactment State 4 of Par(Seq(A, B) Seq(C, D))
Possible Successor States: 5

124 Chapter 6. Sit ua tion- Calculus Based Semantics

Pi
Par

Seq 2

C B

0- Initial state

0 -Running state

q- Completed state

X- Cancelled state

Figure 6.6: Enactment State 5 of Par(Seq(A, B) Seq(C, D))

Pi
Par 0

s1s. Seq S2

Bc

0- Initial state

0 -Running state

q-
Completed state

X- Cancelled state

Figure 6.7. - Enactment State 6 of Par(Seq(A, B) Seq(C, D))
Possible Successor States: 4,7

Pi
Par 0

Sl se Seq 2

ABC

0- Initial state

-Running state

- Completed state

X- Cancelled state

Figure 6.8: Enactment State 7 of Par(Seq(A, B) Seq(C, D))
Possible Successor States: 5

Pi
Par 0

Sl Se Seq S2

0 A Bc

0- Initial state

-Running state

- Completed state

X- Cancelled state

Figure 6.9. - Enactment State 8 of Par(Seq(A, B) Seq(C, D))
Possible Successor States: 6,9

Pi
Par 0

Sl se Seq 2
0

D ABC;

Initial state

0 -Running state

N' - Completed state

X- Cancelled state

Figure 6.10: Enactment State 9 of Par(Seq(A, B), Seq(C, D))
Possible Successor States: 7

6.2. SitCalc-based Semantics for Liesbet 125

Par (Seq (A, B) , Seq(C, D)), that we have used for illustrative purposes throughout this thesis. In

the initial state of the workflow model (state 0), all activity instances are in an Initial state, as

can be seen.
When the root activity instance (PI) is set running (Figure 6.2), execution is also propagated

to appropriate descendants, resulting in state 1. Here, the two sequences, S1 and S2, which are the

children of P1, are set running, as well as their respective first children, A and C. A key theme of
these semantics is that actions that are performed on one instance, namely, completion, cancellation

or execution, may have side-effects on other instances. In this case, the side-effect is to propagate

execution downwards. Propagation of side-effects largely happens to ancestors or descendants of
the activity on which an action is being performed. Thus, descendant and child are key relations
in tile semantics presented here.

In state 1 of the workflow model, we have the option to complete either basic instances A, or C1.

Completing A takes us to state 2, represented in Figure 6.3. As can be seen, an effect of completing
A is to set the second basic instance of the sequence S1, namely B, running. In state 2, we have

the option of completing B, or C. Let's say that we complete B, taking us to state 3 (as shown in

Figure 6.4). Completing B has the effect of also completing the sequence S1. That is, completion
is propagated upwards.

In state 3, we may only complete basic instance C, and doing so has the effect of setting instance

D running, as can be seen from Figure 6.5. Then, in state 4, we may only complete D, which has

the effect of completing S2, P1 and thus the model as a whole, which can be seen in Figure 6.6,

which is state 5.

There are some alternative enactments that are possible, which we shall now elaborate.

41 In state 2, we may instead complete C, which results in the model state (#6) shown in

Figure 6.7. If we then complete B, we arrive at a matched state. In SitCalc terms, a 0
matched state is a situation which has the same fluent state as a previously visited situation,

and, in verification, we would backtrack. In this case, the matched state is 4.

" In state 6, we may instead complete D, which results in the model state (#7) shown in

Fi-ure 6.8. If we then complete B, -%ve arrive at another matched state, namely state 5.
0

" In state 1, we may instead complete C, which results in the model state (#8) shown in

Figure 6.9. Completing A then takes us to matched state 6.
00

" Alternatively, in state 8, if we complete D, we arrive at model state (#9), shown in Figure 6.10.

In this state, the sequence S2 and its descendants C and D have completed, but, A, B (and

Sl) are still running. Completing A then takes us to matched state 7.
00

In summary, there are ten distinct states for this example workflow model, shown in Figures 6.1- 0
6.10. We now proceed to give an overview of how appropriate semantics for Liesbet, as exemplified 0
here, are realised using SitCa1c. 0

6.2.2 Introducing SitCalc-based Semantics for Liesbet

We start our presentation of the SitCaic-based semantics for Liesbet by describing how the C,
example model, presented in the previous section, may be characterised using SitCalc. Firstly, 0

'For this example, we consider that basic instances may only be completed. (We do not consider cancellation.)

126 6. Sit nation- Calculus Based Semantics

Activity(O, 0,0, GId-PAR, NONE, NONE, NONE, SO) //P

Activity(O, 1,1, GId-SEQ, NONE, EXEC, NONE, SO) //Sl

Activity(O, 2,4, GId-SEQ, NONE, EXEC, NONE, SO) //S2

Activity(l, 3,2, GId-BAS, NONE, EXEC, NONE, SO) //A

Activity(l, 4,3, GId-BAS, NONE, NONE, NONE, SO) //B

Activity(2,5,5, GId-BAS, NONE, EXEC, NONE, SO) //C

Activity(2,6,6, GId-BAS, NONE, NONE, NONE, SO) //D

Figure 6.11: Representation of Par(Seq(A, B) Seq(C, D)) in SitCalc C,

for any SitCalc-characterised Liesbet model, there are a number of actions which may be carried
out on the model. These actions are to complete or cancel an activity. Additionally, all activity
instances extant in a model need to be added prior to any enactment of the model'. We use the
term Current Work-flow State (MVS) to mean the ag, regation of instances which have already been

added, plus their respective states. This is different from the notion of a SitCalc domain/action

theory, or BXr.
There is a partial ordering over these different action types, reflecting certain priorities, which

is enforced by the action precondition axioms, presented a little later:

9 Adding (add-activity/7) activity instances to the CNNIS has highest priority. ID 0

Completing or cancelling (complete, cancel/ 1,3) a (childless) structured instance has next

priority.

Completing or cancelling (comp-bas, canc-bas/1) a basic instance has lowest priority. t, 0

Not all instances will be completed or cancelled by explicit occurrences of these action types.

Often an instance may be executed, completed or cancelled as an implicit side-effect of an action
being effected on another instance. We have already seen this phenomenon in the example presented
in the previous section (6.2.1).

A representation in SitCalc of the Liesbet model discussed in Section 6.2.1 is given in Fig

ure 6.11. There are also a number of, what we consider to be, foundational axioms for workilow,

presented in Figure 6.12. These are domain-independent axioms. The SitCalc characterisation

of a Liesbet model is the sum of these foundational axioms and a set of Activity/8 initial state

atoms which complete tile specification of a particular workflow model (as presented in Figure 6.11,

for the example in question). This sum of these axioms constitutes a Basic Action Theory (or BAT)

in SitCa1c.
Note that for simplicity, in the following account, ive only allow completion (and not call-

cellation) of basic instances. We use a number of domain-independent and domain-dependent

identifiers, such as GId-BAS, or CId-A, respectively, which resolve to natural numbers.
The representation admits the possibility of just two actions, as indicated by the action pre-

condition axioms which comprise the definition of Poss/2.

2Apart from dynamically-added instances, i. e. execution acti-vity (ExecAct) instances (or descendants thereof),

which are added as Multi/MultiSeq types (described in Section 3.1.15) are enacted.

6.2. Si tCal c-based Seinan tics for Lies bet 127

IE

Poss(comp-bas(i), s) = State U, s) =Running A GType(i, s)=GId-BAS A I-

(3p, iI, c, g, sc, f, j) . Poss (add-activity (p, V, c, g, sc. f, j) , s)

Poss(add-activity(p, i, C, g, sc, f, j), s) =- Activity(p, ilCIgISC. flj, s) A I

-(3p,, il, cl, gl, scl, fl, jl). Activity(pl, il, cl, gl, scl, fl, j', s) A i'<i

I State (i, do(a, s))=st =- StateChaLnge(i, a, st, s) V State(i, s)=st A -(3st'). StateChange(i, a, stl, s)

StateChange(i, a, st, s) =- (3p, c, g, sc, f, j). a--add-activity(p, i, c, g, sc, f, j) A SetRunning(p, i, f, st, s) V

Completing (i, a, st) v (3i,). CompletingAction(il, a) A PropagateCompleteUp(il, i, st, s)

SetRunning(p, i, f, st, s) _= p=i A st=Running V

State (p, s)=Running A (f=EXEC A st=Running V -f=EXEC A st=Initial) V

-State (p, s)=Running A st=Initial

I Completing (i, a, st) =- a=comp-bas(i) A st=Completed

CompletingAction(i, a) =- a=comp-bas(i)

PropagateCompleteUp(il, i, st, s) =- (3i"). AllDescSiblingsFinished(il, i'l, s) A
(st=Completed A i=i" V ExecuteNextChild(ill, i, st, s)) V ExecuteNextChild(il, i, st, s)

AllDescSiblingsFinished(il, i, s) -= Descendant (i, i', s) A

(Vd). (-d=il A Descendant (i, d, s) A -Descendant (d, i I, s) A

-Descendant(il, d, s) :) State(d, s)=Completed)

ExecuteNextChild(il, i, st, s) =- (3p, i"). Child(p, il, s) A PropagateRiinningDownInc(i", i, st, s) A

GType(p, s)=Gld-SEQ A NextInitialChild(p, ill, s)

NextInitialChild(p, i, s) =- Child(p, i, s) A -(3i'). (Child(p, il, s) A il<i A State (i ', s)=Initial)

PropagateRiinningDownInc(il, i, st, s) -- (3i"). PropagateRiinningDownInc(ill, i, st, s) A

Executes(il, i", s) V

i'=i A st=Running

Child(p, i. do(a, s)) =- (3c, g, sc, f, j). a=add-activity(p, i, c. g, sc, f, j) A -p=i V Child(p, i, s)

Descendant (anc, i, do(a, s)) =- (3p, c, g, sc, f, j). a=add-activity(p, i, c, g, sc, f, j) A -p=i A
(P=anc V Descendant (anc, p, s)) V Descendant (anc, i, s)

Executes (p, i, do (a, s)) -=
(3p, c. g, sc, f, j). a=add-activity(p, i, c, g, sc, f, j) A -p=i A f=EXEC V

Executes(p, i, s)

Activity(p, i, c, g, sc, f, j, do(a, s)) =- -a=add-activity(p, i, c, g, sc, f, j) A Activity(p, i. c, g, sc, f, j, s)

Figure 6.12: SitCalc Foundational Axiorns for Workflow

ter 6. Situation-Calculus Based Semantics

poss(comp-bas(i), s) = State (i, s)=Running A GType(i, s)=GId-BAS A

(3p, i', c, g. sc, f, i). Poss(add-activity(p, il, c, g, sc, f, j). S)

Poss(add-activity(p, i, c, g, sc, f, j), s) -- Activity(p, i, c, g, se, f, j, s) A

-(3p,, i', C', g', sc', f', j'). Activity(pl, i', C', g', Sc', f', j', S) A il<i

The first of these says that it is possible to complete a basic instance (which is of generic type

GId-BAS), in the current situation, iff it is running and as long as it is not possible to add an

activity instance to the CNNIS (using add-activity/7). Meanwhile, the action precondition axiom
for add-activity/7 says that it is possible to add an activity instance, i, to tile CNAIS, in the

current situation, iff it is yet-to-be-added (as indicated by an instance of the Activity/8 fluent,

pertaining to i, holding in the current situation) and there is no activity yet-to-be-added with a
lower instance identification number.

Tile remaining foundational axioms, presented in Figure 6.12, are mainly successor-state axioms 0 CD
for fluents that are used in the characterisation of Liesbet models. The principal fluent in the

SitCalc-based characterisation of Liesbet is State/2, viz.

State (i, do(a, s))=st -= StateChange(i, a. st, s) V State(i, s)=st A -(3st'). StateChange(i, a, st', s)
StateChange(i, a, st, s) =- (3p, c, g, SC, f, i). a=add-activity(p, i, c, g, sc, f, j) A SetRunning(p, i, f, st, s) V

Completing (i, a, st) V (3i'). CompletingAction(il, a) A PropagateCompleteUp(il, i, st, s)

This functional fluent is inertial, i. e. instances of it only change in value according to prescribed

action occurrences. The predicate StateChange (i, a, st, s) prescribes the circumstances according
to which an instance i may change its state to st, in situation s, as a consequence of the occurrence

of action a.
The first case to consider is when we are adding, an instance to the CINIS. As already described,

adding instances is effected using add-activity(p, i, c sc, f J), where i is a (unique) identifier
00 tgp

-a natural number - for the instance being added, p is the instance number of i's parent instance,

c: (resp. g) is an identifier specifying the customised (resp. generic) type of the instance, and f
is a multi-purpose flag. The remaining parameters are used as we build on this initial character-
isation. Specifically, sc is a flag indicating whether the activity instance is an isolated scope (see

Section 3.1.3), and j is the join condition instance of a (join condition, execution activity) pair
(of an instance of a Multi/MultiSeq type) when the instance being added is the corresponding 00
execution activity instance.

The predicate SetRunning/5

SetRunning(p, i, f, st, s) =- p=i A st=Running V

State (p, s)=Running A (f=EXEC A st=Rllnning V -f=EXEC A st=Initial) V

-State (p, s)=Running A st=Initial

is used to determine the effects of adding all activity on State/2, i. e. whether tile instance should
be put directly into the Running state or into tile Initial state. If the parent instance identifier,

p, is tile same as the identifier for the instance being added, i, this indicates that i is tile root
instance of the workilow model. This particular instance is always set running, when it is added to 0
the CNNIS. For all other instances, the following rules apply. If the parent instance is not running C, C'I

6.2. SitCalc-based Semantics for Liesbet 129

(d, il , s) 18 Instance being completed

0 candidate instance for

completion
F] discounted "d" instances

counted "d" instances,
which must have completed

iId, s) attempting to propagate
completion up

A11I)escSiblingsFinished(i'. i, s) x
Descendant(i, il, S) A (Vd). f-d=iR A Descendant(i, d, S) A -Descendant (d, i' S) A

-Descer. dant(i', d, s) D SEate(d, s). Completed)

Figure 6.13: Depiction of AllDescSiblingsFinished/3 0

In the presented instance tree, (the black) instance iI is the one being completed.
As a consequence of the action on i 1, we may complete (the clear) instance i iff all
descendants of i, bar those in boxes, have completed. The pertaining descendant

instances, i. e. the counted d instances, are those shown in grey. Note that we show r,
iI having children as a general case. For the case where iI is a basic instance being

0 C3 0
completed, it will have none.

then the instance is set to the Initial state. If the parent instance is running, then the value of

the multi-purpose flag, f, is used to determine whether the instance should be set running. The

value of this flag is prescribed by the assumed translator for Liesbet models to SitCalc, presented
in Section 6.3. For children of Par types, and for the first children of Seq types, the flag is set to

EXEC; otherwise, for now, it is set to NONE. A value of EXEC indicates that the instance should be

set running on the basis of its parent running.
We also capture the effects that the completion of a basic instance has on the CNN'S. We use

the predicate Completing/3 to prescribe that a completing basic instance should be assigned the

Completed state. We use the predicate CompletingAction/2 to signify (for now) a completing

action on a basic instance.

Completing(i, a, st) ý- a=comp-bas(i) A st=Completed
CompletingAction(i, a) =- a=comp-bas(i)

On completing a basic instance, we propagate completion upwards as far as possible. We use 00
PropagateCompleteUp/4 for this purpose.

PropagateCompleteUp(i', i, st, s) -=
(3i"). AllDescSiblingsFinished(il, ill, s) A

(st=Completed A i=i" V ExecuteNextChild(i", i, st, s)) V ExecuteNextChild(il, i, st, s)

130 Chanter 6. Sit ua tion- Calculus Based Semantics

execution is propagated
down the sub-Iree at i,

ExeýteNaxtChild(i', i, st, s) --
(3p, i,,). Child(p, i', S) A PropagateRwýir. gDcýInc(il', i, St, S) A

GType(p, s)=Gld_SEQ A NextlnitialChild(p, i", s)

Figure 6.14: Depiction of ExecuteNextChild/4 0

If completion propagates up to an instance i 1, then we check to see whether its parent

p has any children left in the Initial state. If so, execution is propagated down the

sub-tree rooted at the next child iII which is in the Initial state.

This predicate will complete an instance i iff the basic instance, i I, being completed is a 0
descendant of i, and all siblings of activity instances on the path (in the activity tree) from iI to 0
i (exclusively) have completed. It uses the predicate AllDescSiblingsFinished/3 to determine

this.

AllDescSiblingsFinished(il, i, s) -= Descendant (i, i ', s) A

(Vd). (-d=il A Descendant (i, d, s) A -Descendant (d, i 1, s) A

-Descendant(il, d, s) D State(d, s)=Completed)

The operation of this predicate is depicted in Figure 6.13. Instances of the Descendant/3 fluent
0

(resp. Child/3), are asserted whenever an activity instance is added to the CNVS, and persist in

accordance with the successor-state axiom presented next.

Child(p, i, do(a, s)) =- (3c, g, sc, f, i). a=add-activity(p, i, c, g, sc, f, j) A -p=i V Child(p, i, s)
Descendant (anc, i, do (a, s)) ý- (3p, c, g, sc, f, j). a=add-activity(p, i, c, g, sc, f, j) A -p=i A

(p=anc V Descendant (anc, p, s)) V Descendant (anc, i, s)

An example of completion propagating upwards can be found between enactment states 4 and
5 in the enactment narrative described in Section 6.1, where, on instance D completing, completion
is propagated to SI and P.

6.2. SitCalc-basedSeniantics for Liesbet 131

PropagateCompleteUp/4 will also initiate the execution of children of Seq instances, using

ExecuteNextChild/4.

ExecuteNextChild(il, i, st, s) =- (Elp, ill). Child(p, il, s) A PropagateRiinningDownInc(ill, i, st, s) A

GType(p, s)=GId-SEQ A NextInitialChild(p, ill, s)

The operation of this predicate is depicted in Figure 6.14. Assuming that Ave are interested

in setting the next child of a Seq instance running, this predicate stipulates that an instance i is

to be set running (on account of the completion of an instance i 1, which is the previous child of
the Seq) iff i is the instance, or a descendant of the instance, next to be set Running in the Seq

instance.

The predicate Next Init ialChild/3 determines the next Initial child in the Seq, so that it

may be executed.

NextInitialChild(p, i, s) =- Child(p, i, s) A -(3i'). (Child(p, i', s) A i'<i A State W, s) =Initial)

The parameter pis the Seq instance, iII in Next InitialChild(p, i II s) is the next child

of the Seq instance that should be set running. The predicate PropagateRunningDownInc/4 0
determines whether descendants of i should be moved to a Running state, or kept in an Initial

state.

PropagateRunningDownInc(il, i, st, s) =- (3i"). PropagateRiinningDownInc(i'l, i, st, s) A

Executes(i', ill, s) V

il=i A st=Running

PropagateRunningDownInc/4 uses the predicate Executes (p, i, s) for this purpose, where p
being set running also causes i to be set running in situation s iff this predicate holds.

000

Executes (p, i, do(a, s)) =- (3p, c, g, sc, f, j). a=add-activity(p, i, c, g, sc, f, j) A -p=i A f=EXEC V

Executes(p, i, s)

An example of execution being propagated to the next instance of a Seq can be found between

enactment states 1 and 2 in the enactment narrative described in Section 6.1, where on instance A

completing, execution is propagated down to B.
As prescribed in Figure 6.11, the atomic state that holds in the initial situation, So, comprises

seven instances of the Activity/8 fluent. According to the axiom for executable situations, pre-

sented in Section 6.1, the only next executable situation is Sj=do(add_activity(0,0, CId_P'

GId-PAR, NONE, NONE, NONE) ,
SO), i. e. one where instance 0 has been added to the CNVS. The

effects of adding instance 0 to the CNVS, in terms of fluent state in S1 are: (i) according to State/4

and associated predicates, State (0, SI) =Running now holds, (ii) the instance of Activity/8 for

instance 0 ceases to hold (according to the ssa for Activity/8, presented next), and (iii) all other
instances of Activity/8 persisting from So according to the following successor-state axiom. 00 ID

Activity(p, i, c, g, sc, f, j, do(a, s)) =- -a=add-activity(p, i, c, g, sc, f, j) A Activity(p, i, c, g, sc, f, j, s)

132 Chapter 6. Sit ua tion- Calculus Based Semantics

The only next executable situation to S, is where instance 1, which is a Seq instance, has been

added. The fluent state in this new situation, S2, is characterised by (i) State(O, S2)=Running

persisting from S1, (ii) State(i, Sq)=Running, Child(O, 1, S,)) and Descendant(O, 1, Sq)

now holding, and (iii) instances of Activity/8 for activity instances 2-6 persisting from S1.
Whenever there are activities to be added to the CNNIS, the only executable next situation will

involve adding the next activity instance in the order determined by their instance numbers. In
this example, this means that there is a chain of eight executable situations from So (inclusively).
Let's label the situation which results from adding all of the activity instances to the CNAIS, S7. All

models of the BAT must include the followin- atoms. This corresponds to state 1 in Section 6.2.1 0
(Figure 6.2). 0

State(O, S7) = Running

State(l, S7) = Running

State(2, S7) = Running

State(3, S7) = Running

State(4, S7) = Initial

State(5, S7) = Running

State(6, S7) = Initial

In executable situations that extend S7, the only possible actions involve the completion of basic
instances. III S7, there are two possible next executable situations, pertaining to the completion
of A (#3), and C (#5), i. e. do(comp-bas(3), S7) and do(comp-bas(5), S7). Completing on A

causes B (#6) to be set running, according to the ssa for State/2, specifically the part which is

captured by the ExecuteNextChild/4 predicate.
Having completed A (#3), we arrive at state 2 in Section 6.2.1 (Figure 6.3). All models of the

BAT must include the following atoms, where S8=do(comp-bas(3), S7). 0

State (0, SS) = Running

State (1, S8) = Running

State (2, S8) = Running

State(3, S8) = Completed

State(4, S8) = Running

State(5, S8) = Running

State(6, S8) = Initial

Continuing to follow the evolution of the example, presented in Section 6.2.1, when we complete
the basic instance B (#4), completion is propagated to the parent Seq instance S1 (#1), accordingr
to the PropagateCompleteUp/4 predicate. This means that all models of the BXr must include

the following atoms, where Sq=do(comp-bas(4), Ss). 0

State(O, S9) = Running

State(l, S9) = Completed

State(2, S9) = Running

State(3, S9) = Completed

State(4, S9) = Completed

6.2. SitCaic-based Semantics for Liesbet 133

SO
I

S, = do(adct-activity(0,0), S,)

S7 = do(add-activity(2,6), Sd

S, = do(comp-ýbas(3), S,)

Sq = do(comp-ýbas(4), S,)

I

SI, = do(comp--bas(5), Sq)
I

S, = do(compLbas(6), Slo)

S17 = do(comp-bas(5), S,)

N

S12 = do(comp-bas(5), S,)

), S,,) S, = do(comp-bas(4
7ý1

1 S15 = do(comp-bas(6), S,,)

S14 = do(comp-bas(6), S,,)
I

S23 ý do(comp-bas(6), S,
7)

I

S21 = do(comp-bas(3), S,,)
I

S21 = do(comp-bas(4), S,,)

S, = do(comp-bas(3), S,,)

S2, = do(comp-bas(4), S,,)
SI, = do(comp-ýbas(6), S,,) I

I
S, = do(comp-bas(6), S,,)

S16 ý do(comp-bas(4), S,,) S2, = do(comp-ýbas(4), S,,)

Figure 6.15: Executable Situation 'IYee for Par(Seq(A, B) Seq(C, D))

134 Chapter 6. Sit uation- Calculus Based Semantics

State(5, S9) = Running

State(6, SO = Initial

When the other two basic instances complete, completion is propagated to S2 (#2) and the C,
root instance P1 (#0). This means that all models of the BAT must include the following atoms, CD
where Sjj=do(comp-bas (6) , do(comp-bas (5) , Sq)). This is state 5 in Section 6.2.1 (i. e. Figure

6.6).

State(O, S11) = Completed

State(l, S11) = Completed

State(2, S11) = Completed

State(3, S11) = Completed

State(4, S11) = Completed

State(5, S11) = Completed

State(6, S11) = Completed

Other enactments are possible, as reflected in the narrative for the example presented in Sec-

tion 6.2.1. Any model for the BXF presented in Figure 6.11 may be drawn as a tree of (executable)

situations, as depicted in Figure 6.15.

Note that, in order to support the cancellation of basic instances, we make available another

action, canc-bas/l. The ramifications on the BAT of supporting this action are straightforward:

wherever we consider the completion of a basic instance, we must also now consider its cancellation.
We need to include in the BM an action precondition axiom for canc-bas/l, which has the same
form as that for comp-bas/1. We also need to make some changes to StateChange/4, but we shall
defer presentation of these until Section 6.2.3, for convenience.

Note that whenever we describe augmentations to the BXF involving chan-'es to or additions

of action pre-condition or successor-state axioms, these are to be classified as augmentations to

the foundational axioms for workflow, whose initial set is presented in Figure 6.12.

Finally, in the definition of AllDescSiblingsFinished/3, we need to modify the consequent

of the implication to include a case for the state of an instance being cancelled, viz.

AllDescSiblingsFinished(i', i, s) =- Descendant (i, il, s)
(Vd). (-d=il A Descendant (i, d, s) A -Descendant (d, il, s) A -Descendant (il, d, s) D

State (d, s) =Completed V State (d, s) =Cancelled)

In the following subsections, we present the SitCalc characterisation of SeqCancel and choice
types, as well as some information concerning the characterisation of Multi* types. We defer the

presentation of synchronisation types (i. e. Go and Stop), UnorderedSeq, CancelActivity, Exit,

merge types and multiple-instance types to Appendix B, to save space. 0

6.2.3 SeqCancel

There are two aspects to consider for a SeqCancel instance, narnely, how execution of its child
instances (after the initial child instance) is facilitated and how cancellation of the instance as a

whole is facilitated, in the event that one of its child instances gets cancelled. For the first of 0

6.2. SitCalc-based Semantics for Liesbet 135

attempting to propagate

a SeqCancel
completion up

ICancel

cancellation is
propagated downwards

ICancel

instance being cancelled

candidate that will be 0
cancelled

t
attempting to propagate
cancellation up

PropagateCancelUp(il, i, st, s) --
-(3p)-child(p, i,, S) A PropagateCancelDownInc(il, i, st, s) v

(3p). Child(p, il, s) A
(GType(p, s)=GId_SEC A PropagateCancelUp(p, i, st, s) v

-GType(p, s)=GId_SEC A(PropagateCancelDownInc(ii, i, st, s) v
PropagateCompleteUp(i-, i, st, s))

Figure 6.16: Depiction of PropagateCancelUp/4 0

We propagate cancellation up through parent SeqCancel types, until a parent is

reached which is not an instance of SeqCancel. Then, we propagate cancellation down

through the tree rooted at the most senior of the SeqCancel types, and thereafter

propagate completion up. Propagating cancellation downwards ensures that instances
0 CI 0

which do not lie on the path along which cancellation is propagated upwards also get 60
cancelled. That is to say, tile other children of a SeqCancel need to be cancelled,

when cahcellation is propagated through one of them.
00

136 Chapter 6. Sit ua tion- Calculus Based Semantics

these, we augment ExecuteNextChild/4 for the case where GType(p, s)=GId-SEC, which sits in

disjunction with GType(p, s)=GId-SEQ.

For the other aspect, if a child instance of a SeqCancel is cancelled, then the parent SeqCancel

instance must also be cancelled. In fact, cancellation should be propagated upwards, as long as

each respective parent is a SeqCancel type, and, completion propagated thereafter. We achieve

this behaviour through a modification to the definition of StateChange/4, viz. 0

StateChange(i, a, st, s) =-

(3p, c, g, sc, f, j). a=add-activity(p, i, c, g, sc, f, j) A SetRunning(p, i, f, st, s) V

Completing(i, a, st) V

(3i'). CompletingAction(il, a) A PropagateCompleteUp(il, i, st, s) V

(3i'). CancellingAction(il, a) A PropagateCancelUp(il, i, st, s)

In the foregoing, the predicate CancellingAction (i, a) holds when the action a is a cancella- 0
tion action on i, ViZ3.

CancellingAction(i, a) =- a=canc-bas(i)

When a completing action occurs on an instance i', we try to propagate completion up, as
before in Figure 6.11. When a cancellation action occurs, we first see whether we need to prop-

agate cancellation up. The definition of PropagateCancelUp/4 is as follows. The operation of
PropagateCancelUp/4 is depicted in Figure 6.16.

PropagateCancelUp(i', i, st, s) =-

-(3p). Child(p, i', s) A PropagateCancelDownInc(i', i, st, s) V

(3p). Child(p. il, s) A

(GType(p, s)=GId-SEC A PropagateCancelUp(p, i, st, s) V

-GType(p, s)=GId-SEC A (PropagateCancelDownInc(il, i, st, s) V PropagateCompleteUp(il, i, st, s))

Here, if there is no parent recorded (by Child/3) for i 1, then iI must be the root instance. In

this case, we simply propagate cancellation down through the whole instance tree. On the other
hand, if there is a parent p, recorded for i 1, then the following applies. If p is an instance of a
SeqCancel type, we propagate cancellation up through p. If not, we propagate cancellation down

through the sub-tree rooted at i 1, and propagate completion up from i

Cancellation is propagated downwards using PropagateCancelDownInc/4, which has the fol-
C.

lowin- definition:
0
PropagateCancelDownInc (i i, st, s) =- st=Cancelled A State (i, s) =Running A

(il=i V Descendant(il, i, s)).

6.2.4 Choice Types

The choice types, Choice, Def aultChoice and MultiChoice are accommodated as follows. The

characterisation of these types is made simpler if we wrap (guard instance, continuation instance)

'In Appendix B, we augment the definitions of both CompletingAction and CancellingAction.

6.2. SitCalc-based Semantics for Liesbet 137

Choice

xX SeqCancels

Xp
Guards attempting to propagate

Xp ... x ... x coninuations cancellation upwards

'P
x

xx

XP
xx

x

AP Ix

... x

PrcpagateCancelUp(i', i, st, s)
-(2pý. Childýp: i:: S: A PropagateCancelDoýmInc(il, i, st, s)

ý3p Child pis- OType(p, s)=GId EXC A
(J'l lRemGuardsCald(p. 1',.) A Prcpag3teCancelUp(pj, st, s) v
-AllFem. -, uardsCald(p, i', S) A PrcpagateCancelDownIr. c(il, i, st, s))

10
instance being completed x

x 0 instance being cancelled ...
XP 0 possible instance being

cancelled xxx

instance already completed
0 instance already cancelled xx

@ instance in Initial state xx

instance in Running state

Figure 6.17: Depiction of Cancelling Guard/Cont inuation Instance in Choice rl)ýpe I
0 C,

In the top figure, a guard or continuation instance is being cancelled (xP), which 000
causes cancellation to be propagated to its SeqCancel parent container. In this case,

all other child (guard, continuation) pairs have been cancelled. 0

As shown in the middle figure, cancellation is propagated upwards tlirouo,, h the Choice

type and attempted upwards thereafter. When propagation eventually stops, cancel-

lation will be propagated back down through the Choice instance, as shown in the

bottom figure, ensuring that instances which do not lie on the path along which 000
cancellation was propagated upwards also get cancelled.

138 Chapter 6. Situa tion- Calculus Based Semantics

Choice b
instance being completed

x 0
instance being cancelled

XP

X SeqCamels
0

possible instance being

cancelled

xp instance already completed
x Guwds

x \0/ instance already cancelled

PAP 40X
Continuaýcns

instance in Initial state

instance in Running state

x0x

xx

10...

x

PropagateCancelUip(il, i, st, s)
, (3p). Chi1d(p, i', S) A PrcpagateCancelDoýInC(i', i, St, S) v

Op). Child(p, i', ý) A- Uype(p, s)-Gld
-

XC A
(AUR-GuardsCald(p, P, S) A Propa'3 ateCancelUp(p, i, st, s) v
, A11RýGUardsCa1d(P, P, *) A PrcpagateCancelDoýInc(i', i, st, s))

Figure 6.18: Depiction of Cancelling, Guard/Continuation Instance in Choice Type 11

In the top figure, a guard or continuation instance is being cancelled (xP), which 000

causes cancellation to be propagated to its SeqCancel parent container. In this case,

not all of the other child (guard, continuation) pairs have been cancelled.

As shown in the bottom figure, just cancellation is propagated through the originating C,
(guard, continuation) pair.

6.2. SitCalc-basedSemantics for Liesbet 139

Choice

SeqCa-els

Guards

Con6nuaýons 0

0

n4

ExecuteNextChild U i'st's)

(3-p). Child (. p, p, s) ý ((; Typ. (9P. P,.)-Grd ZxC ý GTyp. (gp, p, s)-GId_VEF) A
(3b). Child(qp, b, s) A -p=b A PropagateCancelD-Inc(b, l, st, s)

1.
'10 instance being completed

0 instance being cancelled
XP 0

possible instance being
cancelled

instance already completed

instance already cancelled
@ instance in Initial state
@ instance in Running state

Figure 6.19: Depiction of Completing Guard in Choice rlý, pe 00

A running guard completing in a Choice type causes its pertaining continuation

instance to be set running and cancellation of all other (guard, continuation) pairs to

occur.

140 Chapter 6. Sit ua tion- Calculus Based Semantics

pairs in a SeqCancel container. Then, if a guard instance fails, its pertaining continuation instance

is cancelled without tile need for additional semantic machinery.
To facilitate the characterisation of Choice and Def aultChoice, Ave make the following augmen- 00

tations to the definitions of PropagateCancelUp/4 and ExecuteNextChild/4 predicates. MultiChoice

types are accommodated with no additional dispensation required.
The revised definition of PropagateCancelUp/4 is as follows.

PropagateCancelUp(il, i, st, s) -=
-(3p). Child(p, il, s) A PropagateCancelDownInc(il, i, st, s) V

(3p). Child(p, il, s) A

(GType(p, s)=GId-SEC A PropagateCancelUp(p, i, st, s) V

GType(p, s)=GId-EXC A

(AllRemGuardsCald(p, i', s) A PropagateCancelUp(p, i, st, s) V

-AllRemGuardsCald(p, il, s) A PropagateCancelDownInc(i', i, st, s)) V

GType(p, s)=GId-DEF A

(Default(i', s) A AllRemGuardsCald(p, il, s) A PropagateCancelUp(p, i, st, s) V

-Default(il, s) A AllRemGuardsCald(p, il, s) A (3d). Default(d, s) A Child(p, d, s) A

(State (d, s) =Initial A PropagateRunningDownInc(d, i, st, s) V

-State (d, s) =Initial A Propagate CancelUp (p, i, st, s))V

-AllRemGuardsCald(p, il, s) A PropagateCancelDownInc(i', i, st, s)) V

-GType(p, s)=GId-SEC A -GType(p, s)=GId_EXC A -GType(p, s)=GId_DEF A

(PropagateCancelDownInc(il, i, st, s) V PropagateCompleteUp(il, i, st, s))

For Choice (GId-EXC) types, with cancellation being propagated from a guard or continua-
tion instance, if all remaining guards have been cancelled, we continue to propagate cancellation

upwards. If it is not the case that all remaining guards have been cancelled, we just propagate

cancellation through the (guard, continuation instance sub-tree from which cancellation is be-

ing propagated, to ensure that the whole sub-tree is cancelled. The operation of Choice types,

regarding cancellation of a guard or continuation instance, is depicted in Figures 6.17 and 6.18.

The definition of AllRemGuardsCald/3 is as follows. We simply check that all children of p,
bar i and the default branch (applicable in the case of Def aultChoice), are cancelled.

AllRemGuardsCald(p, i, s) ý- (Vb). Child(p, b, s) A -i=b A -Default(b, s) D State (b, s) =Cancelled

Instances of the fluent Def ault/2 are asserted to the BAT when default continuation instances

of Def aultChoice types are added to the CNVS, and persist thereafter. Specifically, whenever the

parameterf in add-act ivity/7 is set to DEFAULT, t lie fluent instance Default (i do (a, s)), where
i is the identifier of the instance being added, will be asserted to the BAT.

Continuing with the description of PropagateCancelUp/4, for Def aultChoice (GId-DEF) types,

if it is the default continuation instance (as determined by Def ault/2) from which cancellation is

being propagated, and all guard instances have been cancelled, we continue to propagate cancella-
tion upwards.

However, if cancellation is being propagated from a guard or (other) continuation instance,

and all remaining guards have been cancelled, the following applies. If tile default instance is
ý00

6.2. SitCalc-basedSeiiianticsforLiesbet 141

in the Initial state, we set it running; but, otherwise, Ave propagate cancellation through the

Def aultChoice instance (as a whole) as the default cannot be executed.
Alternatively, if some branches of the DefaultChoice instance are yet to be cancelled, we

just propagate cancellation through the whole (guard, continuation instance) sub-tree from which

cancellation is being propagated.
We do not show the operation of Def aultChoice graphically, in order to save space.
For all other Liesbet types, (for now) Ave propagate cancellation through the sub-tree from

which cancellation is being propagated, and then propagate completion upwards.
One aspect of propagating completion upwards is to attempt to advance an instance (other than

completing it) through ExecuteNextChild/4 which has had complet ion/cancellat ion propagated

to one of its children. We are able to advance an instance, in this event, if it has any of its other

children left in a not finished state. Propagation of completion stops when we are able to advance

an instance in this way. However, if the only action we can take is to complete an instance, on

account of all of its children being finished, Ave continue to propagate completion upwards.
We need to modify ExecuteNextChild/4 for the occasion when a guard instance in a Choice

or Def aultChoice is completed. When this happens, we need to cancel any guard instances which

are still running. The augmented definition of ExecuteNextChild/4 is as follows. The operation

of Choice types, regarding completion of a guard instance, is depicted in Figure 6.19.
r, 000

ExecuteNextChild(il, i, st, s) -- (3p, i"). Child(p, il, s) A

(PropagateRunningDownInc(ill, i, st, s) A

(GType(p, s)=GId-SEQ V GType(p, s)=GId-SEC) A NextInitialChild(p, ill, s)) V

(3gp). Child(gp, p, s) A (GType(gp, s)=GId-EXC V GType(gp, s)=GId-DEF) A

(3b). Child (gp, b, s) A -p=b A PropagateCancelDownInc(b, i, st, s))

6.2.5 Dynamic Adding of Activities by Multi/MultiSeq types

For Multi/MultiSeq types, it is interesting to note how we effect the dynamic addition of new
instances of ExecAct types (see Section 3.1.15) to the CNVS. Note that, as was done for choice types,

the translator wraps (join condition, execution activity) pairs of all Multi* types in a containing
SeqCancel type, which makes for a simpler cliaracterisation.

We need templates for (join condition, execution activity) pairs, which can be instantiated

whenever it is appropriate to add an instance of one of these pairs to the CNAIS. The templates are

specified as instances of the ActivityTemplate/9 fluent. Instances of this fluent are asserted to

the initial BAT (i. e. for situation SO) and persist by inertia. There is a successor state axiom (ssa)

for ActivityTemplate/9 which effects the inertia.

The statically-extant instances of a Liesbet model are represented in the initial BXr as in-

stances of the Activity/8 fluent. Instances of the Activity/8 fluent may also be dynamically

asserted to the BAT whenever the join condition of a Multi/MultiSeq instance completes. To

reflect this, there is an augmentation to the definition of the ssa for Activity/8, as follows.
0

Activity(p, i, c, g, sc, f, j, do(a, s)) -ý
(3p', gp). CompletingMultiJoin(a, p', gp, s) A (3c'). CType(pl, s)=cl
(3p", il, jl). ActivityTemplate(cl, p", il, c, g, sc, f, jl, s) A'

142 Chapter 6. Sit uation- Calculus Based Semantics

(3n). GetNextInstNo(n, s) A AssignActIds(i, il, j, j', p, p'l, gp, n) V

-a: -add-activity(p, i, c, g. sc, f, j) A Activity(p, i, c, g, sc, f, j, s)

According to this axiom, whenever a join condition in a Multi/MultiSeq is completing 0n
(CompletingMultiJoin/4), the following occurs. We create a fresh copy of tile (join condi- 0
tion, execution activity) pair of the Multi/MultiSeq, contained within a SeqCancel instance

having type cl, plus descendants, by creating an instance of Activity/8 for each instance of
ActivityTemplate/9 whose first parameter is cI that exists within the BAT (for the current sit-

nation). For each such instance, the identifiers pII (parent), iI (instance) and jI are relative
identifiers. Their absolute values are determined according to AssignActIds/8. 0

The definition of CompletingMultiJoin/4 is as follows. It holds when the action a serves to

complete gu, which is a join condition, running in s, in a Multi/MultiSeq instance, gp; where p
is the SeqCancel container of the join condition instance.

CompletingMultiJoin(a, p, gp, s) -=
(3gu, c) Child (p, gu, s) A Child(gp, p, s) A

(GType(gp, s)=GId-MUL V GType(p, s)=GId-MS) A Guard(Su, c, s) A State (gu, s) =Running A

(3st'). StateCha. nge(gu, a, stl, s) A st'=Completed

The functional fluent CType/2 records the customised type identifier of an activity instance,
which is the parameter c in the action add-activity/7. The predicate GetNextInstNo/2 gets the
next "free" activity instance identification number, viz.

GetNextInstsNo(n, s) a (3c', nl). CType(nl, s)=c' A n=n'+l A

-(3c", n"). (CType(nll, s)=cl' A nl'>n')

The predicate AssignActIds/8 converts relative instance numbers into absolute ones.

AssignActIds(i, il, j, jl, p, p', Sp, n) =- i=i'+n A j=j'+n A

(p'=O A p=gp V -p'=O A p=p'+n)

The SitCaic-based characterisation of Liesbet for the remaining constructs is presented in
Appendix Section B. 1.

6.3 Translation of Liesbet Models to SitCalc-based Char-

acterisation

As we did for the CCS-based semantic characterisations of Liesbet, we provide a definition of a
conceived translation function, A4sjtc,, j, j-ý, for Liesbet models, in order to fix the definition of
the SitCaicLbased characterisation of Liesbet.

Tile result of translating a Liesbet model using. A4SjjC,, j, j-ý is to assert a set of ground atoms
to the BXF, which pertain to instances of fluents that hold in the initial situation, So. There are
some other side-effects which are described in Appendix Section B. 2.

We assume that a Liesbet model has been pre-processed in order to replace the use of defined
types by in situ definitions, see Section 3.1. We also assume that, in doing so, the name specified
in the definition of a customised activity type is copied to the ctype qualifier that exists when the

6.3. 'Hanslation of Liesbet Models to SitCalc-based Characterisation 143

Afs. ic.!, ýPar(Seq(A. 8). S9q(C. D))3(0,0,1; 0!; E.!; 01. 'E)
Assort (Activity (0.0. O. Gld

rSeq(A, B) 1 (0,1. EXEC, NONE): A Is. ic..,, -Seq (C, D) 1 (0.2. EXEC. 1,11INE);

(0.1. EXEC, (0.2, EXEC. NONE):

Asnort(Activity(O. 1.1. Gld SEUMNE. EXEC. NO. ': E. SO)
A f..;,? ca, "A)(1.3. EXEC. L-ONE);
A fsoca,, Seq (C, D) 1 (0.2. EXEC. NONE):

Als"U. CA) (1.3. EXEC. NONE), Al. s
. tfs, tc, t, rSeq(C. D)1(0,2. EXEC, 1: 0!, 'E);

Assert (Activity(I. 3,2. G I d-FAS. 1.0NE. EXEC. NONE, SO));
D) (0.2. EXEC, KONEEE);

(0.2, EXEC. NONE):

Af, ý.? c. t, ýSeq(C. D) 1 (0.2. EXEC. NONE):
Assert (Activity [:, -l"'wo.

o. o. c1d PAR.
Assert (Activity (0.2.4. Gld SEUMNE. EXEC, 1-0. ': E, SO)); Act IV ity(O. 1.1. CId SEQ. KDNE, EXEC. NONE. SO)

'Cj (2,5, EXEC, L

I--

Act IV I ty (1.3.2. GId -E AS. KONE. EXEC. N ONE. SO)

Ms, tc-. t,
ýC] (2.5, EXEC. NGNE): Activity(1.4,3. G I

Act IvI ty (0.2.4, GI LSEQ. NONEE. EXEC.!; G'; E, SO)

Assert (Act ivity(2.5.5. Gld-EAS,!; 0'; E. EXEC. 110NE, SO)); Activity(2.5.5. Gld

Afý. W. l' .
Dj IMNE): Act 1vI ty (2.45. G. G Id-EAS, EXEC.

(2.6. NONE. NOND:
ZZ

Assert (Act ivity(2.6.6. GId-EAS, 1. *O'; E. EXEC, NONE. SO));

Illustration of the operation of MSjtc, ýj,:
j-j on the Liesbet model that we have

used for illustrative purposes throughout this thesis, viz. Par(Seq(A, B) , Seq(C, D) C,
Msjtc,,,, ý-] starts by processing the Par and works inwards in a depth-first, preorder
manner. As MSjtC,, j, j-ý processes the model, it will assert ground atoms to the Bxr,

which is shown on the rialit of the fiaure. 0 t,

Figure 6.20: Operation of Msjtc,,, &ý on Par(Seq(A, B) , Seq(C, D))

type is used in situ.
In the following, we prescribe how the use of activity types within a (pre-processed) Liesbet 0

model is to be inapped to instances of the Activity/8 fluent to be asserted for the initial sit-

nation, So. Note that GType(g) indicates the generic type name for a macro identifier g, so 0
GType (GId-BAS) =Act, GType (GId-PAR) =Par etc. So GType (GId-PAR) (A, B, C) is Par (A, B, C) where
A, B, C are the child types of the Par custoinised type.

The body of a definition is a number of steps that must be carried out as part of the translation

process for the particular activity type. The instruction Assert (S) asserts S to the BAT. When

applying MSjtC,, j, j-j, the parent instance p, an id for the instance being translated i, the nuilti-

purpose flag f, and possible join condition instance j are passed as arguments. The translation

process is initiated by passing (0,0, NONE, NONE) as the initial arguments to Msitc. 1,
The global function genTypeId(c), given a type name will generate a (natural number) iden- 00C,

144 Chapter 6. Situa tion- Calculus Based Semantics

tifier for the type - if it has already been used elsewhere, genTypeId/I returns the same id as

previously. Otherwise it allocates a new (unused) id for the type name. The argument-free ver-

sion, genTypeId/0, will simply generate a new type identifier, starting from 1. genInstld/O

returns a new (natural number) instance id, subsequent to the last.

In thissection, wepresent tliedefinitionofMsjtc,, jj-j forAct, Seq, SeqCancel, UnorderedSeq

and Par types, making a distinction between isolated and non-isolated scopes. The definition of
Msjtc,, j&] for the remaining Liesbet types is left to Appendix Section B. 2.

The multi-purpose flag f for a child instance is set, according to f val/2, to EXEC if the parent
is a Par instance, or if the parent is a Seq or SeqCancel instance and the child is the parent's
first. Otherwise, the flag is set to NONE. The instance id, i, for an instance (which is passed in the

arguments to Msitcal, J-1) is generated when translating the parent instance. C, 00

9 Not isolated

Msitc. lýIGType(g)(Chl,..., Chn)(ctype(ctype))I(p, i, f, j)

Assert(Activity(p, i, c, g, NONE, f, j, SO))

where c=genTypeId(ctype)

MSjtc. jýEChIj U, il, fval(l, g) NONE); ... ; Msitcýj, [Chn] (i, in, fval (xi, g) NONE);

where il=genInstIdO, ..., in=genInstIdo, and

fval(m, g) = EXEC if g=GId-PAR or (g=Gld-SEQ or g=GId-SEC) and m=1;

= NONE, otherwise.

e Isolated

MsitcatclIsolated(GType(g)(Chl...., Chn)(ctype(ctype)))I(p, i, f, j)

Assert(Activity(p, i, c, g, ISCOPE, f, j, SO))

MSitCatc[Chll U, il, fval (1, g) NONE); ... I MsitcalcEChn] U, in, f val (n, g) NONE);

The operation of AAsjjc,, jj-j is illustrated in Figure 6.20. The definition of A4sjtc,, j, j-] for
0

the remaining constructs of Liesbet is presented in Appendix Section B. 2. 0

6.4 Completion Result

In Section 5.2, ive presented a result concerning the completion of arbitrarily constructed Liesbetl

models, characterised with CCS-based semantics. We proceed to do the same here for the SitCalc-
based characterisation 4.

Result

A Liesbet model (constructed accordin. - to the syntactical constraints defined by the

ineta-model) is guaranteed to complete in a finite number of steps (that is, all instances 0
report completion, or cancellation), with a finite situation tree, under the assumptions

that:

4Note that the following result statement is different to that presented in the Section 5.2 for the CCS-based char-
acterisation, because we include synchronisation types in the SitCalc-based characterisation of Liesbet presented
here.

6.4. Completion Result 145

9 All synchronisation activity instances (i. e. Go and Stop instances) eventually

complete, or cancel.

e All join conditions used in Multi/MultiSeq types eventually fail (go to Cancelled). 0

These assumptions are necessary because it is possible for queries within synchronisa-
tion types never to be satisfied, possibly meaning that the pertaining synchronisation 00
would never report completion or cancellation. A forever blocked synchronisation type

instance is the only source of model-deadlock in Liesbet models. It is also possible
that a join condition in a Multi/MuitiSeq will always be satisfied. This represents the

only source of model livelock in Liesbet models.

Proof. We restrict ourselves to the primitive Liesbet constructs contained within the set Liesbetprimi

defined in Section 3.4. As all other Liesbet constructs, as we shall show in the result subsequent

to this one (see Section 6.5), may be considered to be abbreviations of Liesbet specifications using
just primitive constructs, the following completion result for Liesbetprim will necessarily hold for

Liesbetabbrev-

We work inductively from the base case of a Liesbetpri model consisting of one activity
instance. By definition, such an instance must be of a childless generic type, viz. a basic activity,

Go, Stop or CancelActivity.

o Base cases:
In the case of a basic activity instance, the BXr that the translator outputs would be the
followin. g, in respect of atoms.

Activity(O, 0, CId_A, GId_BAS, NONE, NONE, NONE, SO)

Accord in-, tothe axiom for executable situations (see Section 6.1 and the action precondition
axioms (described in Section 6.2.2), the only executable next situation would be one where we
add activity 0 to the CNNIS, using add-activity/7. There is, thus, a single following situation, 00t,
which we shall call S1, viz: S, =do (add-activity (0,0, CId-A, GId-BAS, NONE, NONE, NONE), SO),

which results from the occurrence of the action instance named in the preceding do term.
The fluent state (i. e. instances of fluents which hold) in S, will be:

Sj:

GType(O, SO = GId-BAS

CType(O, SO = CId-A

State(O, SO = Running

There are two executable situations that may follow Sj: one resulting from tile completion

of the single activity instance (0), by virtue of comp-bas/1, and the other resulting from
00

cancelling the instance, by virtue of canc-bas/l. 0
Having completed (resp. cancelled) the instance, the fluent state will be the following, where 00

S2 (resp. S3) is the situation do(comp-bas (0)
, Sj) (resp. do(canc-bas (0) , Sj)).

S,
-

(resp. S3):

146 Chapter 6. Sit ua tion- Calculus Based Semantics

GType(O, S2) = GId-BAS (resp. GType(O, S3) = GId-BAS)

CType(O, S2) = CId-A (resp. CType(O, S3) = CId-A)

State(O, S2) = Completed (resp. State(O, S3) = Cancelled)

For a model consisting of a single basic instance, a model of the corresponding SitCalc basic

action theory will be a tree of executable situations of size four: So -* S, --ý {S2, S31, where,
S, necessarily follows from So, and either S2 or S3 may follow SI. For both enactment paths
contained within the situation tree, the model completes, i. e. the single instance finishes in

a completed or cancelled state. For the other bases case types, the argument (for completion
in the context of single-instance Liesbet models) is identical, except that the instance will
get completed/cancelled using complete, cancel/l. C,

9 Induction step:

We now proceed by taking each child-bearing generic activity type from Liesbetprim in turn 0ý0
and show that their introduction into a model preserves the completion result that we are

seeking to prove.

Note that:

1) We sliall show that tile presence of a child-bearing structured instance in the model serves 0
only to eventually propagate execution down to its children, and once all of its children 0
have reached a finished state to propagate completion back up. These apart, it will have

0
no other effect on workflow state. Accordingly, no child-bearing instance is ever a source 00
of deadlock, or livelock (under the assumptions presented in the result premise, given 0

above).
Thus, each enactment step of a child-bearing instance, and each enactment step of a child-
less instance (see the base cases), moves the instance (and model) closer to completion.

2) There can only be a finite number of instances that are ever created. This is, fundallien-
tally, a consequence of the second assumption, regarding satisfaction of Multi/MultiSeq
join conditions, presented in the result premise.

Because of 1) and 2), tile completion of a model must take place in a finite number of steps.

Moreover, for any one instance, there is only a finite number of actions that can involve the
instance, in any given situation. All of the action schemas except complete/3 and cancel/3 0
have the property that only one instance of each will be executable for any particular activity
instance. For complete/3 and cancel/3, as any model has only a finite number of instances,

there is only a finite number of possible ways of populating the di and 1 parameters of
these actions. Further, most instances of actions will have deterministic effects - the only
possibility for non-deterministic effects admitted in the SitCalc characterisation of Liesbet
is for UnorderedSeq, where the next child to be executed is non-deterministicallY chosen
(see Appendix Section B. 1.3). But even in this case, there is only a finite number of "next

possibilities", i. e. the number of yet-to-be-run children of the UnorderedSeq instance. Given

the finite number of instances in a model, branching (from any situation) must itself be finite.
Thus, given the finite length of paths and finite branching, there can only be a finite number 0 C, ID
of enactment paths and situations - the situation tree (i. e. state space) must be finite.

6.5. Alodel Equivalence Resuft 147

By the induction hypothesis (as part of what Ave are demonstrating here), each instance must

eventually be set running. Once running: 6 C,

-A Par instance will propagate execution to all of its children (as determined by SetRunning/5 0
and Executes/3, used by PropagateRunningDownInc/4, see Figure 6.11, which query
the value of the multi-purpose flag f being set to EXEC); and, once all of its child instances

00
have finished, will itself complete and propagate completion upwards (PropagateCompleteUp/4).

C,

-A SeqCancel instance will propagate execution to its first child instance (according to
flag f being set to EXEC, for this instance). Once the given child instance has completed,
it will execute its second child instance (Exe cut eNextChild/4), and so on. Once all of its

child instances have finished, it will itself complete and propagate completion upwards.
If a child instance is cancelled, the SeqCancel instance will get cancelled and cancellation
(at first, and completion thereafter) will be propagated upwards (StateChange/4,6.2.3).

-A Multi instance will propagate execution to its first (and only) child instance (accord-

ing to flag f being set to EXEC). The child will be a SeqCancel instance (see Section 6.3)

containing a join condition and execution activity instance. The join condition is also set

running as part of the propagation (according to f =EXEC). If the join condition completes

successfully, the execution activity instance (being contained within a SeqCancel with
the join condition) is executed. At the same time a fresh join condition, execution activ-
ity pair (plus all descendants) is added to the CWS, contained within a new SeqCancel

instance (Activity/8 ssa, B. 1.6), whereon the new join condition is set running (ac-

cordin- to fla- f beina set to EXEC). Many more join condition, execution activity pairs 0 C3 0
may be created in this way. Eventually (see second assumption of result premise), a join

condition instance will get cancelled. This will cause its containing SeqCancel instance 60
to pt cancelled. When all execution activity instances have finished, completion of the 0
Multi instance occurs and completion is propagated upwards.

This argument assumes that the propagation behaviour prescribed therein is actually realised
by the foundational axioms, presented in Figure 6.12. In considering the possible models of 00
these axioms, it is self-evident that their behaviour is precisely that prescribed.

Note also that an instance may be cancelled, by virtue of a CancelActivity instance, or
because of dead-path elimination (see Section 3.1). In these cases, the instance hierarchy

rooted at the given instance is cancelled (PropagateCancelDownInc/4), and thus completion

of this sub-tree trivially occurs. On the sub-tree being cancelled, cancellation (at first, and C,
completion thereafter) is propagated upwards.

0

6.5 Model Equivalence Result

In this section, we present a result concerning, the equivalence of Liesbet models expressed using 0 C,
tile SitCalc-based characterisation presented in the foreg ing part of this chapter and (the same) CIO ,
models expressed using the described SitCalc-based characterisation for the set of primitive con-

structs, Liesbetprirn7 together with the use of tile constructs from Liesbetabbrev replaced by their
definitions (in terms of primitive constructs), as presented in Section 3.4.

148 Chapter 6. Situation- Calculus Based Semantics

Note that we label the semantics presented in the foregoing part of this chapter, the elaborated

characterisation; and the semantics which use the abbreviations for constructs in Liesbetabbrev as

part of their definition, the abbreviated characterisation.
To proceed, we need to make some modifications to the SitCalc characterisation of Liesbet

presented in this chapter. The single driver for all of these modifications is to remove certain

aspects of tile atomicity in propagating side-effects that are prescribed by the intended semantics
for Liesbet, presented in Section 3.2.

An example of the necessary modifications for Seq is as follows. We need to remove the facility

for propagative execution of the next child in Seq. Instead, we incorporate an explicit execute/1

action, into our SitCalc semantics for Liesbet, that operates at the same level of priority as

complete, cancel/i actions, according to an additional action precondition axiom (omitted here)

for the action.
Doina this means that other model actions (pertaining to completion and cancellation actions

may get interleaved between propagating completion upwards (as a result of the finishing of an
instance) and executing the/sonie next child instance in the Seq instance (once propagation reaches

such an instance). In the regular, i. e. elaborated, SitCalc characterisation for Liesbet presented
in the foregoing part of this chapter, this interleaving cannot occur. Consequently, keeping the

original behaviour would mean that the abbreviated characterisation of Seq would not preserve

model equivalence with respect to its elaborated counterpart.
For instance, in the original characterisation of Seq, its first instance finishing would necessarily

cause its second instance to be executed as an implicit side-effect (see ExecuteNextChild/4, in

Section 6.2.2). In this case, there is no opportunity for activities (namely, synchronisation type

instances) in the rest of the model to see the momentary intermediate state between the first

instance finishin-, and the second instance executing. That is, as far as the rest of the model is

concerned, the two state changes are atomic. However, when this behaviour is modified, in the way

proposed, any number of intermediate model actions may occur, making the intermediate state
"visible" to the rest of the model. This latter state-of-affairs corresponds to the behaviour of the

abbreviated characterisation for Seq.

The definition of ExecuteNextChild/4 is cut down to the following.

ExecuteNextChild(il, i, st, s) = (3p, i"). Child(p, i', s) A GType(p, s)=GId-SEC A

NextInitialChild(p, ill, s) A PropagateR, lylningDownInc(i IIi. st s)

We also augment StateChange/4 to account for the new execute/1 action, viz. 0

StateChange(i, a, st, s) --

(3i,). a=execute(il) A PropagateRilriningDownInc(i', i, st, s)

For brevity, ive omit a presentation of the necessary modifications for the remaining constructs

in Liesbetabbrev- We consider the description for Seq to be sufficient, for the purposes of this

thesis, as this is the only construct for which ive give our proof of model equivalence. We restrict

our proof to this one construct for reasons of space. Information regarding the other necessary 0
modifications for the remaining constructs, and proof of model equivalence with respect to these,

0

6.5. Model Equivalence Result 149

may be obtained from the author on request.

Result

The two sets of SitCaic-based semantics for Liesbet, viz. those

presented in the foregoing part of this chapter, and those

derived using a combination of the SitCalc-based characterisation (described in C,
the foregoing) for Liesbet and the set of abbreviations for constructs in 0 primi

Liesbetabbrev, presented in Section 3.4,

lead to characterisations of models which are model equivalent.
For model equivalence, a similar definition to that presented in Section 5.1.5 is proposed,

whereby two Liesbet models are model equivalent iff

e Any progression of one of the models, through the advancement of structured
instances, where tile model is progressed to a state where no structured instance

call be further advanced, is matched by some similar progression in the other C,
model (i. e. structured instances are advanced as far as possible), such that tile set

of basic instances being offered for completion, or cancellation, is identical; and
the two models resulting from a completion on the same basic instance in both

(proggressed) models, or a cancellation, are themselves model equivalent.
When any progression of one of the models, through the advancement of struc- 0 C,
tured instances leads to a state where no further progression can be made at all,
the model reports successful completion; and this is matched by some, similar

progression in the other model. 0

In the following proof, we need to show is that the external impact that an instance of a

particular construct has, when present in a Liesbet model, is the same between charact erisat ions.
Notably, the characterisation of basic activity instances is the same between charact erisat ions, as
basic activities belong to Liesbetp, j,,,. Given (as will be shown) that the external impact of all

other activity types will be the same between ch aract erisat ions, it will necessarily be the case
that the behaviour, as the model evolves, of basic ins tances in the model, which is the key to
determining the model equivalence result, will be the sarne. Moreover, completion (as an externally

visible artefact) will necessarily be identically reported.
It is appropriate to elaborate what we mean by external impact; and, to do so, we define the

following notions: action trees, action classes, action windows and action sets. An action tree, for

a construct, is the tree of action occurrences that: (a) are externally generated, and may affect the

evolution of the construct, (b) are internally generated, and may affect the evolution of the rest of
the model, and (c) all other internally generated actions. These are the action classes that may
concern a construct. In assessing external impact, we are interested solely in classes (a) and (b).

Notably, there is an orthogonal classification for actions, viz. explicit and implicit actions. Some

actions in an action tree may refer to implicit side-effects of other actions, and do not actually

occur explicitly (i. e. as actions that move the theory from one situation to another). For example,
there may occur in action to complete an instance. This is an explicit action occurrence, but

150 Chapter 6. Sit uation- Calculus Based Semantics

Window

execute U I

execute
2

finish B 3

execute A or 4

finish A 5

execute C 6

finish C 7

complete U
(plus propagate
completion up)

Key

0 Class(a) - extenul actions of interest

. --* CLvs (b) - inteml actions of interest externally

------P. CLLs (c) - internal actions of no intereNt wernaDy

Delintits action wind w

.............. Unrcprc. wntLd part of action tree

Figure 6.21: Action 'IYee for Elaborated Characterisation of UnorderedSeq.

may have a number of implicit side-effects (which may be conceptualised as implicit actions), e. g,,

propagating completion upwards.
Actions in action trees are grouped into action windows. Action sets map onto action windows,

and there may be many sets that correspond to a single window. The action sets defined for a

window represent a disjunction of action occurrences that may occur within the action window.
The first action in an action set occurs as a result of the explicit execution of a domain theory

action, which may belong to class (a) or class (b). The remaining actions within an action set

must be implicit or class (c) actions. Two action sets match iff they have identical class (a) and

class (b) actions, irrespective of their explicit or implicit nature.
In Figure 6.21, we show the action tree for the elaborated version of UnorderedSeq. Each

action window is shown by a horizontal dividing line, and the evolution of the type occurs from

top-to-bottom. Class (a) actions - external actions of interest - are shown by thin solid arrows.
Class (b) actions - internal actions of external interest - are shown by thick solid arrows. And

class (c) actions - internal actions of no external interest - are shown by dotted arrows. (There

are no class (c) actions for this construct.)

Here, the action windows consist of a single action, apart from the seventh window which

consists of two. The second and fourth windows of the tree contain three and two action sets,

respectively. For these windows, just one of the action sets may be carried out. In the seventh

window of the tree, an explicit (external) action occurs, which pertains to the last child finishing.

As a side-effect, an implicit (internally-generated) occurrence to complete the UnorderedSeq in-

stance occurs. This has external visibility, and its occurrence may cause further completions to be

propagated up the Liesbet activit tree. C, y
Two action trees are defined to have the same external impact. iff an action set defined by the

6.5. Model Equivalence Result 151

immediate action window of one action tree inatches a set present in the immediate action window
of the other tree, and the pair of action trees that remain after carrying out the actions in the

corresponding action sets also have the same external impact.

Proof.
The (elaborated and abbreviated) cliaracterisat ions of constructs from Liesbetprim are the

same, by definition. For constructs in Liesbetabbrevi we prove the result for just one, Seq. Proofs
for the remaining constructs follow in a similar way. The definition of Seq as an abbreviation is

shown below (from Section 3.4).

S= Seq(A, B, C)

S Par(A, B1, Cl)

B' SeqCancel(Go(Finished_act(A in S)), B)

C' SeqCancel(Go(Finished-act(B in S)), C)

We can prove equivalence for this three-argunient Seq without loss of generality. That is,

tile proof for Seq types of different arity trivially follow. Moreover, the nature of Seqs children
is iii-imaterial. We argue the case for identical external impact on the basis of the operational

semantics of the elaborated and abbreviated characterisat ions, i. e. on the basis of the respective

action trees for Seq.

On tile left of the figure, we show the evolution of Seq for the elaborated cliaracterisation;

and, oil the right, we show it for the abbreviated characterisation. As can be seen, there is a

single action set in each action window, for each characterisation. We discuss each window in turn,

showing that their respective action sets match.
(1) When the Seq instance is set running, only the first instance A, according to the elaborated

characterisation, is set running. This is determined by the value of the flaff f being set to

EXEC. In this characterisation, this is tile only externally visible event that occurs, as a result

of tile Seq being executed. In the abbreviated characterisation, all three child instances of
the Par are set running, according to f being EXEC, but only the first (A) is common to tile

elaborated characterisation. B, and C' should be considered to be type names which are not

used in specifying Liesbet models. They are used solely here for the definition of the Seq

as all abbreviation. As such, they do not have any external visibility, and the fact that their

instances too are set runnin- has no impact externally (i. e. in the rest of the i-nodel). So, the

oni externally visible effect of the Par being executed is, in the abbreviated characterisation y it,
also, the instance of A being set running.

(2) A finishing is matched in each characterisation.
(3) In the elaborated characterisation, the execute action (oil B) will occur, in the next action

window. In the abbreviated characterisation, tile Go type (which is not visible to the rest of
tile model, and thus changes to its state have no external impact) will complete (because its

GoQuery is now satisfied). When this occurs, the SeqCancel (immediately) executes B. The

onI action of interest, as indicated in the figure, is also the execution of B. y
(4) Again, actions of interest match.
(5) As action window (3).

152 Char)ter 6. Sit ua tion- Calculus Based Semantics

execute S execute S

execute A execute A execute B', C', BJoin, CJoin
",,

finish A
[fiWish

A

execute B complete BJoin

finish B xecute B

execute C finish B

finish 13' finish C

complete S complete CJoin
(plus propagate
completion up) execute C

Elaborated Characterisation finish C

finish C'

complete S j

Key (plus propagate
0. CLm (a) - external actions of intcrcýt

----* CLLss(b)-intcuul actions ofinter"t wet-nally

------j. CLLs (c) - inter-nal actiow ofno intemm exterrLdly BJoin = Go(Finished-act(A in S))

- Dclimits action %indow
CJoin = Go(Finished-act(B in S))

..... Uwpw. wntLd pan of action tree
Abbreviated Characterisation

Fi. -ure 6.22: Identical External Impact of Seq ch ara c terisat ions.

6.6. Concluding Remarks 153

(6) When C finishes, each characterisation (with respect to actions of interest) propaptes comple-
tion up.

6.6 Concluding Remarks

In this chapter, we have presented a SitCalc-based characterisation of the Liesbet meta-model.
An unequivocal advantage of using SitCalc for this purpose is that certain as ects of the intended 00p
semantics for Liesbet are captured quite straightforwardly such as: arb it rari ly- complex synchro-

nisation conditions, priority of structured instances over basic instances, and atomic propagation of

side-effects through the activity instance hierarchy (see Section 3.2 for more information regarding
the intended semantics).

Equally, a clear disadvantage is that, while the initial foundational axioms for workflow pre-
sented in Figure 6.12 are arguably clear enough, the augmented foundational axioms for generic 000

activity types such as tile choice types (e. g. Choice 0n 0) and merge types (e. -. Multimerge, presented
in Appendix Section B. 1.4) are rather impenetrable. In contrast, the CCS/PCCS-based charac-
terisations presented in Chapter Five are arguably a lot clearer in their meaning. As pointed out
there, however, there is an apparent dichotomy between the clarity that comes from compositional,
programming-like metaphors for characterising behaviour and the ability to model atomic arbitrary

side-effects. It very much appears that, for the characterisation of Liesbet, the strengths of the
logic-based approach (i. e. SitCalc

0 0) are the weaknesses of the process al ebra- (i. e. CCS/PCCS)

based and vice versa.
We have presented the definition of a translator function, Msitc"IJ-], for Liesbet models

which yields SitCalc basic action theories. We have also presented two results. The first relates to
the guaranteed completion of Liesbet models in the context of assumptions relating to the absence
of deadlock and livelock in a Liesbet model. The second demonstrates that the characterisations,

presented in Section 3.4, of Liesbet constructs as abbreviations, in the set Liesbetabbrev, are
sound. They are shown to be so in that a particular Liesbet model cliaracterised using a com-
bination of the SitCalc semantics, described in this chapter, for Liesbetpri, and the set of
abbreviations for constructs in Liesbetabbre,, presented in Section 3.4, will necessarily be model

equivalent to the same model characterised just with the SitCalc-based semantics presented here.
This is all important result as it allows us to propose a core set of primitives for workflow. Being

able to propose such a set enables us to articulate the true nature of workflow, and its fundamental

representational requirements.
In the next chapter, we present our approach to verification of Liesbet workflows. Verification

is all important tool to provide in a workflow modelling framework, as it is integral to the operation

of the business-that the definition of workflow models is sound.

Chapter 7

Verification of Liesbet Workflows

In this chapter, we provide details regarding the verification approach for Liesbet models that

we have implemented in our work. We are able to prove both soundness and arbitrary temporal

constraints, written in a language such as CTL*. We present a number of ways in which the

complexity of verification may be ameliorated. Having presented these, we specifý, the algorithm

that we use to perform verification and give an interesting characterisation of the complexity of

our verification approach. Verification is an important tool to provide in a workflow modelling
framework, as it is integral to the operation of businesses that the definition of workflow models is

sound.
Note that our verification approach does not limit the specification of constraints to a temporal

logic. In fact, constraints may be specified in any language for which a progression function (see

Section 10.4) can be defined. To keep matters simple, however, we shall use the phrase "'temporal

constraints" in this and other chapters.

7.1 Soundness of Liesbet Models

Regarding the verification of Liesbet models, we are fundamentally concerned with the notion 00
of model soundness, which is a property of the control perspective. Van der Aalst and colleagues C,
have defined this property [120,128]. We now present a definition of soundness, which is based

on theirs, but adapted for our needs. A -. vorkflow model is sound (at the control perspective) iff it

satisfies the following conditions:

e Option to complete - It should always be possible to coniplete a workflow instance

" Proper completion -A workflow instance should not signal completion while there is still

work in progress

" No dead activities - For every activity instance that may be created in the enactment of

a -, vorkflow model, there must exist at least one enactment path where the instance is run.
This property ensures that every activity instance plays a meaningful role in the workflow

model.

The first property, option to complete, stipulates that the workflow model should not be subject

to locking along any of its enactment paths. We consider the possibility of two types of locking
000

154

7.2. Veriflcatlon Runs and Options for Verirication 155

- deadlock and livelock. The completion result from Section 6.4 states that the only source of
deadlock in a Sit Cal c-characterised Liesbet model can be from instances of synchronisation
types which never declare a result, i. e. go to Completed, or Cancelled. Also stated there is that

the only source of livelock in a SitCalc-characterised Liesbet model can be from Multi/MultiSeq

instances which forever spawn instances of their ExecAct types on account of their respective join

conditions being forever satisfied. Note that our verification approach is such that we do not test
for the eventuality of fivelock.

According to the SitCalc-based semantics for Liesbet, a -, vorkflow instance is said to have

completed, once the root instance has reached a finished state. As this may only occur once all of the

root's descendant instances have themselves reached a finished state (by virtue of completion being

propagated upwards, or cancellation being propagated downwards), a completed model necessarily 00 ID
entails a properly completed model.

As shown in Section 6.4, in the absence of any sources of locking,, completion is guaranteed,
i. e. completion is guaranteed iff there is an absence of locking. Thus, verifying Liesbet model 0 C, 0
soundness comes down to verifying an absence of model deadlock and an absence of dead activity 0
instances, with the qualification that we do not test for the possibility of livelock.

7.2 Verification Runs and Options for Verification

If we are concerned solely with the verification of workflow soundness (as described in Section 7.1),

and are not concerned with the verification of models against temporal constraints (as described 0

in Section 7.3), we may split the verification of a Liesbet model into a number of velification

runs, according to isolated scopes. Doing so may significantly improve the efficiency of verification

- we do not need to consider the interleavinc, of enactment of instances between runs. We, thus,

perform a partial-order reduction (POR) [38,59] on the verification state space.
The process of splitting a Liesbet model into separate verification runs proceeds as follows.

Starting from the root instance, we traverse the tree, in a deptli-first fashion. Whenever we

encounter an instance, which is an isolated scope, we replace it by an instance of the Empty type,

and save the replaced instance as a distinct, new verification run. Eventually, the original model

will constitute a single scope, with no "internal" isolated scopes. This will constitute the first

verification run. For the "saved" instances, we take each in turn, and repeat the process. These

become further verification runs. Once, we have no more saved instances to process, we stop -
having, generated a number of verification runs. These are then individually checked for workflow

soundness.
Note that when splitting a Liesbet model into separate verification runs, instances of

Multi/MultiSeq types are handled in a particular way, in order to ensure decidability of verifica-
tion. Whenever an instance of a Multi/MultiSeq type is encountered (by the splitting process), we

replace it by an instance of Empty. Then, we split its ExecAct type off into a separate verification

run. This has the effect of the ExecAct type being an isolated scope. In doing this, we ignore the
behaviour of join conditions in Multi/MultiSeq types, meaning that if there is an inherent source

of livelock within such a condition, it will not be detected. This is the price to pay for decidability

of verification.
On a practical note, this is not as restrictive as it may sound. For verification purposes, an

156 Chavter 7. Verification of Liesbet Work-flows

author could temporarily replace the use of a non-limited type by a limited multiple-instance (i. e.
MultiLimit*) type, in order to assess the behaviour of the model. We do not place any prescrip-
tions on the processing of limited types, for verification, meaning that their ExecAct instances

are verified in the same run as ancestor instances of the containing MultiLimit* instance. If the

type is susceptible to livelock, then this approach, assuming verification tractability, would detect

it (given a large enough it - the limit on ExecAct instances).

In order to demonstrate workflow soundness, we need to show an absence of deadlock and dead

activity instances. We may safely verify isolated scopes separately, as the visibility horizons of
instances of synchronisation types - which are the only source of model deadlock - may not cross
isolated scope boundaries.

'Moreover, dead activity instances are those which are always cancelled - and thus never run

- as a result of dead-path elimination (DPE), or explicit cancellation (by a CancelActivity in-

stance). Firstly, the visibility horizon of a CancelActivity instance is not allowed to cross isolated

scope boundaries. Thus, there is no need to be concerned with the effects of cancellation within

an isolated scope where a CancelActivity instance existing outside the scope is initiating the

cancellation. Secondly, for either DPE- or CancelActivity-initiated cancellation, if the effects of
the cancellation (i. e. cancellation being propagated downwards) cross an isolated scope boundary,

then there will be at least one instance in the parent model (which contains the scope) that will
be affected. If cancellation of a particular sub-tree (crossing a scope boundary) occurs in all en-

actment paths (i. e. instances in the sub-tree are dead instances), this behaviour will be identified

even when verifying the parent model separately from the isolated scope. Thus, the check for dead

instances may safely be made in a number of runs, according to isolated scope boundaries.

We can help to improve the efficiency of verification some more, by performing further splits
based on a similar notion to that of splitting on the basis of isolated scopes - viz. we separate
those instances within a model, pertaining to an already-derived run, which fall within the visibility
horizon of some other instance, from those instances which do not. We identify this as a second

stage to the splitting process, already described for isolated scopes. C, C,
We identify the reference instances, which are used in determining the visibility horizons of 0

synchronisation activities (i. e. instances of Go or Stop types), CancelActivity instances, and

synchronisation rules.

0 For synchronisation activities, when a query within a Go or Stop instance specifies a reference
type, the instance to which the reference type resolves is counted as the reference instance

for the query.

If a query does not specify a reference type, and, instead, makes use of a global visibility
horizon, then we ascertain the least senior instance that is a common ancestor (i. e. lowest

common ancestor) of the querying instance and all instances of the customised type name,
being queried. This common ancestor instance is counted as the reference instance for the

query.

If a query does not inake use of any visibility horizon (as would be the case for the query
True, for instance), the reference instance for the query is taken to be the Go or Stop instance

itself.

For any synchronisation activity, we collect to. ether all of tile reference instances for queries

7.2. Verilication Runs and Ontions for Verification 157

used within the activity, discounting those which are descendants of others. If Nve are left

with a single reference instance, then this becomes the reference instance for the activity. If

there is more than one, the least senior common ancestor instance of the remaining reference ZD
instances is used as the reference instance for the activity.

ror CancelActivity instances that make use of a reference type, the instance to which the

reference type resolves is counted as the reference instance for the CancelActivity instance.

For CancelActivity instances that do not specify a reference type, and, instead, make use of

a global visibility horizon, Nve ascertain the least senior instance that is a common ancestor of
the CancelActivity instance and all instances, of the customised type name, being cancelled
by the CancelActivity instance. This common ancestor instance is counted as the reference
instance for the CancelActivity instance.

For synchronisation rules, we consider the root instance of any sub-tree that may be affected
by a synchronisation rule (i. e. an instance of RType) as a source instance. We consider any
instances that are in the visibility horizons of the CondQuery or GoQuery, of the rule, to be

the target instances of the source instance. For any source instance, the least senior instance

, et instances is said to be that is a common ancestor of the source instance and all of its targ

a reference instance for the rule.

For any model, corresponding to an already-defined run, we identify all of the reference instances

for synchronisation activities, CancelActivity instances and synchronisation rules, discounting

those which are descendants of others. Tile run is then split into further runs at these reference
instances. The model that is left is guaranteed to be sound with respect to deadlock-freedom,

ineaning that it just needs to be checked for (an absence of) dead instances. The runs that are

split off are checked for deadlock-freedom and dead instances.

Moreover, as long as a model which has been determined to be sound with respect to deadlocký

freedom does not use any choice, merge, or multiple-instance activity types (which are potential

sources of cancellation in a model) then it is necessarily sound with respect to an absence of dead

instances also.
The model Par(Seq(A, B), Seq(B, W is an example of one that is necessarily sound. There

are no reference instances that call be identified usin- the criteria for synchronisation activities,

CancelActivity instances, and synchronisation rules. Thus, the model is necessarily sound with

respect to deadlock- freed om. Moreover, it does not use any choice, merge, or mult iple- instance

activity types, which means that it is necessarily sound with respect to an absence of dead instances.

Note that, with regard to dead instance checking for a limited multiple-instance type, we

consider that at least one instance of its ExecAct type should be run, along some enactment

path of the containing Liesbet model. For unlimited multiple-instance types, we make no such

prescription.
If we are concerned with tile verification of a Liesbet model against a temporal constraint -

see Section 7.3, then we must verify tile model as a whole, with one exception. The exception is

that we enforce the separation of ExecAct types for non-limited niultiple-instance activity types

(Multi/MultiSeq) into distinct verification runs, to ensure decidability. Constraint checking is

applied to the individual verification runs separately. Given this convention, a workflow model

author needs to ensure that the constraints that are checked make sense.

158 Chapter 7. Verification of Liesbet Morkflows

There are a number of verification options that are supported, relating to assumptions that

can be made about the workflow engine that will, ultimately, enact a workflow model. These

options are distinguished on the basis of what (structured, or basic) instances may be considered
for progression next, in enacting a model.

Primarily, we are concerned with the verification of Liesbet models, which start life, and are

enacted, as such. However, in our work, we also support the verification of WS-BPEL 1871 models,

which are translated to Liesbet, for the purposes of verification. Our verification approach is also

potentially applicable to other workflow languages, assurning the existence of appropriate mappings
to Liesbet. We have needed to take account of the likely enactment policies of these engines, in

providing these verification options. C,
In brief, we support the following verification options: 0

" No priori t isat ion/priorit isat ion in enactment of structured instances over basic instances

" Non-determinisin removal, in that at any point during tile enactment of a model, there may
be several instances that can be progressed. Either, we remove this non-determinism by

0
saying that whenever there is such a choice, the instance with tile lowest instance number 0

will be progressed; or we say that any one of them may be progressed next, and thus the 00
engine will make a non-deterministic choice between them. In the latter case, we should

verify the effects of all possible choices.

Just allow basic instance to complete versus allowing them to complete, or be cancelled. 0

In total, there are eight verification options from these possibilities alone. The implementation
0

allows for alternative verification options to be implemented, if necessary.

7.3 Verification of Temporal Logic Constraints

In our work, we use the Computation Ree Logic, CTL*, for the description of constraints over the

enactment of workflow models. CTL* formulas describe properties of computation trees -a SitCalc

situation tree being an example of such a tree. A (possibly infinite) transition system, described

by a CCS agent, may also be represented as a computation tree.

The logic CTL* subsumes the temporal logics LTL and CTL. Linear Temporal Logic (LTL) is

useful for reasoning over properties of individual paths, which must hold true of all paths. For

example, in LTL, we can say: if "ý" holds true at a state in the path, then "q" must hold true

at some state (Fp--+Fq). There is no way of expressing such a property in CTL. CTL is useful for

reasoning over properties of several (i. e. all or some) paths leaving a state. For example, in CTL,

we can say: if "p" holds true at some point along all enactment paths from the current state, then

'*'q" must hold true at some point along some enactment paths from the current state (AFp-)EFq).

There is no way of expressing this property in LTL.

In this section, we will be relating the verification of CTL* constraints to our SitCalc-based

characterisation of Liesbet. In doing so, we have to be rather careful about using the terms states

and situations. In most cases, when the terni state is used, this may be read as situation. However,

these terms are not synonymous. Two states are the same iff their fluent state is the same. Two

situations are the same iff their action histories are the same. The occasion when this distinction

matters is when two distinct situations have identical fluent state. This is what we call a matched

7.3. Verification of '11? mporal Logic Constraints 159

state, as the fluent states pertaining to these situations match. That is, a situation, in a situation
tree (pert aining, to a model of a SitCalc domain theory), is a matched state iff there is some other

situation in the tree with the same fluent state.
The language of Propositional CTL* is described by the following definitions (in Backus Naur

Form - BNF, see [90]). We divide CTL* formulas into two classes, those which are evaluated in

states, and those which are evaluated along paths. 0

e State formulas, where 0 is any path formula

0 :: =TIp1 (-0) 1 (01 V 02) 1E [01

* Path formulas, where 0 is any state formula

0:: ý01 (-0) 1 (01 V 02) 1 (01 U02) I XO

We make use of a number of abbreviations in our presentation of CTL*. We use the term

primitive symbols for those symbols that we have just used for the definition of state and path
formulas. The following abbreviations all make use of just primitive symbols on the right-hand

sides of their definitions:

o State formulas:

1 =- -T
01 A 02 ý- ' ("01 V '02)

-A [01 =- -E [-01

* Path formulas:

- 01 A 02 - (-Ol V '02)

- OIR02 '('01U-O'-))

- FO TUO

- GO -(TU-0)

For state formulas:

"E- somE paths, or there Exist paths - requires that along some patlis from the current state
the property holds

"A- All paths - requires that along all patlis from the current state the property holds

For path formulas:

1D X- neXt - requires that a property holds in the second state (#1 if numbering from zero)

of the path

"F- eventually, or in the Future - requires that a property will hold at soine state on tile path

"G- Globally - requires that a property will hold at all states oil the path

"U- Until - requires that the first property holds on the path up to (but not including) C,
the state where the second property holds. It also requires that tile second property will

eventually hold, on the path.

160 Chapter 7. Verification of Liesbet Work-flows

R- Release - is the logical dual of U and requires that the second property holds up to and 0
including the first state where the first property holds. Notably, the first property is not 0
required to hold eventually.

The semantics of formulas that can be generated using the primitive symbols are as follows.

Semantics for tile other symbols follow from their definitions as abbreviations.

9 M, sT

" M, SP if f ... see below ...

" M, S -0 if f M, S Vý- 0

" M7 S 01 V 02 iff M, s [-- 01 or M, S [-- 02

" A4, s 1--E [01 if f there is a path -r. from (and including) s such that A4, TF ý= 0

" M, 7r. if fs is tile first state of 7, and M, s

0 M, 7r [-- -0 iff M, 71 K0

-Mý 71 01 V 02 if f Mi 71 k 01 or M, 71- ý= 02

MiT" OlUO2 if f there exists ak>0 such that M, 7r.
k [--02

andfor all O<j <k
M, rij 01, where 7, ' denotes the suffix of path 7r starting at state i

M, T- XO if f M, 71 1 ý= 0

In order to verify the satisfaction of constraints against Liesbet models, we use a progres-
sion algorithm, as described in the next section. This is essentially an on-the-fly model checking
approach, and is similar in nature to automata-based approaches to model checking. In using
a progression al-Orithm, we expose propositions that need to be satisfied in various states. ror

atomic propositions (replacing p in the CTL* syntax definition we allow the use of atomic query
formulas without reference types (so-called simple queries), from Section 3.1.4.

P :: = Completed-act(a) Completed-all(a)
Cancelled-act(a) Cancelled-all(a)
Finished-act(a) Finished-all(a)
Running-act(a) Running-all(a)
Initial-act(a) Initial-all(a)

When ap proposition needs to be evaluated in a given state, we do so according to the following

SitCalc-based characterisation. We show the appropriate evaluations of Completed queries. The

evaluations of the remaining simple queries follow naturally. 0

M, s Completed-act (c) if f Gi, c') . (CType (i, s) =c 'A IsType (c', c) A State (i, S) =Completed)

M, s Completed-all(c) iff (Vi, c'). [CType(i, s)=c' A IsType(c', c) D State (i, s) =Completed]

7.4. Alzorithm for Verification of Liesbet Models 161

s is current situation, starts at So

TC is initialised with CTL* constraint to verify

M Make a "running list" comprising all activity instances present in the model. This list is

non-backtrackable.
(II) LOOP
(1) (i) If s is a matched state (determined on the previous iteration, see step (4) - for first

iteration, it will not be a matched state), then we re-use the same state identifier id

used for the previous situation sharing the same fluent state. If, in progressing TC for

id, we are able to establish a result for TC in s based on new or past results for id, then

we propagate this result up and stop progression. 00
(ii) If s is not a matched state, we progress TC in s, and stop progression if we are able to

establish a result for TC in s, having propagated the result up.
(2) If a result is established for TC in s, then after propagation, do the following based on the

result for TC established against SO:

(i) FALSE: REPORT FAILED VERIFICATION, and STOP
(ii) TRUE: there is no need to continue with verification of TC, as we have established its

validity; but we continue verification for soundness unless s is a matched state, in which

case we backtrack to last choice point
(iii) UNDEFINED: We continue verification unless s is a matched state, in which case we

backtrack to last choice point
(3) Remove from the "running list" any instances which are in a Running state
(4) Select a next action, a, to do in s, according to the action pre-condition axioms. If the

action results in a new situation s' which state-wise we have visited before, then this is a

matched state (which we deal with appropriately on the next iteration of the loop). If no

action is possible, and the workflow instance is not in a completed state then REPORT FAILED

VERIFICATION and STOP else backtrack to last choice point.
(III) If the "running list" has instances left on it, then these are dead instances, so REPORT 0
FAILED VERIFICATION. Otherwise REPORT SUCCESSFUL VERIFICATION.

Figure 7.1: Verification Algorithm for Liesbet 0o

7.4 Algorithm for Verification of Liesbet Models

As stated previously, in Section 7.2, the verification of a workflow model is split into a number of

verification runs. Whether we wish to verify a model against temporal constraints and/or verify

model soundness, the algorithin is largely the same. The granularity of the runs, when verifying 0 4: 1 C,
temporal constraints will be (typically) much larger than that when verifying model soundness. To 0

verify model soundness, we may either use the same runs generated for the constraint verification,

or we may use a set of runs which has been generated specifically for the purpose. This is provided

as a verification option, as sometimes it will be more efficient to verify a separate set of finer-grained

runs to check for model soundness, even if we are also verifying temporal constraints. C,
In Figure 7.1, we present the run-based algoritlim for verification of model soundness and

any presented temporal logic constraints. If a violation of model soundness (deadlock or dead
0

162 Chanter 7. l, erification of Liesbet 11"ork-flows

instances), or a violation of extant constraints, is identified, the verification run reports failure.

For constraint verification, we progress constraints from one state to the next accordino to a

progression function, prog/3, which is defined in Section 10.4.

7.5 Verification Complexity

Tile verification problem is inherently exponential in nature in terms of the worst-case size of
the minimal activity instance state space that must be explored (see Section 5.7, for information

concerning what is meant by "minimal state spacel'). This can be seen easily in considering the

simple workflow model Par(A,,..., A,,), where Al,..., A, are basic instances. If we consider just

basic instances being able to complete, then the size of the instance state space will be 2'+1. This

may be computed simply by considering an n-bit binary number, with zero (say) indicating "not

Completed", and one indicating Completed. We do not need to distinguish Initial from Running

as execution, according to the SitCalc-based semantics, occurs as an implicit side-effect. The

exception to this is that we count the state where all instances are in the Initial state, hence we

add one to the complexity expression. The possible values of an n-bit binary number are 2'. As

such, the total complexity is 2n+1. For basic instances being able to complete, or get cancelled,
the complexity may be determined, similarly, as an n-bit ternary number, viz. 3n+1.

In assessing verification complexity, the largest exponent is limited to the number of instances of

childless types in a model; and thus the complexity of verification is 0(in') (or big-oh Inn), where

n is the number of childless instances, and m is either two or three, depending on whether we
have a model where childless instances may get cancelled as well complete. Models whose childless
instances are all basic activity instances are the only candidates for which such a distinction may

exist. For these, we may consider either that basic instances may just complete (in which case

rn is two), or that they may also get cancelled (in which case in is three). For all other models, 0
some of the childless instances will have the possibility of being cancelled, and as such m is three.

Child-bearing instances do not have any exponential impact on verification complexity, as their

progression occurs as implicit side-effects of the progression of childless instances.

The mix of activity types in a model means that, although models will generally demonstrate

some exponential characteristics in their verification complexity, the factors involved should often
be considerably less than the number of childless instances involved in the model. For instance, a
Seq of Pars will have p+1 complexity, where p is the sum of tile individual Par complexities. The

exponents involved in the complexity cliaracterisation of such a niodel fragment will be bounded

by the highest number of descendant childless instances of any of tile Par instances. Moreover,

descendant instances of the Par instances may further limit verification complexity.
For instance, one of tile Par instances may contain two Seqs, which each have three basic

instances as children. Again, considering it as an n-bit binary number, where n this time is six,

corresponding to the number of basic instances, we have a bounded complexity of 2', which is 64.

However, this may be reduced by (4+2)x2' because instances of the Seqs have to execute in a

particular order. So, even though tile Par prescribes in exponential factor which is determined

by the total number of basic instances which it has as descendants, we are able to subtract a

significant number (of impossible states), viz. 48, because of the criteria concerning tile order in

which completion of these instances may occur. Of course, if the initial exponent is too high then

7.6. Concluding Remarks 163

any possible subtractions may lose their siOnificance.
In any case, it is noteworthy that any POR-based improvements which can be made, such

as removing model fragments for which soundness is guaranteed (see Section 7.2), will have a
significant effect, in removing childless instances from (worst-case) exponents, in all but the simplest 00
of models.

7.6 Concluding Remarks

In this chapter, we have presented our approach to design-time verification of properties of Liesbet

models. We have described what it means for Liesbet models to be sound, and have elucidated

various optimisations with respect to verification efficiency. We have also discussed the verification

of Liesbet models against arbitrary constraints written in the temporal logic CTL*; and have

presented an al-orithm which effects verification of both soundness and such arbitrary constraints.
We have concluded with a brief discussion of the complexity of the verification task, in terms of
the state space that is explored.

In the next chapter, we shift focus somewhat by moving to a presentation of our work concerning n C,
the modelling of flexible workflow. We consider this to be of equal importance as our previous C,
work. For instance, being able to support collaborative workflows like traditional -. vorkflows are 0
typically of high value to a business.

Chapter 8

Flexible Workflow Modelling

In preceding chapters, we have considered the modelling of traditional workflow. A particularly

si-nificant characteristic of traditional workflow is their brittle nature in the face of exceptional 0
behaviour. Furthermore, they are not well suited to the definition of collaborative workflow, where

agents should have the facility to decide collectively how a prescribed task or process should be

realised. In light of these issues, there is a need to consider the modelling of flexible -, vorkflows.
Moreover, it is clear that more can be done to address this issue, and, in this chapter, -%ve provide

a contribution to its resolution.
We start with a description of flexible workflow modelling, including the presentation of a review 0 C,

of related works in the field. Then, we introduce our approach to flexible workflow modelling, which

may be neatly summarised as Flexible Work-flow = Abstract Model + Policies for Refinement. In

this context, we identify a correspondence between refining an abstract workflow (specified for

flexible enactment) into a concrete one, and the operation of an Hierarchical Task Network (HTN)-

based planner, which refines abstract task networks into concrete ones. We present a brief overview

of HTN-based planning, followed by the description of an HTN-based planner, called Theodore, which

we have implemented. Theodore constitutes an additional contribution of our work. Finally, we

present a description of how we have used Theodore for the modelling, verification and planning
for enactment of flexible workflow models.

8.1 Flexible Workflow Modelling

In the introduction to this thesis (see Section 1.1), we mentioned how measures of flexibility might
be introduced into workflow models so that they are better able to handle exceptional behaviour.

If tile handling of exceptional behaviour is supported at all - in most commercial Workflow
0

Management Systems (WRI ISs) it is not [25] - it addresses the issue of exceptional behaviour which 0
may be consideied as erroneous, that is, exceptions as errors. Su port for handling such behaviour, p
in academic contributions, has focussed on the use of Event Condition Action (ECA)-rules, or some

similar artefact. In the context of workflow modelling;, these will specify some combination of event C,
occurrence, and condition on workflow state, which if satisfied causes the action specified in the

rule to be effected. Tile action will serve to recover tile workflow from its erroneous state so that

execution may continue. The action may specify additional tasks that need to be carried out, for

example.

164

8.1. Fle., vfble IllorkHow Alodellinz 165

Support for handling this kind of exceptional behaviour is essential in workflow modelling, and
ECA-rules represent an effective means of such support. However, what we are concerned with in

this chapter is another sort of exceptional behaviour, which is largely orthogonal, albeit in some 00
circumstances it may provide a better, or more appropriate, alternative than considering certain
behaviour to be erroneous. We would label this other sort of exceptional behaviour as exceptions

as alternatives.

A workflow author may have in mind a preferred or default realisation of a -, vorkflow model.
However, lie or she may choose to make other alternatives available, which will also have the

effect of realising the desired outcome. This notion enables greater flexibility in the enactment of ?D Z'

workflow models, where models may be enacted differently according to current business priorities

and objectives, which are codified as operational policies. These policies may reflect higher-level

business objectivesi, or may be sourced from the need to meet Service Level Objectives, captured
in customer Service Level Agreements [68].

Depending on the domain context, allowing the as alternatives sort of flexibility within workflow

models may not even be considered as accommodating exceptional behaviour. That is, the emphasis

may lie more heavily with the alternative aspect rather than the exception aspect. That said, the
distinction between exceptions as errors and exceptions as alternatives is a useful one to make, as
Iong as this caveat is kept in mind. Support for both sorts of exceptional behaviour is essential in

workflow modelling. In this thesis, our interest lies solely with the as alternatives aspect, as this
is where we are primarily motivated.

The flexibility that comes from support for exceptions as alternatives is essential, as workflow,

with its roots in capturing nianufacturing processes, is often too rigid and brittle an artefact C, C3 C3
for capturing the operation of business processes [96]. In traditional workflow modelling, we are

concerned with a representation of the control flow perspective, where every possible enactment

path through the model needs to be explicitly enumerated. Although flexibility can be captured
by traditional approaches, the requirement to enumerate all ways of enacting a model quickly
becomes laborious and impracticable. As a result, traditional workflow approaches almost always
have no or little inherent flexibility, and are typically brittle to exceptional behaviour, with no

room for flexible adaptation according to operational policies, as a result. In this sense, traditional 0
modelling, approaches may be seen as expressing what should be done. In contrast, flexible workflow 00
modelling may be seen as expressing: what could be done.

The notion of flexibility is fundamentally addressed by putting measures in place which can

capture flexibility witbout tile need for explicit enumeration. Our support for flexible workflow

modelling may be captured by the slogan: Flexible Work-flow = Abstract Model + Policies for

Refinernent. That is, we recommend the definition of a somewhat abstract workflow model, which
is refined into a concrete instance by the use of a number of operational policies.

Operational policies are typically coded as business rules [101]. Business rules are espoused as

'An example of such a policy may be one relating to maximising customer satisfaction (in insurance claims
handling). For small insurance claims, we may seek to constrain the processing time for a claim to be no more than

5 days, at the possible expense of additional cost to the business. Normally for such insurance claims, damage to a

motor vehicle would be fully investigated by an inspector. If, however, it is not possible for an inspector to assess
the car in time to meet the turn-around time requirement, then it may be better, if the claim is small, to forgo the
inspection in order to meet the objective of maximising customer satisfaction, even if it lays the company bare to
the possibility that it will be defrauded.

166 Chapter 8. Flexible Work-flow Modelling

a means of supporting agility within enterprises to react to, and proactively plan for, changes in 0 ?D0
market conditions. Rules are promoted as separating the know from the flow [1011, i. e. they allow
the knowledge that an enterprise has about itself to be externalised in a declarative form from

workflows and procedural code. The idea is that the business logic captured by rules is easier to

comprehend, change, and maintain by the individuals who have primary interest in their definition,

namely business managers and analysts, rather than requiring the services of developers to effect 0 it,
the desired changes to the business lo-ic. V, 0

Thus, our notion of flexibility would appear to fit in well with what is current practice in provid-
ing automation within the enter rise. A problem with current solutions is that rules and workflow 0p
enuines are distinct artefacts which are inte-rated in an ad hoc fashion. A unified approach for the 00
modelling of rules to constrain the enactment of workflow is thus lacking. This chapter addresses C, 0
this point.

Another aspect of flexible workflow modelling is support for the modelling of collaborative

workflows (introduced in Section 1.1). In collaborative workflows, agents decide collectively the

way in which to enact a workflow. As will be described, many processes enacted within a business

context will be of this nature; thus a means of modelling such workflows is also of importance.

We now describe a number of approaches in the literature which have primarily considered the

as alternatives aspect of flexible workflow modelling. We will return to these works at the end of
the chapter, in order to place our contribution into context.

8.1.1 Case Handling Systems CHSs

Case Handling Systems (CHSs) [127,16,96] have emerged, in recent years, with the expressed aim

of offering what current Workflow Management Systems (NNIRMSs) lack: visibility of the entire case
(i. e. process instance), and, of primary interest here, flexibility. Notably, in many enterprises, the

practical application of NNIMISs has been limited to the support of simple and well-defined business

processes [96,16]. According to [16], this limitation is caused mainly by AVRT ISs being founded on

a manufacturing metaphor, where a NVENIS effects a production line, rigidly routing work items to

various agents in turn.

This approach is the diametrical opposite of everyday practice in many business scenarios,

where flexibility in how a work case is processed is key. In CHSs, the logistical state of a particular

work case (including its completion) is determined by the state of data objects, and not by routing 0 C,
(i. e. control flow) [1271. Workers have authority to complete data objects at various times, and
have role-based autborisations assigned to them to view particular items of data associated with a

case. The so-called context tunnelling, inherent in WRI ISs, where the visibility that a role has on
case data is determined by which work items it is currently working on, is thus removed by CHSs. 0
Context tunnelling is a key inflexibility issue for NWINISs.

Data-drivýn business process enactment represents a shift in focus from the approach taken in

traditional workflow modelling and enactment. CHSs define just the limits of what can be done,

and thus follow the could rather than should tagline referred to above. However, as [127] points

out it is not always desirable to lose the rigid control imposed by production workflows. Offering

greater flexibility can tend to make the workflow specification less clear (depending on how it is

expressed). Moreover, there are scenarios for which it is conceivable that a mixture of rigid control

over some parts of a workflow specification, but with some measure of flexibility regarding others,

8.1. Flexible Mork-flow Modelling 167

would be appropriate. As [16] describes, "flexibility is an essential condition This does not
take away from the fact, however, that parts of the process can, and even should, be regarded as an
actual production process. In this context we speak of production workflow. This also needs to be

adequately supported. " Providing a way of specifying such a mixture of production workflow and
flexibility is a principal aspect of our work, as described in this chapter. It is also fundamentally

facilitated in Case Handling Systems.
0

8.1.2 CrossFlow

CrossFlow [551 was a European project aimed at facilitating support for cross-organisational work- 0
flows in dynamic virtual enterprises (DVEs). Virtual enterprises aga gregate skills and core com-
petencies (packaged as services), from multiple organisations, to create composite services. Their
dynamism stems from tile fact that they may be composed spontaneously, and may be torn down

with minimal impact. Tile lifespan of a DVE can thus be rather short. Enactment of composite
services in Crossflow is realised by dynamically linking the ANIRI ISs of the participating organisa-
tions. Ali aspect of the work was the requirement to support the definition of flexible workflows
whose enactment could be tailored to maximise Quality-of-Service (QoS) metrics. To this end,
Crossflow defined a workflow meta-model consisting of the usual workflow constructs such as OR-

join, OR-split, AND-join, AND-split, as well as additional constructs, known as flexible elements,
that allow the provision of enactment alternatives, viz, [55]:

Alternative activities allowing the specification of different activities, of which exactl one 0y
may be chosen. For instance, a model may provide time-expensive high-quality options as
well as quick low-cost options.

Non-vital activities allowing activities to be omitted in enactment. For instance, in extreme
situations, it may be beneficial to sacrifice an instance of such an activity in favour of other
higher priority goals. 0

Optional execution order allowing the specification of a preferred ordering of activities that 00
can be overridden. Reordering inay prove to be beneficial if other -Oats of higher priority are
then achieved.

8.1.3 Collaboration Management Infrastructure (CMI)

The Collaboration Management Infrastructure (CMI) [1071 was developed to manage collaborative

worliflows in both traditional and virtual enterprises. [511 describes an application of CMI in the

context of Crisis Mitigation. Crisis Mitigation constitutes a challenging application for workflow
technology. Its unpredictability forbids predefining a concrete crisis mitigation strategy and re-

quires dynamic reaction of people involved in the mitigation. The authors argue that processes
for Crisis Mitigation must empower coordinators and experts to deal with unexpected situations
by permitting coordination flexibility and dynamic change, while providing enough structure to

prevent chaotic response and increase mitigation effectiveness. It argues that this combination of
structure and flexibility cannot be provided by current -, vorkflow- like technologies. Coordinators

"determine the need of new activities and organisation structures, and delegate existing and new 00

168 Chapter 8. Flexible Work-flow

activities to process part icipa nt s", and, experts "perform specialised crisis mitigation activities and
have the skills to decide the exact type or specialisation of these activities".

For flexible process definition, CMI provides:

a Activity Placeholders allowing for activities whose concrete types are left open at design-time.

Coordinators and experts resolve the concretisation of placeliolders using Resolution Rules,
0

which provide policies for how they may be resolved.

e Repeated Optional Dependencies - While a milestone has been reached in the control flow,

and has not yet expired, an activity may be repeated a number of times, which is not pre-
determined by the control flow specification.

8.1.4 Wainer and Colleagues

Wainer [131] puts forward the argument that processes in workflow-like applications should be

represented in a logic language which allows for a unified representation of processes, constraints

and policies. He argues that it is widely accepted that office procedures are much more creative and

mutable than can be accommodated by traditional workflow applications; and, in dealing with real

work cases, office workers creatively subvert the standard processes to get the job done. He asserts
that there is a growing recognition that workflow applications should admit flexible and adaptable

specifications, and should be able to cope effectively with wide-ranging exceptional behaviour.

However, as noted, a principal concern for enterprises is that flexibility in process enactment is

controlled so that organisational rules are not violated, and business objectives are achieved.
In [131], a workflow model is specified as a theory in a linear modal logic. Constraints and

policies are added as further axioms. Exceptional behaviour is accommodated, as much as possible,
by the notion that the (minimal) models of the theory specify what could, rather than should, be

done. In this sense, the WRIUS should be seen as more of a querying mechanism, where agents may

query what they can do next. This is very similar to what we provide in (the implementation of)

our flexible workflow modelling approach. The relation that is captured between the work case,

and the model, is one of consistency rather than instantiation. Wainer also introduces the notion

of soft constraints, where constraints may be prioritised in importance, and overridden if needed in

the event of obtaining exceptions. The work also describes how it may be determined that a case,
thus far, complies with a workflow model, as well as ho w it may be determined whether a case can
be migrated to an alternative model. In the latter case, this would mean that the original case

also, thus far, complies with the new model. A point made by Wainer, and of key importance, is

that it is unclear whether such a logic-based representation would be an efficient one in practice.
In [132], Wainer and colleagues describe Ilicupi - another flexible workflow system, based on

overridable constraints. The flexibility is achieved through the definition of constraints on the

execution of activities, which are pre- and post-conditions on the execution of other activities.
There is no explicit control flow specified for a model. The authors propose a framework which
includes a workflow server which effects the approach, and an access control model representing

users having authority to execute activities and authority to override the constraints specified by

activities. The framework is also able to help users decide which activity to choose to execute
through what-if scenarios. Essentially, this approach facilitates the specification of what could
be done by a domain expert, rather than what should be done, as is the case with traditional,

8.1. Flexible Workflow Modelling 169

production Nvorkflow.

8.1.5 Organisational Modelling

It is worthwhile briefly mentioning the classification of workflow from yet another perspective,

namely, the organisational perspective. Most of today's WfNISs focus on the process definition

and oversimplify the organisational perspective [67]. Our conceptualisation of the organisational

perspective is concerned with the following aspects.

" Management of Agents.

" Access Control to Enterprise Data.

" Operational Policies.

We proceed to describe tile first two of these. We have already alluded to the use of operational

policies in this chapter, and will not elaborate this further here.

8.1.6 Management of Agents

Specifying meta-models for the management of agents is given short shrift in most INTIMSs. There 00 ta 0
has been some work to address this point, such as that presented in [141,19,20]. A NNTAIS

should provide a capability to specify a dynamic and fine-grained model of agents that unifies the

specification of role and authority structures.
A role structure is a partial ordering on roles within an organisation, where privileges propagate

down the ordering. (More specific roles exist lower down the ordering.) For example, c-programmer
is a more specific role than programmer, and should assume all of the privileges of programmer. An

authority structure is a partial ordering specifying the organisational structuring of the enterprise
to which the workflow pertains. The CEO of an enterprise has more authority (in the context

of the enterprise) than any of the middle-managers, for example. Task assignment to agents, for

instance, may be done on the basis of what positions agents occupy in both role and authority

structures.
Role and authority structures should be dynamic and fine-grained; the relations that are de-

scribed in a structure may change over time, and they may have temporal qualifications associated

with them or may have exceptions.

8.1.7 Access Control to Enterprise Data

Tile management of (persistent) enterprise data, from tile perspective of INTIMSs, has had little

attention in the literature. Whereas there have been a number of research efforts that have ad-
dressed the issue of task assi-nment (by means of access control models), such as [19,20], there 0
has been little research relating to the control of access to enterprise data from workflow models
[138].

In traditional WfNlSs, the data that is required for the execution of an activity is specified
by the workflow designer. That apart, there is no, or little, flexibility in what call be accessed.
In effect, therefore, there is no separation made between work distribution and authorisation. An

agent is only authorised, in the processing of all activity, to see data that the author of tile workflow ID 0

170 Chapter 8. Flexible Workflow Modelling

deems to pertain to that activity. However, the author of the workflow is unlikely to have the same
level of expertise as a domain expert. Moreover, it is hard to prescribe at workflow build-time

the exact data that will be required to process an activity of a case. The inability of an agent to

view any data other than that which is prescribed at build-time is called context tunnelling (see

Section 8.1.1).

A solution to context tunnelling is to detach authorisation from distribution by means of an
independent, separate access control model. Such a model would be used to determine accesses to

enterprise data from applications that are wholly unrelated to workflow enactment, as well as from

applications that are. It would safeguard access to enterprise data according to enterprise-wide

access strateaies or constraints (such as those related to security). In the context of workflow

enactment, such a model would possibly be augmented by additional or substitutive constraints
to data access. This au-mentation ma occur for -. vorkflow enactment generally, or for specific 0yC,
ivorkflow models, or instances thereoL

8.2 Flexible Workflow Modelling using Theodore

Our approach to flexible workflow modelling may be neatly surmylarised as Flexible Work-flow
?D

Abstract Model + Policies for Refinement. It is in this context, that we identify a correspon-
dence between the refinement of an abstract workflow (through the use of policies) into a concrete 0
workflow (to be enacted), and the refinement of abstract task networks into concrete ones (using

similarly-conceived rules) in Hierarchical Task Network (HTN)-based Planning [85].
0

Mindamentally, our mechanism for facilitating the refinement of abstract workflow tasks ac- 0
cording to policies is to make use of an HTN-based planner to guide the refinement process so that 0
a concrete workflow is generated which conforms with:

e Tile business objectives of the enterprise, as represented in the decomposition rules specified
in an HTN-based domain description (or planning problem)

9 Subjective criteria that may be applied by the agents involved in the refinement process,

such as in the context of collaborative workflows where a number of agents would agree on 00
how an abstract Nvorkflow should be refined.

In explicating our approach to flexible workflow modelling, we start with an overview of HTN- 00
based plannin., and then continue with a description of our approach to HTN-based planning.

8.2.1 Hierarchical Task Network (HTN)-based Planning

The distinauishin- features of a Hierarchical Task Network (HTN)-based planner over traditional
(operator-based) approaches to planning [52] is what it plans for, and how it plans for it. A

(purely) operator-based planner will work (regressively, progressively, or by a combination of the

two) to find a (partially or totally) ordered set of actions that takes the world from an initial state

specification to a goal state. The operation of such a planner is a search through a space of states,

or space of partial plans. In contrast, HTN planners search through a space of deconip os it ions, or

refinements, of an initial task network. Note that we use the terms refinement and decomposition

Synonymously.

8.2. Flexible Illork-flow Modelling using Theodore 171

Task networks are much richer in structure than classical planning attainment goals [40). In
0 t'

classical planning, any ordered set of actions, which, when applied in the initial state lead to a 0
goal state, constitutes a plan. There is little control over which actions may be used in the plan,

without going to an extremely fine-level of granularity in modelling the domain. On the other 00
hand, HTN planning affords full control over the actions in a plan. Only those actions which are
derived from the applications of operators to tasks, which themselves have been derived through

successive refinements of the initial task network, may appear in the plan. This expressivity,

afforded to HTN-planning domains, can be very useful in many planning applications. In fact, any

sort of planning application where there is a notion of procedure for achieving a goal is likely to
00

be a strong candidate for HTN planning. As there are typically procedures that underlie a domain,
00

characterised by HTN planning, this sort of planning is sometimes called template-based planning C, 00
to reflect the notion that plans follow a template corresponding to a procedure.

A good example of all HTN-based planner is SHOP2 [85,10]. It is different from most other

HTN-based planners in its use of ordered task decomposition (OTD). In planning by ordered-task
decomposition, actions are added to the plan in the order that they will be executed. This means

that the current state is known at each step of the planning process. This allows for greater 0
expressive power in the planning system, such as the ability to use foreign agents, or oracles, because

we are able to reason about what is true when applying an operator rather than constrairling what
has to be true (as in non-OTD HTN-based planning).

Ali HTN planning problem specifies a number of methods and operators, which are collectively
known as domain constructs. An HTN task is a planning artefact that is meant to be decomposed by

the application of these constructs. A method specifies sufficient conditions for the enactment of a

task network to constitute the enactment of a non-primitive task. An operator specifies sufficient

conditions for the enactment of an action to constitute the enactment of a primitive task.

Actions are physical artefacts that are meant to be performed by tile plan enactor, and are not

meant to be decomposed. An HTN task network is without loss of generality a partially-ordered set

of >0 (non-primitive or primitive) tasks and >0 actions. An HTN planning task is concerned with
decomposing an initial network of tasks and actions, and terminates successfully when a network Z'
of actions is reached.

Alethods and operators may specify preconditions for their applicability. HTN planning assumes

the use of a knowledge base, appropriately initialised, as well as a suitable language for querying

and updating the knowledge base. Operators may also specify effects (i. e. updates) to be made to

the knowledge base, as a consequence of the conceived execution of an action.
As a simple example, consider the Liesbet model that we have used for illustration throughout

this thesis: Par(Seq(A, B) Seq(C, D)). In this form, the model would be fully-decomposed. We

could alternatively cast this workflow as an HTN planning problem. The initial task network would
be the non-primitive task P, say. Then, we would have three methods, viz.

9 P: true: Par (SI, S2) - decomposes P into a network, i. e. Liesbet model, consisting of a 0
Par as root, with two tasks, S1 and S2, as its children. The precondition for application of
the method is empty (or true), which is trivially satisfied.

* Sl: true: Seq(A' B')- decomposes S1 into a network consisting of a Seq as root, with two 0

tasks, A' and B ', as its children.

172 Chapter 8. Flexible 11"ork-flow Alo

S2: true: Seq(C' D I) - decomposes S2 into a network consistin. - of a Seq as root, with two

tasks, C, and D', as its children.

We would also have four operators, viz.

e A: true . true: A- decomposes task A' into the action A, where tile applicability is

deteri-nined by a precondition (here, true - the first of them), and the effects of executing
A are determined by an effects statement (here, also true, which signifies no updates to be

made to the underlying knowledge base).

eBI: true -. true: B- decomposes task BI into the action B.

*CI. - true : true: C- decomposes task CI into the action C.

* D': true : true: D- decomposes task DI into the action D.

Finally, there are four actions, which are physical activities that can be performed by the plan

enactor. These are: A, B, C and D.
An HTN planner, starting with the task P, would select an appropriate method or o erator to de-

0p
compose it. There is only one such method, and the result of decomposition would be: Par (S1, S2).
The planner would then select one of S1, or S2, to decompose next. Let us arbitrarily pick S1. Al-

ternatively, -%ve may employ some heuristic that guides the selection. The resulting network is then:

Par(Seq(A 1, B'), S2). Note that whenever a method has been immediately previously applied, we

need to select the next decomposition frorn the network specified by this method, and not from

the entire task network being planned over. This ensures that when preconditions are evaluated
in methods, they hold when the first action resulting (eventually) from the method decomposi-

tion - there may a number of further decompositions in between - is executed, thus maintaining

soundness. In the example, we next need to choose a decomposition from Seq(Al B'). In effecting
OTD, we respect the partial-ordering imposed by the task network, i. e. Liesbet constructs. As

such, there is only one possible decomposition, which is to use the apposite operator to decompose

A 1. The decomposition of A' is A resulting in the network: Par (Seq (A ,BI), S2), and current plan:
(A). This is the first operator application. Whenever these occur, they get inserted into the plan,

generated as a result of the planning exercise. HTN plans, at least traditionally, are sequential

artefacts
Whenever a task gets decomposed (by an operator) to some action, as well as being relabelled

with the action name, the task is marked as being completed, so that dependent tasks in the network 0
get enabled (if otherwise appropriate). In the example, we mark A as being completed so that the to 0
sequence, S1, may be progressed, making its next (leaf) task, B1, available for decomposition.

00
As the previously applied domain construct was not a method, we are at liberty to select the

next decomposition from the entire network, in its current form: Par (Seq (A, BI), S2). Let's say
that we next select S2 for decomposition (by method), followed by C, (by operator). The resulting
task network is: Par(Seq(A, BI) Seq(C, D')), and plan: [A, C1. Finally, let's say we choose to
decompose B1, followed by D1. Planning stops when there are no more tasks to decompose - the
leaves of the final network: Par(Seq(A, B) Seq(C, D)) are all actions. The final plan is: [A, C,

B, D1, which represents one possible way of enacting the given network. If the heuristic that we

apply in selection is based on some objective function, then it may be that the plan is optimal

according to this function.
C,

8.2. Flexible Work-flow Modelling using Theodore 173

8.2.2 The Theodore HTN-based Planner

We have chosen to implement our own planner rather than using an off-the-shelf planner, such as
SHOP, as we wanted to make use of a number of features which are not available in any other
OTD HTN-based planner. An example is the notion of a complex operator (which is described

below), which greatly improves planning efficiency, and is particularly well suited to planning for

Web Services Composition (WSC).

Our planning approach contains a range of other novel features that are useful in a number

of domains. They are not described in this thesis. Details may be obtained from the author on

request.
We are interested in a highly modularised approach to planning. While this approach is still

formative in our work, we have been keen to get a better understanding of the issues involved

in realising such an approach. One way of improving our understanding is the development of

simple and quick prototypes that fit the modular mould. The first iteration of such an approach
is embodied in the Theodore HTN-based Planner.

Features of the planner (non-exhaustively) include the following.

e As well as specifying operators and methods for a domain, complex operators may also be
C,

specified. Complex operators offer a combination of operator- and method-based decomposi-

tion. They decompose a non-primitive task into a network of actions. The use of a complex

operator thus side-steps the need to refine a task by a number of method applications, fol-

lowed by a number of operator applications.

In the previous example of finding a plan for the network P, resulting in the network n0
Par(Seq(A, B) Seq(C, D), instead of having separate methods and operators for decomposing

0 CI
the sequences, for instance, we could have used complex operators. That is, we could recast
the planning problem as using one method, with two complex operators, say: 00

- Method: P: true: Par(SI, S2).

- Complex Operator: SI: true: true: Seq(A, B) - decomposes SI into a network con-

sisting of actions A and B, in sequence, according to precondition: true (the first one) 00
and effects: true.

- Complex Operator: S2: true: true: Seq(C, D) - decomposes S2 into a network con-

sisting of actions C and D, in sequence.

When we decompose a task with a complex operator, the network of actions specified by

the construct is inserted, in its entirety, into the plan. This means that the planner for

this planning problem hasjust two possible plans: [Seq(A, B) , Seq(C, D)l and (Seq(C, D) ,
Seq(A, B)I.

Not only does this provision have the potential to improve planning efficiency significantly, 0 43
it also enables a plan to have an aspect of concurrency in it. OTD HTN-based planners, like

SHOP, produce sequential plans. We have identified complex operators to be particularly

useful in improving the efficiency of planning for Web Services Composition (ANISC) [86,133];
00

where, using them, we may plan at the level of the service, rather than at the level of the C,
service operation.

174 Chapter 8. Flexible Illork-flow Modelling

Temporal Constraint
Checking Engine

Liesbet Workflow
Engine

I

HTN-based Planning
Engine

I

Knowledge Service Selection
Engine

Figure 8.1: Theodore Planning Framework.

a Theodore supports the specification of t emporally- extended constraints that plans should

satisfy. These are constraints whose satisfaction is determined over successive states of en-

actment of a model. Typically, such constraints would be expressed using a temporal logic,
00

such as CTL* (61,381, although other constraint languages could be supported. Theodore 42,0 0
uses a progression algorithm for constraint verification, which fits with the use of OTD-based

planning.

In our work, we use Liesbet for the representation of task networks, although, generally, a
fully-blown workflow language is not usuall supported (for reasons of planning decidability) by

ý0yC,
HTN planners. In fact, our planning approach is sufficiently flexible, in principle, to incorporate

arbitrary task network representation approaches. We place the burden of guaranteeing decidability

on the planning-problein author, in order to obtain a greater flexibility, and additional expressive

power, from using a workflow language. To counter the weight of responsibility that this places on

a domain author, we may, in time, look at putting measures in place which relieve this burden, at
least somewhat. However, we currently feel that the extra flexibility that is gained is worth the

pain.

The architecture of the Theodore planner is shown in Figure 8.1. It consists of the following

modules. As can be seen, even this very simple planner is highly modularised, allowing for any of 00
the individual engines to be replaced, or sometimes ornitted. 0

Temporal Constraint Checking Engine - responsible for verifying the integrity of plans against
temporal constraints.

Service Selection Engine - responsible for selecting the next method, complex operator, or

operator to apply while executing the planning procedure.

8.2. Flexible Work-flow Modelling using Theodore 175

Knowledge Base - responsible for maintaining the current state of the planning domain, as

well as a history of previous states along the current path from the initial state. 0

Liesbet Workflow Engine - responsible for maintaining the current task network.

9 HTN-based planning engine - responsible for effecting HTN-based planning. C, 00

Formalisation of Theodore

We now formalise the description of Theodore, from the perspective of the HTN-based planning 0
engine. In this simplified description, we assume that operators (and complex operators) have
deterministic effects.

We will also present another example as we go along. The example is of robots rl and r2,

moving two containers cl and c2, between two locations 11 and 12. In the example, we have an 0
initial task network consisting of a single task: transf er-two- containers (c 1, c2,11,12). We

00
have a number of actions available: move (_x,

_1a, _1b)
(for moving a robot _r

from location
-1a. to

location
-1b), load(-c, -r)

(for loading a container -c onto a robot _r), and unload(-c, -r)
(for

0
unloading a container _c

from a robot _r).
Underscored-prefixed names indicate construct variables,

or parameters. We assume the use of a STRIPS- fl. 02) like knowledge base, which consists of a

number of ground atoms. Further ground atoms may be inserted, and some removed, as planning C, 00
takes place.

Definition 1. A Theodore Task t is a pair: (tn, TP) where:

" tn is a name associated with the task.

" TP is art ordered list of the parameters associated with the task, some of which may be

C, grounded. Those that are not are existentially quantified.

A non-primitive task is one that may only be decomposed by a method or a complex operator.
A primitive task may only be decomposed by an operator.

Definition 2. A Theodore Action a is a pair: (an, AP) where:

* an is a name associated with the action.

e AP is an ordered list of the parameters associated with tile action, all of which must be

grounded.

Definition 3. A TheodoreTask Network n is a triple: (T, A, : 5-ruA) where:

eT is a set of tasks.

eA is a set of actions.

S ! 5TUA is a part ial-orderin, over TUA.

Definition 4. A Theodore Problem Domain tpd is a triple: (M, C, 0), where:

*M is a set of Alethods.

*C is a set of Complex Operators.

176 Chapter 8. Flexible ll, ork-flow Modelling

e0 is a set of Operators.

Definition 5. A Domain Construct, dc, is a base type for methods, complex operators and oper-

ators, and is a 5-tuple: (cn, tn, TP, p, CP) where:

" cn is a name identiý, ing the domain construct. 0

" tn is the name of the task to which the domain construct is applicable.

" TP is an ordered list of the parameters associated with the task named tn in the construct.

tn and TP, together, are known as the head of the construct. 0

p is a pre-condition for the application of the domain construct (expressed in the language

of the Knowledge Base, which is a module in the Theodore planner).

* CP is an ordered list of the parameters used in tile construct, excluding those named in TP.

Definition 6. A Alethod zn is a pair: (dc, mn), where de is a domain construct, and mn a network
of tasks and actions, to be inserted into the current task network as a result of decomposition.

A method decomposes a non-primitive task into a network consisting of primitive and non-

primitive tasks and actions. Note that we are able to distinguish between non-primitive and

primitive tasks on the basis that tasks fall into two disjoint sets, namely, those that may be

decomposed by operators and those that may be decomposed by methods and complex operators.
We determine that a task is primitive (resp. non-primitive) by the existence of an operator (resp.

method or complex operator) that decomposes it.

In our example of moving containers, Ave have a rnethod which decomposes the initial task:

transf er-two-containers (cl, c2,11,12), viz.

Method: en: transfer two containers
tn: transfer-two-containers
TP

-ca, -cb, -la, -lb
p container(-ca)Acontainer(-cb)Alocation(-la)Alocation(-lb)
CP

7nn Par (trans f er-one -container (-c a, -la, -1b) , transfer-one-container(-cb, -la, -lb))

The method decomposes the task, transf er-two-containers, into a parallel composition of
two tasks of transferring one container. There are a nuinber of other methods, as follows.

Method: cn: transfer one container
tn: transfer-one-container
TP

-c, -la, -lb
p robot (-r)

CP
-r

rnn Seq (load I (_c,
_r) move-robot (_r,

-la, -1b) unload I (_c,
_r))

This method prescribes how we may decompose the task: transf er-one-container (-c,
_r, -la, -1b)

into a sequence of tasks: load (_c,
_r), move-robot (_r,

-la, -1b) and unload (_c,
_x), where _r

is

bound in evaluating the precondition. 0

8.2. Flexible Work-flow Modelling using Theodore 177

Method: cn:
til:
TP

p
CP

mn

niove _r
froin

-la to -lb
move-robot

-r, -la, -lb
at (_r,

-1 a)

move I (_r,
-1 a, -1b)

This prescribes how we may decompose the task: move-robot(-r, -la, -lb)
into a (primitive)

task: move(r, la, lb).

Method: cn: inove _r
froin Ja to -1b, when _r is already at -1b

tn: move-robot
TP -r, -la, -lb
p at (_r, -1b)
CP

7nn

This method handles the possibility that we transfer both containers in the same execution of

move, meaning that we need to trivially consume one instance of move-robot in the evolving task 00
network. This would happen if we loaded both containers onto the same robot, prior to moving it.

C,

Definition 7. An Operator o is a triple: (dc, e, a), where dc is a domain construct, e is an effects

statement, and a is the action associated with the operator.

An operator decomposes a primitive task into a single action. In our example, we offer three 0
operators for decomposing the primitive tasks: move', load I and unload,, as follows.

0

OPerator: c7l:
tn:

TP

p

e

a
CP

load container
load'

-C, -r
-on(-c, -r)Aat(-r, -l)Aat(-c, 1)

on(-c, -r)A-at(-c,
load(-c, -r)
1

Operator: cir move robot
tn: move I

TP _r, -1a, _1b
P true We already check at(-r, -la) in method decomposition

e -at (_r,
-1a) Aat (_r,

-1b)
a move (_r,

-1a, -1b)
CP

178 Chapter 8. Flexible Work-flow Modelling

Operator: cn:
t7l:

TP

P

e

a
CP

unload container

unload'

-C, -r
on (-c,

-r) Aat (-r,

-on(-c, -r)Aat(-c,
unload(-c, -r)
I

Definition 8. A Complex Operator co is a pair: (o, con), where o is an operator, and con a

network of actions, to be inserted into the current task network as a result of decomposition.

A complex operator decomposes a non-primitive task into a network consisting solely of actions.
In our example of moving containers, we could offer an alternative construct, namely, a complex

operator, to effect a complete decomposition of transf er-one-container in one step, as follows.

For complex operators, the action a and the network of actions con are necessarily identical in

definition. As a consequence, we usually just specify con when defining a complex operator, while

omitting a specification of a. 0

Complex cn: transfer just one container
Operator: tn: transfer-one-container

TP
_c, -la, -lb

P robot (_r) A-on (_c,
_r) Aat (_r,

-1a) Aat (_c,
-1a)

e at (_r,
-1b) Aat (_c,

-1b)
CP

_r
coil Seq(load (_c,

_r) , move (_r,
-la, -1b) , unload (_c,

_r))

Definition 9. A Theodore Planning Problem tpp is a triple: (tpd, n, kb) where: 0

e tpd is a Theodore Planning Domain.

it is the initial task lietwork, such as transf er-two -containers (cl, c2,11,12), for which

we wish to find a plan. Tile network consists of a number of primitive and non-primitive
tasks and actions, constrained by some partial ordering.

kb is the initial knowledge base state, maintained by the Knowledge Base engine. 000
In the example, the knowledge base kb, used for the planning problem, is initialised to assert

the following atoms.

location(11) location(12)

robot(rl) robot(r2)

container(cl) container(c2)

at(cl, 11) at(c2,11) at(rl, ll) at(r2,11)

Theodore Ordered-Decomposition by Method

A network n may be decomposed into a network n', by using a method to refine a non-primitive task 0
in n, relative to a knowledge base kb and initial task it, according to the relation: ? net (n, kb, it, t, n'), 00

8.2. Flexible Work-flow Modelling using Theodore 179

n' represents a method-realised decomposition, according to met (n, kb, it, t, n) given n, t, kb

and it, if and only if-
(mi) t is a task in n which has no immediate predecessors which have not been decomposed,

i. e. there are no tasks in the network that must be completed prior to t, according to the

partial-ordering specified by n.
(mii) t is it, or a descendant thereof, i. e. t is contained with the task network resulting from

the decomposition of it.
(miii) m is a method in M whose task name tn matches that of t.
(miv) The task parameters associated with t and those specified by TP for m unify with a most

general unifier p. Unification is possible if the two lists of task parameters are of the same
length, and values in the respective positions unify.

(mv) The precondition pli in m holds, with substitution v, according to kb. 0
(mvi) The decomposition n' is formed by attaching mnpv, in m, as the only child of t in n.

Fiaure 8.2: Criteria for Method-Realised Decomposition. C,

which specifies possible method-realised decompositions of n, on task t, given it and kb. In defining
ID 0

inet (and op and coop, whose definitions are presented later), we assume the context of a particular

Theodore planning problem, and its associated domain constructs: M, 0 and C.

When applying any sort of decomposition (method, operator, complex operator) if a method C,
has previously been applied with no intervening operator or complex operator, we need to ensure 0
that the task t (for which the decomposition step is to be applied) is a descendant of the task t'

decomposed by the previous method application. By descendant, we mean contained within the

task network that resulted from the decomposition of t'. We have alluded to this before. This

satisfies a requirement in HTN planning that whenever a method is applied in decomposition, its

pre-condition is satisfied just prior to the first execution of one of its (decomposed) actions. In

order to safeguard this, we require that whenever we start a fresh round of method application

- meaning an application of a method following an operator, or complex operator - on a task it,

say, subsequent applications of methods, complex operators and operators (until we have applied

a complex operator, or operator) will be on tasks which are descendants of it.

In Figure 8.2, we present the criteria for niethod-realised decomposition.
0

Referring to our example of moving containers, the initial task network for the lanning problem 00P0
is: transf er-two-containers (cl, c2,11,12). The only applicable method for decomposin, this

task (t) is the one with the construct name (cn) "transfer two containers", viz.

Method: cn: transfer two containers
tn: transfer-two-containers

TP
-ca, -cb, -la, -lb

p container(-ca)Acontainer(-cb)Alocation(-la)Alocation(-lb)

CP

inn Par(transfer-one-container(-ca, -la, -lb), transfer-one-container(-cb, -la, -lb»

Method cit is applicable on account of its task name tn matching t. In attempting; the decompo-

180 Chapter 8. Flexible Work-flow Modelling

transfer-two-containers(cl, c2,11,12)

I
by "transfer two contalners"method

Par
Plan

transfer-one-container(cl, 11,12) transfer-one-container(c2,11,12)

Figure 8.3: First Decomposition Step for transf er-two-containers Task.

sition, we try to unify the task parameters (TP), that is, we attempt a member-wise unification of
the lists: [c 1, c2,11,1b] and [-ca,

_cb, -1a, -1b], where parameters prefixed with an underscore,

-, are variables and unify with any constant, or other variable. The mgu y is 1-ca=cl,
-cb=c2,

_1a=11, -lb=12).
The precondition is appropriately formed by substitution of its (free) variables,

according to y: container (c 1) Acontainer (c2) Alocat ion (11) Alocat ion (12). This holds ac-

cording to the initial state of the kb, presented above, where v is the empty substitution. The de-

composition of trans f er-two- containers (c 1, c2,11,12) is thus: Par (transf er-one-container (cl 11,12) ,
transfer-one-container(c2,11,12)), attached as a (single) child to the task:

traLnsfer-two-containers(cl, c2,11,12). Fýom now on, we omit, from the description of an

evolving task network, tasks to which a decomposition has already been attached. In Figure 8.3,

we present a graphical account of this decomposition.

Theodore Ordered-Decomposition by Complex Operator

A network n may be decomposed into a network n', by using a complex operator to refine a non-

primitive task t in n, according to tile relation: coop (n, kb, it, t, n', e', a'), which specifies possible

complex operator-realised decomposi t ions of n, given it and kb.

In contrast to met, coop (and op, see later) takes two additional parameters, namely: e', the ap-

plicable effects statement, appropriately substituted, and, a', the action, appropriately substituted,

pertaining to the application of tile complex operator.

In Figure 8.4, we present the criteria for complex operator-realised decomposition.

In our example, tile current task network consisting of: Par (transf er-one-container (cl, 11,12)

transf er-one-container (c2,11,12)) may be decomposed completely by just two further decom-

positions. That is, we may decompose both of the transf er-one-container tasks by applying 0
a complex operator to effect their decomposition. The complex operator is "transfer just one

container", and its definition is as follows.

8.2. Flexible 11"ork-flow. Hodelling using Theodore 181

The triple (n', e', a) represents a complex operator-realised decomposition, according to

coop (n, kb, it, t, n, e', a') given it, t, kb and it, if and only if:

(coi) As (mi): t is a task in n which has no immediate predecessors which have not been

decomposed.

(coii) As (mii): t is it, or a descendant thereof.
(coiii) co is a complex operator in C whose task name tn matches that of t.

(coiv) As (miv): The task parameters associated with t and those specified by TP for co uniýy

with a most general unifier it.
(cov) As (mv): The precondition py in co holds, with substitution v, according to kb. C,

(covi) As (mvi): Tile decomposition n' is formed by attaching conpv, in co, as the only child of 0
t in it. All activities within conjiv are marked as being completed, as is the task t in n'.

(covii) The effects statement e' is epv, where e is the effects statement specified in co.
(coviii) The action a' is aliv, where a is the action specified in co.

Fi-ure 8.4: Criteria for Complex Operator-Realised Decomposition.
0

Complex cn: transfer just one container
Operator: tn: transfer-one-container

TP
-c, -la, -lb

p robot (-r) A-on(-c, -r)Aat
(-r,

-la) Aat (-c,
-la)

c at (-r, Ab) Aat (-c,
-1b)

CP
-r

con Seq (load (-c,
-r) move (-r, -la, -lb) unload (-c,

-r)

This domain construct is applicable on account of its task name tn matching the name of
the task to be decomposed, in each case. For the first task, in attempting a unification of task

0
I-c=cl, Ja=11, -lb=12}.

The precondition holds, according to the parameters, the man y is

current (still initial) kb, with possible substitutions: I-x=r1j and (-r=r2j. If we pick the first of
these, the effects statement is grounded to: at (ri, 12)Aat (cl, 12), meaning that the updated kb

(regarding at) will be: at(rl, 12), at(r2,11), at(cl, 12), at(c2,11). The networkof actions: 00
Seq(load(cl, rl) move (rl, 11,12) unload(ci, ri)) is inserted, as is, into the (currently empty)

plan.

We can then apply another decomposition, using the same construct, to the second transf er-one-container
task. In attempting a unification of task parameters, the mgu it is I-c=c2,

-la=ll, -lb=12).
The preconditi on holds, according to the (new) kb, with single possible substitution: I-r=r2}-

The effects statement is -rounded to: at(r2, l2)Aat(c2, l2), meaning that tlie updated kb (rc-

garding at) will be: at(rl, 12), at(r2,12), at(cl, 12), at(c2,12). The network of actions:
Seq(load(c2, r2) move(r2,11,12) unload(c2, r2)) is inserted, as is, into the plan. Planning

is now successfully completed as there are no more tasks left to decompose, with the final plan:
[Seq(load(cl, rl) move (rl, 11,12) unload(cl, rl)) , Seq(load (c2, r2) move (r2,11,12) unload (c2, r2))

as can be seen in Fiaure 8.5.
0

182 Chapter 8. Flexible Work-flow Modelling

transfer-two-containers(cl, c2,11,12)
1

by "transfer two contalners"method

Par
Plan

'elý
transfer-one-container(cl, 11,12) transfer-one-container(c2,11,12)

by two applications of 'transferjust one container" I

complexoperator

Par
Plan = (Seq(load(cl, rl), move(rl, 11,12), unload(cl, ri)),

Seq
Seq(load(c2, r2), move(r2,11,12), unload(c2, r2))]

A--
Seq

load(cl, r1) move(rl, 11,12) unload(cl, ri)

load(c2, r2) move(r2,11,12) unload(c2, r2)

Fiaure 8.5: Further Decomposition Steps for transf er-two-containers Task.
0

Theodore Ordered-Decomposition by Operator

A network n may be decomposed into a network n, by using an operator to refine a primitive task 0
t in n, according to the relation: op(n, kb, it, t, W, e', a), which specifies possible operator-realised
decompositions of n, given it and kb.

0
In Figure 8.6, we present the criteria for complex operator-realised decomposition.

In our example, the task network after effecting decomposition on the initial task network, us-
ing the method for trans f er-two- containers, is: Par (transf er-one-container (cl, 11,12)

transfer-one-container(c2,11,12)). If we use the method "transfer one container" to de-

compose the first of these tasks, a possible resulting task network is: Par(Seq(load' (cl, rl) ,
move-robot(rl, 11,12), unload' (cl, ri)) , transfer-one-container(c2,11,12)). Atthisstage

of decomposition, we must decompose load' next. load' is a primitive task, as it has an operator

relating to its decomposition, viz. 0

Operator: CII: load container
tn: load'

TP -C, -x
p -on(-c, -r)Aat(-r, -l)Aat(-c,
e on(-c, -r)A-at(-c,

1)

a load(-c, -r)
CP I

This domain construct is applicable on account of its task name tn matcIfing the name of the

task to be decomposed. In attempting. a unification of task parameters, the inglu p is I-c=cl,

_r=r1j.
Tile grounded precondition, -on(c1, r1)Aat(rI, 11)Aat(c1,11), bolds, according to t1le 00

8.2. Flexible Illork-flow Modelling using Theodore 183

The triple (n', e, a) represents all operator-realised decomposition, according to

op(n, kb, it, t, n', e', a') given n, kb and it, if and only if-
(0i) As (mi): t is a task in n which has no immediate predecessors which have not been

decomposed.

(oii) As (mii): t is it, or a descendant thereof.
(oiii) o is an operator in 0 whose task name tn matches that of t.
(oiv) As (miv): The task parameters associated with t and those specified by TP for o unify

with a most -eneral unifier p. 0
(OV) As (mv): The precondition pit in o holds, with substitution v, according to kb.

0
(ovi) The decomposition n' is formed by applying the substitution 'Uv to t in n and changing C, C, 0

the classification of t from a task to the action a' (see (oviii)), and marking it as being

completed.
(ovii) As (cov): The effects statement e' is eliv, where e is the effects statement specified in o.
(oviii) As (covi): The action a' is aliv, where a is the action specified in o.

Fi, gure 8.6: Criteria for Operator-Realised Decomposition.

current (still initial) kb. The effects statement is grounded to: on(cl, rOAýat(cl, 11). The

action load(cl, rl) is inserted, as is, into the (currently empty) plan, as shown in Figure 8.7.

If we next select the (remaining) transf er- one -container (c2,11,12) task for decomposition

by the "transfer one container" method, where we are able to choose the same robot, ri, as used for

the first of these tasks, and follow that by decomposing load' (c2, rl), as above, then the resulting

plan will be: [load(cl, ri), load(c2, ri)], and resulting task network: Par(Seq(load(cl, rl),

move-robot(rl, 11,12), unload' (cl, rl)) , Seq(load(c2, rl), move-robot(rl, 11,12), unload' (c2, rl)).
If we then move the robot, by using the method "move

_r
from

-la.
to

-lb,
" to decompose the

first move-robot(rl, 11,12) task, and use the operator "move robot" to decompose the result-
ing move (rl, 11,12) task, the resulting plan is: Cload(cl, rl), load(c2, rl), move(rl, 11,12)]

and network: Par (Seq(load(cl, rl), move(rl, 11,12), unload' (cl, rl)), Seq(load(c2, rl),

move-robot(rl, 11,12), unload' (c2, rl)), as shown in Figure 8.8.

At this point, we may, for instance, unload the first container cl by decomposing unload' (cl, rl)

tothe action unload (c 1, rl), resulting in current plan: [load(cl, rl), load(c2, rl), move(rl, 11,12),

unload (c 1, ri) I and task network: Par (Seq(load (cl, rl) , move(rl, 11,12), unload(cl, rl)),

Seq(load(c2, rl), move-robot(rl, 11,12), unload' (c2, ri)). Then, all we can do is deconi-

pose the task move-robot(rl, 11,12). But, as the robot is already at 12, we can only use the

method 'move
_r

from
-la

to
-lb, when _x

is already at _lb1
to decompose the task into a empty

network. The consequence of effecting this decomposition is to remove the task from the current

network, viz: Par(Seq(load(cl, rl), move(rl, 11,12), unload(cl, rl)), Seq(load(c2, rl),

unload' (c2, rl)). Finally, we may decompose the final unload(c2, rl) task, resulting in a final

plan: Eload(cl, rl), load(c2, rl), move(rl, 11,12), unload(cl, rl), unload(c2, rl)l and

task network: Par(Seq(load(cl, rl), move(rl, 11,12), unload(cl, rl)), Seq(load(c2, rl),

unload(c2, rl)).

Definition 10. Theodore Plans and Solutions
A plan -r. for a Theodore Planning Problem is a sequence of actions, with bindings, resulting 000

184 Chapter 8. Flexible Work-flow Alodellin., -

transfer-two-containers(cl, c2,11,12)

I
by 'transfer two containers"mothod

Par
Plan

"el-ý
transfer-one-container(cl, 11,12) transfer-one-container(c2,11,12)

I by "transfer one contalner"method

Par

Seq Ae-ý

Plan

transfer-one-container(c2,11,12)

load'(cl, rl) move-robot(rl, 11,12) unfoad'(cl, rl)

I by "load container" operator

Par Plan = [load(cl, rl)]

Seq
transfer-one-container(c2,11,12)

load(cl, rl) move-robot(ri, 11,12) unload'(cl, r1)

by'transter one container"method followed by I

"load container"operator

Pa
Plan = [load(cl, rl), load(c2, rl)]

S

eq

load(cl, rl) move-robot(rl, 11,12) unfoad'(cl, rl)

load(c2, rl) move-robot(rl, 11,12) unload'(c2, rl)

Fi-ure 8.7: Alternative Decomposition Steps for transf er-two-containers Task (I).
0

from the application of operators and complex operators (as now elaborated).
In the following, the function net(tpp) (resp. kb(tpp)) extracts the network n (resp. the

knowled-e base kb) from tpp. The relation all-actionsIl holds for those networks (the single 00
argument) which do not contain any tasks to be decomposed, just actions.

Solutions relate plans to problems; i. e. a plan 7-1 solves planning problem tpp whenever sol (tpp,

-r,) holds, which is defined thus.

sot Upp, i-.) if f Gj E N, it, t) . soIj (net Upp) . kb Upp) . it, t, 70
This says that 7r is a solution to tpp iff there is aj in N, and some initial task it, such that

8.2. FlexibIe Work-flow Alodeffing using Theodore 185

Seq
Plan = [load(cl, rl), load(c2, rl)]

load(cl, rl) niove-robot(rl, 11,12) unfoad'(cl, rl) I

load(c2, rl) move-robot(rl, 11,12) unload'(c2, rl)

byapplications of "move-rfrom-la to-lb"methodand I

"move robot"operator
Par_

Seq
Plan= [load(cl, rl), load(c2, rl), move(rl, 11,12)]

load(cl, ri) move(rl, 11,12) unload'(cl, rl)

load(c2, r1) move-robot(rl, 11,12) unloaflc2, r1)

I by 'unload container"operator

Plan = [load(cl, rl), load(c2, rl), move(rl, 11,12),
Seq unload(cl, rl)]

A--. " ý; eq

load(cl, rl) move(rl, 11,12) unfoad(cl, r1)

Ioad(c2, ri) move-robot(rl, 11,12) unfoad'(c2, rl)

by applications of 'move
_r

from ja to
-lb when _r

is
already at -1b" method and "unfoad"opera tor

Par-

Seq eý
Plan = [load(cl, rl), load(c2, rl), move(rl, 11,12),

unload(cl, rl), unload(c2, rl)]

q
load(cl, rl) move(rl, 11,12) unload(cl, rl)

load(c2, rl) unload(c2, rl)

Figure 8.8: Alternative Decomposition Steps for transf er-two-containers Task (II).
0

7-, is generated after j decompositions, starting with task t. The definition of solj is presented in

Figure 8.9.
C'

Theodore Planning Algorithm

In Figure 8.10, we present the planning algorithin used b the Theodore engine. We assume that C, 0y0
some mechanism is provided, by a Service Selection Engine (see previously), for selecting domain

186 Chapter S. Flexible Work-flow Modelling

solo(n, kb, it, t, 7r) iff 7r=[] A all-actions(n)

solj (it, kb, it, t, 70 iff

Gn', t') . met (n, kb, it, t, n') A solj- i (n', kb, it, t', 70 V

(3n', e', a'). (coop(n, kb, it, t, itl, e', a') V op(n, kb, it, t, n', e', a)) A

(3kb', it', t', 7r'). solj(n', kb', it', t', 7r') A kb'=apply(kb, e') A 7r=[a'17r'l

Figure 8.9: Definition of solj (n, kb, it, t, n

constructs and tasks to decompose first. A requirement of such an engine is that it will (tbrough

backtracking) eventually cover all possible permutations of construct and task selection. It simply

effects a preference service on constructs and tasks - selecting preferred ones first. As it does

eventually return all possible selections, it does not affect the completeness result presented below.

Any selection made using a Service Selection Engine is indicated, in the presentation below, by

annotating the word 'Select' with asterisks, thus: '*Select*'. We also assume that the kb attached
to Theodore is sound, as well as being practicably decidable in its inference procedures.

Theodore Planning Soundness and Completeness

'ro show soundness and completeness of the planning algorithm, we show that soI(tpp, 7,) iff 0 C,
SOITIIEO(tPPP71-), where SOITHEOUPPOTO holds when the plan 7r is generated by the Theodore

planning al-orithm for planning problem tpp- SOITHEO UPP, 70 holds iff there is aj in N, such CI 00
that 7, is generated by Theodore, in j steps, given tpp. That is, 0

301TIlEO(tpp, 7r) iff (3jEN, t). SOlTHEO, (net(tpp), kb(tpp), t, 70

We define the relation SOITHEO, (n, kb, t, r.) to bold iff-.

o For j=O, n is a fully-decomposed network, and r. is the empty plan, [1, where kb and t may

each be any arbitrary value.

9 For j >0, t is the task being decomposed, and SOITHEO, -,
(n', kb', P, 7, ') holds, where n'

is the result of the decomposition performed in step j (which precedes step j-1), according

to kb, t' is the task decomposed in step j-1, and:

- if it is a complex operator/operator decomposition then t' may be chosen irrespective

of the choice of t, kb' represents the modification of kb to account for the effects of
the decomposition, and r, ' is the tail of 7,, whose head is the action prescribed by the

complex operator/operator;

- if it is a method decomposition then t' must be a descendant of t for j >1 and kb=kb'

and 7, =7-,.

The definition of this relation can be seen to characterise the behaviour of the Theodore plan-
ning algorithm, except with regard to how the relation is built tip. The difference steins from the Cl C, 0
need to characterise the solutions to a planning problem (which the relation soIj defines) from the
bottoin-up (that is, starting with a ful ly-decorn posed network, and then "folding. ' decompositions 00
into the network) versus describing a planning algorithm which works top-down (that is, start- C, 0 it,
ing with a part ially-decomposed network, and decomposing it until a full -decomposed network 00y
is reached). In order to show soundness and completeness of the planning al-orithm, Ave need to 00

8.2. Flexible Work-flow Modelling using Theodore 187

procedure find-p1an(n, kb, tpd)

it: = null

ýT: = 0

LOOP

Select an eligible task t in n. An eligible task is one with no predecessors which are yet to be

decomposed, and which is a descendant of it if it is not null.
If no eligible task then:

e If tasks still exist in n, then backtrack to last choice point as partial plan is not valid.

If further backtracking is not possible then MIL PLANNING.

* If no tasks exist, then return -, -r as plan.

If t is a primitive task then

Select an *appropriate* operator o in tpd (i. e. whose parameterised. task name unifies with that

of t, and whose pre-condition is satisfied, (see step (ov), above)).
If a selection is not possible then backtrack... (to last choice point)

" Mark task t as an action (a, from step (oviii)) in n, and set it to be completed

" Apply the effects of the operator (e', from step (ovii)) to kb yielding a new kb

" Concatenate the action of the operator (a, from step (oviii)) to the end of 7r yielding a new 7r

" Reset it to null

Else (t is not primitive)

* *Select* an *appropriate* complex operator, or method, in tpd.

If a selection is not possible then backtrack...

If a complex operator co is selected then

- Attach the (customised - by substitution, see step (covi)) network conliv, in co, as a child of
t in n.

- Apply the effects of the complex operator (e, from step (covii)) to kb yielding a new kb

- Concatenate the action of the complex operator (a', from step (coviii)) to the end of 7r yielding

a new 7r

- Reset it to null

Else If a method m is selected then

- Attach the (customised - by substitution, see step (mvi)) network innpv, in nz, as a child of
t in n.

- Set it to be t

Figure 8.10: Theodore Planning AlgOritlim. t, it, C,

characterise the algorithin (in defining the SOITHEO, relation) in a similar bottom-up fashion, in 0n
order that we may be able to argue a correspondence between the two relations, C5 SOITHEO, and

solj.

For soundness, we need to show that if SOITIIEOi (it, kb, t, 7,) holds, with 7, generated in j

steps, then solj (n, kb, it, t, r,) holds, for some it. For completeness, we show that if solj (n,

188 Chapter 8. Flexible Work-flow Modelling

kb, it, t, 7-,) holds for some it, then SOITHEOj (n, kb, t, 70 holds.

For both results, the base step (j=O) is straightforward: SOITHEO, (n, kb, t, 0) trivially
implies solo (n, kb, it, t, [I), for any it, for a fully-deconiposed network n; and, similarly,

solo (n, kb, it, t, 0) trivially implies SOITHEOo (n, kb, t, [I), for any it.
For the induction step (j=k+l), the induction hypothesis gives us that: SOITHEOk (n', kb,

V, 7") implies SOlk (n', kb', it', V, 7, '), for some it'; and, similarly, SOlk (n', kb', it', t, 7, ')

implies SOITHEOk (n', kb, P, 7-, '), for some it'.

The Theodore algorithm, in step j (the first iteration), constructs kb' from kb, n' from n and

r, ' from r in the same Nvay that the relation solj prescribes:

e For operator application: n' is obtained from it by marking t as an action (as specified in

Fi-ure 8.10), kb' is obtained from kb by applying the (customised) effects e' of o, and, 7, -' is C, 0
the tail of 7, with a' as its head. These constructions mirror those prescribed in Figure 8.6, ?D
and in the definition of solj, presented in Figure 8.9.

0

e For complex-operator application, the same applies, except that tile network is derived as

specified in Figure 8.10, by attaching tile task network specified by co, appropriately cus- 00
tomised by substitution, as a child to t, which is mirrored in the definition of soIj.

a For method-realised decomposition, the same applies again, except that kb is not modified.

Moreover, pre-condition evaluation, for the applicability of constructs, is handled the same in
both the Theodore planning algorithm, and in the definitions of 7net, coop and op (in Figures 8.2,
8.4 and 8.6), which are used as a basis for the definition of soIj.

Tile only complication that arises in proving both soundness and completeness results comes
down to the role of the parameter it. We construct the proofs for soundness and completeness on
the basis of what role this parameter plays in the definitions Of SOITHEO, and soIj.

Theorem 1. Soundness: S01THEO, (n, kb, t, 7r) implies soIj (n, kb, it, t, 7r), for some it.

Proof.

" For Method Decomposition: ROM SOMW, kb, it', t', ri), for step k, we may trivially
derive soIj W, kb, it, t, -r.) according to the definition of so1j, where it' (for step k) is
bound to t (the task decomposed in step j).

" Complex Operator/Operator: Follows similarly, except that kb and 7, differ between steps,
and the value of it' is arbitrary.

0

Theorem 2. Completeness: soIj (n, kb, it, t, 70 implies S01THEO, (n, kb, t, 7,) for some it.

Proof.

a For Alethod decomposition:

- For the simple case where j=1, from the base step, solo W, kb, it', V, [I) implies

SOITIIEOo (n', kb, P, [1) trivially holds for any it'. As j =1, for niethod deconiposi-

tion, -r, =[I. From 801THEO, (n', kb, V, (I), the propositions SOITHE01 (n, kb, t,
[1) and SOITHEOI (n, kb, t, -0 trivially obtain.

8.3. Verification of and Plannfng over Flexfble Mork-flow Models with Theodore 189

- ror cases where j>1, we observe that for step k, SOlk W, kb, it', V, 7,) implies

SOITHEO, (n, kb, V, 7-.), by the induction hypothesis, for some it, where t' is the

task decomposed in step k. According. to the definition of solj, it' must be the task t

decomposed in step j. Thus, the task P, decomposed in step k, must be a descendant of t.

If SOITHEOk W, kb, t', -,,), then SOITHEO, W, kb, t, 70 holds as t' is a descendant

of t, as established.

Complex Operator/Operator: SOITHEO, (n, kb, t, i-,) trivially follows from SOITHEo, (n',

kb', V,

0

8.3 Verification of and Planning over Flexible Workflow Mod-

els with Theodore

We specify flexible workflow models Ls Theodore planning problems. That is, we start with an

abstract workflow and refine it into a concrete one using a number of decomposition relations 2

(i. e., methods, operators and complex operators), specified in the problem description.

The Theodore HTN-based planner may be used in two capacities for this purpose. The principal
distinction between these capacities stems from the issue of whether the set of decomposition

relations is fixed for the enactment lifetime of the pertaining model, or whether the set may be

dynamically switched. That is, we make a distinction between fixed and vaHable flexible models,

respectively.
An example of the context in which the set of decomposition relations may cliaDge in the course 0

of enactment is the changing of operational policies used in an enterprise, which may be reflected 00
(in part) by the set of available decomposition relations, as business objectives of the enterprise

change.
For fixed models, we use the Theodore planner to verify that their definition (as a Theodore

problem) is sound. A Theodore fixed flexible workflow model is defined to be sound iff every partial
decomposition of a workflow leads to a full decomposition. This is called the VeHfication c7iteTion.
If not, it will be possible for the workflow to reach a deadlocked state, where it is not possible
to perform further decomposition based on the available decomposition relations. If a workflow

inodel, specified as a Theodore planning problem, passes this criterion then it is guaranteed that
its execution will complete properly.

The normal operation of Theodore, for example in the context of planning for Web Services

Composition (111SC), is to search for a plan which effects the composition (and optionally satisfies

some temporal constraints). When using Theodore for verification of flexible workflow models, we
thus need to be a lot more thorough by checking all possible decompositions.

During verification, we may also check that certain constraints, expressed in some language

or logic, are satisfied. This capability makes use of the approach that was presented in Chapter

Seven. As documented there, we may use any lan. guap for which progression semantics can be

specified. In our work, we have chosen the temporal logic CTL* for describing constraints.

21n the following text, the term decomposition relation is preferred over domain construct as a matter of taste.
They should be treated as synonyms.

190 Chapter 8. Flexible ll, ork-flow Modelling

As an example, consider tile task of verifying the simple planning problem (presented earlier)

which results in the workflow: Par(Seq(A, B) Seq(C, D)). The output of verifying the flexible

workflow, specified as a Theodore planning problem, using the Theodore engine is presented in

Fiaure 8.11. As can be seen, verification succeeds with the input problem (model plus rules)
declared as being sound. The temporal constraint that is checked confirms workflow soundness

- we test the CTL* proposition: AF Completed-act(Pi), which expresses that tile initial task

network completes in every possible enactment path.

In Figure 8.11, every '. ' after the word 'Planning' indicates where the planner has tried an 00
alternative path in verification, and each V indicates a constraint checking step. In the verification 0
output, each action is prefixed by an action history. If an action is the first in a plan, it will be

prefixed by a single number which indicates all index for the action in the collection of actions

possible at this stage of the plan. In this output, there are two first actions, either A (the Oth

action, in the collection of first actions, as indicated by 0: A), or C (the ist action, in the collection

of first actions, as indicated by 1: C). For 0: A, there are two possible plan continuations 0: 0: C and
0: 1: B, the Oth and 1st actions, respectively, in the collection of actions that may follow 0: A. Tile

first of these may be extended by 0: 0: 0: B or 0: 0: 1: D, and so oil. END OF PATH is a delimiter, and
indicates that another plan has been found. As each partial plan must lead to a full plan, each

prefixed action, output by the planner, must extend the previous one (unless it follows an END OF

PATH delimiter), and the output must end with an END OF PATH delimiter.

We also draw the reader's attention to the 'Transf erPro erty' examples that we give in P
Sections 9.4.5,11.2.2 and 11.2.3, which further explicate our flexible modelling approach.

For variable flexible models, we need to work within the confines of the current set of decom-

position relations whilst remaining aware that this set may be subject to change at any time.

In this context, Theodore may be used to attempt to find a plan to effect an abstract workflow
(which may have already been partly enacted) using the current set of decomposition relations. A

domain controller or expert may be on hand to guide this planning procedure, so that the plan

meets their subjective constraints. In this sense, the planner behaves as a "what may I do next"

query-interpreter. Such a person may also perform "what-if" simulation, in order to understand

what actions are available to them, and what tile consequences of these actions are. Moreover,

planning may be interleaved with enactment, so that enactment results may feed back into the

planning process. Enactment will only fail if we are unable to complete the workflow given the

current set of relations. In this scenario, the planner would look at alternative sets of decompo-

sition relations, notwithstanding that they may be less favourable at that particular time. Tile

idea of variable models is to allow a -reater level of flexibility in modelling at the cost of statically

ensurina workflow soundness. 0
For fixed flexible models, we also support the notions of a "what may I do next" query-

interpreter and "what-if" simulation.

A key aspect of our approach to flexible workflow modelling, through both fixed and variable

models, is its support for collaborative workflows. Ali example of the application of this kind of

workflow (for crisis mitigation) has already been described in Section 8.1.3. In the enactment

of collaborative workflows, parties decide on the best way to achieve the goals (prescribed by an

abstract workflow specification), constrained only by the availability of decomposition relations for

tasks in the workflow.

8.3. Verification of and Planning over Flexible Work-flow Models with Theodore 191

Simple workflow domain

Initialising planner...

Pinnning. cccc. cc. ccc. cccc. cc. ccc.

Workflow/Contract is SOUND with no constraint violations.

Planning details ...
Time taken: 0(h), O(m), I(s), 750(ms)

O: A

O: O: C

O: O: O: B

O: O: O: O: D

END OF PATH

0: 0: 1: D

0: 0: 1: 0: B

END OF PATH

O: I: B

0: 1: 0: C

0: 1: 0: 0: D

END OF PATH

1: C

1: 0: A

1: 0: 0: D

1: 0: 0: 0: B

END OF PATH

1: 0: 1: B

1: 0: 1: 0: D

END OF PATH

1: 1: D

1: 1: 0: A

1: 1: 0: 0: B

END OF PATH

Figure 8.11: Output from Verifying a Theodore Planning Problem 000
whose initial task network decomposes to the simple workflow niodel:
Par(Seq(A, B), Seq(B, C)).

192 ter 8. Flexible Work-flow Ali

In our work, roles may be assigned to decomposition relations and tasks. When a decomposition
0

relation refines a task, the role associated with the relation must be compatible with that described

for the task, according to some model of roles. We briefly described role modelling in Section 8.1.6. 00
We shall not elaborate any further here, for reasons of brevity.

8.4 Concluding Remarks

It is instructive to consider how our approach to flexible workflow modelling compares with the

other similar approaches that we reviewed at the start of this chapter.

e In CrossFlow [55] some limited flexibility is allowed in an otherwise rigid process. The notion 0
of a workflow containing multiple possible enactments to be constrained by organisational 00
policies does exist. However, the nature of flexibility is limited in that the workflow is fully

specified, and as a consequence the notion of collaborative workflows, which are completed
through collaboration of the participating agents, is not supported.

In fact, the nature of the flexibility is (arguably) more in keeping with that supported by

Synchronisation Rules (see Section 3.3) in our work, for which we consider slogan Flexible

Work-flow = Concrete Model + Policies for Constraint to be an appropriate synopsis.

In Wainer [131], anything that is compatible with a set of (temporal logic) domain axioms

may be done. The notion of an explicit abstract workflow to provide at least some structure

is absent. Such a workflow is typically beneficial as it can greatly aid the efficiency of

verification. In Wainer and colleagues [132], any activity may be executed as long as its pre-

and post- conditions regarding the execution of other acts are observed. There is a partial

ordering implied by these pre-conditions, but no explicit workflow. Moreover, the actions

are fully refined, meaning that there is an absence of control over which combinations of 0
actions are allowable (as we have if we model tasks hierarchically), unless we encode these

combinations implicitly within the activity dependencies. However, this would be quite
impracticable for all but the simplest of domains.

Both our work and the works of Whiner and colleagues support the notions of "what may 0
I do next? *' querying (as opposed to "what should I do next" in traditional workflow) and 0
"what-if simulation".

0 In Case Handling (CH) [127,16,961, model flexibility exists in how data objects may be

completed, according to a constraining workflow. This is the diametric opposite to our

notion of flexibility, where flexibility exists primarily in the control flow. In CH, a workflow
is considered complete when its data is completed, not its tasks. In some contexts, control
is the best driver, sometimes data. An example of the former is in collaborative workflows,

an example of the latter is in form handling, where agent/s are required to complete forms
00

to process a custorner request.

In the Collaboration Managernent Infrastructure (CMI) [51,107], resolution rules are applied 0
by domain experts to activity placeholders, which are quite similar to our use of decom-

position relations to refine tasks. It is notable, however, that CMI provides no verification

8.4. Concluding Remarks 193

support. We provide verification of workflow soundness for fixed models, and verification of

arbitrary temporal constraints.

A key theme in our work in flexible workflow modelling is the notion that we combine structure
with flexibility. That is, we start with an abstract workflow model which provides some initial

structure. Furthermore, there is structure inherent within the policies for refinement, i. e., the
decomposition relations - methods, operators and complex operators, in terms of them prescrib-
ing networks of actions which are acceptable refinements of tasks being decomposed. Moreover,

complex operators prescribe structure from the bottoin-up, in specifying complete refinements of
tasks.

All of these dispensations, with respect to structuring, help reduce the complexity of
There is a trade-off here between flexibility in workflow specification, and complexity of verification.
When we allow -reater flexibility, the complexity will soar; but, as we allow less freedom, the
complexity will drop. In the extreme of the latter case, we will have fully prescribed workflow
models whose verification complexity will be that of Liesbet models.

In summary, we have proposed all approach to flexible workflow modelling, which is desirable
to counter the si-nificant issue of brittleness in traditional models of workflow. In doing so, we 00
have been able to accommodate collaborative workflows, which are an important kind of workflow
(as described in Section 1.1) where agents decide collectively how a workflow instance should be

realised.
Our approach is based on the identification of a correspondence between what we seek to

achieve in flexible workflow modelling, as epitomised by tile slogan: Flexible Work-flow = Abstract
Model + Policies for Refinement, and the operation of an HTN-based planner. In identifying such
a correspondence, we are able to propose a novel approach using HTN-based planning for the
description, verification and planned enactment of flexible workflow models.

Tile expressivity of the planning language for describing domains is limited only be the expres-
sivity of the knowledge base underwriting the problem description, together with the expressivity 00 43
of the language used in pre-conditions and effects axioms, and the expressivity of the workflow C, 0
language (such as Liesbet) that is used for the specification of abstract workflows. As our planner C, 0
is modular, all of these provisions can easily be changed, and, thus, in principle, our approach CD
does not limit workflow authors in what they would seek to express. This is a double-edged sword,
however, with respect to decidability of all authored problem, and, as a consequence, some care
must be take during the process of describing problems to ensure that decidability is maintained. 60
This is perhaps a less than ideal consequence of making our planner wholly flexible. As already
stated, we may at some time look at some constraints oil what is allowed to be expressed, as other
planners such as SHOP [85] do. We are minded, however, to prioritise flexibility at the possible
detriment of usability for the time being.

Verification of fixed flexible workflow models, under the assumption that their planning domains

are decidable, for soundness and for the satisfaction of arbitrary temporal constraints, is also a
particularly desirable aspect and novel in the context of flexible workflow modelling.

At this point, all obvious question is how might we apply tile work that we have done oil
both traditional and flexible workflow modelling in other contexts. A natural application is that 41
of contract modelling, where contracts are often cast as protocols (i. e., -, vorkflows) of behaviour 0
between two or more parties. In the next chapter, we explore theapplication of workflow modelling 0

194 Chapter 8. Flexible Workflow Modelling

to the modelling of contracts. C,

Chapter 9

Institutional Modelling for the

Modelling of Contracts

We have been motivated to consider how the work presented in previous chapters may be reused
in other contexts. This is an important issue in itself, as part of the utility of research comes
from considering how it may be applied in different contexts. For our work, a somewhat evident 0
application is that of contract modelling, where contracts are often cast as protocols (i. e., workflows)

of behaviour between two or more parties. We have been motivated to look at the issue of contract

modelling for its own sake as well, as this remains a somewhat formative research field in which
there is ample scope to make a worthwhile contribution.

An aspect of contract inodelling that is quite clear from existing research contributions is

that approaches typically admit just a protocol-like view of contracts, or one where a contract is

considered to be an agaregation of propositions capturing various concepts, such as obligation and

permission. We believe that a hybrid approach, based on the. two, is particularly useful for contract

modelling.
In order to consider how our work on the modelling of -, vorkflow may be reused, it is instructive

to consider workflow from new perspectives, other than just control, data and organisational ones,
for example. One additional perspective that we have identified is, what we call, an institutional

perspective. It is possible that there are other perspectives, but we have considered just this

additional one for now.
Considering workflow from an institutional perspective entails identifying institutional concepts

in Avorkflow. This is particularly desirable as these have a strong overlap with concepts in the field
C,

of normative modelling. In turn, normative modelling is a good fit for the modelling; of contracts. 0 C, ID C,
We use the term 'normative modellin-' to mean the modelling of communities, societies, and 00

other kinds of -collectives based on the identification of positions pertaining to noms that may
hold between agents which operate or exist therein.

We start this chapter with an overview of institutional modelling. We then describe how we

may consider workflow from an institutional perspective, to which we give the name Institutional
0

Work-flow Modelling (INVINI). Following that, we give an overview of normative modelling (NNI),
00 C1

and then proceed with a description of our approach to contract modelling (CINI), which is based
0

on both INVNI and NNI. We consider that INVIM provides an invaluable foundational basis for NINI,

195

196 Chapter 9. Institutional Modelling for the Modelling of Contracts

and as a consequence CINI.

9.1 Institutional Modelling for Workflow

We present details of an institutional perspective of workflow, that we have identified, and elaborate
how our approaches to traditional and flexible workflow modelling may be viewed from this per- t,
spective. We use the term Institutional Work-flow. Alodelling (INVINI) for tile modelling of workflow
from all institutional perspective.

In the following section, we give an overview of Institutional Modelling, and then proceed with
a description of INVNI.

9.1.1 The Essence of Institutional Modelling

The essence of institutional modellina is that certain worldly facts, or actions, only manifest their 0
stated significance according to an institutional context. That is, it is according to the context 000
of a particular institution that these facts come into being. Searle makes a distinction between

institutional and brute facts, to convey this point.
From [109]:

Institutional facts are so called because they require human institutions for their exis-
tence. In order that this piece of paper should be a five dollar bill, for example, there has

to be the human institution of money. Brute facts [such as the sun being ninety-three

million miles from the earth] require no human institutions for their existence.

In order to explicate an institutional sense, Searle makes a distinction between two different
kinds of rules, viz. regulative and constitutive. The former kind are concerned with regulating
antecedently-existing forms of behaviour. For example, the rule "drive on the ri., lit-hand side of
the road" regulates driving, but driving can exist prior to the existence of that rule [109]. Searle C, 00
continues in [108]: "[slome rules on the other hand do not merely regulate but create or define C5
new forms of beliavio[ulr. *' These are the so-called constitutive rules, which prescribe what forms

of behaviour, or facts, are constituted by the occurrence, or existence, of other forms of behaviour,

or facts.
From [109]:

[Tjl1e rules of chess do not regulate an antecedently[-]existino, activity. It is not the case
that there were a lot of people pushing bits of wood around on boards, and in order
to prevent them from bumping into each other all the time and creating traffic jains,

we had to regulate the activity. Rather, the rules of chess create the very possibility

of playing chess. The rules are constitutive of chess in the sense that playing chess is

constituted in part by acting in accord with the rules. If you don't follow at least a large

subset of the rules, you are not playing chess. The [constitutive] rules come in systems,

and the rules individually, or sometimes the system collectively, characteristically have

the form: 'X counts as Y' or 'X counts as Y in context [institution] C'. Thus, such and

such counts as a checkmate, such and such a move counts as a legal pawn move, and

so on.

9.1. Institutional Alodellina for Workflow 197

Searle concludes that institutional facts exist only within systems of constitutive rules. "The

systems of rules create the possibility of facts of this type, and specific instances of institutional

facts such as the fact that I won at chess ... are created by the application of specific rules, rules
for checkmate ...,

for exampid' [109].

It would appear that Goldman's rules for conventional generation carry a. similar sense to
Searle's constitutive rules. Fýom [54], "[c]onventional generation is characterized by the existence

of rules, conventions, or social practices in virtue of which an act A' can be ascribed to an agent
S, given his performance of another act, A. "

It would appear sensible to make a distinction between brute and institutional actions, as much

as between facts. It may be superficial to do so, given that the performance of action may be seen
to establish a fact regarding its performance; but it is particularly useful in our work to maintain
this distinction in its own right.

9.1.2 Institutional Workflow Modelling (IWM)

Principally, we assert that the ubiquitous hierarchy of a -, vorkflow model necessarily entails the

manifestation of constitutive rules. That is, in a sequence, Seq(A, B), carrying out actions A and B C,
counts as carrying out the sequence. This is more than inere classification, which may, for example,

prescribe subsumption, or so-called isa hierarchies, for classes of brute, or institutional, actions.
For instance, filling out a form may count as processing a customer's application (constitutive);

00
and, at the same time, may be a clerical task (in a classificative sense, i. e. filling out a form is a C,
clerical task).

Furthermore, (typically) in -, vorkflow, the performance of tasks, i. e. basic activities, may only

occur subject to all agent being permitted to do so, as exemplified in [19,20], for instance. The
C,

fact that all agent A is permitted to carry out a task T may be considered to be an instance of a r,
regulative rule, according to Searle's distinction. 0 C,

In defining what we mean by Institutional Work-flow Modelling (INNINI), the two concepts of 0
counts as and permission play a significant role. In the workflow context, counts as is (appro- 0

priately) transitive; viz. if performance of A counts as performance of B, and performance of B

counts as performance of C, then performance of A counts as performance of C. In a workflow

model, the basic activities would correspond to brute tasks, or actions, whereas the performance of

a number of these may count as tile performance of one'or more institutional actions. Aggregating,

the performance of these institutional actions, in turn, may count as the performance of yet further

distinct institutional actions. Ultimately, however, tile performance of all institutional action at

any level in the portrayed action hierarchy can be traced down to the performance of a number of
brute actions, which exist at the leaves of the hierarchy.

Relating the INNINI concepts of counts as and permission to our work on flexible workflow

modelling, we note the following correspondences:

An HTN Method may be seen as an embodiment of counts as. That is, their purpose is

strongly similar to the purpose of counts as. Counts as 11jay be considered to prescribe
how institutional actions may be decomposed into some partial ordering of one or more
institutional and brute actions. This notion is mirrored by HTN methods whose purpose is to

decompose non-primitive HTN tasks into some partial ordering of one or more non-primitive

and primitive tasks.

198 Chapter 9. Institntional Modelling for the Modelling of Contracts

a An HTN Operator may be seen as an embodiment of permission. Permission may be con-
sidered to prescribe apnts who are permitted to carry out brute actions. This notion is 0
mirrored by HTN operators whose purpose is to prescribe how primitive tasks may be refined
into actual actions to be carried out by (specific) agents.

e An HTN Complex Operator may be seen as an embodiment of both counts as and permission
relations, as it serves to effect multiple method- and operator-based decompositions.

We define Institutional Workflow Modelling to be the sum of our Theodore-based approach

to flexible workflow modelling and the presented correspondences of counts as and permission

relations to workflow artefacts, on the one hand, and HTN-based planning constructs (i. e., methods,

operators and complex operators), on the other.
As we have described, in institutional modelling, generally, notions and artefacts are given

meanin- according to a context, i. e. according to a pertaining institution. For INNINI, the institution

would be the particular instance of the workflow being enacted. Alore specifically, the institution is

characterised by the extant decomposition relations defined in the instance. That is to say, "action

a counts as action 0 according to the context of the -. vorkflow instance" really means '*action a 0
counts as action 6 according to the set of decomposition reIations MUCU G". C,

If we were to allow the aggregation of workflow instances (according to some assumed mecha- CIO C, 0
nism), the institution pertaining to the aggregated workflow instance would be the new workflow 0 int, C,
instance, with its set of decomposition relations formed by the union of the sets of decomposi-

tion relations of the instances being a,,, cr gregated.
It may be of some advantage, at some future

time, to make some modifications to this view of institution. For instance, Ave may modify how

decomposition relations from workflow instances should be combined. For example, there may be

a partial ordering that is prescribed on institutions, so that one of a number of otherwise identical 0
decomposition relations which only differ in the strength of their pre-conditions ma remain in the C, y

new model, and so on.
We now consider in greater detail the question of which institutional relations may be considered C,

to obtain in various Theodore-based flexible model artefacts.

0 Basic Activities: When a basic activity becomes enabled, i. e. set to Running in Liesbet

terminolog , then two scenarios obtain. If the activity is marked, in HTN terms, as a task-, 1'y
then it is intended that it be further decomposed. That is to say, there should exist a suitable

method (i. e. counts as), operator (i. e. permission), or complex operator (which corresponds
to an aggregation of a number of instances of both counts as and permission relations) in 00 t,
order that a decomposition may be effected. Thus, a workflow model may be, in itself, an

abstract artefact, in the sense that it is meant to be refined further by means of a set of

constitutive and regulative rules. C,
An example which we discuss later (in work related to contract modelling, which uses INVINI

as a foundational basis) is that of TransferProperty. This is a Liesbet basic activity,

and also a non-primitive HTN task, in tile initial task network/workflow model of tile given

planning problem. It is meant to be decomposed by an application of an appropriate method. 0
In the example, there is the following method: 0

Method: Seq(MultiSeq(3) (Pay), TransferTitle) counts as TransferProperty.

9.1. Institutional Modelling for Illork-flow 199

(Pay on vendee, Transf erTitle on vendor)

This method (as a constitutive rule) indicates that three occurrences of a Pay action in

sequence counts as effecting, the institutional action Transf erProperty. In this example, Pay
itself is an institutional action which, as an HTN task, would be further decomposed. There is

a brute action SendCheque whose performance counts as effecting Pay. In the example, this
is specified as a complex operator. Alternatively, there could be a method which says that
SendCheque I counts as Pay. The Liesbet basic activity SendCheque I would be a primitive
HTN task, indicating that it is a brute action. An operator (as a regulative rule) would then
be applied to determine a role for carrying out the brute action. Finall the Liesbet basic C, Y,
activity SendCheque would be an HTN action. It is not possible to further decompose such a
basic activity; and its existence in a task network necessarily implies the specification of a
role to carry it out.

Note that there is also the possibility of a hierarchy of brute actions. The containers example

elucidates this possibility nicely. The transf er-two-containers Liesbet basic activity is

a non-primitive HTN task. It is meant to be further decomposed by methods and operators.
In this example, a network of load, move and unload brute actions effect the action of trans-

ferring two containers. It is noteworthy that the transfer of two containers is itself a brute

action, in the sense that Searle describes (108,109]. That is, the transfer of two containers
is an antecedently-existent artefact that does not need the context of an institution to be

brou-lit into being. For brute action hierarchies, the notion of counts as is absent. Counts

as relations (and constitutive rules) are solely concerned with specifying how institutional

actions may be effected.

HTN methods and complex operators (in our Theodore-based framework) may be used to ex-

press both constitutive rules and brute action hierarchies. In this sense, the relation between

methods and (our embodiment of) constitutive rules is a subsumptive one. In our work,
however, our principal concern is that of using, Theodore to model counts as relations; and 0
thus of using methods and complex operators as an embodiment of constitutive rules.

e Structured Activities: The root of a structured activity may or may not represent an institu-
tional action, as exemplified in the Liesbet activities Transf erProperty and
transf er-two-containers, respectively, which ive have just described. For a structured
activity (pre-defined in an INVINI-model) representing an institutional action, each of its chil-
dren contribute to the exercising of the counts as relation associated with the activity. 0
Strictly speaking, we consider the performance of the last brute action to count as exercising C, 0
the counts as relation, the other brute actions that need to take place to exercise the counts

as relatidn are seen as achieving a pre-requisite state for exercising tile relation. 0 C,

Notably, as each child of a structured activity may itself be child-bearing, there may be a 0
number of further counts as relations obtaining, associated with their performance, given
that they too are institutional actions.

Sub-workflows: We can use complex operators to specify pre-defined pieces of workflow
logic. These sub-work-flows specify arbitrarily-complex networks of actions. The use of these

200 Chapter 9. Institutional Modelling for the Modelling of Contracts

constructs greatly simplifies the verification task, as they specify a single pre-condition for

their applicability, and a single effects statement. 0
Complex operators used to decompose tasks corresponding to institutional actions correspond
to an aggregation of a number of counts as and permission relations. Further, the enactment

of the task network specified by the complex operator counts as fulfilling the task that it C,
decomposes. The leaves of the task network specified by a complex operator are Liesbet

activities which are necessarily HTN actions (with roles assigned to them), meaning that there 0 t,
is no further decomposition of the network that need take place.

9.2 Using IWM as a Foundation for Normative Modelling

Having explicated an institutional sense for workflow modelling we now consider how it may be 0 ý7
useful as a foundational basis for normative modelling, and latterly contract modelling. We start 00
this section with an overview of the field of normative modelling, and thereafter proceed with a 0
descri tion of how we have reused INVAl for the modelling of contracts. p ?D

We use the term 'normative modellin-' to mean the modelling of communities, societies, and
other kinds of collectives based on the identification of positions pertaining to norms that may hold
between agents which operate or exist therein. Tile sense in which we use the term is not limited to a
computer science context. Normative modelling, in the sense just expressed, has been extensively
studied, for instance in works oil legal and societal theory and analytical philosophy [100]. In

contrast, applications of normative modelling in computer science remain largely formative (for

instance, in the modelling of contracts for automated reasoning over them) with many questions
and issues still to be answered.

9.2.1 Normative Modelling

Normative Modelling is concerned with the modelling of normative concepts, or norms. Rom [5],

a norm may be defined as: "a principle of right action binding upon the members of a group and
serving to guide, control, or regulate proper and acceptable behaviour". In our work, we consider 0 el 0
the notion of a normative relation to be useful. We define a normative relation to be a template
for a relationship pertaining to a norm. The 'template' aspect refers to the notion that such a
relation may be parameterised, i. e. it may have arguments. The template would specify the types

of these arguments. An example of a normative relation might be a two-argument obligation,
where instances of this relation obtain according to specific role-action pairs; or a three-argument

obligation, where instances obtain according to specific role-action-dead line triples.
A principal context in which Normative Modelling is considered is the domain of legal reasoning 00 01

where the normative concepts are legal ones. This is clearly of interest in the context of contract 0
modelling, as a language of contracts would typically include many legal concepts. It should be ID 00
noted, however, that the scope of normative modelling extends beyond that of domain of legal

0
reasoning.

In what follows, we attempt to give just a flavour of some contributions that have been made
within the field of legal analysis and reasoning. Wesley Newcomb Holifeld (1879-1918) is one of the

most acknowledged authors in this field. Holifeld found the language used in judicial opinions and 0 C, ID
legal writings to be loose - for instance, concerning such fundamental terms such as rights, duties 0000

9.2. Using IIIMas a Foundation for Normative Modelling 201

and privileges. There was a tendency, Holifeld believed, to conflate terms which stemmed from a 0
confusion regarding the meaning of legal concepts. This "principle of linguistic contamination" as
Holifeld called it resulted in a oversimplification of complex legal problems [23]. Rom [58]:

One of the greatest hindrances to the clear understanding, the incisive statement, and 0 C,
the true solution of legal problems frequently arises from the express or tacit assump-
t ions t hat all le-, al relations ma be reduced to 'rights'and 'duties', and that these latter 0yC,
categories are therefore adequate for the purpose of analysing even the most complex
legal interests ... Even if the difficulty related merely to inadequacy and ambiguity of 00
terminology, its seriousness would nevertheless be worthy of definite recognition and 0
persistent effort toward improvement; for in any closed reasoned problem, whether le-

gal or non Cr -legal, chameleon-hued words are a peril both to clear thought and to lucid

expression.

Ross [100] observes that:

Holifeld focussed oil tile relationships that law creates between actors - legal or jural

relations. His analysis purports to tackle much of the confusion and ambiguity con-
tained within bald claims like 'I have a right to do X'. Such claims call be interrocated: 00
'What sort of legal relationship do you claim to have, and with whom do you claim to
have iff.

Brady [23] notes that:

He ... demonstrates in detail how the distinctions [that lie sets out] can be used in

solving actual legal problems. ... Holifeld was after clarity, not for its own sake, but C5
for the definite solution of legal problems.

Hohfeldian analysis may be compared with analytical methods of social theory, where the world
is conceived as being composed of social relationships, which "points to a theoretical environment
for Holifeldian analysis that is of potentially greater explanatory power than analytical jurispru-
dence taken in isolation" [100]. Indeed, as Brady asserts: "an understanding of his distinctions of

normative concepts is an essential starting point for anyone interested in the area of rights, legal or

moral" [231. As Jones and Sergot observe, in [63], the concept of power (for instance, as described

by Holifeld) should be considered in a wider context than just law.

Hohfeld, in his work [58], defines eight legal concepts, as presented in Figure 9.1. These are legal
(i. e. jural), or more generally normative, relations that may hold between a party and a co-party.
The concepts are organised into two sets. Each relation, which holds for a party, has a correlate,

which is the same relation when viewed from the perspective of the co-party. Each relation also has

an opposite, which conveys the opposite meaning. Ross notes that "[tJo understand the Holifeldian

jural relation is to understand how the mechanics of jural correlativity and jural opposition (as

Holifeld describes these) interact and coexist within the matrix of legal relationships"' [100].

We start the discussion of Holifeld's concepts with those depicted on the left of the figure,

the right-set. Holifeld's tight (stricto sensul) (or claim) and duty (or obligation) are correlates.
They are different ways of viewing the same normative relation concerning a particular subject 00

'In the strict sense - in contrast the generally imprecise, and broad, (mis-)use of the term.

202 Chapter 9. Institutional Modelling for the Modelling of Contracts

right duty power liability
(claim) (obligation) (competence)

no-

I

ht rig priv

I

ege il dis Mity
_-,

im

i

nity mu
(no-claim) (liberty) (no-power)

Right-set Power-set

Opposites *------, -Correlates

Fi..,, ure 9.1: Holifeld's Jural Relations.

matter [23]. Elaborating, if X has a right against Y with respect to subject matter S, then Y is
0 41 0

duty-bound to X in respect of S. The relations no-right and privilege are also correlates.
The relations duty and privilege are opposites, or contradictories. If X has a duty to Y with

respect to S, then X does not have a privilege to be delinquent with respect to S. Similarly, if X

is privileged to Y to be delinquent with respect to S, then X is under no duty to Y with respect to

S. It is worth reinforcing that, according to Holifeld, privilege and right refer to two very distinct

normative concepts. Where X has a privilege, lie is free from the claiiii of another; where X has

a right, lie has a claim against another [23].

The l8th Century philosopher Bentham, as presented in [71], uses the term "right to a service7'
for a concept similar, in definition, to right stricto sensu. This terminolog may be an insightful

Oy 0
way of considering Holifeld's concept -a party has a right to expect a service to be performed by

the co-party. Bentham also uses the term liberty to convey a notion similar to that of Holifeld's

privilege, viz. "you have a right to perform whatever you are not under obligation to abstain from

the performance of". Note that lie uses the term right, here, not stricto sensu (i. e. not as a right
to a service). Bentham further distinguishes two types of liberty: naked liberty to do action a-

where others have the freedom to (attempt to) prevent a, and vested liberty - where others have

an obligation not to prevent a. Holifeld's privilege would appear to be closer to Bentham's naked
liberty. As may be seen, Bentham uses the concept of obligation in a more primitive sense than

liberty, defining liberty in terms of it. He provides a novel explanation of the concept of obligation,

- imposed by a legislator whenever a law of type command or prohibition is imposed: -is being

41. .. and or a prohibition, [concernin- the . where the provision of the law is a comm, 0
performance of an act], it creates an offence: if a command, it is the non-performance

of the act that is the offence: if a prohibition, the performance ... Moreover the law, in

constituting an act an offence, is said to impose thereby an obligation on the persons 0 CI
in question not to perform it. "

Rom [33], we note that HolifeId's right-set may be expressed, according to the following logical
00C, 0

equivalences. Note that S, a is a relation, called an action modality in [921, which expresses that

'p brings about a', where a may be some action, or state-of-affairs. Each normative relation is
0

expressed using a three-argument predicate; where the first argument is the bearer of the relation, 000

9.2. Usinz IIIIAI as a Foundation for Normative Alodellinz 203

the second argument is the co-party, and the third argument is the action that is to be brought
C' 0 Cl

about, expressed using the action modality syntax. 0

right (pi P2 06P2a) duty (P2, PI , -6p2CO

right (pi P2, Ep, a) -no-right(pj, P21'FP2a)

privilege (p,
, P2, -45p, a) no-right(P2, PIISIýa)

privilege (p, P2, -, 5pi CO -duty(pj, P2, Epja)

This formulation of Holifeld's right-set explicates the different senses of correlate and opposition C,
between the various relations. Whereas right and duty are simple correlates of each other, no-right 00
and privilege introduce a negation into tile action modality. Similarly, whereas right and no-right 0 C, 00
are simple negations of each other, duty and privilege introduce a negation into the action modalit y

as well.
The normative relations in flolifeld's power-set explicate means by which the sum of legal

0
relations that hold between parties may be changed. This is an important distinction with respect
to the right-set. Ross [100] identifies three situations of change that may be brought about through 000 C3
exercising a power:

the alteration, by virtue of the power, of the incidence, scope, application or effect of existing C,
legal rights or legal powers. 000

the annulment, by virtue of the power, of existing legal rights or powers. C, C, 0

the creation, by virtue of the power, of entirely new legal rights or powers. 00

As was done for the right-set, Holifeld pairs off relations into correlates, and opposites. When

X has a power against Y to chan-C a legal relation concerning subject matter S, then Y is under

a liability (as correlate) to X with respect to S. An absence of power is captured by the relation
disability, whose correlate is immunity. If X is disabled against Y with respect to S, then Y is

immune from X with respect to S.

Having a liability, as noted by Brady [23], is not always disadvantageous. To be liable is to
be subject to the possibility that one's legal relations with respect to a co-party may be changed,

at the behest of the co-party. The change may be beneficial just as it may be detrimental. For

instance, the owner of land may abandon (through a vested power) their legal entitlement to the
land. The particular correlate of this power may be a liability on a party to have powers and

privileges created; whereby the party may acquire the deeds of the land. Often, a liability will

amount to the creation of a duties on the party, but it may equally pertain to the creation of

relations which are of benefit to the party.
Ross [1001 notes that:

[LIegal power can ride a double-decker bus through any existing, settled legal arrange-

ments or legal state. It can thus be said of legal powers that they have the potential to 00
modify the whole gainut of legal states and entire range of legal relationships obtaining eý 0000
at any given time in relation to a particular person or class of persons and specific

subject matter.

He continues:

204 Chapter 9. Institutional Modelling for the Modelling of Contracts

[N]o legally recognised change of any significance can occur unless the power is exercised. C, 0 Zý 0
The exercise of the power is what induces a change in the legal situation of persons ... Z, 0
An unexercised legal power is merely a potential legal competence but it is of limited 0 C,
legal significance in so far as it remains unexercised. 41 C,

The principal contribution of Jones and Sergot in [63] is to have proposed counts as as capturing
the meaning of the Holifeldian notion of power. That is to say, a power is defined by virtue of how

it may be exercised, as expressed by a counts as relation or, in the language of Searle [108,109), by

a constitutive rule. Moreover, they do not consider power to be an exclusively legal phenomenon

usin- the term institutionalised power in order to emphasise as much. They assert that power "is

a standard feature of any norm-governed organisation where selected agents are assigned specific

roles (in which they are empowered to conduct the business of that organisation). "

It is the modelling of norm-governed organisations to which tile notion of normative modelling
(NNI) pertains. We propose our work on institutional modelling with respect to counts as, and
permission, as a foundational component of NNI, where the modelling of contracts (i. e. instantiation

in a legal context) is one possible application of NNI.

The work of Jones and Sergot reinforces the clear separation between privilege and power made
by Holifeld. As described in [63], Holifeld explicitly distinguishes between (i) legal power, (ii) the

practical possibility to carry out the acts necessary for the exercise of the legal power and (iii) the

privilege to carry out those acts. Jones and Sergot go on to cite an example proposed by Makinson

which further exemplifies this distinction. Makinson [72] asks us to:

... consider the case of a priest of a certain religion who does not have permission,

according to the instructions issued by the ecclesiastical authorities, to marry two

people, only one of whom is of that religion, unless they both promise to bring up the

children in that religion. He may nevertheless have the power to marry tile couple even
in the absence of such a promise, in the sense that if lie goes ahead and performs the

ceremony, it still counts as a valid act of marriage under the rules of tile same church
even though the priest may be subject to reprimand or more severe penalty for having

performed it.

As Jones and Sergot note, "[tlliis is clearly a case in which the priest is empowered to marry
the couple, but not permitted to do so 273

-
In the modelling of contracts, normative concepts such as obligation, power and privilege prove

to be useful. It is instructive to consider how INNINI may be used to provide a basis for modelling
such normative concepts. We address this point in the following section. C,

9.3 Contract Modelling

In Section 9.4, we describe how we have reused concepts identified for Institutional Workflow

Modellinng (INVINI) in the modelling of contracts. Before doing so, in this section, we give an C, 0 C, 0
overview of related work in the field of contract modelling. We firstly describe work that we have

'Indeed, they go on to note a report about "clandestine religious services conducted by former Roman Catholic

priests who had left the priesthood to marry", but who still "retain their sacramental powers but are forbidden to
exercise them".

9.3. Contract Alodellim- 205

carried out on a non-INNIM based approach to contract modelling. We then review other related
research contributions.

Note that our non-INVIM based approach to contract modelling was realised as part of work C,
contributing to this thesis, although for simplicity we choose not to enumerate it as a contribution 00
in the introduction (see Section 1.2).

9.3.1 A Non-IWM Based Approach to Contract Modelling

In [42,43,41], we consider the modelling of contracts, so that we ma monitor their performance 0y
at run-time. We ground our work by considering the modelling of Service Level Agreements [68]

for Utility Computing (UC) [6].

UC offers all opportunity to corporate businesses to inaximise the efficiency and efficacy of their

IT service provision (both in-house and to customers). It allows them to out-source large areas of
their IT service provision to UC-data centres, which will agree to provide computational resources,

packaged as services to them. SLAs are essential for forinalising the objectives of a UC service,

and to manage expectations [68).

Tile levels of service that are agreed between a UC service-provider and customer are mail-
dated by Quality-of-Service (QoS) guarantees, written as Service-Level Guarantees (SLGs) within
Service-Level Agreements (SLAs). Ali example SLG might be:

0

" Service Availability should be greater or equal to 99%, weekdays 9a. ni. -5p. m.

" Service Availability should be greater or equal to 95%, at all other times. C,

" Availability metric is measured over each calendar month; penalty for SLG violation: refund

customer their monthly fee.

In [42,43,41), we define the state of a contract, at a particular time, to be the aggregation 00 ý
of instances of normative relations that hold between contract parties, plus the values of contract

variables, at that time. A contract variable is a piece of numerical state whose value can change ,z0
over the deployment lifetime of its containing contract. Its use will be normative in that it will
have been agreed upon when the contract is formed. In this sense, a contract variable may also be

0
considered to be a special kind of normative relation.

There are at least two functional aspects to the run-tinie performance monitoring of contracts:
(i) 'Racking the effect of events (pertinent to a contract) on contract state - the contractual (or,

normative) relations that hold between contract parties - and informing interested parties of past,

present and (possible) future contract states; and, (ii) Assessing the current state of the contract,
in terms of its utility (that is, worth), and other nietrics related to business intelligence [1]. The

work that we have done is primarily concerned with the first of these, which is known as automated

contract (state) tracking to distinguish it. 0 el
Notably, approaches to automated tracking of contract state, thus far, call be largely charac-

terised in one of two ways [14]: (i) As general-purpose contract reasoning frameworks that (mainly)

have not been applied in actual, deployed systems; or (ii) In the case of SLAs, as being fairly lini-

ited in capability. The work presented here is considered to be distinguished from such approaches
in that: (i) It has been developed in the context of a 'real-world' deployment scenario (namely,

SLAs for UC), while being generalised so to be applicable to other domains; and (ii) It represents 00

206 Chapter 9. InstitutionalModelling for the Modelling of Contracts

an advance (over many approaches) in what can be realised regarding automated state tracking
for contracts.

We develop a general approach to the tracking of state based on a version of the Event Calculus t5 0
(EC), originally presented in [99]. Simply put, EC allows the expression of domain axioms which
characterise how propositional properties of a domain (fluents in the Al terminology) change C,
according to the occurrence of domain events. Various forms of reasoning can be undertaken
using such a set of domain axioms, such as planning (a sequence of actions that will take the
domain from an initial state to a goal state), prediction (where given an initial domain state, and a
sequence of domain events, an event narrative, Ave seek a resulting domain state), and postdiction
(where given a current domain state, and a set of a domain events, we seek an initial domain

state) [112]. In this terminolog , state tracking is a special case of prediction, except that we Oy 41
shall also want to have access to all intermediate states as well as the initial and final ones. The
Event Calculus is presented in a logic programming framework, and is usually implemented using
a logic programming language such as Prolog or using techniques from deductive databases. In
this work, for deployment in a business context, we have constructed a Java implementation of an
EC reasoning component, called the Event Calculus State Racking Architecture (ECSTA).

There have been many diverse research contributions that have utilised the Event Calculus
(EC) for the purpose of reasoning over the effects of events on a logic theory. Some that are closely
related to this work are now presented. In [15], Artikis describes the representation in EC of 'open'

niulti-agent systems viewed as societies of computational agents, including variations on a number
of collaborative work protocols, among others. This work also explicitly employs the concepts
of obligation, permission, and institutional power, and includes the specification of sanctions and
penalties in the case of violations. It is also worth noting that Artikis and colleagues have also
employed other action languages from Al as an alternative to the use of EC, and specifically the

action language CIC+ [531. CIC+ provides a high-level notation for defining laws specifying the 0ý000
effects of actions on domain fluents, and ways of characterising domain phenomena, such as the

common sense law of inertia. It also has an explicit semantics in terms of labelled transition

systems. Being able to describe contracts as transition systems is extremely useful for proving

properties (using model checking) about the contracts. Also of note is an extended form of CIC+,

called (CIC+)++ [110], which is specifically defined for the representation of norms and institutional

concepts. These extensions provide a treatment and formal semantics for institutionalised power,
that is, counts as relations between actions, and for the specification of permitted (or acceptable,

or legal) states of a transition system and its permitted 0 C,
(or acceptable or legal) transitions and

histories.

In [12], Bandara and colleagues develop methods for performing analysis and refinement of Z3 C,
policy specifications, employing an EC-based representation of both policy and system behaviour

0
specifications. The resulting formalism is used in conjunction with abductive reasoning techniques

to perform a priori analysis of policy specifications. In [1041, Sadighi and colleagues develop an 00
EC-based framework for issuing privileges to agents in a community, through declaration and 0000

revocation authority certificates. A distinction is made between the time a certificate is issued,

or revoked, and the time for which the associated privilege is created, or discharged, enabling
certificates to have prospective and retrospective effects.

9.3. Contract Modelling 207

Example Contract

We base the development of the approach described in [42,43,41] on the representation of a

number of UC agreements. We use the following mail service agreement in order to -round our

work.

The Service Provider (SP) will provide a mail service to the Service Customer (SC), which
includes a mailbox with a quota of s GBytes. SC will be charged a fixed monthly fee of s* co
for the service.

op In the case that the mail service is unavailable, SP will pay p for every whole t minutes that

it is unavailable. SP is obliged to pay any penalties to SC within a month of their accrual.

* Whenever u>s, where u is the mailbox utilisation in GBytes, SP will charge SC c, for each
GByte over s, calculated dailY.

9 All billing of SC occurs monthly, and SC is given a month thereafter to pay. If SC fails to

pay within the given time, SP may terminate the mailbox service without notice.

In our work, a contract model is defined from a global perspective, as opposed to being all

aggregation of a pair (in the case of two contract parties) of end-point perspectives. Live represen-
tations of a contract model may be replicated by contract monitoring engines belonging to each

of the contract parties, and/or may be maintained by a single contract enforcement authority. In

either case, in the following, we shall talk about events being routed to and from the environment.
Events from the environment are known as exogerious events. Contract parties may perform actions

which are observed by the contract model (however this is realised in a monitoring/enforcement

context). Such actions are (the only source of) exogenous events. In response to these events, the

contract model may push output events to interested parties in the environment. In the case of
the centralised enforcer, the contract model will notify all contract parties of the event. In the case

of local monitoring agents, sorne protocol is assumed such that all parties agree on output events

as they are generated.
For the purpose of tracking the normative state of contracts, we are concerned with identifying

events described in the contract that may have an effect on contract state. These may be exogenous

events, as just defined, or events that are generated in ternally such as the expiration of a tinier

prescribed in the contract. Once identified, we need to express in our representation the effects on

contract state of these events.
For example, the contract excerpt: "All billing of SC occurs monthly" indicates a monthly

billing event. One effect of such an event is that SC receives an invoice for service. But this is

not an effect on contract state, per se. We sliall say that another effect of this event - this time,

on the contrad state - is to instantiate an instance of a normative relation, namely all obligation
bearing on SC to pay SP for service within a month.

Another example is: "If SC fails to pay within the given time, SP may terminate the mailbox

service without notice". This statement talks about another event, which occurs when the specified
time period expires before SC fulfils its obligation (to pay for service) on time. We sliall say that

an effect of this event is to instantiate an instance of another normative relation, namely (vested)

power of SP to terminate the mailbox service.

208 Chapter 9. Institutional Modelling for the. Alodelling of Contracts

A Brief Introduction to the Event Calculus

nom the perspective of what needs to be represented for contract state tracking, we need some way

of representing the effects of events on contract state. For this, we use the Event Calculus (EC).

In the following, we present a rather informal description of EC, and its use for the representation

of contracts. The interested reader is referred to [99,1111 for a formal presentation.
We say that a contract in the Event Calculus is a conjunction of-

eA finite set of initially statements, which prescribe instances of normative relations that

initially hold (i. e., are true).

A finite set of initiates (resp. terminates) statements, which prescribe instances of nor-

inative relations which start (resp. cease) holdin. - on an event occurrence.

*A finite set of happens statements, which record the occurrence of events as an event
narrative.

There are also a collection of foundational axionis which xve leave out of this presentation for

reasons of brevity.

Our embodiment of EC also admits timer statements, for generating timer events which may C, 0
be one-off or recurrent. One can view timer statements simply as a mechanism for inserting

happens events into the event narrative.

Representation of Example Contract

We now give an informal presentation of the mail service agreement, represented using our EC- 000
based approach.

9 For tile contract fragment: Whenever u>s, where u is the mailbox utilisation in GBytes, SP 0
will charge SC cl for each GByte over s, calculated daily, it is assumed that an external event
daily-charge -event

is entered into the event narrative daily providing, the daily char(ge that

the customer has incurred, where this charge will be zero if the value of u has not gone above

s for that day. The daily charge is accumulated in a contract variable vDailyCharge.

In the EC-based represent at ion, there is an initially statement, which indicates the initial

value of vDailyCharge, viz.

initially vDailyCharge=o.

There is also a statement that says that when a dai ly-charge -event occurs, tile value of the

event's Charge parameter, corresponding to the charge for the day, is added to the current 0
value of. vDailyCharge to give tile new value of this variable.

event daily-charge-event (Charge) initiates vDailyCharge=V if vDailyCharge=V1 and l, '=I, 'l+Charge

9 The contract excerpt: All billing of SC occurs monthly is accommodated by a timer called
billing-timer:

timer billing-timer monthly.

9.3. Contract Modelling 209

This has the effect of inserting events, represented as instances of the happens relation, into

the event narrative.

The contract excerpt: SC will be charged a fixed monthly fee of s*cO forthe service is accom-

modated as follows. In response to the monthly billing-timer event, we create an instance

of an obligation normative relation, which bears on SC to pay for service, viz.

event bill ing-t imer initiates o (PayForServi ce (Charge), SC, X, I month) if vDailyCharge=V1

and Chargc=l, 'l+sco and new-id(X)

where new-id(X) allocates a unique identifier that has not been previously used (for recordin. -
instances of normative relations).

The Charge parameter is assigned the value obtained by summing the current (accumulated)
0 C,

daily charge, given by the contract variable vDailyCharge, with the value (currently) assigned C, 00
to the contract parameter sco. PayForService is the name of an action that needs to be

carried out by SC, which is given as the second parameter of the obligation relation. There
00

is also a time-limit of 1 month associated with the fulfilment of the obligation instance.

The contract excerpt: "In the case that tile mail service is unavailable, SP will pay p for every

whole t minutes that it is unavailable7' is, in fact, part of a Service-Level Guarantee (SLG),

namely, the SLC pertaining to the provision of the mail service. Specifically, it describes
0

what course of action is normative in the case that the SLG is violated by SP.

We assume that some monitoring agent tells us when the SLG has been violated, that is

that the mail service is unavailable. This agent will generate an event, SLGLviolated say, 0
to this effect; and will generate an event, SLG-restored say, when the mail service has been

restored.

We define a tinier for the SLG, thus:

timer SLG1-timer t minutes.

Also relation o(RestoreService, SP) is defined as an obligation that bears on SP to

restore tile service. This contract excerpt would then be represented as follows:

- event SLG1-violated initiates SLG1-timer

- event SLG1-violated initiates o(RestoreService, SP)

- event SLG1-restored terminates SLG1-timer

- event SLG1-restored terminates o(RestoreService, SP)

- event SLG1-timer initiates vPenalty=V if vPenalty=Vl and V=Vl+p

Event Calculus State Tracking Architecture (ECSTA) and Contract Visualiser

We have implemented, in Java, a reasoner for EC-based contracts, called the Event Calculus State
Racking Architecture (ECSTA), supporting: instantiation of contracts written in EC, assertion of 0
event narratives including speculative narratives which can be unrolled, and querying of contract
state. As well as the ECSTA reasoner, a tool called Contract Visualiser has been implemented

210 Chapter 9. Institutional Modelling for the Modelling of Contracts

Contract Environment.
Notifications E. G. Enterprise Infrastructure,

Such as: Service Monitoring,
Queries, Billing Components,
Simulation Requests, Workflow Engines ... Contract Template Registration,
Contract Instantiation,
Contract Parameter Assertion,
Event Narrative Assertion,
Clause and User Rule Assertion,
Shared Variable Configuration

Figure 9.2: Relationship between ECSTA and Contract Visualiser

which allows for the deployment management of contracts. The relationship between ECSTA and
Contract Visualiser is depicted in Figure 9.2.

In the following narrative, we present the evolution of a scenario pertaining to the mail service
agreement as it would be captured within Visualiser. As screenshots may be hard to read, we
present tile scenario in the form of tables which capture the same information as would be presented
by Visuahser. For illustration, an actual screenshot for the final stage of the scenario is shown in
Figure 9.3.

In stage 1 of the scenario - see Table 9.1 - we see that the state of the mail service agreement
contract instance is "OK" to begin with. 0

Occurrence Date/Time

STATE: OK Fri 3 Sep 2004 22-15-03

Table 9.1: Scenario Unfolds: Stage 1

In sta-e 2- see Table 9.2 - Nve see that a "Service Violation" event occurs causing the state 0 C,
of the contract instance to change to "Service Violation" and an obligation to be initiated bearing

on the provider to restore the service.

Occurrence Date/Tiýmýe

STATE: Service Violation Mon 13 Sep 2004 22-15-03

INPUT EVENT: SERVICE VIOLATION with (id: slgl) Mon 13 Sep 2004 22-15-03

OUTPUT EVENT: OBLIGATION with (id:

actions: resolve breech with (id:

oO. bearer: provider,

slgl), deadline: not specified) I

Mon 13 Sep 2004 22-15-03

Table 9.2: Scenario Unfolds: Stage 2

In stage 3- see Table 9.3 - Nve see that a "Service Restoration" event occurs causing the state 00
of contract in§tance to return to "OK". Also the obligation bearing oil the provider to restore the

service is fulfilled.
In stage 4- see Table 9.4 - we see that two obligations are initiated (by timers that are

specified in the contract instance representation and maintained by the reasoner) stipulating that: 0
SP (a. k. a. "provider") must refund $25 to SC (a. k. a. "Mike Consulting") for poor service (before

0
end of business day) and SC must pay $50 for service to SP (witbin I month). This causes the

contract instance to move into state: "Provider Payment Outstanding" + "Customer Payment

9.3. Contract Alo

I Occurrence I Date/Time I

STATE: OK Mon 13 Sep 2004 22-45-03

INPUT EVENT: SERVICE RESTORATION with (id: slgl) Mon 13 Sep 2004 22-45-03

INPUT EVENT: OBLIGATION with (id: 00, status: fulfilled) Mon 13 Sep 2004 22-45-03

Table 9.3: Scenario Unfolds: Stage 3 C,

Outstanding".

Occurrence I Date/Time

STATE. Provider Payment Outstanding, Customer Payment Outstanding Tue 14 Sep 2004 22-15-03

OUTPUT EVENT: OBLIGATION with (id: ol, bearer: provider,

actions: refund money with (amount: 25.00), deadline: end bus. day)

Tue 14 Sep 2004 22-15-03

OUTPUT EVENT:

actions: pay

OBLIGATION with (id: o2, bearer; Mike Consulting,

for service with (amount: 50.00), deadline: I month)

Tue 14 Sep 2004 22-15-03

Table 9.4: Scenario Unfolds: Stage 4 0

211

In stage 5- see Table 9.5 - we see that an input event saying that SP has fulfilled its obligation
to refund $25 to the service customer occurs causing: the state of tile contract instance moves
from "Provider Payment Outstanding" + "Customer Payment Outstanding" to just "Customer
Payment Outstanding*'. The fulfilment of the obligation bearing oil SP occurs just 10 minutes
after it was initiated and within tile business day as stipulated - the manifestation of the fulfilment

may be that the billing system sent the customer a cbeque, or organised a fund transfer. 0
I Occurrence I Date/Time I

STATE: Customer Payment Outstanding Tue 14 Sep 2004 22-25-13

INPUT EVENT: OBLIGATION with (id: ol, status: fulfilled) Tue 14 Sep 2004 22-25-13

Table 9.5: Scenario Unfolds: Stage 5 0

In staue 6- see Table 9.6 - Nve see that the 1 month timer for the oblioation bearin- on the service 000
customer to pay for service has expired: this moves the contract instance into a "Terminable" state

- SP is empowered to terminate the contract instance.

Occurrence Date/Time

STATE: Terminable Thu 14 Oct 2004 22-15-03

INPUT EVENT; OBLIGATION with (id: o2, status: timeout) Thu 14 Oct 2004 22-15-03

Table 9.6: Scenario Unfolds: Stage 6
0

In stage 7- see Figure 9.3 and Table 9.7 - ive see that, in keeping with SP being empowered
to terminate the service, they do so; the contract instance moves into a "Terminated" state.

It is worth notim, that when SP becomes empowered to terminate the agreement, there is
0 el

no mechanism within the contract for specifying how this may occur. This is where the notion

of counts as, as used in our IWNI-based approach, comes into play. That is, a contract party

212 Chapter 9. Institutional Modelling for the Modelling of Contracts

ýý
I -, 01

-?
Ij

Saturday 16 October 2004 1 S-1 9-32 Help
Slatel-fistory Contract #4, Customer Mike Consulting, Template: Mail Service, Name For Mike Marwell

Occurrence CAPI-finne
STATE OK Friday 3 September 2004 22 15 3
STATE: Service Violation Monday 13 September 2004 22.1 &3
INPUT EVENT SERVICE VIOLATION with (to sIgI) Monday 113 September 2004 22-15-3
OUTPUT EVENT. OBLIGATION with (id oO, bearer provider, actions. resolve breech with (4 sitill). deadline. not specified) Monday 13 September 2004 22-15-3
ý', TAT[1, mo, ý. yýi ýjlnh, 41ý
INPUT EVENT SERVICE RESTORATION with (d sigl) Mond av 13 SePternber J004 22-45-3
INPUT EVENT. OBLIGATION with (id. oD, status: fulfilled) Monday 13 September 2004 22-45-3
STATE Provider Payment Outstanding. Customer Parymerill Outstanding Tuesday 14 September 2004 22-15 3
OUTPUT EVENT: OBLIGATION with (id: ol, bearer: provider, actions refund moneywith (amount 25.00), deadline: end bus. day) Tuesday 14 September 2004 22-15-3
OUTPUTEVENT. OBLIGATION with (id o2, bearer: Mike Consulting, actions. payfor serwice with (amount 50 00), deadline. 1 month) Tuesday 14 September 2004 22-15.3
STATE. Customer Payment Outstanding Tuesday 14 September 2004 22-25-3
INPUT EVENT ORL)6ATION wth (id ol, stahiý tuffillpri) 14 04 ,-)', ý
STATE: Terminable Thursday 14 October 2004 22-15-3
INPUT EVENT. OBLIGATION with (icL o2, status: Umeouo Thursday 14 October 2004 22-15-3
STATE Terminated Friday 15 October 2004 22-15-3
INPUT EVENT TERMINATE AGREEMENT Friday 15 October 2004 22-15-3

Figure 9.3: Final Stage of Mail Service Scenario.

Occurrence Date/Tim

ý
STATE: Terminat. d Fri 15 Oct 2004 22-15-03

INPUT I PUT EVENT: TERMINATE AGREEMENT Fri 15 Oct 2004 22-15-03

'Fable 9.7: Scenario Unfolds: Stage 7

may ascertain how they may fulfil obligations through the query- interpreter available in our IWNI-
based framework. This mechanism decomposes the fulfilment of obligations using extant counts as
relations (which in our work on contract modelling may be considered as an embodiment for the
normative relation power).

Finally, we provide functionality which handles the management of contract instances, such as:

Discovery of registered, and registration/deactivation /reactivation/ annulment of, contract
templates.

e Discovery of instantiated, and instant iation /reactivation /deactivation /annulment of, con-
tract instances.

o Add it ion /annulment/ activation/ deactivation of contract clauses

9 Changing of contract parameters.

e Assertion of contract events.

9 Contract querying.

9 Registration for/deactivate/ reactivate notification of contract events.

e Registration for/deactivate/reactivate notification of contract clause application. C,

9.3. Contract Alo

9.3.2 Other Related Work

213

There has been a good deal of research concerning the representation of contracts for monitoring
their performance. In [81,88] Nlilosevic and colleagues identify the scope for automated man-

agement of e-contracts, including contract drafting, negotiation and monitoring; and describe the
design and implementation of a contract monitoring facility, for cross-organisational contract man-

a-enient. In [341, Daskalopulu discusses the use of Petri-nets for contract state tracking, and

assessing contract performance. Her approach is best suited for contracts which can naturall be
C, y

expressed as protocols, or workflows. One particular desirability of using Petri-nets is that they

naturally facilitate analysis. In the context of contract representation, an example would be to

show that a contract will always terminate in a favourable state for one, or more, contract par-
ties. It is possible, however, to carry out analysis of this nature using our non-INVNI-/IWNI-based

approach to contract modelling.
Molina, -Jiminez and colleagues [82,115] consider a frainework by which contracts may be repre-

sented in machine form; and how they may be monitored and enforced at run-time. They advocate
the use of Finite State Machines (FSMs) for the representation of contracts, which, specifically, cap-
ture obligations and rights' that may obtain between parties.

Their interest primarily concerns the use of contracts in a business and cross- organisational

context. They make the reasonable assumption that business processes (unless atomic) can be de-

composed into sub-processes, which are of lower complexity. The interaction that then takes place
between business partners, pertaining to such sub-processes, (often) may be regulated by separate

sub-contracts. In their approach, each sub-contract would prescribe the rights and obligations that

may come into existence before, during and after the execution of the sub-process. An example

given is a number of sub-contracts which, when aggrepted by a parent contract, pertain to the 00 C3
provision of food-related items to a consumer - one sub-contract relating to the provision of tinned
items, another to the provision of fresh items, and so on.

In discussing the requirements for a formal representation, the authors observe, in [821, that

a fundamental requirement is the capability of validating correctness requirements. In [115], they

present a list of what they consider to be common requirements, such as correct commencement

and termination, absence of locking, and other properties relating to the soundness of contracts.
In [821, the authors define a right to be: "an action that a signing entity [may] do if it wishes".

This notion corresponds most closely to a Holifeldian privilege. It does not correspond to a Holifel- 0

than right, stticto sensu. An obligation is defined, in [82], in terms of what is usually considered to
be a synonym, namely, duty: "an obligation [is]

... a duty that an entity is expected to perform".
The sense of this is apparently that of Holifeldian obligation.

A contract is represented as a pair of FSMs, one for each contracting party, that interact

with each other [82]. A contract is, thus, represented as a pair of local views. For any state of a

particular local view's FSM, there will be a number of events (which may be either locally generated,

or generated by the foreign FSM) whose occurrence may change the state of the given FSM. A criven
FSM state will, thus, be a source to a number of output arcs, some of which pertain to (currently

active) "rights" that the particular party may exercise, as well as obligations that the party may 00
fulfil. Exercising a "right", or obligation, at one side of the contract may, or may not, have an 0 C, 0

effect at the other side.
3NOt stricto sensu.

214 Chapter 9. Institutional Modelling for the Modelling of Contracts

The approach documented in [82,115] advocates the use of underlying middleware to enforce
the rights and obligations that bear on contract parties, as tracked in each FSM. The model checker
SPIN [59] is used, on FSM representations coded in SPIN's input language Promela, in order to 0 C5
verify arbitrary LTL-expressed [61,38] constraints. SPIN may also be used to detect deadlock and
livelock.

Some other research contributions which have considered the modelling of contracts are as
follows. In [22], Grosof and colleagues have sought to address the representation of business rules
for e-commerce contracts. For this purpose, they have developed the SWEET (Semantic WEb

Enabling Technology) toolkit, which enables communication of, and inference with, e-business

rules written in Rule, %IL [9]. In contrast to our approach, Grosof and colleagues are not concerned

with maintaining live representations of contracts for state tracking purposes. A facility for tracking

contract state is (ostensibly) lacking in their work. Rather, they seek to represent contracts for

the purpose of communicating contract rules.
Some similar work is that presented by Pasclike, in [89]. Also based on RuleNIL, Paschke de-

scribes the language RBLSA, meant for the rule-based representation of Service Level Agreements.

There is a significant overla between the work of Pasclike and that of Grosof, described above, 0p
such as the facility for specifying procedural attachments (predicates that are implemented by an
external procedure, such as a Java method), and rule priorities. Unlike Grosof, however, Pasclike's

work does support the tracking of live contract state, through the use of EC-like rules, as well as
explicating deontic concepts such as obligation and permission as distinct ontological constructs.

Finally, [75,931 consider the modelling of the normative state that obtains between provider

and consumer when an agreement for web service provision is agreed, or signed. Notable in both

of these works is their rather primitive consideration of the normative relations that may obtain
between parties. For instance, they do not pay any attention to the modelling of meta-level

normative concepts, such as Holifeldian power.

9.4 An Approach to Contract Modelling Based on Institu-

tional Workflow Modelling

We now present how we have reused work that we have done on Institutional Workflow Modelling

as a basis for the modellin- of contracts. A key benefit of usin- INVAI as a basis for normative

and contract modelling is that we are able to establish emphatically the association of powers and

privileges with the fulfilinent of obligations. That is, in our non-INNINI based work, obligations,

powers and privileges may be asserted to hold, but we never put in place a means of decomposing

the fulfilment of obligations using powers and privileges, because we did not define a mechanism
for doin- so. INVINI -ives us that mechanism.

In our INVINI-based contract modelling (CINI) work, we consider that a contract may generally
be defined as a collection of protocol fragments, together with rules specifying how, and when, these
fragments obtain, as well as rules for specifying how auxiliary (instances of) normative relations
(specified within the contract) may be created or annulled, according to event occurrences. We

consider contract variables, as described in our non-INVAI based approach, to be a special kind

of normative relation, albeit their purpose may be simply to record state that is needed for the

correct operation of the contract, but is of no or little interest to the contract parties themselves.

9.4. An Approach to Contract Modelling Based on Institutional Work-flow Modelling 215

An example may be a simple counter. These rules may be considered to be instances of Hohfeldian

powers. Rom this description, we may also consider the rules to be akin to Event Condition Action

(ECA) rules.
For our purposes, we view a protocol fragment as a partial ordering of tasks that need to be

Z' 0
realised by contract parties. In our work on CINI, not using INVINI, we model protocol fragments in a 00
rather awkward way. That is, we specify a number of ECA-like rules which control the creation and

annulment of various normative relations, such as obligations, powers and privileges. In contrast,
in our INVAI-based work, we model protocol fragments in a contract as INN'NI-based (i. e. HTN-based

Liesbet) workflows, consisting of tasks and actions. Using a task network-based (i. e. workflow) 0
Ian-ua-e is more natural for expressing protocols, given that protocols resemble task networks. 000C,

9.4.1 Legal Relations in a Theodore-based 1WM Protocol ftagment

The legal relations that may be considered to exist in a Theodore-based INNINI protocol fragment

may be viewed from two directions, from legal to IWNI concepts and from IWNI to legal concepts. 00
It is worth noting that the point of casting our work on flexible and traditional workflow modelling
in an institutional sense is to establish the link between legal concepts such as power, say, and
those explicated in our approach to workflow modelling, such as the method artefact in HTN-based

planning. Power and method are related through the institutional concept of counts as, which
Jones and Sergot [63] propose as an apposite means of characterising the exercising of legal power.

We map legal to IWINI concepts as follows. C,

9 We map Holifeldian Power (i. e. exercising thereof) to counts as, and thus methods (and

complex operators)

e We map Ifolifeldian Privilege to permission, and thus operators (and complex operators)

e We map Hohfeldian Obligation to basic/leaf activities in protocol fragments
(D r,

Note that, in this part of our work, we assume brute actions to be atomic (i. e. we do not admit
the notion of brute action hierarchies, as previously described in Section 9.1.2), although this may

not always be appropriate. This assumption simplifies the following discussion.

When considering the mapping in the other direction, the fundamental point of interest is leaf

activities. As stated, these are considered to be obligations (when the activity is enabled, i. e. is

Running). These are obligations either to do an institutional or brute action, which is determined

by whether the activity is a non-primitive or primitive task, respectively.
As in INVNI, the following applies in CNI.

" Primitive tasks (i. e. obligations to carry out brute actions) demand the presence of operators
(i. e. privileges) so that agents may be identified to carry out these actions.

" Non-primitive tasks (i. e. obligations to carry out institutional actions) demand the presence 0
of inethods (i. e. powers) to facilitate their refinement into networks of primitive and non-

primitive tasks (i. e. brute and institutional actions, respectively), where these tasks are to
be further refined using extant operators (i. e. privileges) and methods (i. e. powers).

" An HTN action represents a brute action which comes with an automatic privilege, assigned
to a particular role.

216 Chapter 9. Institutional Modelling for the Modelling of Contracts

9 Complex operators combine the application of methods (i. e. powers) and operators (i. e.

privileges).

Note that the absence of a power (resp. privilege) to perform an institutional (resp. brute)

action is determined by the absence of a method or complex operator (resp. operator, or containing

complex operator), to carry out the action. The absence of any such a decomposition relation does

not automatically imply the presence of some disability (resp. prohibition) relation, however. It is

possible to model such a closed policy [411, if desired, using an auxiliary theory. 0
The entity which controls the availability of decomposition relations (i. e. methods, complex

operators and operators), and thus controls empowerment and assigning of privileges is the contract 0 C, 0
inodel. We describe this entity in some detail in tile following presentation. C,

Note that ive consider that obligations to perform brute actions bear on particular roles. In

contrast, obligations to perform institutional actions may bear on particular roles, but may also 0
be described as being anonymous where the intent is that further decompositions of tile pertaining 00
HTN task prescribe specific roles. Similarly, methods, operators and complex operators may be

role-specific, or anonymous. We consider that anonymous normative relations and decomposition

relations bear on the institution that is the contract itself.

9.4.2 Event Handling Logic

The specification of a contract in our INVINI-based framework comprises a contract model, along C,
with a number of INVINI-specified protocol fragments. The contract model essentially specifies 0
the effects of contract-related events (both exogenous and internally-generated) on contract state, 0 C,
creatin- and annulling protocol fragments in response to these events, as well as creating and
annulling instances of normative relations.

The underlying event handling logic, in our contract modelling framework, is an evolution of Z' C' 0
that used in our non-INVAI based work. It is still based on the Event Calculus. The framework

stores both exo-enous events and events from INVINI-based protocol fragments
0 00

(such as chan-es in

the state of activities) in an event narrative, which is a similar artefact to that described previously.
Rules within a contract model dictate the effects of these events. As well as causing the state of
(instances of) normative relations recorded in the kb to change, these events may cause the assertion 0
of state signifying that instances of particular workflow fragments should be created or annulled.
The contract model may also determine that certain events should be pushed to subscribers in the

environment, in response to events in the event narrative.

As an example, the contract model may contain the rule:

event E initiates create(TerminateService)

where TerminateService is the name of a workflow fragment. According to this rule, an instance

of the create (TerminateService) relation should be asserted to kb in response to the occurrence

of E. There is a correspondin. - annul relation, which indicates the annulling of workflow fragments.
100

The assertion of create and annul instances are transparent to the INXIM engine, which will act

on them accordingly. 0

9.4. An Approach to Contract Modelling Based on Institutional Work-flow Modelling 217

9.4.3 Verification of Contract Fragments

For verification, we make a distinction between fixed and variable contract models. A necessary

condition for a model to be fixed is that the set of decomposition relations, described therein, is

fixed. This is a condition that carries over from our work on flexible workflow modelling. Another 0
necessary condition is that a power may not be exercised in the absence of an obligation that

prescribes the institutional action to which the power applies.
As our approach to contract modelling is based oil our work on flexible workflow modelling, we C' 0

reuse a lot of the components implemented in the verification and enactment engine for Theodore 0
flexible workflows. For fixed contract models, a contract author or contract party (in enactment)

may make use of the IAVNI-based verification facilities for soundness (i. e. completion along all C,
enactment paths) and arbitrary properties expressed in a constraint language, such as a temporal
logic like CTL*.

Note that properties are not verified for a contract as a whole, rather, just for individual

protocol fragments, i. e. ANINI-based workflows. As a result, there is a notion of independent sub-

contracts that is imposed, where each IWNI fragment is such a sub-contract. This is not necessarily

as restrictive as it may sound. As described in the work of Nlolina-Jiminez [82,115], it is often
the case that contracts will naturally be composed of independent sub-contracts. The notion of

contract soundness carries over from the notion of soundness defined for INNINI models. A contract
is sound iff each protocol fragment defined therein is sound, according to tile INVINI-based criteria
for soundness. Our verification approach also ensures that the presence of an obligation always
entails the presence of sufficient powers and/or privileges so that the obligation can be fulfilled.

Often, sub-contracts will specify fully-prescribed protocols of behaviour that should take place
between contract parties. Complex operators are ideal candidates for such protocols. An example of

such a protocol might be a buyer-seller protocol for buying goods and having them delivered. This

could be expressed as the sub-workflow Seq(Pay, Deliver), with pre-specified decompositions of
Pay and Deliver into finer structured and basic activities. These activities will represent further

power and privilege relations, respectively, which hold by prescription of the complex operator.
Note also that, for both fixed and variable models, a contract party may perform "what-if"

simulation and "what may I do next*" querying.

9.4.4 Derivation of Obligation Rilfilment

One aspect of our MINI-based approach to contract modelling is the mechanism it affords for

decomposing the fulfilment of obligations using powers and permissions. Such a facility in contract

modelling and enactment frameworks is typically overlooked, although some such as Molina and

colleagues [82,115] do make provision for reconciling privileges with obligation fulfilment. That is,

their work doe-s not consider the distinction between institutional and brute actions in contracts,
but they do consider that the presence of an obligation must entail the presence of a privilege
(which they call a right).

Note that our verification framework always ensures that an active obligation entails the avail-

ability of appropriate powers and privileges to fulfil it. That is, 0 =* {R, P), where R abbreviates

power and P abbreviates privilege.

an active Moreover, powers may be used by a contract enactor independently of there being

218 Chapter 9. Institutional Modelling for the Modelling of Contracts

obligation prescribing the (institutional) action associated with the power. We consider this to be
00

a wholly appropriate notion. (Note that we disallow this dispensation for fixed models, for reasons

of decidability in verification). Arguably, for every active R, there should be active P relations (and

possibly further R relations) that enable the exercising of the power. That is, R =t- {R, P1. This

is a moot point, philosophically. Our verification approach does not check it, although it could be
0

made to do so.
In contrast, we would not consider it appropriate to check for the presence of active R relations

for any active P relations so that, in some sense, every P relation would have some meaning
institutionally. Rather, we consider it to be appropriate that agents are permitted to carry out
brute actions which are not necessitated to have an institutional effect.

9.4.5 Transf erProperty -A Simple Example Pertaining to the M-ansfer

of Property

We now present a simple example of our INNINI-based approach to contract modelling. We consider
two versions of a contract and, for each, a single protocol fragment with no auxiliary normative 00
relations suffices for its represent ation. The example is based on an excerpt from [23], where Brady

seeks to exemplify the distinction between power and right. Brady writes:

[I]t is a mistake to think, as some have done, of a power as a lesser or limited right.
In some cases, it is more advantageous to have a power rather than a right. As an
example, take the position of a vendee in regard to a conditional sales contract of
personal property. Suppose that all but the last instalment has been paid. When
the last instalment becomes due what is the vendee's le-al interest in re-ard to the

property? There is a significant difference in analysing his interest as a power to have
title to the property passed as opposed to a right to have title passed. If the vendee
only has a right to ownership of the property, the vendor is under a duty to confer title.
Thus the vendor could return the previous instalments, renege on the contract, and the

vendee would have to sue the vendor for breach of duty in order to get the title. On

the other hand if the vendee has the power, by paying the last instalment, to acquire
title, the vendor can do nothing to prevent the title from passing. In this example, the

power to acquire title by paying the last instalment is a much more advantageous legal 00 C5
relation than having only the right to have title passed. C, C,

For this example, we can represent both scenarios using the same Theodore-based planning
domain. The purpose of the contract in either scenario is to transfer ownership of the title for

the given property. Let's call the initial task in the planning domain Transf erProperty. There

is a power involved in both scenarios relating to this task, otherwise, the transfer would not be

effected. But what counts as realising this legal change?
In the case that the vendee lacks power to acquire the contract, it is the vendor who has

power to dispense it. Let's say that three instalinents need to be made (by the vendee) for the

vendor to be under a duty to transfer the title. The plarming domain (in this case) might contain a

method which decomposes the task Transf erProperty into the network: Seq(MultiSeq(3) (Pay) ,
Transf erTitle). This network counts as the vendor transferring (the title) of the property.
Instances of the Pay task are obligations bearing on the vendee to pay. Each Pay instance would 00

9.4. An Approach to Contract Modelling Based on Institutional Work-flow Modelling 219

be decomposed according to one or more domain constructs. These could be methods/complex 0
operators such as SendCheque counts as Pay, or EFT counts as Pay, say. The task Transf erTitle
is an obligation bearing on the vendor to transfer the title and would be decomposed by a number 00
of domain constructs.

The Theodore domain for this scenario mi-ht thus be constructed as follows. We call this 0
contract, the no power contract5, for convenience.

o Initial task: Transf erProperty.

* Method: Seq(MultiSeq(3) (Pay), TransferTitle) counts as Trans f erProperty.

(Pay on vendee, Transf erTitle on vendor)

e Complex Operator: SendCheque counts as Pay.

(Pay on vendee, SendCheque on vendee)

* Complex Operator: EFT counts as Pay.

(Pay on vendee, EFT on vendee)

a Complex Operator: SendSignedTransf er counts as Transf erTitle.

(SendSignedTransf er on vendor, Transf erTitle on vendor)

In tile scenario that tile vendee is empowered to acquire the title to the property, the Theodore

domain might be constructed as follows. Note that there is no actual action required of the vendor.
As soon as the vendee has made the three payments, (the title to) the property is transferred. We

call this contract, tile power contract, for convenience.

e Initial task: Transf erProperty.

* Method: MultiSeq(3) (Pay) counts as Transf erProperty.

(Pay on vendee)

e Complex Operator: SendCheque counts as Pay.

(Pay on vendee, SendCheque on vendee)

* Complex Operator: EFT counts as Pay.

(Pay on vendee, EFT on vendee)

In Sections 11.2.2 and 11.2.3, we show examples of verifying the soundness of these contracts 0
using the Theodore verification, planning and enactment engine. For instance, we show that in

C, 00
the first contract, completion of the MultiSeq, containing three occurrences of the Pay activity, is

0
not enou-Ii to effect transfer of the property, whereas for the second contract it is.

0

'In the following, MultiSeq(3) (Pay) effects three instances of the Pay activity, in sequence.
'Le. no power on the vendee.

220 Chapter 9. Institutional Modelling for the Modelling of Contracts

9.4.6 Further Comments Regarding Example of Mail Service Agreement

In our previous representation of the example mail service agreement, presented in Section 9.3.1,

we proposed PayForService as the name of an action that needs to be carried out by SC. In an
MM-based representation of this agreement, we could characterise the action PayForService as
follows.

Firstly, we would model it as a workflow fragment corresponding to a Theodore model/planning

problem. The model would specify just this task as its initial task, and, when enabled (i. e. set

Running in Liesbet-speak), would correspond to an obligation obtaining on SC to pay for service.
We consider that the task would be an institutional action, meaning that there would exist powers
(as methods and complex operators) and privileges (as operators, and contained within complex

operators), specified as part of tile Theodore model, bearing on SC, so that SC may fulfil the

given obligation.
Also consider the contract excerpt: If SCfails to pay within the given time, SP may terminate

the mailbox service without notice. The term may here implies a power on tile part of SP to

terminate the agreement. We could model this power as a decomposition relation (i. e. method)
that becomes available for use (i. e. is enabled) once SC has failed to pay.

This is not all obligation on the part of SP; indeed, SP may elect not to exercise it. As already
described, we allow contract enactors to apply powers - they may query their existence through

a "what may I do next? " query- interpreter - in the absence of a task within the contract model
that prescribes an associated obligation to which the power would apply.

Within the contract model, there may exist tile definition of a method:

Method: Seq(MultiSeq(3)(SendWarnings), TerminateService) counts as TerminateAgreement.

TerminateAgreement on SP.

When such a method becomes enabled (i. e. is available for use), within the enactment of a
contract model, SP (as specified in the definition of the method) may terminate the agreement,
but not before sending three warningrs to SC first. Thus, to exercise this power, SP must further

0
decompose and enact the workflow Oven on the left-hand side of the method.

9.5 Concluding Remarks

We have shown in this chapter how the work that we have carried out concerning the modelling

of traditional and flexible workflow may be reused, by explicatinc, an institutional perspective for

workflow. In defining the notion of Institutional lVork-flow Modelling (INNINI), we identify the

institutional concepts of counts as and permission, and the related classification of actions into

institutional and brute classes of action, to be pertinent to the cliaracterisation of workflow. These

concepts are also pertinent in normative and contract modelling (NCNI), and our experience shows
INNINI to be useful as a foundational basis for NCM.

Thus, it is through INNI'M that we link artefacts inherent in workflow to normative concepts

used in contracts, and propose a means of reusin, our work on workflow. We define 11VAI to

be the sum of our Theodore-based approach to flexible workflow modelling and the presented

correspondences of counts as and permission relations to workflow artefacts, on the one hand, and
HTN-based planning, constructs (i. e., methods, operators and complex operators), on the other.

9.5. Concluding Remarks 221

When INVINI is applied in the modelling of contracts, counts as provides a means of modelling 00

power, and permission provides a means of modelling privilege (in the terminolog of Holifeld). 00 Cly
Jones and Sergot [63] identify the correspondence between counts as and power, in respect of

counts as relations prescribing ways in which powers may be exercised. The question of how powers

should be exercised is arguably the most important aspect of this normative concept. Obligation

is modelled by leaf activities within INVINI model fragments, which may pertain to institutional

or brute actions that demand the presence of powers and privileges (as methods and operators, 0
respectively) to refine them.

A particularly interesting aspect of our approach to contract modelling is it relates the fulfilment 00

of obligations directly to the existence of powers and privileges, in providing a mechanism by which

contract enactors may query and plan obligation fulfilment using these relations. The distinction
00

between institutional and brute actions in the modelling of contracts, and thus the distinction
0

between power and privilege, is often overlooked in the modelling of contracts (see, for example,
[82,1151).

For verification, we make a distinction between fixed and variable contract models. A necessary

condition for a model to be fixed is that tile set of decomposition relations, described therein, is

fixed. This is a condition that carries over from our work on flexible workflow modelling. Another

necessary condition is that a power may not be exercised in tile absence of an obligation that

prescribes the institutional action to which the power applies.

For fixed contract models, a contract author or contract party (in enactment) may make use of
the INVINI-based verification facilities for soundness (i. e. completion along all enactment paths) and

arbitrary properties expressed in a constraint language, such as a temporal logic like CTL*. For both

fixed and variable models, the frainework enables a contract party to plan obligation, fragment

and contract fulfilments according to subjective constraints and to perform what-if simulation. 0
In neither of our (non-INNIM and INNIM-based) approaches on contract modelling, do we include

any built-in support for specifying a theory of normative concepts and their inter-relationships,

other than that which is a by-product of Institutional Workflow Modelling, which gives a means
by which the fulfilinent of obligations may be specified and derived. For INVAI-based models, we

verify that the existence of an obligation entails tile existence of sufficient powers and permissions
for their fulfilment.

The utility of an INNINI-based approach to contract modelling is evident from both examples

given in the chapter, namely, the Transf erProperty and mail service agreement examples. We

propose a hybrid approach to contract modelling, where a contract is modelled as a number of
INVINI-based workflow fragments along with a set of auxiliary normative relations. Other research
contributions focus oil one or the other, whereas we argue that a hybrid approach such as ours
is a more natural way of viewing and modelling contracts. Although we have not particularly
emphasised the role of auxiliary normative relations in the discussion in this thesis, it is clear
that some means of supporting the modelling of additional normative concepts such as prohibition,
entitlement [92], and others, would be of utility. As part of accommodating tile definition and
representation of auxiliary normative relations, we could extend our framework to account for
theories of normative concepts that may be identified as being desirable.

0
fl, future work, we need to give our approach to contract modelling a comprehensive road-test

, -igaillSt a number of different sorts of contracts in order to identify any weaknesses in our modelling 0 C'I

222 Chapter 9. Institutional Modelling for the Modelling of Contracts

verification and planning approach. However, we feel that our INNINI-based approach is a significant
improvement over our previous work on contract modelling in directly supporting the modelling 00C,
of protocol-like artefacts in contracts. In the next chapter, we give an overview of how we have

0
implemented the authoring, verification and enactment frameworks for Liesbet and Theodore.

Chapter 10

Implementation

In the following chapter, we present a concise overview of what we have implemented in the course

of our work. As van der Aalst and colleagues argue [1231 "any proposed language should be
0000

supported by at least a running prototype in addition to a formal definition". We are of the same

opinion, and thus considered it essential to provide such a framework.

We start with a brief presentation of the Eclipse Modelling Framework which provides persis-
tence functionality, and follow that with an overview of the structure of our implementation. Then,

we go through each of the components in our framework, in turn: the Liesbet verification and

enactment engine, the CTL* constraint cliecking encrine, and the Theodore verification, planning 0 ID C,
and enactment engine.

10.1 Eclipse Development Platform and Eclipse Modelling

Framework

We have used the Eclipse Development Platfor7n (EDP) [31 to facilitate a Java-based implemen-

tation of verification and enactment engines for Liesbet and Theodore. It is an Integrated De-

velopment, Environment (IDE), which provides a number of useful features, including support for
C,

test writing.

The Eclipse Modelling Framework (ENIF) [41 is a modelling and code generation facility, which C, 0
comes as part of the EDP. Tile key features of ENIF that motivated its use are: its support
for UNII-like class and relationship modelling, its code-generation capability and its support for

C, 0
persistence. We have used the facility within ENIF for the definition of class models to define

a number of nieta-models for Liesbet and Theodore. Rom these class models, ENIF is able

to generate a collection of Java-based APIs (Application Programming Interfaces) which may be
000

used to traverse instances of these models stored in memory. The persistence support within ENIF

makes it possible to save models which have been created using the generated APIs, and load them 00
back in for traversal using tile APIs. It thus provides a model-specific way of loading and storing C, 00
data to/from file, in a way that is hidden from the programmer. ETNIF also provides (extensible)

0
support for the graphical authoring of instances of class models. 0

223

224 Chapter 10. Implementation

10.2 Structure of Lie sbet /Theodore Framework

The structure of the Liesbet/Theodore verification, planning and enactment framework is modular C,
in nature. The following modules exist in the complete framework. 0

Liesbet NVorkflow Verification and Enactment Engine.
0

s Theodore HTN-based Planner.

e CTL* Temporal Constraint Engine.

Service Selection Engine. C,

o Knowledge Base. C,

Most of these modules have a class model associated with them for describin- confi-uration 0 13
instances of the -iven modules. For example, the Liesbet module has a class model for describ-

in- Liesbet models, the Theodore module has a class model for describing Theodore planning

problems and the CTL* module has a class model for specifying CTL* formulas.

Tile Theodore class model, shown in Figure 10.1, is the core class model in the framework,

inherited by all other class models. It serves two purposes. Firstly, it enables the specification

of Theodore planning domains; and thus specifies a number of interfaces that (typically) need to

be implemented, such as: Workflow (for the specification of the task network -e. g., Liesbet-

based - used in planning), ConstraintChecker (for the progression-based constraint engine),
ServiceSelector (for the service selection engine, responsible for prioritising the use of HTN

domain constructs) and KnowledgeBase (for the particular knowledge base instance, primed with
its initial state). Secondly, it serves as a repository for these interfaces, in the event that planning
is not used. For instance, we can run a Liesbet verification instance, without the use of Theodore

per se; but some aspects of the problem will be described using classes that are a part of tile

Theodore class model, such as Workflow.

We now describe tile implementation of each of these modules in detail, starting with the

Liesbet verification and enactment en-ine. 0

10.3 Liesbet Workflow Verification and Enactment Engine

The class model for the Liesbet NVorkflow Engine is presented in Figure 10.1. The LiesbetWorkf low

class extends the Workflow class, defined in Theodore's class model. This means that it inherits

the capability of specifying a collection of ConstraintChecker engines. LiesbetWorkf low speci-

fies the root *activity (Activity) of the workflow model and specifies a set of AbstractActionType

(i. e. ISA) hierarchies, collects together all of the activity and query definitions in the workflow

model, and facilitates the specification of a number of synchronisation rules pertaining to the

model. Activity is a base class to many other Liesbet activity-related classes. It captures the

join and transition condition types of an activity type, whether the type is isolated or not, and

the customised type name, or ctype, of an activity. As can be seen, there are a number of other

classes, which are largely self-describing.

10.3. Liesbet Workflow Verification and Enactment Engine 225

--. 1 -1 -7 ý, 7-. -Ir. 0
I Ila - -gag..

+ C., t2ý ; L-41

-1 Thcýw eDaffuw
opfrators ; OpeFMW

- ,&ý: estroc
TheodoreProbleM
I? Usk : Viorkftw

16 - KfowiedgeSaw

jwm: Es"

IFIp, cormtrawtj-wedcars: CcrtstrantChedwr

ro, dommm : TheocloreDurrian

; -- nwe: ESbrwV

tq ThoxioreDommiCormiruct
Estrnc

prec: KDQuery

co"trLct-parad; P&MMI&
IF tal*ivere: ES*vo
a ta*_paras: Wamelier

Nled-*d - '> TtwQdprdWWC*W"
C? work'Now : work%w
Operator -> ? I-&odorvOom&vCwwb%ct

43 resuft: RMA
Cwmiexoperator -,, Opwator

C3. wc*fm : viork%w

wee
e. owwormt-&*citers: Caistain0vedw
- nume: EStrft

rarme: EStMig
us^

debennouble: E-Boultan

mariber : Estrrq
~s affect

condbun: KBQuwy s
-j L vkct

Serwgse*ctor

cor-. 3traints : FRý I'
C0fdbrarttO*0w

- ram: eStrV)Q

KrOmodgeBw

-A
KBQWy

Cormule 3. m --, Pt WC. ties vwubim

W of 9am 3-

-esbet
L, Uegbel. %IoAf*A -> W&kflove

Mot_&Mo' ty : ACgvqy

root_tyM: Ak*Vr&Ctk$QnrWv

An-ty_or*w%M: ACOWty

CIL-Y_dL, &rb- : QL-y

Acirdy

pn : Acbv*y
Ir" : Actvft

SOWed : E9*Olw

ctype AbsfyKlAcWTvpe

was paraveter
Par . 3. Actm-vvmha%i*w
Seq --l ACVvl4W%PO4*"
FfeeODce -, Ac"
Emty -> AcWtV
AbstractSvrx -; - Acbmtv

-I- QLMV - Query
StopGo -> DoLb*Svric
Go -> Ab-, tr&ctSync
SOK&%d - %a
Aj)8jrWKftjm -> ACWtV
?. com: cholc~

m; Choc~t

qjWd - ACVwty

wbuaton: ACVd"
;i DeWtCh=e -), AbsvocIC3-am

'- deW : Acbvdy
OcKe -; - AbstxtOvom
WbChom -> AbstractChom
CMX&a-AtY -> Advity

_tmx;
Absbract4mnTyce

cameiAce., ityQAf-> carxeActmtv
J1 ref_tMe: At)$&aCtACWn7yVe
Tb* -)- ACWnWAOX; hý

ACVv4WAdK3vOef ->Act--. Itv

jT &Adren: Acf: vtty
Corftr*dAcb-AtY - ý-. Acb,, ty
T' act. AcW2V

Coreole 3j-. l arubift

52mofsam eg

Figure 10.1: Theodore (let't) and Liesbet Class Models.

226 Chapter 10. Implementation

For verification, a Liesbet model is loaded into a number of AfySQL database tables. Our

SitCaic-based characterisation for Liesbet naturally lends itself to a relational database imple-

mentation. The relational and functional fluents, which are updated according to the successor-
state axioms (presented in Section 6.2), are implemented directly as a number of database tables.
The queries on workflow state that are used within synchronisation activity types, and also the

activity (and optional reference) types used within CancelActivity* types, are also stored in a
database table.

The bodies of successor-state axioms are specified in first-order logic in a way that has a direct

correspondence to the domain relational calculus [31]. SQL queries are a sugared-syntax for an
extended version of the tuple relational calculus. The two calculi are very similar in nature - just
the domains of quantification are different. This means that there is an eas mapping between the y C,
bodies of ssas and the appropriate SQL queries that need to be used in our implementation. This

makes the implementation of the SitCalc semantics straightforward. 0
For example, the definition of AllDescSiblingsFinished/3, presented in Figure 6.11 of Sec-

tion 6.2.2, can be written (equivalently) thus:

AllDescSiblingsFinished(il, i, s) =- Descendant (i, i ', s) A

-(3d). [-d=il A Descendant (i, d, s) A -Descendant (d, i 1, s) A -Descendant (i l, d, s) A

-State (d, s) =Completed A -State (d, s) =Cancelled]

Here, we are seekin., to identify the ancestors of iI which should be completed, in the next
situation to s. In the implementation, we use the following SQL query for the same purpose - to
find the ancestors of inst that should be completed. Note that it has the same construction, save
for differences in syntax, to the presented definition AllDescSiblingsFinished/3.

SELECT D. ANC FROM DESCENDANT D WHERE D. INST="+inst+" AND "+

"NOT EXISTS (SELECT * FROM DESCENDANT D1 , STATE ST WHERE "+

"DI. ANC=D. ANC AND DI. INST! =D. INST AND DI. INST=ST. INST AND

"NOT EXISTS (SELECT * FROM DESCENDANT D2 WHERE Dl. INST=D2. ANC AND D2. INST=D. INST) AND

"NOT EXISTS (SELECT * FROM DESCENDANT D2 WHERE Dl. INST=D2. INST AND D2. ANC=D. INST) AND

"ST. STAI="+LiesbetInstance. g-STA-CAN+" AND ST. STA! ="+LiesbetInstance. g-STA-COM+

11
) .1

When loading a model for verification, the implementation will check for cycles that may have

been defined in the workflow model. Cycles are not allowed in the definition of Liesbet models.
For instance, X=Seq(X, Y) contains a cycle. We check for this by verifying that an instance of an

activity being added, to the internal model representation, does not have the same ctype name as

an ancestor of the instance. The loading process also divides a model into a number of verification

runs, as described in Section 7.2. As an alternative to the verification functionality offered by

Liesbet's verification engine, the engine can instead output verification runs as CCS/PCCS agents,
for verification using CWB-NC. This feature has aided our work in respect of the investigation into

the utility of CCS/PCCS for providing semantics, and verification support, to Liesbet.

In performing verification, we maintain a number of state tables - one for each number of

activity instances in an evolving model. If the number of instances in a model stays the same
throughout its enactn-ient, which will be the case if the model does not make use of non-limited

multiple activity instance types, a single state table will be used. 0

10.4. CTL* Constraint Checking Engine 227

Each row of a state table pertains to a single state of tile workflow model being verified. Each
field corresponds to the state of an individual instance in the model. The state is represented by a
numerical value (e. g. 0 for Ready, 1 for Running, and so oil). When we come to evaluate whether a
new situation (according to the verification al-orithm, presented in Section 7.4) is a matched state
(i. e. a situation whose activity instance state is the same as that of a situation which has been

previously visited in the verification process), we simply check whether there is a row in the table
that has the same values for each of the activity instance fields.

The algorithm that has been implemented for verification is that presented in Section 7.4. A

verification run can be configured with one or more constraint checker instances. For tile time
being, the only constraint checker that the framework supports is one for CTL*-based constraint
checking. Many examples of the verification of Liesbet models, including runs which perform
CTL* checking, are presented in the next chapter (11).

The framework call also be instantiated for tile enactment of Liesbet workflow models. For

this purpose, once a model is loaded, the engine waits for events from the environment and/or offers
to the environment the possibility of completing, or cancelling, one of a number of basic instances.
As events (such as those pertaining to the completion of basic instances) from the environment are
received, the internal representation of the model is progressed, as dictated by the SitCaic-based

semantics.

10.4 CTL* Constraint Checking Engine

The class model for the CTL* constraint checking engine is shown in Figure 10.2. It is used 000
for specifying CTL* constraint formulas. We can check CTL* formulas against Liesbet workflow 0 C,
models, or against workflows which have been generated by the Theodore planner, i. e. against 000
LiesbetWorkf low models, or TheodoreProblem specifications, respectively.

The CTLSConstraintChecker class extends the ConstraintChecker class, defined in Theodore's

class model. When a LiesbetWorkf low, or a TheodoreProblem, instance is loaded into memory, an
instance of the CTLSConstraintChecker (implement ation) class will be created for every constraint
specified in its constraint -checkers field. The CTLSConstraintChecker class contains the defl-

nition of a number of CTL* propositions which are used. in the definition of the root -propos it ion

constraint. It is this constraint that is checked against the LiesbetWorkf low, or in the context of C,
the TheodoreProblem.

In verification, CTL* constraints are progressed through workflow states. In tile implementation,

we use tile following (AIySQL) database tables for maintaining the state of progressed versions of
the original constraint:

e CTLS-PROP- idx INT, code INT, nt INT, propl INT, prop2 INT

This table maintains the propositions that make up the composite temporal constraint, to

be verified. idx is a table index, code captures the type of proposition (some paths, or, next,

etc.), nt determines whether the proposition is tinder negation, propl and prop2 are indices

of sub-propositions.

e CTLS-EVAL-REC - idx INT, prop INT, res INT, st-idx INT

228 Chapter 10. Implementation

"T sew. + Clro"tha ; Lý Sartpe S. 13re Scaý

fl: eeXt -> PrDPCdXtXr

r4 -> P, by,
E L-ý-ertýdy01Path -ý PCCý»bWý

um# -> pw»mn
?, umtl-', m: Pmýx»t-om
Releaft -> Lm
tiot ->9, *pmbgm

Ud &rd -> elw vchi&"
L4 0,

cotvopmbjm : ; -ropmbw
7fe - P, -' - tom
Figte -PI- Mm

u>e. Ketý-

e; L-' :- -00054b, -
:r. Pcp>ýmp,

Wca

Selem e=v

Fi, --ure 10.2: CTL* Constraint Checker Class Model.

'Fhis table maintains the progression of the composite temporal constraint for various states

of enactment. idx is a table index. prop is the pertaining proposition in CTLS-PROP. res
captures the current result of the proposition (e. g. TRUE. FALSE. UNDEF. ...

), st-idx captures
the state to which the proposition pertains.

e CTLS-EVAL-CHILD - pidx INT, idx INT, st-idx INT

This table maintains the parent, child relationship between progressed formulas; where idx t,
is the index within CTLS-EVAL-REC of the formula representing the progression of the formula
(given by pidx in CTLS-EVAL-REC) to the current state (st-idx).

As part of the initialisation of the verification process. we translate a given CTL* constraint
into one which uses only the primitive symbols that we have decided for CTL*. as described in

Section 7.3. That is to say, we replace any abbreviations with their respective expansions: and

repeatedly do so until the formula no longer uses any abbreviations. The formula. after this

processing, should only make use of: -, v, T. 11. E, X and U.

'We allow I as it is trivially supported in the implementation.

10.4. CTL* Constraint Checking Engine 229

A CTL* constraint may be conceptualised as a tree of the atomic propositions, as leaves, which

are recursively combined using logical symbols, to form the inner-nodes of the tree. In pre-

processing a CTL* constraint, we start at the root of this tree and work out to the leaves. At

any inner-node within the tree, we process the formula at that node according to the logic symbol
being used to combine the children of the node, or if it is a leaf, according to the nature of the

atomic proposition.
We load the translated CTL* constraint into the CTLS-PROP table, starting at the root node of

the conceptualised proposition tree. A node (leaf, or internal) may specify a proposition which has

already been loaded into CTLS-PROP, as part of pre-processing another node. In this circumstance,
the same CTLS-PROP entry will be used, and further processing along the branch of the proposition 00
tree stopped.

In pre-processing a node, we strip off leading negations. For every negation, we tog le whether 0000 09
the proposition is under negation or not. We maintain a record in memory of the indices of

records, in CTLS-PROP, corresponding to propositions both not under, and under, negation. For the

proposition that is exposed after stripping off leading negations, we check the memory records for
0 ?DC,

whether the proposition has been previously loaded (given whether it is not under/under negation).
If it has already been processed, we return tile index of tile pertaining record in CTLS-PROP to the

logic processing the parent node. If it has not already been processed, we insert a new record into
0

CTLS-PROP, as now described. Having processed the proposition, we update the memory record 0
for the proposition, by assigning the index (of the new table record) to the appropriate "not

0 ?D
under/under negation" field. We distinguish the processing of a proposition on the basis of its

type.

" Atornic query formula - The new record contains: a code stipulating that it is an atomic 0
query formula, whether it is not under/under negation (as nt), the particular query formula

0
used (as propi), e. g. Completed-act, and the customised activity type name of interest to

the query (as prop2).

The atomic queries that are supported for Liesbet verificatio n are those presented in Sec-

tion 7.3. These are queries on activity state, with the general forms: State-act and 0
State-all; where State is one of Completed, Cancelled, Finished, Running, or Initial.
Queries making use of reference types are not allowed.

In the context of planning with Theodore, we also support arbitrary querying against current 000
knowledge base state, within the limits of bounded quantification [17].

0

" Some paths (E4)) (resp. Next, XP) - We process the proposition 4), which will yield an index

into CTLS-PROP for the proposition. The new record, then, has a code stipulating that it is a
44some paths" (resp. "next") proposition, whether it is not under/under negation (nt), and
the index of the child proposition 43 (propl)-

" Or (4,1 V ... V 43, J - We process the propositions P1
...

4),,, which will yield indices into

CTLS-PROP for the propositions. The new record, then, has a code stipulating that it is an 0
"or" proposition, and whether it is not under/under negation (nt). We then also create a C,
number of supplementary records to record the child indices. These have their code fields

set to reflect their association with in "or" proposition, with nt set to FALSE, propl set to

the index of the parent "or"' record, and prop2 set to one of the child indices.

230 Chapter 10. Implementation

prog(s, (D, T) = -prog(s, 4))

prog(s, (P, -L) = prog(s, 4))

prog(s, -L) =I

prog(s, T) =T

prog(s, o) = eval(p, s)

prog(s, E(D) = prog(s, fl

prog(s, X4)) = next(s, 4))

prog(s, ýDj V ... V4D,) = prog(s, ýPI)V ... Vprog(s, (Dl)

prog(s, 'DIU4'2) = if final(s) then prog(s, (P2)

else prog(s, (D2) V prog(s, ýDj) A next(S, (PIUýDD

where final (s) determines whether s corresponds to a state where all activity instances in the workflow

model have finished, next (s, T) stipulates that the proposition 4) should be progressed through any
subsequent state to s and eval evaluates p, being an atomic query formula, against the current state s.

'Fable 10.1: Definition of prog/3 and prog/2, for Progression of CTL* Propositions Through States. 00

Until (4)lU4)2) - We process the propositions (Di and 'D2, which will yield indices into

CTLS-PROP for the propositions. The new record, then, has a code stipulating that it is

an "until" proposition, whether it is not under/under neogation (nt), and the indices of the

child propositions (DI (propi), and 42 (prop2).

An exception to this processing is if tile child proposition that is processed is simply T (or J-)

prefixed with zero or more negations. In this case, we strip off the negations, toggling tile truth 00 0ý1 C,
value. We then use special index codes, which are taken to mean TRUE, or FALSE, in the parent
table record being inserted.

We also check that the temporal constraint being checked is a state formula, and not a path
formula, which is a necessary constraint as we wish to verify CTL* state formulas against the initial

state of Liesbet models.
When carrying out the verification process, we use the function prog/3, as defined in 'rable 10.1,

to progress constraints from the last state. If the current state is the initial state of the workflow
model, we create a new entry in CTLS-EVAL-REC for tile initial temporal constraint. We then apply
prog/3, which will have tile side-effect of creating further entries in CTLS-EVAL-REC, with their
dependencies reflected in CTLS-EVAL-CHILD. Note that, if we come across a proposition that has

already been progressed in the current state, we do not progress this particular instance of the

proposition any further, but we do update CTLS-EVAL-CHILD to reflect that a further parent index
is to be related to any evaluation result for the (already progressed) proposition. Also, if tile said
proposition has already had a result assigned to it, this result is propagated upwards, as described
in subsequent paragraphs.

The function prog/3 is used during the verification procedure, where the last argument indicates

whether the second argument, 4), is under negation. If it is (indicated by T), then prog/3 negates
the progression of 4), determined by prog/2.

In applying prog/2, when we reach:

10.5. Theodore Verification, Planning and Enactment Engine 231

1, or T, we propagate the result u the proposition tree, as explained below.
0P

An application of eval, tile proposition will be an atomic query formula. We evaluate tile
formula and propagate the result up the proposition tree.

e An application of next, the proposition needs to be evaluated against the next state so xve 0
stop progression (along this branch of the proposition tree) for the current state. 0 41

For states other than the initial state, we apply prog on the propositions that were under an

application of the function next in progressing the previous state.
In progressing a proposition, in a state, whenever we evaluate all atomic query formula, or

reach a simple truth value (T, or -Q, we need to propagate the result back up the proposition
tree, according to the reverse of the progression function prog/2, taking into account whether

propositions are under negation, or not. To get the index of a parent in CTLS-EVAL-REC, in order
to record a result for it, we inspect the record for the child index in CTLS-EVAL-CHILD.

When we backtrack, according to the verification algorithm described in Section 7.4, we may

come across matched states, where the instance state (or, domain state of interest) in the current
situation is identical to that of a previous situation that we have already visited. In this case,

any propositions that are to be progressed (in the current situation), or that are elicited throu., 11
further progression, and which have already reported a result for the particular state, previously, C,
may simply have that result propacrated upwards. 0

When T (resp.
-L)

is propagated to the initial state, we are able to declare a result for tile

constraint checking, i. e. that the constraint is satisfied (resp. violated). 0
Also note that when we have finished traversing all of tile paths which lead out of a state, which 0

has a "some paths" proposition associated with it, if the proposition is yet to record a result, then

this means that its contained proposition has not been satisfied. In this case, we need to record a

result of FALSE against this proposition, and propagate results upwards, accordingly. 00

10.5 Theodore Verification, Planning and Enactment En-

gine
The class model that we have defined for Theodore is presented in Figure 10.1. It is largely self-
describing and corresponds closely to the formalisation of the Theodore HTN planner, described

in Section 8.2.2.

A Theodore planning problem is described as an instance of TheodoreProblem, which de-

fines the initial task network of the problem (Workflow), knowledge base (KnowledgeBase), con-

straint checkers (Constraint Checkers) and the planning domain (TheodoreDomain). A plan-

ning domain consists of a number of domain constructs, namely instances of operator (including

ComplexOperator) and Method. The common base class for constructs is The odoreDomainConstruct,

which defines a precondition (KBQuery) on the use of the construct, and parameters used in

the construct. Method additionally specifies a Workflow, to which a task may be decomposed.
An Operator instance may specify a number of effects (Results). A ComplexOperator extends
Operator, and also defines a workflow.

The planning algorithm repeatedly seeks to apply constructs until it finds a plan which effects
the initial task network (or, in the case of verification, until it has identified that all partial

232 Chapter 10. Implementation

decompositions successfully complete). A ServiceSelector instance determines which constructs

-ire preferred, at a particular point in the decomposition process. The Theodore engine also

provides an enactment mechanism, where a plan may be enacted and what-if simulation may be

performed. What-if simulation allows a domain controller or expert (see Section 8.1.3) to try out

particular decompositions, in order to see what plans are available to complete a given a workflow.
In doing this, they help to guide the planning process. 00

10.6 Service Selection Engine

An instance of ServiceSelector must be specified for a Theodore planning problem. Its purpose
is to control how domain constructs are applied in planning, determinin. - a preference order over
their application. The default class (BasicServiceSelector), implemented for the Theodore
framework, simply applies constructs in the order they are specified in a TheodoreDomain. This
behaviour may be changed by implementing a different ServiceSelector. 00

10.7 Knowledge Base

An instance of KnowledgeBase effects the knowledge base associated with a Theodore planning
problem, if extant. It is responsible for evaluating the preconditions of domain constructs given
parameter bindings, returning any new bindings, and for applying the effects of using constructs
(specifically, operators and complex operators). It must also be capable of being backtracked.

When a Theodore problem is specified not to use an explicit knowledge base, then domain

state -just pertaining to the enablement of domain constructs- is maintained within the Theodore

planning implementation itself. Finally, the default implementation for the KnowledgeBase is SQI,
based, which means that precondition and effects clauses must be specified in SQL, by default.

The Liesbet verification and enactment engine does not make use of a separate KnowledgeBase

component, in its operation. Instead it necessarily makes use of a AlySQL database, as described
in Section 10.3.

In the next chapter, we present some examples of using our implemented frameworks for the 0
verification of Liesbet (i. e. traditional) and Theodore (i. e. flexible) workflow models.

Chapter 11

Examples of Verification

In this chapter, we show some examples of verification of Liesbet and Theodore-based workflow

and contract models. We show screen dumps of some of the authored models and of tile output
from the pertaining verification engine. We start with some Liesbet examples, and then present 00
some Theodore-based examples.

11.1 Liesbet Examples

11.1.1 A Simple Workflow

We start with asimple Liesbet model (that we have used throughout this thesis), viz. Par(Seq(A, B), Seq(C, D)).

This may also be written in an elaborated form, as follows.

Par(Sl, S2)

SI=Seq(A, B)

S2=Seq(C, D)

A screenshot of this model as authored (using the Eclipse Modelling Framework. (ENIF), see
Section 10.1) is shown in Figure 11.1.

The model is trivially sound according to the criteria specified in Section 7.2. If we disable

the por verification option (which will cause the verification engine to check workflow fragments
for soundness even if they are necessarily sound), we see that the model has ten distinct states
(which agrees with the diagnosis presented in Section 6.2.1). As can be seen, from Figure 11.2,

the verification en-ine finds the workflow sound. Note that a dot '. ' appears after the output
"Verifying m6del run" for every progressive verification step. Later on, when we present ex-
aniples which include the verification of constraints, a small V will appear for every progressive
constraint checking step.

If we enable the por option, we see (in Figure 11.3) that the model is trivially passed as being
0

sound, with no explicit verification (as indicated by a single state). The number of "por'd acts" 0
indicates how many activity instances in the model were "ignored" - in this case, all of them are C,
ianored. 0

233

234 ('llapt ur 11. Exýý III ple., ()f k cl ih(at io II

E, le ýid, t ?, a gatte Lýro,, ect esbe*, Ed, *or

; ýeso, -e Set

:, ýazzýo--: esource! sampieSi ýý. I , simple. 6esIbet
0 '; ordov, Simple workflow

4. Abstract Acton Type PI
+ Abstract Action Type 51
+ Abstract Action TVM 52
+ Abstract Action Type A
+ Abstract Action Type 8
+ Alosly act Action Type C
+ Abstract Action Type D

. 0ý Seq SI
+ Seq 52
+ Activity A
+ Activity B
+ Activity C
+ Act,;, ty D

cýelertior Parent Ust Tree Tabýe Treewth Columns

Tasks 77 Properties

Property ý'alue
Act type + Abstract Anon Type P
Children + Sec S 1, Sec 52

I-A false
lom

%ame
7,, ans

Seected Object: Pa, P1

Figure I I. I: Par(Seq(A, B) Seq(C, D)) as Atithore(I in ENIF.

Simple liesbet workflow

Parsing model ...
Setting up verification

Verifying model run
Filing report ...
Checking for deadlock ...
Checking for dead instances ...

Time taken: 0(h), O(m)IO(s), 410(ms)

Liesbet run 0 success (no locking, no dead insts, no violated constraints) with
stored states: 10, matched states: 4, por'd acts: 0.

Figure 11.2: Par(Seq(A, B) Seq(C, D)) Verified Using Liesbet Verification Engine.

11.1. Liesbet Examples 235

Simple liesbet workflow, with por
Parsing model ...
Setting up verification...

Filing report ...
Checking for deadlock...

Checking for dead instances ...

Time taken: 0(h), O(m), O(s), 100(ms)

Liesbet run 0 success (no locking, no dead insts, no violated constraints) with

stored states: 1, matched states: 0, por'd acts: 7.

Figure 11.3: Par(Seq(A, B), Seq(C, D)) Verified Using Liesbet Verification Engine, with por En- C, oo
abled.

Simple liesbet workflow, with sync rule, plus constraint check...
Parsing model ...
Setting up verification...
Verifying model run cc. c. c. c. c. c. c. c. c. c.
Filing report ...
Checking for deadlock...

Checking for dead instances ...

Time taken: 0(h), O(m), O(s), 490(ms)

Liesbet run 0 success (no locking, no dead insts, no violated constraints) with

stored states: 10, matched states: 2, porld acts: 0.

Figure 11.4: Par(Seq(A, B) Seq(C, D)) Verified Against a Given Constraint, with Synchronisation
0 t,

Rule.

236 Chapter 11. Examples of Verification

Simple liesbet workflow, with no sync rule, plus constraint check
Parsing model ...
Setting up verification...
Verifying model run cc. c. c. c. c.
Filing report...
Failed Temporal Constraint...

Time taken: 0(h), O(m), O(s), 380(ms)

Liesbet run 0 FAILED with violated constraints with...

stored states: 7, matched states: 0, porld acts: 0.

Failing State...

Instance: 0, State: 1, Cid: P1

Instance: 1, State: 1, Cid: S1

Instance: 2, State: 2, Cid: A

Instance: 3, State: 1, Cid: B

Instance: 4, State: 1, Cid: S2

Instance: 5, State: 1, Cid: C

Instance: 6, State: 0, Cid: D

Figure 11.5: Par(Seq(A, B) Seq(C, D)) Verified Against a Given Constraint, Without Synchroni- C,
sation Rule.

11-1.2 Synchronisation Rules and Constraints

We augment the previous example with a synchronisation rule, viz. SyncRule (S2, Completed-act (A)
, CI

Completed-act(SM. This stipulates (for the previously presented workflow model) that as soon

as the (only) instance of A is in the Completed state, descendants of S2 (namely, the instances of C

and D), and S2 itself, may not advance until the sequence S1 (containing A and B) has completed. 0
In Figure 11.4, we show the verification output for the model Par (Seq(A, B) , Seq(C, D)), an, -, -

mented with the said synchronisation rule. Note the reduction in the number of matched states. In

this verification run, we also verify the constraint: AG (Completed-act (A) --+ Completed-act (C)

V Completed-act(SO V AX-Completed-act(C)). This constraint says that in all states it must
be the case that, if A has been completed, then C has completed, S1 has completed, or in all next

states from the state of interest C should not have completed. This constraint captures the require-

inent that, once A is completed, execution of S1 takes precedence over completion of C. (We could

verify that it takes precedence over execution of S2, and its descendants; but this constraint suffices
for this example). Because of the presence of the synchronisation rule, this constraint should not
be violated, as can be seen from the verification output, presented in Figure 11.4.

0

If we remove the synchronisation rule from the model, we should see that the constraint is

violated. When a constraint violation occurs, we dump the instance state for the preceding state, 0
from which -. ve are progressing constraints. In the output shown, in Figure 11.5, A has already 000
completed and the failure comes about in completing C, while S1 has not completed. 0

11.1. Liesbet ExamPles 237

Pi
Par

P2 Par

P3
S seq

Par
cF

E4
Par lated

DE

join(Go(Completed_act(B in P2)))

Figure 11.6: A Liesbet Model with Isolated Scope, and Potential for POR in Verification.

Parsing model ...
Setting up verification ...
Verifying model run
Filing report ...
Checking for deadlock ...
Checking for dead instances ...

Time taken: 0(h), O(m), O(s), 300(ms)

Liesbet run 0 success (no locking, no dead insts, no violated constraints) with

stored states: 6, matched states: 0, porld acts: 4.

Setting up verification...

Filing report ...
Checking for deadlock...

Checking for dead instances ...

Time taken: 0(h), O(m), O(s), 190(ms)

Liesbet run I success (no locking, no dead insts, no violated constraints) with

stored states: 1, matched states: 0, por'd acts: 3.

Figure 11.7: Output from Verifying the Model Presented in Figure 11.6, Using Liesbet Verification
0000

En, gine, with por Enabled.

238 Chapter 11. Examples of Verification

Dead activity instances model
Parsing model ...
Setting up verification ...
Verifying model run
Filing report ...
Checking for deadlock ...
Checking for dead instances ...

Time taken: 0(h), O(m), O(s), 280(ms)

Liesbet run 0 FAILED with dead activity instances detected with

stored states: 8, matched states: 0, porld acts: 0.

Dead Instances Report Details

Instance: 8, CId: C

Figure 11.8: Output from Verifying a Model with a Dead Activity Instance.

11.1.3 Simple POR Example

In this example, we show the verification output for a model which has an isolated scope and

which demonstrates the possibility of having further POR applied in its verification. From Figure

11.6, we see that P4 is an isolated scope. The verification of this activity type should occur as

a separate run. We also note that the activity type C has a join condition on activity B having

completed, where this condition is qualified with a reference type rooted at P2 (see Section 3.1.3,

for information about reference types). The remainder of the workflow model (save for P4) may
be ignored, in verification, as it is necessarily sound.

Referring to Figure 11.7, we see for run 0 that there are six stored states corresponding to

the evolution of P2, and four "por'd acts" corresponding to the rest of the model (save for P4

which is ignored. The whole sub-tree rooted at P4 is necessarily sound, according to the criteria
described in Section 7.2. Consequently, as the output from run 1 shows, the verification engine
trivially passes it as being sound - the single state is the initial state of the model, which is always

stored irrespective of whether POR is applicable. Notably, the number of "por'd" acts is three,

corresponding to P4 and its two children. 0

11.1.4 Dead Activity Instances

In Appendix Section A. 4, we present a model which has an activity which can never be executed

-a dead activity instance. The model is:

Par(Choice(Empty, A, Empty, B), C)

C= Act(join(Go(Finished-act(A) Finished-act(B),

Completed-act(A) Completed-act(B))))

In the model, only activity A OR activity B may be executed. However, for the join condition

on C to succeed, both instances must be executed and reach a Completed state. Thus, activity C

11.1. Liesbet 239

Deadlock check. Should exhibit deadlock.

Parsing model...
Setting up verification...
Verifying model run
Filing report ...
Checking for deadlock...

Time taken: 0(h), O(m), O(s), 350(ms)

Liesbet run 0 FAILED with deadlock detected with...

stored states: 4, matched states: 0, por'd acts: 0.

Instance: 0, State: 1, Cid: P1

Instance: 1, State: 1, Cid: S1

Instance: 2, State: 2, Cid: A

Instance: 3, State: 1, Cid: JOIN-SEC-B

Instance: 4, State: 1, Cid: BJoin

Instance: 5, State: 0, Cid: B

Instance: 6, State: 0, Cid: C

Instance: 7, State: 1, Cid: S2

Instance: 8, State: 2, Cid: D

Instance: 9, State: 1, Cid: JOIN-SEC-E

Instance: 10, State: 1, Cid: EJoin

Instance: 11, State: 0, Cid: E

Instance: 12, State: 0, Cid: F

** ***** ** * ***** ** *** **

Deadlock check. Should NOT exhibit deadlock.

Parsing model ...
Setting up verification ...
Verifying model run
Filing report ...
Checking for deadlock ...
Checking for dead instances ...

Time taken: 0(h), O(m), O(s), 58O(ms)

Liesbet run 0 success (no locking, no dead insts, no violated constraints) with

stored states: 15, matched states: 5, por'd acts: 0.

Figure 11.9: Output from Verifying a Model with a Source of Deadlock, and a Variant with the

Deadlock Removed.

240 Chapter 11. Examples of Verification

Travel agent example...
Parsing model ...
Setting up verification ...
Verifying model run ..

..

..

..

..
Filing report ...
Checking for deadlock ...
Checking for dead instances...

Time taken: 0(h), O(m), 42(s), 540(ms)

Liesbet run 0 success (no locking, no dead insts, no violated constraints) with

stored states: 286, matched states: 88, por'd acts: 0.

Figure 11.10: Output from Verifying a Liesbet Representation of the 3rd Travel Agent Example
000

from Section 4.5.

will never (under any enactment path) be executed. It is an example of a dead activity instance.
In Figure 11.8, we see that the Liesbet verification engine identifies this structural flaw.

11.1.5 Deadlock

In Appendix Section A. 4, ive present two models, one having a source of deadlock and a variant

which is free from deadlock, viz.

Pa, r(Seq(A, B, C), Seq(D, E, F)

B= Act(join(Go(Completed-act(E»»

E= Act(join(Co(Completed-act(B»»

Par(Seq(A, B, C), Seq(D, E, F)

B= Act(join(Go(Completed-act(E»»

The Liesbet verification engine detects the deadlock appropriately, as shown in Figure 11.9.

11.1.6 Travel Agent Example, with Cancellation

In Section 4.5, we present a Travel Agent example (#3), which we repeat here.

PayDecision = Stop(

(Cancelled-act(Flight) Completed-act(BookFlightDecision)) +

(Cancelled-act(Hotel) Completed_act(BookHotelDecision)) +

(Cancelled-act(Car) I Completed-act(BookCarDecision)) +
(Cancelled-act(Flight) I Cancelled-act(Hotel) I Cancelled-act(Car)),

11.2. Theodore Examples 241

(Completed-act(Flight) + Cancelled-act(BookFlightDecision))

(Completed-act(Hotel) + Cancelled_act(BookHotelDecision))

(Completed-act(Car) + Cancelled-act(BookCarDecision))

PayCancelChoice = DefaultChoice(PayDecision, Pay; Exit)

Book = MultiChoice(BookFlightDecision, Flight;

BookHotelDecision, Hotel;

BookCarDecision, Car)

Par(Seq(Register, Book), PayCancelChoice)

In Figure 11.10, we show the output from verifying this model for soundness, where Ave allow
basic activities (specifically, Flight, Hotel and Book) to also be cancelled (as well as complete).
All other Liesbet examples, presented in this section, have been verified on the basis that basic

instances may only complete.
The verification output shows a number of matched states. Identifying matched states greatly 00

increases the efficiency of verification. However, it is necessary to ensure that identification of these

states is implemented in an efficient way, because, as the state space grows, it could represent a

sianificant, bottleneck. We have succeeded in realising an efficient implementation, as documented
?D0

in Section 10.3. We identify a matched state by means of a single query on a database table, which

represents the limit of how efficient this identification could be.

11.2 Theodore Examples

11.2.1 A Simple Workflow

We now turn to verification of workflow and contract models using Theodore. We start with a

simple example, which is a flexible workflow model, described as an initial task, P, together with 0
a number of methods (or, "count as" rules) and operators for how the task may be decomposed.

We have previously described this example in Section 8.2.1.

Our TheodoreProblem defines a TheodoreDomain having three methods, viz. 0

" P: true: Par(SI, S2) - decomposes P into a Par containing two tasks S1 and S2.

" SI: true: Seq(A' BI) - decomposes S1 into a Seq containing two tasks A' and B1.

" S2: true: Seq(C' DI) - decomposes S2 into a Seq containing two tasks C' and DI. 0

The domaiii also defines four operators, viz.

" A': true true: A- decomposes task A' into the action A.

" B': true true: B- decomposes task BI into the action B.

"CI: true true: C- decomposes task C, into the action C.

"D1: true true: D- decomposes task DI into the action D.

242 Chapter 11. Examples of Verification

Simple workflow domain

Initialising planner...
Planning. cccc. cc. ccc. cccc. cc. ccc.
Workflow/Contract is SOUND with no constraint violations.
Planning details ...
Time taken: 0(h), O(m), l(s), 750(ms)

O: A

O: O: C

0: 0: 0: B

0: 0: 0: 0: D

END OF PATH

0: 0: 1: D

0: 0; 1: 0: B

END OF PATH

0: 1: B

0: 1: 0. C

0: 1: 0: 0: D

END OF PATH

I: C

1: 0: A

1: 0: 0: D

1: 0: 0: 0: B

END OF PATH

1: 0: 1: B

1: 0: 1: 0: D

END OF PATH

1: 1: D

1: 1: 0-A

1: 1: 0: 0: B

END OF PATH

Figure 11.11: Output from Verifying a Theodore Representation whose Initial Task Network De-
0 e,

composes to'the Simple Workflow Model: Par(Seq(A, B), Seq(B, C)).

11.2. Theodore Examples 243

The domain constructs that are present mean that eventually the model Par (Seq(A, B) , Seq(C, D))

will result from all possible decompositions.

Tile Theodore planner, used as a verification tool, identifies all possible enactments of the initial

task; and, for soundness, establishes that all partial decompositions are further decomposable into

models which represent complete enactments of the initial task (as described in Section 8.3). In

Figure 11.11, we see that there are six possible ways of enacting the initial task network, which is

the appropriate result, and that the workflow, as described, is sound. The temporal constraint that
is checked confirms the soundness result - we test the CTL* proposition: AF Completed-act (PI),

which asserts that the initial task network completes in every possible enactment path.
In Figure 11.11, every '. ' after the word 'Planning' indicates where the planner has tried an

alternative path in verification, and each V indicates a constraint checking step. In the verification

output, each action is prefixed by all action history. If an action is the first in a plan, it will be

prefixed by a single number which indicates an index for the action in the collection of actions

possible at this stage of the plan. In this output, there are two first actions, either A (the Oth

action, in the collection of first actions, as indicated by 0: A), or C (the 1st action, in the collection

of first actions, as indicated by 1: C). For 0: A, there are two possible plan continuations 0: 0: C and
0: 1: B, tile Otb and 1st actions, respectively, in the collection of actions that may follow 0: A. The

first of these may be extended by 0: 0: 0: B or 0: 0: 1: D, and so on. END OF PATH is a delimiter, and
indicates that another plan has been found. As each partial plan must lead to a full plan, each

prefixed action, output by the planner, must extend the previous one (unless it follows all END OF

PATH delimiter), and the output must end with an END OF PATH delimiter.

11.2.2 Transf erProperty Contract with Power (on Vendee)

In this subsection, we present output from performing verification on a Theodore model correspond-
in., to the example presented in Section 9.4.5, where a contract between two parties is described.

The contract consists of a power held by a vendee, such that on paying three instahnents, they

acquire the title to a property. This is prescribed by a method which stipulates how this power

may be exercised. The contract also specifies a number of other rules, i. e. methods and (complex)

operators, which prescribe how payments may be made.
Rom Section 9.4.5, the contract might look as follows.

" Initial task: Transf erProperty.

" Method: MultiSeq(3) (Pay) counts as TransferProperty.

(Pay on vendee)

9 Coinplex Operator: SendCheque counts as Pay.

(Pay on vendee, SendCheque on vendee)

* Complex Operator: EFT counts as Pay.

(Pay on vendee, EFT on vendee)

The authoring of this contract as a Theodore planning problem is shown in Figure 11.12. 00C,
We use Theodore to verify that all partial decompositions may be completed, and also to verify
the constraint: AG (Completed-act (Payments) - Complete d-act (Trans f erProperty)). This

211 Chaptel 11. Exallmle., (d VHification

Figure 11.12: Theodore Representation of the Trans ferProperty Contract. Containing the Power

oil the Vvildef..

Figure 11.13: AG (Completed-act(Payments) - Completed-act(TransferProperty». a� ý\u-
thored in EMF

11.2. Theodore Exa 245

Power Contract with particular constraint checking...
Initialising planner...
Planning. ccc. c. cc. c. ccc. c. cc. c.
Workflow/Contract is SOUND with no constraint violations.
Planning details ...
Time taken: 0(h), O(m), O(s), 470(ms)

O: SendCheque

O: O: SendCheque

0: 0: 0: SendCheque

END OF PATH

0: 0: 1: EFT

END OF PATH

0: 1: EFT

0: 1: 0: SendCheque

END OF PATH

0: 1: 1: EFT

END OF PATH

1: EFT

I: O: SendCheque

1: 0: 0: SendCheque

END OF PATH

1: 0: 1: EFT

END OF PATH

1: 1: EFT

1: 1: 0: SendCheque

END OF PATH

1: 1: 1: EFT

END OF PATH

Figure 11.14: Output from Verifying the Theodore Representation of the Transf erProperty
Contract, Containing the Power on the Vendee.

246 Chapter 11. Examples of Verification

No Power Contract. No constraint checking...
Initialising planner...
Planning
Workflow/Contract is SOUND.

Planning details ...
Time taken: 0(h), O(m), O(s), 540(ms)

O: SendCheque

O: O: SendCheque

0: 0: 0: SendCheque

0: 0: 0: 0: SendSignedTransfer

END OF PATH

0: 0: 1: EFT

0: 0: 1: 0: SendSignedTransfer

END OF PATH

0: 1: EFT

0: 1: 0: SendCheque

0: 1: 0: 0: SendSignedTransfer

END OF PATH

0: 1: 1: EFT

0: 1: 1: 0: SendSignedTransfer

END OF PATH

1: EFT

1: 0: SendCheque

1: 0: 0: SendCheque

1: 0: 0: 0: SendSignedTransfer

END OF PATH

1: 0: 1: EFT

1: 0: 1: 0: SendSignedTransfer

END OF PATH

1: 1: EFT

1: 1: 0: SendCheque

1: 1: 0: 0: SendSignedTransfer

END OF PATH

1: 1: 1: EFT

1: 1: 1: 0: SendSignedTransfer

END OF PATH

Figure 11.15: Output from Verifying the Theodore Representation of the TransferProperty
Contract, NOT Containing the Power on the Vendee.

0

11.2. Theodore Examples 247

No Power Contract with particular constraint checking

Initialising planner...
Planning. ccc

Constraint check failed. Dumping last record.

Instance: 0, State: 1, Cid: TransferProperty

Instance: 1, State: 1, Cid: TransferProperty Seq

Instance: 2, State: 1, Cid: Payments

Instance: 3, State: 1, Cid: MLS-SEQ_Payments

Instance: 4, State: 2, Cid: Pay

Instance: 5, State: 2, Cid: Pay

Instance: 6, State: 1, Cid: Pay

Instance: 7, State: 0, Cid: TransferTitle

Figure 11.16: Output from Verifying the Theodore Representation of the Transf erProperty Con- it, 0
tract, NOT Containing the Power on the Vendee (ii)

This time, Nve check the constraint that as soon as Payments has been completed, this counts
as Transf erProperty completing.

says that the moment the Payments MultiSeq activity has completed, the transfer of property is

effected. The autboring of this constraint is shown in Figure 11.13. The output from Theodore is

shown in Figure 11.14, where we see that the contract is sound with respect to completion along

all possible enactment patlis and no constraint violations.
In the output from Theodore, Ave note the different ways in which payments may be made

(either sending a cheque, or by EFT).
C3

11.2.3 Transf erProperty Contract with No Power (on Vendee)

Finally, we show output from the verification of the variant contract which no power on the vendee.
Instead, the power to transfer the property lies with the vendor. The contract, from Section 9.4.5,

is represent in Theodore, thus.

e Initial task: Transf erProperty.

e Method: Seq(MultiSeq(3) (Pay), TransferTitle) counts as Trans f erProperty.

(Pay on vendee, Transf erTitle on vendor)

e Complex Operator: SendCheque counts as Pay.

(Pay on vendee, SendCheque on vendee)

* Complex Operator: EFT counts as Pay.

(Pay on vendee, EFT on vendee)

* Complex Operator: SendSignedTransf er counts as Transf erTitle.

(SendSignedTransf er on vendor, Transf erTitle on vendor)

248 Chapter 11. Examples of Verification

The output from not performing any constraint checking, as shown in Figure 11.15, is that the 000
contract is sound. Notably, as shown in Figure 11.16, if ive include checking for the same constraint C, 0
as before (namely, that as soon as Payments has been completed, this counts as Transf erProperty

completing), the verification tool reports the expected violation of this constraint.

In the next chapter, we present some conclusions for this thesis.

Chapter 12

Conclusions and Future Work

In the introduction to this thesis (Section 1.2), we enumerated the aims of this work to be concerned
with addressin- the issues of- 0

" Providin- a formal -roundin- of workflow. 00n

"A more flexible approach to workflow.

" How workflow concepts might apply in the modelling of contracts, and looking at the mod- 00 C>
elling of contracts generally.

We also listed ten contributions of this work that we consider to have gone a significant way to

meeting these aims.
1) We address the issue of providing a formal grounding for traditional workflow. We define a

meta-model called Liesbet as a point of reference for our formalisation of workflow.
2) We have provided an authoring, verification and enactment framework for workflow based on

our formalisation.

3) We have identified a reduced set of workflow patterns, using which (we show) all others may
be represented.

4) We have demonstrated a number of important results using our formal cha ra ct erisat ions of
traditional workflow.

5) We have proposed a characterisation of workflow to be: Flexible lVork-flow = Abstract Model

+ Policies for Refinement, in order that we might support a more flexible view of workflow,
including support for collaborative work-flows.

6) We have implemented our own planner, Theodore, which in itself is a useful contribution as it

provides many novel features.

7) We have provided an authorinU 0, verification and planned enactment framework for flexible

workflow.
8) We have proposed a new perspective of workflow, namely an institutional perspective. We call

our institutional account of workflow Institutional lVork-flow Modelling (IMI).

9) By drawing out institutional concepts inherent in workflow, we have been able to propose how

workflow may be used in the modelling of contracts.
10) We have provided an INVINI-based framework for contract authoring, verification and (planned)

enactment.

249

250 Chapter 12. Conclusions and Fbture Work

We structure the following discussion around the presented three aims, while providing some 0 ?D
further insight regarding the ten contributions as pertinent to do so.

12.1 Formal Grounding of (M-aditional) Workflow, through

Liesbet

This section primarily concerns Contribution #1. That is, the formalisation of workflow in order
to address the lack of robust semantics that is typical of many workflow languages [121].

12.1.1 Approach

In defining the Liesbet meta-model, we have sought to understand the true nature of workflow,

and thus the fundamental concepts that need to be represented with Liesbet. In the overview

of constructs, presented in Section 3.1, and through the additional constraints imposed on the
intended semantics, presented in Section 3.2, we have defined a clear and succinct point of reference
for any formal characterisation at the computational view.

In Section 3.5, we document how Liesbet, at the information view, supports all of the YAWL
[125,126,123] workflow patterns. The representational requirements for Liesbet were primarily

sourced from the need to be able to represent the YAWL patterns [125,126,123,64], as well as the

control flow perspective of the Web Service Composition (NNISC) language, WS-BPEL. In Section 3.6,

we briefly present details of a mapping of (the control flow perspective) of WS-BPEL to Liesbet.
We have defined functions which map Liesbet models to their characterisations at the com-

putational view. For any of these mapping functions, it is the definition of the mapping function,

as well as the semantics of the corresponding formalism, that define the particular characterisa-
tion. For instance, our SitCalc characterisation of Liesbet is the sum of the mapping function

Msitc. 1ri-I and the semantics of SitCa1c, as defined in [98].

12.1.2 A Minimal View of Workflow

Through the definition of Liesbet, we are able to propose a minimal view of work-flow which may
be used to understand what is fundamentally required from any computational view formalism

used to characterise Liesbet. Our definition of a minimal view is composed of the definition of

a reduced (or primitive) set of patterns (Contribution #3), with which we show that all others
may be represented (as described below), as well as a number of Semantic artefacts for workflow
that need to be observed. The two together constitute the intended semantics for Liesbet, and our

view on a minimal semantics for workflow generally (according to the representational requirements

set out for capturing YAWL and WS-BPEL

Elaborating, we consider a minimal view of workflow to be a collection of activities (operating

in parallel threads) with states, thus defining a transition system, whose transitions are constrained
by:

a Synchronisation conditions on the states of activities.

a Progression of certain (i. e. structured) instances over others (i. e. basic instances)-

12.1. FormaI Grounding of (1hditional) Mork-flow, through Liesbet 251

a Atomic propagation of all side-effects of compIetion/cancellation and execution through ac- C, r,
tivity hierarchy.

e Some other phenomena, namely:

- Join conditions for activities (i. e. support for SeqCancel).

- Unlimited multiple-instance activities (i. e. Multi)-

- Activities effecting cancellation of others (i. e. CancelActivity).

We have been able to show that all other representational requirements for workflow reduce
to this minimal view, through our proposal of a primitive set of workflow patterns. We show this 0
reduction to be sound in Section 6.5. Rom this minimal view, we are able to conclude that:

9 NNorkflow is little more than: Parallel Composition + Arbitrary Synchronisation.

9 The expressivity of workflow rests primarily with the choice/suitability of tile synchronisation
language.

C, n

Note that our minimal view of workflow does place some bias as to suitability of any cornpu-
tational view formalism that we rniaht choose to characterise Liesbet. However, this is exactly 0
the point - we have wanted to identify a minimal set of concepts that we feel characterise the true

nature of workflow, and this bias is a legitimate by-product of this process.

12.1.3 Comparison of Formalisms for Characterising Liesbet

In our work, we have principally used three formal tools for characterising the intended semantics

of Liesbet. These are:

" Milner's Calculus of Communicating Systems (CCS) [78,801.
0

" Cleaveland et al's Prioritised CCS (PCCS) [30,29], which we shall call PCCS for convenience.

Situation Calculus (SitCalc) [76,77,98], based on First-Order Logic (FOL).
0

We discuss the utility of these various formalisms for characterising Liesbet in the next few
0

sub-sections.

12.1.4 CCS/PCCS-based Charact erisat ions

We selected CCSIPCCS as appropriate formalisms to investigate for two reasons:
1) There has been quite a lot of talk within the BPNI community as to whether Petri nets or CCS/7r-

calculus is better suited for the characterisation of workflow, and specifically the YAWL patterns
[1221. While we do not seek to compare these two formalisms at length, by characterising YAWL

with CCS we are able to provide a contribution to this debate from one perspective. Note that

we do present some points regarding their respective suitability at the end of Chapter Five.
2) The operational semantics of CCS/PCCS (in terms of facilitating compositional specifications

of behaviour) should lend themselves quite well to the representation of workflow, and this is a
point we seek to investigate. C,

252 Chapter 12. Conclusions and Riture Work

In this thesis, we have presented a comprehensive formalisation of the Liesbet nieta-model usin.,
PCCS. The formalisation represents a contribution to the Business Process Management commu-

nity. We argue that it trivially follows from this that a full CCS characterisation of the Liesbet

meta-model is possible. The principal motivation for using PCCS over CCS was lower verifica-
tion complexity, as well as it being a particularly amenable language, through its in-built support
for the specification of priorities, for capturing that the priority of internal workflow activity (i. e.

gression of basic instances). progression of structure instances) over external activity (i. e. pro.,
There is an interesting dichotorny at play in our PCCS-based characterisation of Liesbet. We

could make the verification complexity of PCCS-characterised Liesbet models even better by using
further priority levels to achieve an even better partial-order reduction (POR) on the state space.
However, these are not strictly necessary to capture the intended semantics of Liesbet, which is

sufficiently captured without their use, and they would greatly obscure the clarity of the PCCS-

based characterisation of Liesbet. For instance, in the characterisation of synclironisation types,

presented in Appendix Section A. 3, we use many handshaking actions. These could be mutually-
differently prioritised to effect better POR, but, the order in which they occur is not important for

the characterisation to be sound. In fact, we could remove some of the use of priorities in the current

characterisation, and still have a sound characterisation. Again, the handshaking actions occur at a
distinct level of priority from all other actions. We could soundly remove this dispensation, which

arguably 'would make for better clarity in specification but at the cost of increased verification

complexity.
Notably, even when we opt for maximising POR in order to reduce verification complexity

as much as we can, the performance of verification under CWB-NC is still painfully slow for all
but the simplest PCCS-characterised examples. An example is that of the 'Ravel Agent model,

presented in Section 4.5, which took several hours to return a result for checking whether the model

completes along all enactment paths. The principal reason for this is the inability of the CCS-based

characterisat ions to capture the intended semantics for Liesbet practicably, as explicated by our

minimal view of workflow.

Weaknesses

Our PCCS-based characterisation of Liesbet exposes the real weaknesses of using process algebra, 00
such as CCS/PCCS, for the representation of workflow. Formalisms such as these suffer on at least
two principal counts:

0 It is not possible to arrive at the intended semantics for Liesbet without a lot of abstraction.

It is only through abstraction that we may count more than one transition occurring at a time

to be atomic, which is a, key requirement of the intended semantics (in propagating effects 00
of completing/cancelling childless instances up the tree, for instance). Although CCS/PCCS

0n0
has a n6tion of abstraction in distinguishing internal (-r) transitions from external ones, it is

0
not possible to instruct CWB-NC to take account of this difference in constructing the state 0
space of models. The lack of such a capability is hardly surprising: a CCS/PCCS model is

0
fundamentally characterised by all of its transition types, and the distinction between external

and internal transition types is purely cosmetic. As such, to perform model checkinOl on a 0
CCS/PCCS, as CWB-NC does, it would always be necessary to construct the state space for a

model accounting for all transition types, at least initially. It is the construction of the entire 0

12.1. Formal Grounding of (11-aditional) Work-flow, through Liesbet 253

space that kills CWB-NC when used for verification of PCCS-characterised Liesbet models.

41 The efficiency (and clarity) of performing queries as part of progressing synchronisation types
is not good. In order to carry out a single atomic query, there is no limit to the number of
instances that may be need to be queried as to their state. All of these individual queries
themselves require several transitions. The state space for querying alone quickly explodes.
Again, this is behaviour that needs to be captured as atomic, together with the consequences

of completing/cancelling synchronisation instances being atomically propagated.

It is worth noting, purely subjectively, that the specification of semantics for the generic type

agents is quite clear and succinct, using CCS/PCCS. It is evidently appealing to be able to express
the semantics using the prograrnmin-like, compositional constructs of CCS/PCCS.

The down-side of using such a language is that we would want its operational s emantics to admit
the notion that multiple transitions may occur atomically, as we have stated. We would imagine

that this would be quite difficult to achieve in a process algebra such as CCS/PCCS. Thus, we have

some clarity (especially when compared with the Situation Calculus characterisation, presented in

Chapter Six) at the cost of atomicity, which is another apparent dichotomy.

CCS/PCCS and Petri nets

Interestingly, it is quite evident that Petri nets would not fare any better in characterising Liesbet

than our CCS-based characterisat ions do. The principal reason lies in our making the recording

of the state of activities explicit. Because of this, Petri nets would handle the characterisation of
Liesbet in largely the same way in having tracker, generic type, and scheduler agents. Moreover,

the same shortcomings in tile expression and evaluation of synchronisation conditions would exist.
It is also notable that none of the problems asserted (in Section 2.3.2) for Petri net-based char-

acterisations of the YAWL patterns would exist in a Petri net-based characterisation of Liesbet.
These problems were concerned with: tracking multiple-instances, advanced synchronisation, and

cancellation. This is because we resolve these issues at the information view (i. e. in defining

Liesbet) prior to any characterisation using Petri nets/CCS/PCCS. This is a point that is dis-

cussed further below.

The need for abstraction described in the discussion of the weaknesses of using CCS/PCCS

does highlight an important argument that we seek to inake in this thesis, viz. 00

General-purpose languages for the description and modelling of process dynamics (such

as Petri-nets and CCS) are, necessarily by their nature, too low-level for tbe description

of workflow. In modelling workflow, we are able to make a number of prescriptions,

reprdinar the way in which processes must evolve, as embodied by the definition of

a minimal view of workflow here. As such, we are able to describe workflow using

artefacts that are much more coarsely-grained than those offered by these general-

purpose languages.
00

Consequently, when looking to characterise workflow, at the computational view, such languages
000

are not ideal choices, as already described. Rather, we need a language in which we are able to 00
capture the espoused minimal view of workflow cleanly. In some regards, as we discuss below,

SitCaic is better suited for this purpose, but it is not without its shortcomings either.

254 Chanter 12. Conclusions and Future Work

CCS/PCCS versus 7. --calculus

It is notable that both [37] and [941 suggest the use of the i-i-calculus for the modelling of the

YAWL patterns, the latter making particular use of a primary aspect of 7-. -calculus: mobility - where

communication channels may be passed between agents. Both our work, and that of [117], show
that the use of mobility is not essential when modelling the YAWL patterns. In fact, it is bard to

see many applications, in the context of workflow modelling, where it is necessary, or particularly
desirable. One exception is in the modelling of sessions, see for example [601, where dedicated

C,
communication channels are passed between agents.

12.1.5 SitCalc-based Characterisation

A motivation for investigating the use of the Situation Calculus was that, as a logic-based formal-

ism, it is quite different to a process algebra-based approach for characterising the behaviour of 00
dynamic systems. Moreover, we felt that certain aspects in which CCS/PCCS may be deficient

may be better addressed using the Situation Calculus, and vice-versa, making the investigation of 000
using the Situation Calculus to characterise Liesbet complementary to the investigation of using 00
CCS/PCCS.

Strengths

An unequivocal advantage of using SitCalc for the characterisation of Liesbet is that cer-
tain aspects of the intended semantics for Liesbet are captured quite straightforwardly, such

as: arbitrarily-complex synchronisation conditions, priority of structured instances over basic in-

stances, and atomic propagation of side-effects throuali the activity instance hierarchy (see Sec-

tion 3.2 for more information regarding the intended semantics). Atomic propagation of effects
is particularly important when it comes to verification, as it greatly reduces the complexity of

verification (in terms of the state space generated). In our CCS/PCCS-based clia ract erisa t ions of
Liesbet, we fail to capture this notion in the absence of abstraction, and as a result verification

complexity soars.
The specification of semantics for synchronisation conditions (both as queries in Go and Stop

types - see Section 3.1.4, and in synchronisation rules - see Section 3.3) is naturally accommodated
by logic-based formalisms, such as SitCaic, where Ave can straightforwardly access current workflow

state. That is, Ave can write the conditions as fluent-based assertions that must currently hold, as
described in Section 6.3. Token-based formalisms (such as Petri nets), or process-based formalisms

(such as CCS/PCCS), appear to be less suitable for the purpose of capturing synchronisations

conditions, because of the need to consume many tokens, or make many transitions, in order to

ascertain the result of a query. As well as being inefficient from a verification perspective, it also
tends to be undesirably verbose. This does not mean to say that it is not possible to represent

such conditions using these other formalisms, as Ave have demonstrated in Appendix Section A. 3,

for PCCS.

A Weakness

A weakness of using SitCalc (albeit subjective) is that, while the initial foundational axioms I
for ivorkflow presented in Figure 6.12 are arguably clear enough, the augmented foundational

12.1. Formal Grounding of (ghditional) Work-flow, through Liesbet 255

ge types (e., -. axioms for -eneric activity types such as the choice types (e. cr. Choice 0 00) and mer
Multimerge, presented in Appendix Section B. 1.4) are rather impenetrable. In contrast, the

CCS/PCCS-based characterisat ions presented in Chapter Five are arguably a lot clearer in their

meaning. As pointed out there, however, there is an apparent dichotomy between the clarity
that comes from programming-like metaphors for characterising behaviour, on tile one hand, and
the ability to model atomic arbitrary side-effects, on the other. It very much appears that, for

the characterisation of Liesbet, the strengths of the logic-based approach (i. e. SitCa1c) are the

weaknesses of the process algebra- (i. e. CCS/PCCS) based and vice versa.

12.1.6 Shoe-liorning

We do not consider it to be appropriate, as all alternative approach to ours, to shoe-horn specifi-

cations of workflow artefacts directly into some general-purpose formal language (as people have
C, ID

done, for example, when considering the application of Petri nets to workflow - see WF-nets in

Section 2.3.2). The problem with a shoe-horning approach is when it recommends the underlying
formalism in its entirety for, in this context, tile specification of workflow. This is often inappro-

priate because it allows the use of the underlying language in an unconstrained way. It is useful to

consider the applicability of general-purpose formalisms (such as CCS and Petri nets), given the

tool-support and the wealth of results that exist for them, but to do so in the absence of defining

an abstract model of what needs to be modelled, and using such a model to constrain the use of
the underlying formalism, would appear to be folly. In our view, the approach should be top-down,

rather than bottom-up.

An example of this point can be found in an issue described in the YAWL (Yet Another Workflow

Language) work [1251, and further investigated in [140], concerning the use of OR-joins in the a000
context of arbitrary cycles. OR-joins are meant to synchronise (possibly) multiple threads of

enactment. Arbitrary cycles are unstructured cycles in that they may contain arbitrary entry and

exit points. In the Petri net-like, token-based, characterisation of YAWL, it is not clear when an OR-

join should be considered to be satisfied, i. e. when it has received al I pertinent input tokens. The

issue is exacerbated by the use of arbitrary cycles because, according to the token-based semantics,
the question of how tokens will be recycled has a non-trivial answer.

We would consider that issues such as when to synchronise an OR-join should be answered at the

information view, without consideration of any particular computational view tool or formalism.

This issue manifests itself in YAWL because of the chosen computational view formalism dictating

the ontological commitments of workflow artefacts, rather than cleanly defining these separately,

and then only using the computational formalism to describe their meaning. In YAWL, workflow

artefacts are shoe-horned into the machinery of the underlying computational formalism, rather
than defining them cleanly, in a suitably abstract way. In doing this, there is no mechanism
(i. e. the information view) constraining the use of the underlying computational formalism, which
leads to the creation of a representational problem for workflow which need not exist. In our
information view model for workflow, Liesbet, synchronisation occurs when queries on workflow

state are satisfied. Query satisfaction is easily computable according to its informal semantics,

and this remains tile case when forinalising the semantics of Liesbet, at the computational view,

using CCS/PCCS, SitCaic, or, indeed, Petri nets. The problem concerning synchronisation (for

OR-joins) does not arise.

256 Cljat)ter 12. ConcIusions and Fbture Work

A similar issue obtains with respect to the cancellation of activities, which constitutes YAWL

patterns #19 (Cancel Activity) and #20 (Cancel Case). These patterns cause problems when

modelled using Petri nets, if cancellation is modelled as the withdrawal of tokens. This is because

it is not possible to anticipate, generally speaking, how many tokens to remove from appropriate

places within a Petri net in order to effect a cancellation. This led the authors of [125] to introduce

special "vacuum-cleaner"' -like artefacts, as part of a transition-systern based semantics for workflow,
to model these YAWL patterns.

12.1.7 An Appropriate Expressivity for Workflow

In considering the definition of a workflow language, it is clearly important to decide an appropriate 0 C, in
expressivity for the language. By this, we do not mean whether the language is Tbring-complete, 00 it, 0n
i. e. whether it has the computational power of a Universal Turing Machine [114]. A language

0n0
may be 'J. 'uring-complete, but it does not mean that it is suitable for writing workflow models in a 00
succinct and clear way. Moreover, there are definite benefits, in defining special-purpose languages,

for them not to be Turing-complete, such as for decidability reasons. Rather, suitability, in the

sense conveyed, is the key. It is important at both information and computational views.
Ultimately, an appropriate expressivity at the information view meta-model is going to depend

largely on the set of patterns that we seek to capture, i. e. the YAWL patterns. Whenever the set

of patterns and thus the representational requirements for workflow grows, we would need to take

account of the additional requirements within the information view meta-model, Liesbet. As it

currently stands, Liesbet supports all of the patterns that are prescribed by the representational

requirements.
There is another source of uncertainty regarding the expressivity of Liesbet, which lies in the

expressivity of the language for expressing synchronisation conditions. It is unclear whether the
language used for synchronisation conditions is sufficient for capturing all conceivable workflow- 0 C, 0
based scenarios.

In fact, the language is rather simple: a synchronisation constraint is made up of queHes on state
that need to be satisfied, where any particular atomic query has an associated tfisibility hwizon.

The key feature of the language is flow the visibility horizon of a query is specified; and this would
be a principal issue when deciding whether the language is sufficiently expressive. Currently, a

visibility horizon, in the absence of the use of isolated scopes, may be either unconstrained, or

constrained according to the use of reference types. We have devised a means of constraining
the visibility horizon of a query oil tile basis that querying instances will be principally interested

in the state of instances that share a common, local ancestor instance - hence, the use of plain

reference types. Sometimes, we are interested in satisfying queries (for instance, when used withill

niultiple-instance activity types) in a distinct way - hence the use of distinct reference types. The

use of isolated scopes further constrains a query's visibility horizon.

A key difference in our work, to that of [37,94,117], reviewed in Section 2.3.2, lies in the

capability for arbitrary synchronisation on workflow state. These other approaches only support

very primitive querying against workflow state, in order to facilitate the Milestone (#18) YAWL 00
workflow pattern. In our approach, a model author call, in both synchronising the performance of Cl

activity instances and in cancelling activity instances, gain a fine level of control over how activity C, C,
instances are synchronised or what instances are cancelled.

12.1. Formal Grounding of (lYaditional) Mork-flow, through Liesbet 257

One advantage of the use of an information view meta-model to fix the representational re-

quirements is that it is possible to consider the most desirable way of expressing artefacts without

concern for any particular computational view formalism that inay be used to characterise the

semantics of workflow. We would argue that our synchronisation language is particularly succinct 00 in
and intuitive, even when the synchronisation condition that needs to be expressed is quite complex.
This is a function of being able straightforwardly to combine complex queries on workflow state.
In contrast, when using CCS and Petri nets it is far from straightforward to do so. An example

of this was presented at the end of Chapter Four, where the third travel agency scenario is in fact

quite complex to characterise using Petri net-based networks. 0

12.1.8 Bespoke Formalism

It mi. lit prove beneficial to define a bespoke formalism for Liesbet to capture its semantics more
directly. We would make the following comments in this regard. We could either:

Directly characterise the information view, in which case we might attempt the definition
0

of a (structured) operational semantics applied to Liesbet compositions. It is by no means

clear how attractive such a characterisation would be, for instance, in terms of its clarity and

understandability.

OR

Define a Ian-uage which raises the level of abstraction closer to that of the intended semantics C, 0
of Liesbet, but does not provide a semantics directly to Liesbet. That is, the language C, C,
could support some notions of the intended semantics as first-class artefacts, such as the

notion of hierarchy.

The idea would be that the mapping from the meta-model to the intermediate language, and C, 0 C,
the semantics of the intermediate language itself, are clear and easy-to-understand. Thus, the 00
sum of the semantic cliaracterisations is expressed in a natural way, avoiding the weaknesses
that have been highlighted in both SitCaic and CCS/PCCS characterisations.

In light of the (apparent) dichotomy expressed regarding the characterisation of generic- 0n0
activity types using pro grainnii ng- like constructs and the need to support atornicity, it is

00
less than clear how successful an attempt at a bespoke formalism in this way would be.

12.1.9 Results Demonstrated for Characterisations of Liesbet

We have presented two principal results in this work (Contribution #4), viz.
1) For our CCS and SitCaic-based characterisations, we have proved that completion of Liesbet

models is guaranteed (in the context of assumptions relating to the absence of deadlock and
livelock in a Liesbet model).

2) For SitCaic models, we show that the characterisat ions, presented in Section 3.4, of Liesbet

constructs as abbreviations, in the set Liesbetabbrer, are sound.
These are particularly useful results; the latter confirms our minimal view of workflow to be

correct.

258 Chapter 12. Conclusions and Fbture Work

12.1.10 Authoring, Verification and Enactment Framework for Tradi-

tional Workflow

We have implemented an authoring, verification and enactment framework for Liesbet models
(Contribution #2). Regarding authoring, we have a simple GUI for describing models, as shown
in Chapter Ten. For enactment, our Liesbet engine provides a Java-based API in order that

the workflow engine can be integrated with other application logic. Our main interest in these

conclusions is in discussing verification.
For our CCS/PCCS-based characterisat ions, we have used the Concurrency Workbench for the

New Century (CWB-NC) [111, as a direct route to verification. However, we have found verification

of CCS/PCCS-characterised Liesbet models using CWB-NC to be punitively inefficient, given the

wastefulness in terms of states and transitions of the CCS-based characterisations, as described in
Section 5.7.

We have sought to make verification under CWB-NC practicable by ensuring that the CCS/PCCS

chara ct erisat ions are as efficient as possible in their semantic characterisation of Liesbet. Unfor-

tunately, both charact erisa t ions do still lead to inflated state spaces. This is due to the lack of

atomicity in effecting propagation of side-effects, as described previously, and also the inefficiency of
evaluating artefacts such as synchronisation conditions, when these are represented in CCS/PCCS.

Tile simple example: Par(Seq(A, B) Seq(C, D)), presented in Section 5.1.3, when characterised

using CCS, had a state space of 833 states under CWB-NC. A significant improvement is made in

the PCCS characterisation of the same model. It generates 53 states under CWB-NC. It is notable
that the state space, as described in Section 6.2.1 according to the SitCalc-based semantics, for

this particular model is 10 states.
An advantageous aspect of CWB-NC is that we have been able to use it to provide quick validation

of our CCS-based characterisat ions of Liesbet. A similar approach could be undertaken in using
a logic programming language like Prolog to quickly validate our SitCalc-based characterisation 00 C5 0
of Liesbet.

Our principal framework for verification of Liesbet models is implemented in Java and runs

considerably more efficiently in verification than CWB-NC on the examples that Ave have presented
because it operates according to the intended semantics for Liesbet - described above, which
has the consequence of minimising the verification state space. It has been implemented against
the SitCaic-based characterisation of Liesbet, but, as it is realised using Java, it is not a direct

implementation of the SitCaic axioms for Liesbet, which would be the case if were to express
them in Prolog, for example.

However, as noted in Chapter Tell, use of SitCalc provides a natural path to implementation

using a relational database. The database query language SQL is a sugar-syntax for the relational

calculus, which means SitCalc successor-state axioms easily map to SQL queries. We decided

against the- use of Prolog for reasons of efficiency. Not only would Prolog be quite inefficient,

relational databases are contrastingly very efficient at manipulating database tables and returning

results from the queries captured on the right-hand side of SitCalc successor state axioms.
Our verification approach for Liesbet is capable of verifying workflow soundness as well as

checking Liesbet models against constraints expressed in the temporal logic CTL*. In principle,

any constraint language whose semantics can be characterised by a progress? . on function, such as
that presented in Chapter Ten, would be suitable. Tile verification engine divides the verification

12.1. Formal Grounding of (Iýaditional) Work-flow, through Liesbet 259

pan: invalid end state (at depth 17)
pan: wrote test3. xml. prm. trail
(Spin Version 4.2.5 -- 2 April 2005)

Warning: Search not completed
+ Compression

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 100 byte, depth reached 18, errors: 1
5 states, stored
0 states, matched
5 transitions (= stored+matched)

14 atomic steps
hash conflicts: 0 (resolved)

... truncated

Figure 12.1: SPIN Output for Example Liesbet Model.

--p- Marks join condition
A has join condition of D completing
C has join condition of B completing
A deadlock will occur...

Figure 12.2: GraplAcal Representation of Example Liesbet Model.

of Liesbet models into a number of runs, whilst maintaining verification soundness. This has the

effect of reducing the complexity of verification further still.
It is worth mentioning that we have experimented with the SPIN [59] model checker for the

verification of Liesbet models. We have represented the semantics of Liesbet in Promela (the

input language for SPIN) and found it to be punitively inefficient, as was the case with verifying
CCS-based models with CWB-NC. This is because of the inability of Promela to capture the intended

semantics of Liesbet in an efficient way. The principal problem, which is common to our experience
of using CWB-NC with CCS/PCCS, is the inability to prescribe arbitrary side-effects of actions as
being atomic.

It is possible to use SPIN as a model-cliecking wrapper for models written in tile imperative

programming language C. We have also implemented a verification approach for Liesbet based

on this approach. This is particularly desirable because it means that we call capture minimal

models, while using the biably-optimised implementation of SPIN to drive the verification process. 0 C,
In Figure 12.1, we present all excerpt from the output of SPIN when detecting the deadlock

in the Liesbet model presented (graphically) in Figure 12.2. The deadlock is identified by the

verification run reaching in "invalid end state" -a state which is not one that pertains to proper

completion of the Liesbet model, but, in being all "end state", is one that cannot be progressed.
Tile model has the following Easy Syntax definition.

Par(Seq(A, B) Seq(C, D))

A=Act(join(Go(Completed-act(D))))

260 Chapter 12. Conclusions and Fbture Work

C=Act(join(Go(Completed-act(B))))

12.1.11 Synchronisation Rules -A First Attempt at Flexibility

We have taken our first step towards greater flexibility in workflow models through the proposal of C, 0
Synchronisation Rules, which may be used to provide a notion of flexibility that may be captured

as: Flexible lVork-flow = Concrete Model + Policies for Constraint. We have described how such

rules may be useful. For instance, we are able to capture the behaviour of Liesbet's PriPar

construct usina, such a rule. 0

12.1.12 Strengths and Weaknesses

We consider the use of an information view nieta-model to constrain the scope of the semantics of
the underlying computational view formalism not only to be essential but also to be a real strength 00
of our work compared with other contributions, such as [125]. The entailment (from Liesbet) of

a minimal view of workflow is also si-nificant in allowin- us to understand the fundamentals of 00
workflow for representation at the computational view.

The question of the adequacy or sufficiency (in expressiveness) of the synchronisation language

remains open, and can only be effectively addressed through a comprehensive study of typical

workilow scenarios. Another'weakness of our work is that neither CCS/PCCS- nor SitCaic-based

characterisations are wholly suitable for the characterisation of Liesbet. It is unclear, however,

whether a bespoke formalism -%vould necessarily improve matters. The apparent dichotomy between

clarity and atomicity would need some significant thought to address. 00

12.2 A Flexible Approach To Workflow, through Theodore

This section primarily concerns Contribution #5. We have proposed an approach to flexible

workflow modelling, which is desirable to counter the significant issue of brittleness in traditional

models of workflow. In doing so, we have been able to accommodate collaborative workflows, which 0
are an important kind of workflow (as described in Section 1.1) where agents decide collectively
how a workflow instance should be realised.

12.2.1 Correspondence to HTN-based Planning

Our approach to flexible workflow modelling is based on the identification of a corres ondence 0p
between what we seek to achieve in flexible workflow modelling, as epitomised by the slogan:
Flexible Work-flow = Abstract Model + Policies for Refinement, i. e. refining an abstract workflow,
specified for flexible enactment, into a concrete one, and the operation of an HTN-based planner,
which refines abstract task networks into concrete ones. In identifying such a correspondence, we
are able to propose a novel approach using HTN-based planning for the description, verification and
planned enactment of flexible -, vorkflow models.

We have implemented our own HTN-based planner, called Theodore (Contribution #6). We
implemented our own planner rather than using an off-the-shelf planner such as SHOP [85], as we
wanted features (such as complex operator-like artefacts) not available in any other planner.

12.2. A Flexible Approach lb Work-flow, through Theodore 261

12.2.2 Providing Structure with Flexibility

A key theme in our work in flexible workflow modelling is the notion that we combine structure
with flexibility. That is, we start with an abstract workflow model which provides some initial

structure. Furthermore, there is structure inherent within the policies for refinement, i. e., the
decomposition relations - methods, operators and complex operators, in that they prescribe net-
works of actions which are acceptable refinements of tasks being decomposed. 'Moreover, complex
operators prescribe structure from the bottom-up, in specifying complete refinements of tasks.

All of these dispensations, with respect to structuring, help reduce the complexity of verification.
There is a trade-off here between flexibility in workflow specification, and complexity of verification.
When we allow greater flexibility, the complexity will soar; but, as we allow less freedom, the

complexity will drop. In the extreme of the latter case, we will have fully prescribed workflow
models whose verification complexity will be that of Liesbet models.

12.2.3 Expressivity

The expressivity of the planning language for describing domains is limited by the expressivity of 0 C, 6
the knowledge base underwriting the problem description, together with the expressivity of the C, 0 C,
language used in pre-conditions and effects axioms, and the expressivity of the workflow language n C, 00
(such as Liesbet) that is used for the specification of abstract workflows. As our planner is

modular, all of these provisions can easily be changed, and, thus, in principle, our approach does

not limit workflow authors in what they would seek to express.
This is a double-edged sword, however, with respect to decidability of an authored problem,

and, as a consequence, some care must be take during the process of describing problems to ensure
that decidability is maintained. This is perhaps a less than ideal consequence of making our
planner wholly flexible. As already stated, we may at some time look at some constraints on what
is allowed to be expressed, as other planners such as SHOP [85] do. We are minded, however, to

prioritise flexibility at the possible detriment of usability for the time being.

12.2.4 Meaning Assignable to a Theodore Flexible Workflow Model

The meaning that may be assigned to a workflow model expressed with Theodore is simply the set

of full decompositions that may result from planning over the initial abstract workflow usin. -, the
decomposition relations specified in the Theodore model. The meaningr of a Theodore model may
in this sense be considered as being. mutiplicious. This is in contrast to Liesbet models, which
may be considered to be singular in meaning - that is, for any Liesbet model, its meaning is the C, 0n
single network specified thereiii. 0

12.2.5 Authoring, Verification and Planned Enactment Framework for
Flexible Workflow

We liave implemented an autborin. " verification and eDactinent framework for flexible (i. e. Theodore)

workflow models (Contribution #7). As before, regarding authoring, we have a simple GUI for

describing models, as shown in Chapter Ten.

262 Chanter 12. Conclusions and Fbture Work

In our approach to flexible workflow modelling, we make a distinction between fixed and variable
models. Fixed (resp. variable) models are those for which the set of decomposition relations for HTN
tasks is (resp. is not) fixed. For fixed models, we define a notion of soundness which is embodied as
the verification cHterion. This criterion prescribes that every partial decomposition of a Theodore

model leads to a full decomposition.
The terms verification and enactment amount to: (i) verification and flexible enactment for

fixed models, and (ii) planned, flexible enactment for variable models. For fixed models, it is

also imperative that their planning domains be practicably decidable. Under the assumption that
this is the case for a particular model, verification of fixed flexible workflow models for soundness
and for the satisfaction of arbitrary temporal constraints is a particularly desirable aspect of our
framework and novel in the context of flexible workflow modelling.

For variable models, the options are based around finding a plan to realise the (possibly partially
enacted) abstract workflow. Here, we may perform "what may I do next? " querying, as well as
"what-if" simulation. These facilities are also available for fixed models. In performing planning
a domain expert is able to make choices of which decomposition steps to take based on his or her

sub ective constraints, as well as doing on-line planning which mixes planning with enactment. i0 1ý 0

12.2.6 Strengths and Weaknesses

The strengths of our approach to flexible workflow modelling are as follows:

" The capability for expressing structure in the definition of a workflow from the bottom-up as C,
well as the tork-down provides additional power to domain authors in controlling the degree

00
of flexibility in a model. This bottom-up structuring is provided by complex operators, which

are a novel aspect of ourwork.

" As described at the end of Chapter Eight, our approach compares favourably in terms of
the modelling capability, and verification and planned enactment facilities against other ap-

proaches to flexible workflow modelling. No other approach that Ave have been able to identify

in the literature provides the range of support that we do. We also naturally capture the

notion of collaborative workflows in our approach.

Similar to the weakness identified for the synchronisation language for Liesbet, the only weak- 00
ness that we currently identify in our work on flexible workflow modelling is that we are not sure 0
whether our approach is powerful enough to cover the range of possible scenarios that might obtain. 0 ?D0
We are only going to be able to gain insight into resolving this matter through a comprehensive 0000C, 0
study of typical ivorkflow scenarios.

12.3 Workflow as a Basis for Contract Modelling, through

Institutional Modelling

This section primarily concerns Contribution #8. We have been motivated to consider how

our work on workflow modellin- mi-ht be reused in other contexts. We consider this to be an 00
important issue in itself, as part of the utility of research comes from considering how it may be

C,
applied in different contexts. An immediately-apparent context was that of contract modelling,

12.3. Work-flow as a Basis for Contract Modelling, through Institutional Modelling 263

where contracts are often cast as protocols (i. e., workflows) of behaviour between two or more

parties. We have been motivated to look at the issue of contract modelling for its own sake as
well, as this remains a somewhat formative research field in which there is ample scope to make a
worthwhile contribution.

12.3.1 Institutional Workflow Modelling (IWM) as a Foundational Basis
for Normative and Contract Modelling

In order to explicate how our previous work may be reused, we have identified a new perspective for

workflow, namely an institutional perspective (Contribution #9). We define Institutional Work-

flow Modelling as an embodiment of an institutional perspective for workflow. In INVINI,

we identify the institutional concepts of counts as and permission, and the related classification

of actions into institutional and brute classes of action, to be pertinent to the characterisation of

Nvorkflow.
These concepts are also pertinent in normative and contract modelling (NCINI), and our ex- 0

perience shows INNIM to be useful as a foundational basis for NCNI. The utility of INVINI, in this

regard, is evident from both examples given Chapter Nine, namely, the Transf erProperty and

mail service agreement examples. 0
We define INNITNI to be the sum of our Theodore-based approach to flexible workflow modelling

and the presented correspondences of counts as and permission relations to workflow artefacts, on
the one hand, and HTN-based planning constructs (i. e., methods, operators and complex operators),

on the other.
When INVINI is applied in the modelling of contracts, counts as provides a means of modelling

power, and permission provides a means of modelling privilege (in the terminology of Holifeld).

Jones and Ser-ot [63] identify the correspondence between counts as and power, in respect of

counts as relations prescribing ways in which powers may be exercised. Obligation is modelled by

leaf activities within IWNI model fragments, which may pertain to institutional or brute actions
that demand the presence of powers and privileges (as methods and operators, respectively) to

refine them.

12.3.2 Mechanism for Relating Obligation Fulfilment to Extant Power

and Privilege

A particularly interesting aspect of our approach to contract modelling is that it relates the ful-

filment of obligations directly to the existence of powers and privileges, in providing a mechanism 000
by which contract enactors may query and plan obligation fulfilment using these relations. The 00
distinction between institutional and brute actions in the modelling of contracts, and thus the C,
distinction between power and privilege, is often overlooked in the modelling of contracts (see, for

example, [82,1151).

12.3.3 Authoring, Verification and Planned Enactment Framework for

Contracts

We have implemented an authoring, verification and enactment framework for IWAI-based con-
tracts (Contribution #10), which builds on our INVINI framework.

264 Chapter 12. Conclusions and Riture Mork

We make a distinction between fixed and vaHable contract models. A necessary condition for

a model to be fixed is that the set of decomposition relations, described therein, is fixed. This
is a condition that carries over from our work on flexible workflow modelling. Another necessary
condition is that a power may not be exercised in the absence of an obligation that prescribes the
institutional action to which the power applies.

As our approach to contract modelling is based on our work on flexible workflow modelling, we
reuse a lot of the components implemented in the verification and enactment engine for Theodore
flexible workflows. For fixed contract models, a contract author or contract party (in enactment)
may make use of the INVINI-based verification facilities for soundness and arbitrary constraints. For
both fixed and variable models, a party may perform "what-if" simulation and "what may I do

next" querying.

12.3.4 Strengths and Weaknesses

The strengths of our approach to contract modelling may be enumerated (non-exhaustively) as
follows.

" The use of workflow artefacts to model contracts in a hybrid approach with auxiliary norma-
tive relations is at least uncommon if not novel. It is a strength because it provides a natural 0
means of modelling protocol fragments inherent in contracts. 6 C,

" Accounting for the normative concept of power in contracts, which (as stated) is often over- 0
looked in approaches to contract modelling. Not only do we model it, but we also provide a 0
mechanism by which a contract author/party can simulate and reason over the fulfilment of
obliuations using powers 0 ?D0 (as well as privileges).
Power is very important contract modelling both in itself but also to give structure to a
contract model. Without it, contracts would be specified at the level of brute actions instead
of institutional and brute actions, serving to remove the possibility of specilying abstraction
hierarchies in contracts.

Again the weaknesses of our work lie in the breath and depth of coverage that we have been 00
able to give to different scenarios in which contracts may be used. In future work, we need to

give our approach to contract modelling a comprehensive road-test against a number of different
sorts of contracts in order to identify any weaknesses in our modelling, verification and planned
enactment approach. It is not until we do so that we can be certain that it is a sufficient approach
to contract modelling. However, it is certainly clear from comparable works that have been carried
out by the research community that it is a significant and useful contribution. C,

12.4 Future Work

We intend to continue working on our flexible/INVNI-based approach for -, vorkflow modelling, veri-
fication and planned enactment. One key area in which we intend to apply our work is template-
based planning for Web Service Composition [86,1331. Our planner Theodore provides some nice 0
features that would be useful in this domain. For example, the complex operator artefact would
be useful in representing complete service orcliestrations enabling us to plan over services rather 00
than service operations, thus speeding up planning.

12.4. Fliture Work 265

We shall also look at how we may practically integrate the use of other planners and tools

into our Theodore-based planning framework. For example, in HTN-based planning, the ability
to perform hybrid planning is frequently desirable where HTN-based planning is combined with

operator-based planning (the latter "filling in the gaps" when the former has no applicable de-

composition relation, for example). Another example tool that we would seek to integrate is a

scheduler so that we may combine the planning of compositions with the scheduling of their enact-

ment. This would make an important contribution to the area of Business-Driven ITAlanagement
[11, for example, where an important issue is effective Change Management (ChNI). In ChNI, there
is a need to plan and schedule changes to underlying IT infrastructure in ways which serve to best

meet current business objectives, codified as business rules. We also need to look at a number of
issues relatin-r to what the notion of institution means in the context of workflows and contracts.
We shall also continue to evolve our IWNI-based approach to contract modelling including the

maturing of tool-support.
We intend to continue to evaluate the suitability of our workflow language Liesbet for the

specification of the control flow perspective of workflow, particularly tile language for the ex-

pression of synchronisation queries. We shall continue to make adjustments to Liesbet and its

SitCalc/1701, based characterisation, as this our preferred characterisation given that it more 0
naturally captures the intended semantics of Liesbet. We are also in the process of developing

0
another model of orchestration. It augments Liesbet with the notion that activities may have

arbitrarily complex lifecycles, providing for a more natural and intuitive way of authoring certain

notions of orchestration.
Furthermore, we will mature the implementation of our verification and enactment encrine for

Liesbet and Theodore. In looking at all of these things, it will be necessary to identify a stock of
representative use-cases which can be used to ground and contextualise the work.

266 Chaoter 12. Conclusions and Fbture 11"ork-

Bibliography

[11 Business Driven IT Management, at: http: //bus ine ss drivenitmanagement. org. URL last

verified: 2008-22-01.

[2] Business Process 'IYends at: http: //www. bptrends. com. URL last verified: 2008-22-01.

[31 Eclipse - an Open Development Platform at: http: //www. eclipse. org. URL last verified:
2008-22-01.

[41 Eclipse Modelling Ramework, ENIF, at: http: //www. eclipse. org/emf. URL last verified:
2008-22-01.

[5) IMirriam Webster Dictionary at: http: //www. m-w. com. URL last verified: 2008-22-01.

[61 On-Demand, Grid and Utility Computing at: http: //www. utilitycomputing. com. URL 0
last verified: 2008-22-01.

[7] Proceedings of First Workshop of Process Modelling Group, Eindhoven, June 2005. Available
C, 0

at: http: //wvw. bptrends. com. URL last verified: 2008-22-01.

[81 Process Modelling Group, now defunct, see [7].
C,

[9] Rule'1%IL: The Rule'Markup Initiative, at: http: 11www. rulemi. org. URL last verified: 2008-

22-01.

[10] Simple Hierarchical Ordered Planner (SHOP), Automated Planning at Ole University of 0
Maryland at: http: //www. cs. umd. edu/projects/shop/index. html. URL last verified:
2008-22-01.

[11] The Concurrency Workbench of the New Century at: http: //www. cs. sunysb. edu/-cwb/.
URL last verified: 2008-22-01.

[12] A. K. Bandara, E. C. Lupu, and A. Russo. Using Event Calculus to Formalise Policy Specifica-

tion and-AnalYsis. Fourth IEEE Workshop on Policies for Distributed Systems and Networks

(Policy 2003), Lake Como, Italy, 2003.

[13] Gustavo Alonso, Fabio Casati, Harunii Kuno, and Vijay Machiraju. Web Services, ISBN. ý
3540440089. Springer, 2004.

[141 Andrew DH Farrell. Logic-based Formalisms for the Representation of Service Level Agree- 00
ments for Utility Computing. Nlaster's thesis, Imperial College, London, 2003.

267

268 BIBLIOGRAPHY

[15] Alexander Artikis. Executable Specification of Open Norm-Governed Computational Systems.

PhD thesis, Imperial College, London, 2003.

[16] Pallas Atbena. Case Handling with FLOAVer. Beyond Workflow, Pallas AtlienaBV, Apel- 0
doorn, The Netherlands. 2002.

(171 Fahiem Bacchus and Roduald Kabanza. Using Temporal Logics to Express Search Control 00
Knowledue for Planning. Artificial Intelligence, 116(1-2): 123-191,2000. 0 C'

[181 Falko Bause and Pieter S. Kritzinger. Stochastic Petri Nets - An Introduction to the Theor-y,
ISBN. 3528155353. Vieweg, 2002. 0

[19] James B. D-Joslii, E. Bertino, Usman Latif, and Arif Ghafoor. Generalised Temporal Role-
Based Access Control Model (GTRBAC) Part I: Specification and I\Iodelin0-. CERIAS TR
2001-47,2001.

[20] James B. D. Joshi, E. Bertino, Usman Latif, and Arif Chafoor. Generalised Temporal Role-
Based Access Control Model (GTRBAC) Part II: Expressiveness and Design Issues. CERIAS
TR 2003-01,2003.

[21] Klialid Belhajjame, Christine Collet, and Genoveva Vargas-Solar. A Flexible Workflow Model
for Process-Oriented Applications. In Al. Thiner 6zsu, Hans-Mrc Scliek, Katsumi Tanaka, 0
Yanchun Zhang, and Yahiko Iýambayashi, editors, Proceedings of the Second International 0
Conference on Web Information Systems Engineering (IVISE'01), Organized by WISE So-

ciety and Kyoto University, Kyoto, Japan, 3-6 December 2001, Volume 1 (Afain program).
IEEE Computer Society, 2001.

[221 B. N. Grosof, Y. Labrou, and H. Y. Clian. A Declarative Approach to Business Rules in Con-
tracts: Courteous Lo, -, ic Pro,,,, rams in XINIL. In M. P. Wellman, editor, Proceedings of First
AM Conference on Electronic Commerce (EC-99), Denver, Colorado, USA. ACINI Press,
New York, NY, USA, November 1999.

[23] James B. Brady. Law, Language and Logic: The Legal Philosophy of Wesley Newcomb
Holifeld. Ransactions of the Charles S. Peirce Society, 8: 246-263,1972.

[24] Business Modeling & Integration Domain Task Force. Business Process Modelling No- 41 00
tation (BPININ) Specification, at: http: //www. omg. org/technology/documents/br-pm-

spec-catalog. htm. URL last verified: 2008-22-01.

[251 Fabio Casati, Stefano Ceri, Stefano Paraboschi, and Guiseppe Pozzi. Specification and Iin-

plementation of Exceptions in WorkflowManagenient Systems. ACAI 71-ans. Database Syst.,

24(3): 405-451,1999.

[26] Fabio Casati, Stefano Ceri, Barbara Pernici, and Giuseppe Pozzi. Workflow Evolution. In
Proceedings of the 15th International Conference on Conceptual Modeling, pages 438-455,

London, UK, 1996. Springer-Verlag,.
C,

[27] Fabio Casati and Giuseppe Pozzi. Modeling Exceptional Behaviors in Commercial Workflow

Management Systems. Ili COOPIS '99: Proceedings of the Fourth IECIS International Con- 0
ference on Cooperative Information Systems, Washington, DC, USA, 1999. IEEE Computer

Society.

BIBLIOGRAPHY 269

[281 S. Ceri, P. Grefen, and G. Sanchez. WIDE -a Distributed Architecture for Workfloiv Manage- 0
ment. In RIDE '97. - Proceedings of the Seventh International Workshop on Research Issues
in Data Engineering (RIDE '97) High Performance Database Management for Large-Scale
Applications, Washington, DC, USA, 1997. IEEE Computer Society. 0

[29] R. Cleaveland, G. Luettgen, V. Natarajan, and S. Sims. Modeling and Verifying Distributed Z' 00
Systems using Priorities: A Case Study. Software Concepts and Tools, 17: 50-62,1996.

[30) Rance Cleaveland and Mattliew Hennessy. Priorities in Process Algebras. Information and C,
Computation, 87(1-2): 58-77,1990.

[311 Thomas Connolly and Carolyn Beag. Database Systems: A Practical Approach to Design,
00

Implementation and Management, ISBN. 0321210255. Addison-Wesley, 2004.

[32] F. Curbera, M. Duftler, R. Klialaf, NNI. Nagy, N. Nlukhi, and S. Weerawarana. Unravelling the 0
Web Services Web: An Introduction to SOAP, IIISDL, and UDDL IEEE Internet Computing,

6(2): 86-93, March 2002.

[33] A. Daskalopulu. Logic-Based Tools for the Analysis and Representation of Legal Contracts.

PhD thesis, Imperial College, London, 1999. 0

[34] A. Daskalopulu. Modelling Legal Contracts as Processes. In Proceedings of 11th International

Conference and Workshop on Database and Expert Systems Applications, pages 1074-1079.

IEEE C. S. Press, 2000.

[35) ShuiGuang Deng, Zhen Yu, Zhaollui Wu, and LiCan Huang. Enhancement of Workilow
0n0

Flexibility by Composing Activities at Run-time. In SAC '04: Proceedings of the 2004 A CM
0

symposium on Applied computing, pages 667-673, New York, NY, USA, 2004. ACM Press. 0

[361 Paulo Dias, Pedro Vieira, and Antonio Rito-Silva. Dynamic Evolution in Workflow Manage-

ment Systems. In DEXA W: Proceedings of the 14th International Workshop on Database

and Expert Systems Applications, Washington, DC, USA, 2003. IEEE Computer Society.
0

[371 Yang Dong and Zhang Shensheng. Modeling Workilow Patterns with -rcalculus, unpublished,

available from http: //www. workf low-research. de. URL last verified: 2008-22-01.

[38] Edmund M. Clarke, Jr. and Orna Grumberg and Doron A. Peled. Model Checking, ISBN.

0-262-03270-8. MIT Press, Cambridge, AIA, USA, 1999. 0

[39] Clarence A. Ellis and Karim Keddara. A Workilow Change Is a Workflow. In Business 0
Process Management, Models, Techniques, and Empirical Studies, pages 201-217, London,

UK, 2000. Springer-Verlag.

[40] Kutlulian Erol. Hierarchical Task Network Planning: Formalization, Analysis and Imple-

mentation. Plil) thesis, The University of Maryland, 1995.

[41] Andrew D. H. Farrell, Marek J. Sergot, Mathias Sall6, and Claudio Bartolini. Using the 0
Event Calculus for 'lYackin- the Normative State of Contracts. International Journal of 0
Cooperative Information Systems, 14(2-3): 99-129,2005.

270 BIBLIOGRAPHY

[42] Andrew D. 11. Farrell, Marek J. SergOt, David Trastour, and Athena Christodoulou. Per- 0
formance Monitoring of Service-Level Agreements for Utility Computing Using the Event
Calculus. In IVEC '04: Proceedings of the First IEEE International Workshop on Electronic
Contracting (TITC'04), pages 17-24, Washington, DC, USA, 2004. IEEE Computer Society. 00

[43] Andrew D. 11. Farrell, Marek J. Sergot, David 'IYastour, and Athena Christodoulou. Using
the Event Calculus for the Performance Monitoring of Service-Level Agreements for Util-
ity Computing. In CoALa '04: Proceedings of the First IEEE International Workshop of 0
Contract Architectures and Languages (CoALa 04), 2004.

[44] Howard Foster. A Rigorous Approach To Engineering Web Service Compositions. PhD thesis,
Imperial College, London, 2006.

[45] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. LTSA-WS: A 'Fool for
Alodel-Based Verification of Web Service Compositions and Choreography. In ICSE '06: 0
Proceedings of the 28th International Conference on Software Engineering, pages 771-774,
New York, NY, USA, 2006. ACTNI Press.

[46] Martin Fowler. UAIL Distilled, A Brief Guide to the Standard Object Modelling Language.
ISBN., 0321193687. Addison-Wesley, 2004.

[471 Xiang Fu, Tevfik Bultan, and Jianwen Su. WSA'r: A Tool for Formal Analysis of Web
Services. Proceedings of 16th International Conference on Computer Aided VeHfication (CA V
2004).

[48] Xiang Fu, 'revfik Bultan, and Jianwen Su. Analysis of Interacting BPEL Web Services. In 00
IVIVIV '04: Proceedings of the 13th International Conference on World Wide Web, pages
621-630, New York, NY, USA, 2004. ACTNI.

[49] Bruns G. Distributed Systems Analysis with CCS, ISBN: 0-13-398389-7. Prentice-Hall, 1997.

[50] D. Georgakopoulos, Al. Hornick, and A. Sheth. An Overview of Workflow 'Management: k, Z'
From Process Modelling to Workflow Automation Infrastructure. Distributed and Parallel C,
Databases, 3(2): 119-153, April 1995.

[51] Dimitrios Georgakopoulos, Hans Schuster, Donald Baker, and Andrzej Cichocki. Managing 000
Escalation of Collaboration Processes in Crisis Mitigation Situations. In ICDE '00: Pro-

ceedings of the 16th International Conference on Data Engineering, Washington, DC, USA,

2000. IEEE Computer Society.

[52] IMalik Cliallab, Dana Nau, and Paolo 'IYaverso. Automated Planning : Theory & Practice,

ISBN. ý 1558608567. Morgan Kaufmann, 2004. 0

[53] Enrico Giunchiglia, Jooliyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson lbrner. 00
Nonnionotonic Causal Theories. Artificial Intelligence, 153: 49-104,2004.

[541 Alvin I Goldman. A Theory Of 11uman Action, ISBN. 0139144404. Prentice-Hall, Englewood
0

Cliffs, NJ, 1970.

BIBLIOGRAPHY 271

[55] Paul W. P. J. Grefen, Karl Aberer, Heiko Ludwig, and Yigal Hoffner. CrossFIow: Cross-
00

Orpnizational Worliflow 'Management for Service Outsourcing in Dynamic Virtual Enter-
el C, 0

prises. IEEE Data Engineering Bulletin, 24(l): 52-57,2001.

156) Michael Ilavey. Essential Business Process Modeling, ISBN. - 0-596-00843-0. O'Reilly, 2005.

[57] Jan Hidders, Marlon Dumas, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Jan

Verelst. When Are Two Workflows the Same? In Mike Atkinson and Rank Denlie, editors,
Proceedings Computing: The Australasian Theonj Symposium, Newcastle, NSTV, Australia,

pages 3-11,2005.
0

[58] Wesley N. Holifeld. Andamental Legal Conceptions as Applied in Judicial Reasoning, ISBN.

185521668X. Dartmouth Pub Co, 2002.

[59] Gerard J. Hohmann. The SPIN Model Checker: Primer and Reference Manual, ISBN. -
0-321-22862-6. Addison-Wesley, 2004.

[60] Kohei Honda, Vasco Thudichum Vasconcelos, and 'Makoto Kubo. Language Primitives and
Type Discipline for Structured Communication-Based Programming. In ESOP '98: Pro- C,
ceedings, of the Seventh European Symposium on Programming, pages 122-138, London, UK,
1998. Springer-Verlag.

[61] Nlichael Huth and Mark Ryan. Logic in Computer Science, ISBN. 0-521-65602-8. Cambridge

University Press, 2000.

[62) S. Jablonski and C. Bussler. Work: flow Management - Modeling Concepts, Architecture and
Implementation, ISBN: 1850322228. International Thomson Computer Press, September

1996.

[631 Andrew Jones and Nlarek Sergot. A Formal Characterisation of Institutionalised Power.
Logic Journal of the IGPL, 4(3), 1996.

[64) B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Modelling in

lVork-flows. PhD thesis, Queensland University of 'rechnolog , Brisbane, Australia, 2003.
ýy

[65] IMariya Koslikina and Franck van Brengel. Verification of Business Processes for Web Ser-

vices, CS-2003-11. Technical report, Department of Computer Science, York University,

Toronto, 2003.

[66) Nlariya Koslikina and Fýranck van Brengel. Modelling and Verifying Web Service Orches-
Z' 0 C,

tration by means of the Concurrency Workbench. SIGSOFT Software EngineeTing Notes,

29(5): 1-10,2004.

[67] Akliil Kumar, Wil Al P van der Aalst, and Eric NI NNI Verbeek. Dynamic Work Distribution
in Workflow Management Systems: How to Balance Quality and Performance. Journal of 0
Management Information Systems, 18(3): 157-194,2002.

[68] John Lee and Ron Ben-Natan. Integrating Service Level Agreements: Optimizing Your OSS

for SLA Delivery, ISBN., 0471210129. John Wiley &, Sons, Inc., New York, NY, USA, 2002.

272 BIBLIOGRAPHY

[69] F. Leymann. Web Services Flow Language (NN'SFL 1.0), IBINI (2001), at: http: //www-306.
00

ibm. com/software/solutions/webservices/pdf/WSFL. pdf. URL last verified: 2008-22-

01.

[70] F. Leymann and D. Roller. Production Work-flow: Concepts and Techniques, ISBN.

0130217530. Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

[71] Lars Lindahl. Position And Change, A Study in Law and Logic; Synthese LibraT-y Volume
122. D. Reidel Publishing Company, 1977.

[72] David Alakinson. On the Formal Representation of Rights Relations: Remarks on the Work
0

of Stig Kanger and Lars Lindahl. The Journal of Philosophical Logic, 15: 403-425,1986.
r, C,

[73] Peter Mangan and Shazia Sadiq. A Constraint Specification Approach to Building Flexible

Workflows. Journal of Research and Practice in Infonnation Technology, 34(3), 2002.

[74] Mike Marin. Business Process Technology: From EAI and Workflow to BPNI. In Layna

Fischer, editor, The lVork-flow Handbook 2002, ISBN. 0-9703509-2-9. F)iture Strategies.

[751 OliveraMarjanovic. Managing the Normative Context of Composite E-services. In Proceed-

ings of the International Conference on Web Services, (ICIVS-Europe'2003), Erfurt, Ger-

many, 2003, pages 24-36.

[76] John McCarthy. Situations, Actions and Causal Laws. Technical Report, Stanford Uni-

versity, 1963. Reprinted in Semantic Information Processing (AL Minsky ed.), MIT Press,

Cambridge, Mass., 1968, PP. 410-417.

[771 John McCarthy and Patrick J. Hayes. Some Philosophical Problems from the Standpoint of
Artificial Intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence

, pages 040
463-502. Edinburgh University Press, 1969.

[78] Robin Milner. Communication and Concumncy, ISBN. 0-13-115007-3. Prentice Hall, 1989.

[79] Robin Milner. Operational and Algebraic Semantics of Concurrent Processes in Handbook of
Theoretical Computer Science (Vol. B): Formal Models and Semantics, ISBN. 0-444-88074- 7.

pages 1201-1242,1990.
0

[80) Robin Milner. Communicating and Mobile Systems: The 7, -Calculus, ISBN. 0-521-64320-1

Cambridge University Press, 1999.

[811 Z. Milosevic, S. Gibson, P. F. Linington, J. Cole, and S. Kulkarni. On Design and Imple-

mentation of a Contract Monitoring Facility. In IVEC '04: Proceedings of the First IEEE C,
International Workshop on Electronic Contracting (IVEC'04), pages 62-70, Washington, DC,

00
USA, 2004. IEEE Computer Society.

[82] Carlos Nlolina-Jini6nez, Santosh K. Shrivastava, Ellis Solaiman, and John P. Warne. Run-

time Monitoring and Enforcement of Electronic Contracts. Electronic Commerce Research
0

and Applications, 3(2): 108-125,2004.

BIBLIOGRAPHY 273

[83] S. Nakajima. Verification of Web Service Flows with Model-Cliecking Techniques. CIV '02:
0

Proceedings of the First International Symposium on Cyber Worlds (CIV'02), pages 3-78,

2002.

[84] Shin Nakajima. Model-Checking Behavioral Specification of BPEL Applications. Electronic
0

Notes on Theoretical Computer Science, 151(2): 89-105,2006.

[851 D. Nau, T. -C. An, 0. flohami, U. Kuter, W. Murdock, D. Wu, and F. Yaman. SHOP2: An
0

HTN Planning System. Journal of Artificial Intelligence Research, 20: 379-404,2003.

[86] Eric Newcomer and Greg Lornow. Understanding SOA with Web Services, ISBN. ý 0-321-
C,

18086-0. Addison-Wesley, 2005.

[87] OASIS. Web Services Business Process Execution Language Version 2.0, OASIS Standard,
0

1 1th April 2007, at: http: //www. oasis-open. org/apps/org/workgroup/wsbpel. URL last

verified: 2008-22-01.

[881 O. Nlarjanovic and Z. Milosevic. Towards Formal Modelling of c-Contracts. In Proceedings of 0
Fifth International Enterprise Distributed Object Computing Conference (EDOC 2001), 4-7

September 2001, Seattle, IVA, USA, pages 59-68. IEEE Computer Society, 2001.
0

[89] Adrian Pasclike. RBSLA A Declarative Rule-based Service Level Agreement Language Based

on RuleXIL. In CIMCA '05: Proceedings of the International Conference on Computational

Intelligence for Modelling, Control and Automation and International Conference on Intelli-

gent Agents, Web Technologies and Internet Commerce Vol-2 (C1A[CA-IAJVTIC'06), pages
308-314, Washington, DC, USA, 2005. IEEE Computer Society.

C,

[90] Richard E. Pattis. EBNF: A Notation to Describe Syntax, at: http: //www. cs. cmu. edu/

-patt i s/mi s c/ebnf . pdf . URL last verified: 2008-22-0 1.

[91] Marco Pistore, Marco Roveri, and Paolo Busetta. Requirements-Driven Verification of Web

Services. Electronic Notes in Theoretical Computer Science, 105: 95-108,2004.

[921 Jeremy Pitt, Lloyd Kamara, Marek Sergot, and Alexander Artikis. Formalization of a Voting
0 C,

Protocol for Virtual Organizations. In AAAIAS '05: Proceedin s of the Fourth International
0g

Joint Conference on Autonomous Agents and Alultiagent Systems, pages 373-380, New York,
el

NY, USA, 2005. ACNI Press.

[93] David Portabella Clotet, Vincenzo Pallotta, and Martin Rajman. Systematic Definition and
Assent to eContracts for Web Services. In CoAla 2005 Workshop on Contract Architectures

and Languages, Enschede, The Netherlands, September 2005.

[941 Frank Pulilmann and Mathias Weske. Using the 7r-calculus for Formalizing Workflow Pat-

terns. In W. M. P. van der Aalst et al, editor, Business Process Management (BPAI) 2005,

volume 3649 of Lecture Notes in Computer Science. Springer, 2005.

[95] 'Manfred Reichert and Peter Dadam. Adept-flex - Supporting Dynamic Changes of Workflows
00

Without Losing Control. Journal of Intelligent Information Systems, 10(2): 93-129,1998.
C,

[96] H. A. Reijers, J. Riater, and W. van der Aalst. The Case Handling Case. International
00

Journal of Cooperative Information Systems, 12(3): 365-391,2003.

274 BIBLIOGRAPHY

[97] Wolfgang Reisig and Grzeggorz Rozenberg. Lectures on Petri Nets I. - Basic Models, ISBN. -3- 00t,
540-65307-4. Springer, 1998.

0

[981 Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems, ISBN: 0-262-18218-1. The MIT Press, 2001.

[99) R. Iýowalski and M. Sergot. A Logic-Based Calculus of Events. New Generation Computing,

4: 67-95,1986.

[100] Hamish Ross. Holifeld and the Analysis of Rights (Chapter 13). In James Penner, David
0

Schiff, and Richard Nobles, editors, Jurisprudence V Legal Theory: Commentary and Mate-

rials, ISBN. - 0-406-94678-7.2002.

[1011 Ronald G. Ross. Principles of the Business Rule Approach (Paperback), ISBN. - 0201788934.
Addison-Wesley Professional; First Edition, 2003.

(1021 Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach, ISBN.
0

0130803022. Prentice-Hall, Englewood Cliffs, NJ, second edition, 2003. 0

[103] S. Thatte. XLANG: Web Services for Business Process Design, now defunct, see: http: 0
//en. wikipedia. org/wiki/X1ang. URL last verified: 2008-22-01.

[104] F. B. Sadigbi, INI. J. Sergot, and 0. Bandemann. Using Authority Certificates to Create 000
Management Structures. In Bruce Christianson, Bruno Crispo, James A. Malcolm, and 0
Michael Roe, editors, Security Protocols. Ninth International Workshop, Cambridge, April

2001, LNCS 2467, pages 134-145. Springer, 2002. C, 0

[105] Shazia NNI. Sadiq, Alaria E. Orlowska, and Wasim Sadiq. Specification and Validation of
Process Constraints for Flexible Workflows. Infonnation Systems, 30(5): 349-378,2005.

[106] Gwen Salaun, Lucas Bordeaux, and IMarco Schaerf. Describing and Reasoning on Web
0 C,

Services using Process Algebra. In Proceedings of the IEEE International Conference on
Web Services (ICIVS'04), Washington, DC, USA, 2004. IEEE Computer Society.

0

[107] Hans Schuster, Donald Baker, Andrzej Cichocki, Dimitrios Geor-akopoulos, and Marek
0

Rusinkiewicz. The Collaboration Alanagement'Infrastructure. In ICDE '00: Proceedings

of the 16th International Conference on Data Engineering, Washington, DC, USA, 2000.
IEEE Computer Society.

1108] John R Searle. What is a Speech Act? In The Philosophy of Language, pages 130-141.1965.

[109] John R Searle. The Construction of Social Reality, ISBN: 0-02-928045-1. The Free Press,

1995. -

[110] Alarek Sergot. The language (C+)++. In J. Pitt, editor, The Open Agent Society. Wiley, C, 00
2005. (In press). Extended version: Technical Report 2004/8. Department of Computing,

Imperial College, London.
0

[111] Murray Shanahan. Solving the Tý-ame Problem. A Mathematical Investigation of the Common
Sense Law of Inertia, ISBN. - 0-262-19384-1. The MIT Press, 1997.

BIBLIOGRAPHY 275

[112] Murray Shanahan. The Event Calculus Explained. In'1U. J. Wooldridge and NI. Veloso, editors,
Artificial Intelligence Today, Lecture Notes in Artificial Intelligence, volume 1660, pages 409-

430. Springer, 1999. 0

[113] S. Sims. The Process Algebra Compiler User's Manual, at: http: //www. react ive-systems. 0
com/pac. URL last verified: 2008-22-01.1999.

[114] Michael Sipser. Introduction to the Theory of Computation, ISBN. -0619217642. Thomson

Course Teclinolo,, Yl 2006.

[115] Ellis Solaiman, Carlos Molina-Jim6nez, and Santosh K. Shrivastava. Model Checking Cor-
o

rectness Properties of Electronic Contracts. In Proceedings of First International Conference

Service Oriented Computing (ICSOC 2003), Rento, Italy, December 15-18, pages 303-318,

2003.

[116] Christian Stefansen. A SNIAll Workflow Language based on CCS, TR-06-05. In Proceedings

of 17th Conference on Advanced lnformation Systems Engineering, CAiSE05, to appear,
2005.

[117] Christian Stefansen. A SNIAII Workflow Language based on CCS, TR-06-05. Teclinical 00
report, Harvard University, Division of Engineering and Applied Sciences, Cambridge, MA

02138, March 2005.

[118] Kishor Shridliarbliai Trivedi. Probability and Statistics with Reliability, Queueing, and Com-

puter Science Applications, Second Edition, ISBN. 0471333417. Wiley-Interscience (October

26,2001).

[119] NNI. M. P. van der Aalst and S. Jablonski. Dealing with Workflow Change: Identification of 00
Issues and Solutions. International Journal of Computer Systems Science and Engineering,

15(5): 267-276, September 2000.

[1201 W. M. P. van der Aalst. Business Process Management Demystified: A Tutorial on Nlod- 0
els, Systems and Standards for Workflow Management, BPINI Center Report BP'1%1-04-03.
Technical report, BPNIcenter. org, 2004. Z'

[121] NNI. M. P. van der Aalst. Don't Go With the Flow: Web Services Composition Exposed. In

Rends and Controversies. Web Services: Been there, Done that? IEEE Intelligent Systems,

pages 72-76, Jaii-Feb 2003.

[122] W. M. P. van der Aalst. 7. --calculus versus Petri nets: Let us eat "humble pie" rather than
further inflate the "7r hype". BPRends, 3(5): 1-11, May 2005.

[123) NNI. M. P. van der Aalst, L. Aldred, TNI. Dumas, and A. H. M. ter Hofstede. Design and Im-

plementation of the YANNIL system. In Proceedings of The 16th International Conference on
Advanced Information Systems Engineering (CAiSE 04), Riga, Latvia. Springer Verjag, June

2004.

[1241 INI. M. P. van der Aalst, A. 11ofstede, and M. Weske. Business Process Alanagement: A Survey.

Business Process Management (BRAI), 2003.

276 BIBLIOGRAPHY

[125] W. M. P. van der Aalst and A. H. M. ter Hofstede. YANNIL: Yet Another Workflow Lan-ua-e 00
(Revised Version). Information Systems, 30(4): 245-275,2005.

[126] W. M. P. van der Aalst and A. H. M. ter Hofstede. Workflow Patterns: On the Expressive
Power of (Petri-net-based) Workflow Languages. In K. Jensen, editor, Proceedings of the 00
Fourth Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2002),

volurne 560 of DAMI, Aarhus, Denmark, pages 1-20, August 2002. 0

[127] W. M. P. van der Aalst and Mathias Weske. Case Handling: a New Paradigm for Business 0 C,
Process Support. Data Knowledge Engineering, 53(2): 129-162,2005.

[1281 HANI. W. Verbeek, T. Basten, and W. "M. P. vali der Aalst. Diagnosing Workflow Processes 00
usina Woflan. The Computer Journal, 44(4): 246-279,2001. ID

[129] W3C. Web Service Choreography Interface (NNISCI) 1.0, at: http: //www. 0. org/TR/wsci/.
URL last verified: 2008-22-01.

[130] W3C Recommendation. Extensible Markup Language (XNIL) 1.0 (Fourth Edition). W3C
00

Recommendation 16 August 2006, edited in place 29 September 2006, at: http: //www. w3.

org/TR/2006/REC-xm1-20060816/. URL last verified: 2008-22-01.

[131] Jacques Wainer. Logic Representation of Processes in Work Activity Coordination. In SAC
C,

'00: Proceedings of the 2000 AM symposium on Applied computing, pages 203-209, New

York, NY, USA, 2000. ACNI Press.

[132] Jacques Wainer, Fabio Bezerra, and Paulo Barthelmess. Micupi: a Flexible Workflow System

Based on Overridable Constraints. In SAC '04: Proceedings of the 2004 ACAI symposium

on Applied computing, pages 498-502, New York, NY, USA, 2004. ACINI Press.
0

[1331 Sanjiva Weerawarana, Francisco Curbera, Rank Leymann, Tony Storey, and Donald F.

Ferguson. Web Services Platform Architecture, ISBN. 0-13-148874-0. Prentice Ilall, 2005.

[1341 M. Weske. Formal Foundation and Conceptual Design of Dynamic Adaptations in a Workflow
0

Management System. In HICSS '01: Proceedings of the 34th Annual Hawaii International
I

Conference on System Sciences (HICSS-34)- Volume 7, Washington, DC, USA, 2001. IEEE
0

Computer Society.

11351 Workflow Management Coalition. XNIL Process Definition (XPDL) Language, at: http: 000
//www. wf mc. org/standards/xpdl. htm. URL last verified: 2008-22-01.

[136] Workflow Management Coalition. Workflow Management Coalitionrerminology & Glossary.
el 0

Document Number: NNIFINIC-TC-1011. Document Status: Issue 3.0. February 1999.

[1371 NN'S-CDL W3C Working Group. Web Services Choreography Description Language Version
00n0

1.0 W3C Working Draft 17 December 2004, at: http: //www. w3. org/TR/ws-cdl-lo. URL

last verified: 2008-22-01.

[1381 Shen-li Wu, Amit Slieth, John Miller, and Zon-AVei Luo. Authorization and Access Control of 00
Application Data in Workflow Systems. Journal of Intelligent Information Systems, 18(l): 71-

94,2002.

BIBLIOGRAPHY 277

[139) NNINNINNI Consortium. Web Services Architecture Requirements at (October 2002): http:

//www. w3c. org/TR/wsa-reqs. URL last verified: 2008-22-01.

[140] Moe Thandar Wynn, David Edmond, W. M. P. van der Aalst, and A. H. M. ter Hofstede.
Achieving a General, Formal and Decidable Approach to the OR-join in Workilow using
Reset nets. In Gianfranco Ciardo and Philippe Darondeau, editors, Applications and Theory

of Petri Nets 2005,26th International Conference, ICA TPN 2005, Aliami, USA, June 20-25,
2005, Proceedings, volume 3536 of Lecture Notes in Computer Science. Springer, 2005.

[1411 Michael zur Meuhlen. Organisational Management in Workflow Applications - Issues and 00
Perspectives. Information Technology and Management, 5(4), 2004.

Appendix A

PCCS Characterisation -
Additional Information

In this appendix, ive present the rest of our PCCS-based characterisation of Liesbet.

A. 1 Cancellation of Basic Instances

According to the description of Liesbet, presented in Section 3.1.2, basic activity instances may
be cancelled, as well as being cornpleted. Dispensation for this is easily introduced into our PCCS-
based characterisation of Liesbet. All that is required is a modification to the definition of
BasiCSb agents, to also allow for cancellation of basic instances. We present the following PCCS-
based definition of BasiCSb, for tile case where b is 3. We simply offer the choice of cancelling an
instance, as well as offering the choice of completing it. 00

proc Basics3 =

compl: 20. Basics3 + cancl: 20. Basics3 +

comp2: 20. Basics3 + canc2: 20. Basics3 +

comp3: 20. Basics3 + canc3.20. Basics3

A. 2 SeqCancel

The characterisation of SeqCancel is tricky because we need to ensure that, when a child instance of
such a type is cancelled, tile parent SeqCancel instance is also cancelled. Tile most straightforward
way of doing this is to have a distinct set of tracker aggents for children of SeqCancel types, viz.
InitiaiStateSC' and RunningStateSCI. The definition of InitialftateSCn is tile same as
InitialStaten, except that it evolves to RunningStateSCI, instead of RunningStaten. Tile

crucial difference lies in the definition of RunningStateSCI, where the line relating to accepting
synchronisations oil canc is changed, thus.

proc RunningStateSCn =

canc: 3. lpcanc: 5. CancelledState + canc: 10. lpcanc: 5. CancelledState

278

AA Synchronisation Types 279

Here, instead of effecting a synchronisation on prec (which would effect a precompletion step in 0
the parent instance), we cancel the parent instance. The generic type agent for SeqCancel is the 00
same as that for Seq; in fact, the translator just outputs Seq for SeqCancel types. Examples of the

translation of SeqCancel types are given in the listings contained within Appendix Section A. 4. ID 0

A. 3 Synchronisation Types

We present support for synchronisation types, for now, with the caveat that just monotonic query-
ing (see Section 5.1.1) is allowed, with no support for distinct queries. We relax this restriction
later. It is useful to present two separate cases, as the one presented here is simpler to understand

and may be sufficient.
The characterisation of synchronisation activity types is a non-trivial task. This is because

any state-querying channels belonging to (tracker agents of) activity instances within the visibility 00C, C3
horizons of queries within a synchronisation activity instance may (potentially) be used in these

queries. Thus, we must build custom agents, effecting the logic of synchronisation instances, where 000
the apposite channels are made available to the mapped queries. This is carried out in an additional
translation step, which we shall call Step 3.

For use in Step 1 of the translation process, is defined as follows for synchronisation
types. These types are: Stop(StopQuery, GoQuery), Stop (StopQuery), Go(StopQuery, GoQuery)

and Go(GoQuery).

a MpccqiStop(StopQuery, GoQuery)](st-chsi ý, ppreci, pcaldi)=

InitialState 0 CSC,
,

ppreci /pprec
s

pcald, /pcald I

STOP (QTEStopQuery] (st-chsi -0, QTEGoQuery] (st-chsi -)) [SCil

e A4p,,, [Stop (StopQuery)l (st-chsi -, ppreci, pcaldi)=

InitiaLlState 0 (SC,
,

pprec, /pprýý
,

pcald, /peald I

STOP (QT[Stopqueryl (st-chsi --+)) [SCil

9 MpýýýEGo(StopQuery, GoQuery)](st-chsi ý, ppreci, pcaldi)=

InitialState 0 (SC,, ppreci /pprýý
,

pcaldi /pcald

GO(QT[StopQueryl(st-chsi -), Q7-[GoQueryl(st-chsi »[SCil

o Mp,., jGo(GoQuery)j(st-chsj ý, ppreci, pcaldi)=

InitialStateO[, 5e,, pprecl/
pp, ýc ,

pcald, /pcald I

GO (QTIGoQueryl (st-chsi --+)) [SCil

The auxiliary functions, STOP and GO, take one or two arguments, which are the translated 0
queries. Note that when they are used, as part of Step 1 of the translation process, the arguments

are placeholders. These placeholders are filled in as part of Step 3 of the translation process. The

purpose of STOP and GO is to construct the custornised agent effecting the logic of the translated 0n0
synchronisation type, and are defined as follows.

280 Appendix A. PCCS Characterisation - Additional Information

" STOP(qtStopQuery, qtGoQuery)=
(qtStopQuery (done. /done] I dones: 4.11ose: 5. nil I qtGoQuery [done, /done] I doneg: 4.1win: 6. nil

I

lose: 5.1canc: 10. nil + win: 6.1comp: 10. ni1)\fdoneg, dones, win, losel[> Ifind: 4. nil

" STOP(qtStopQuery)=

(qtStopQuery (done, /done] I dones: 4.1canc: 10. ni1)\jdones}(> 'find: 4. nil

" GO(qtStopQuery, qtGoQuery)=

(qtGoQuery [done, /done] I doneg: 4.1win: 5. nil I qtStopQuery [done. /d... dones: 4.11ose: 6. nil

I

win: 5.1comp: 10. nil + 1ose: 6. 'canc: 10. ni1)\fdoneg, dones, win, losel[> Ifind: 4. nil

" GO(qtGoQuery)=

(qtGoquery Con, g /do.. 31 doneg-4. 'camp: 10. ni1)\{donegj(> 'find-4. nil

Step 3 of tile translation process is concerned with filling in the queries, qtStopQuery and 0
qtGoQuery, in the customised agents that we have built with STOPIGO in Step 1 of the translation 0
process. The translation function, QTJ-J, is responsible for translating these queries. Its definition

0
inakes use of four relations that are constructed during Step 1 of the translation process. These

relations are as follows.

" CotdInScope - gives the Completed state querying channels which are in a particular visi-
bility horizon of a querying instance. 0

" CaldInScope - gives the Cancelled channels

" FindInScope - crives the Finished channels 0

" NInitInScope - gives the Not Initial channels 0

The arguments of CotdInScope are:

" cotds - the Completed state querying channel of the querying instance (the source instance

" cotdt - the Completed channel of the target instance, which would be in some visibility
horizon of the source instance.

" rtype - the reference customised activity type (see Section 3.1.3). This is the type of a

common ancestor instance of the source and target instances.

" ctype - the custoinised activity type of the target instance.

The presented relations are updated as we move through the workflow model, translating 0 in
nodes with Mp ... 1-1, as part of Step 1. Tile semantics of these relations exactly matches those

of the InScope relation, presented in Appendix Section B. 1.1. The prescription for updating 0
CotdInScope is as follows. Note that Mp,, j-j also records the activity types and parent/ances-
tor/descendant information of instances, as they are translated.

a If we are adding an instance with Completed channel cotdi (which is passed into QTE-1

with all of the instance's state channels), and parent Completed channel cotdp, then we may

assert CotdInScope (cotdi, cotdt, rtype, ctype) IF

A. 3. Synchronisation Types 281

- There is an instance with Completed channel cotdt within the visibility horizon of the

parent instance such that CotdInScope (cotdp, cotdt, rtype, ctype) is already asserted
OR

- The parent instance itself is of customised activity type rtype and cotdt is a descendant

of cotdp, where cotdt is of customised activity type ctype.

9 If Nve are adding an instance with Completed channel cotdi, custornised activity type ctype,

and parent Completed channel cotdp, then Nve may assert CotdInScope (cotds, cotdi, rtype, ctype)
IF CotdInScope (cotds, cotdp, rtype, ctype 9 is already asserted, for soine ctype 1.

The first of the two alternatives for asserting a new instance of the CotdInScope relation extend
the visibility horizon of the parent down to the newly added instance. The second alternative adds
the newly added instance to the visibility horizons of all instances that already exist. Note that
if the scope of the instance being added is isolated then there will not exist any instances of the

CotdInScope relation for that instance. More information concerning the treatment of isolated

scopes is presented, for the SitCaic-based characterisation, in Appendix Section B. 1.1.
Identical definitions exist for the other three relations, CaldInScope, FindInScope, and

NInitInScope, based on cald, f ind and ninit channel types, respectively.
Tile definition of QTJ-J, which acts on the queries of Liesbet synchronisation types, is now

presented. It is inductively defined, as queries may be composite. Note, F-CE1ci,.
--, C.)

f (C) is the

summation f (cl)+... +f (c,,), 11CE{Ci,
--., c. j

f (c) is the prefix sequence f (cl). j (c,,). Regarding

atomic queries, ive present definitions for the Completed state only. In these definitions, we make

use of the channel cotdi, which is the Completed state querying channel for the querying instance.

It is passed into QTJ-] along with all of the state channels for the instance. The definitions of
QTE-1 for queries relating to other states easily follow.

" QT[True](st-chsi

Idone: 4. nil

" QTJFalsej(st-chsj

nil

" QT[Completed-act(O)I(st-chsi

Eccc Ic: 5. ldone: 4. nil

where, for 0 being qtype,

C=I cotdt I 3rtype. CotdInScope(cotdi, cotdt, rtype. qtype)

and for 0 being qtype IN rtype

C=I cotdt I CotdInScope(cotdi, cotdt, rtype, qtype)

" QT[Completed-all(O)I(st-chsi

(ficec Ic: 5). Idone: 4. nil

where, for 0 being qtype,

C=f cotdt I 3rtype. CotdInScope(cotdi, cotdt, rtype, qtype)

and for 0 being qtype IN rtype

C=I cotdt I CotdInScope(cotdi, cotdt, rtype, qtype)

" QTEQI I ... IQ,, I(st-chsi ý) =
(QT[Ql](st-chsi .)

rone, /do.
Q

II QT[Qýl(st-chsi .)
tdone , /done i

282 Appendix A. PCCS Characterisation - Additional Information

donel: 4. 'ý'Pý". donel: 4. ldone: 4. nil)\{donel}

o QTEQi +. . . +Q. l (st-chsi --*) =
(Q-Tiqli(st-ch. 5i _.

) [done, /done]I. I QTEQýJ(st-chsj ý)[
done 1 /done j

donel: 4. ldone: 4. nil)\{donel}

A. 4 Model Checking Example

We now present examples of model checking a LiesbeU model for the two key properties related
to soundness for Liesbet models, described in Section 7.1, viz. absence of dead activity instances,

and an absence of deadlock. For Liesbet2, an absence of deadlock
Ouarantees completion alon,

all enactment paths. We start with an example showing model checking for an absence of dead

instances.

A. 4.1 Dead Activity Instance Detection

Consider the following Liesbet2 model. 0

Par(Choice(Empty, A, Empty, B), C)
C= Act Qoin(Go(Finished-act (A) I Finished-act(B),

Completed-act(A) I Completed-act(BM)

In this model, activity C is never executed, as its join condition will always fail. As such, it
counts as a dead instance. This is because either activity A or activity B will be executed by the
Choice but not both, where the requirement for C to run is that instances of both A and B have

previously completed successfully.
In order to detect the occurrence of dead activity instances, we add an output on an unrestricted

channel, dead, in the definitions of InitialStat, n a, gents. The output occurs once the model has
finished (as indicated by a synchronisation on f ind-O), if the instance went straight from an
Initial state to a Cancelled state. The appropriate definition of InitialStateO would be as
follows.

proc InitialStateO =
spcald: 5. (Ifind_0: 10. ldead: 10. nil I CancelledState) +

canc: 3. lpprec: 5. (Ifind-0: 10. ldead: 10. nil CancelledState) +

canc: 10. lpprec: 5. (Ifind_0: 10. ldead: 10. nil CancelledState) +

exec: 3. RunningStateO

In this approach, we may only test a single instance at a time as to whether it is a dead instance.
0

This is not, typically, much of a disadvantaP, as it is often clear which instances are likely to be

susceptible to being dead instances.

We test the model against a proposition which is a slight modification to the cotd proposition 0 C,
used in Section 5.6.1. Instead of testin- for the root instance finishin- alom, all enactment paths, 000

we test for the occurrence of a transition on dead, appropriately relabelled, along all enactment

paths.

A. 4. Alodel Checking Example 283

In the following example, we wish to check whether the instance C is a dead instance; as such, we 0
relabel its dead channel (to something like deadc), and check for its occurrence along, all enactment
paths.

prop deadc =

min X= <->tt A [-'deadc: 10]X

The model translated by Mp,,,, J-l yields the following PCCS source, where we omit the 0
definitions of certain tracker and generic agent types for brevity. 00

** ** ****** * ** ** *** ** ** ******** *

PCCS Verification Run

#0

Generated from: file: samples/LiesbetDeadInsts. liesbet

On: Fri Jul 14 12: 31: 18 BST 2006

proc InitialStateO =
lpcald: 5. (Ifind-0: 10. ldead: 10. nil I CancelledState) +

canc: 3. lpprec: 5. (Ifind_0: 10. ldead: 10. nil CancelledState) +

canc: 10. Ipprec: 5. (1 find-0: 10. 'dead: 10. nil CancelledState) +

exec: 3. RunningStateO

appropriate tracker and generic type agents

proc WorkflowO

***Instance: O: Pl

InitialState2[runn_O/runn, cald-0/cald, cotd-0/cotd,
find_O/find, nread-0/nread, comp-0/comp, canc-0/canc, exec-0/exec,

prec-0/prec, cald-0/pcald) I

Par2[runn-0/runn, cald-0/cald, cotd-0/cotd,
find-0/find, nread-0/nread, comp-0/comp, canc-0/canc, exec-0/exec,

exec-1/execl, exec-6/exec2l I

***Instance: l: CH

Initialftate4frunn_l/runn, cald-1/cald, cotd_l/cotd,
find-1/find, nread-1/nread, comp-1/comp, canc-1/canc, exec-1/exec,

prec-1/prec, prec-0/pprec, cald-0/pcald] I

Choi ce2 frunn- l/runn, cald-1/cald, cotd_l/cotd,

find-1/find, nread-1/nread, comp-1/comp, canc-1/canc, exec-1/exec,

exec-2/execgl, exec-3/execcl, canc-3/canccl, canc_2/cancgl, cotd-2/cotdgl, cald-2/caldgl,

exec-4/execg2, exec-5/execc2, canc-5/cancc2, canc-4/cancg2, cotd-4/cotdg2, cald_4/caldg2)

***Instance: 2: Eml

InitialStateOCrunn-2/riinn, cald-2/cald, cotd-2/cotd,

284 Appendix A. PCCS Characterisation - Additional Information

find-2/find, nread_2/nread, comp-2/comp, canc-2/canc, exec-2/exec,
prec-1/pprec, cald-1/pcald) I

Empty[runn-2/runn, cald-2/cald, cotd-2/cotd,
find-2/find, nread-2/nread, comp-2/comp, canc-2/canc, exec-2/exec)

***Instance: 3: A

InitialStateO[runn_3/runn, cald-3/cald, cotd-3/cotd,
find-3/find, nread-3/nread, comp-3/comp, canc-3/canc, exec-3/exec,

prec-1/pprec, cald_l/pcald, deada/deadl I

***Instance: 4: Em2

InitialStateO[runn-4/runn, cald-4/cald, cotd-4/cotd,
find-4/find, nread-4/nread, comp-4/comp, canc-4/canc, exec-4/exec,

prec-1/pprec, cald-1/pcald] I

Empty[riinn-4/runn, cald-4/cald, cotd_4/cotd,
find-4/find, nread_4/nread, comp-4/comp, canc-4/canc, exec-4/execl I

***Instance: 5: B

InitialStateO[runn-5/runn, cald-5/cald, cotd-5/cotd,
find-5/find, nread-5/nread, comp-5/comp, canc-5/canc, exec-5/exec,

prec-1/pprec, cald-1/pcald, deadb/deadl I

***Instance: 6: JOIN-SEC-C

InitialState2(runn-6/runn, cald-6/cald, cotd-6/cotd,
find-6/find, nread_6/nread, comp_6/comp, canc-6/canc, exec-6/exec,

prec-6/prec, prec-0/pprec, cald-0/pcald) I

Seq[runn-6/runn, cald_6/cald, cotd_6/cotd,
find-6/find, nread_6/nread, comp-6/comp, canc-6/canc, exec-6/exec,

exec-7/exec2, find_7/find2, exec-8/execil I

***Instance: 7: CJoin

InitialStateSCO[runn-4/runn, cald-4/cald, cotd-4/cotd,
find-4/find, nread-4/nread, comp-4/comp, canc-4/canc, exec_4/exec,

prec-1/pprec, cald-1/pcald, canc-6/pcancl I

***GoQuery

(Icotd-5: 5. 'donel: 4. nil I 'cotd_3: 5. ldonel: 4. nil I donel: 4. donel: 4. ldoneO: 4. nil)\Idonel}
doneO: 4. lwin: 5. nil)\IdoneO}

***Stopquery

A. 4. Model Checking Example 285

('find-5: 5. 'done3: 4. nil I Ifind_3: 5. ldone3: 4. nil I done3: 4. done3: 4. ldone2: 4. nil)\Idone3)
done2: 4. 'lose: 6. nil)\jdone2j

***Go: GoQuery takes priority
lose: 6. lcanc-2: 10. nil +win: 5. lcomp-2: 10. nil

)\{win, lose} (> 'find-2: 5. nil
)I

***Instance: 8: C

InitialStateSCO[riinn-8/riinn, cald-8/cald, cotd-8/cotd,

find-8/find, nread-8/nread, comp-8/comp, canc_B/canc, exec_8/exec,

prec-6/pprec, cald-6/pcald, canc-6/pcanc, deadc/deadl I

Basics3Ccomp-3/compl, comp-5/comp2, comp-8/comp3l I

'exec-0: 3. pprec: 5. nil I 'find-0: 10. lrfind: 10. nil

runn-0, cald-0, cotd-0, find-0, nread-0, comp-0, canc_O, exec-0, prec-0,

runn-1, cald-1, cotd-1, find-1, nread-1, comp-1, canc-1, exec-1, prec-1,

runn-2, cald-2, cotd-2, find-2, nread-2, comp-2, canc-2, exec-2, prec-2,

runn_3, cald_3, cotd_3, find-3, nread-3, comp-3, canc_3, exec-3, prec-3,

runn-4, cald-4, cotd_4, find_4, nread_4, comp_4, canc_4, exec-4, prec-4,

runn-5, cald-5, cotd-5, find-5, nread-5, comp-5, canc_5, exec_5, prec_5,

runn-6, cald-6, cotd-6, find-6, nread-6, comp-6, canc-6, exec-6, prec-6,

runn-7, cald-7, cotd-7, find-7, nread-7, comp-7, canc-7, exec-7, prec-7,

runn-8, cald-8, cotd-8, find-8, nread-8, comp-8, canc-8, exec_8, prec-8,

dead, pprec, pcald)

Tile output of the test, under CWB-NC, reveals that C is indeed a dead activity instance.

cwb-nc> chk WorkflowO deadc

Invoking alternation-free model checker.
Building automaton...

States: 526

Transitions: 830

Done building automaton.
TRUE, the agent satisfies the formula.

Execution time (user, system, gc, real): (11.375,0.000,0.015,11.375)

It is also instructive to highlight the translation of the Go instance for this model, which is

instance 7 in the presented source. Here, we seek to ascertain that either:

* Instances 3 and 5 have completed, in which case Nve win. Or, that

* Instances 3 and 5 have finislied, in which case we lose.

286 Appendix A. PCCS Characterisation - Additional Information

As GoQuerys take precedence over StopQuerys in Go types, as realised by the differing priorities on C,
win and lose, if the first of these scenarios holds (i. e. we win) then we complete the synchronisation
instance. If the second scenario holds (i. e. we lose), but not the first, we cancel the synchronisation
instance. The disabling operator is used to garbage-collect the residual logic, once one of these

eventualities occurs.

A. 4.2 PCCS Example of Deadlock Detection

Consider tile following two Liesbet workflow models. 0

Pa, r(Seq(A, B, C), Seq(D, E, F)

B= Act(join(Go(Completed-act(E»»

E= Act(join(Co(Completed-act(B»»

Par(Seq(A, B, C), Seq(D, E, F)

B= Act(join(Go(Completed-act(E»»

The first of these contains an obvious source of deadlock. That being, the execution of B may 0
only commence once the (single) instance of E has completed. But, tile execution of E may only

commence once the (single) instance of B has completed. The second model removes the latter

constraint and should complete normally.
The PCCS source for the first model follows, where we omit the definitions of certain tracker

and generic agent types for brevity. 00

PCCS Verification Run

#0

Generated from: file: samples/LiesbetDeadTestDead. liesbet

On: Fri Jul 14 12: 28: 01 BST 2006

appropriate tracker and generic type agents

proc WorkflowO

***Instance: O: Pl

InitialState2[runn-0/riinn, cald-0/cald, cotd-0/cotd,
find-0/find, ninit-0/ninit, comp-0/comp, canc-0/canc, exec-0/exec,

prec-0/prec, cald-0/pcald]

Par2[runn-0/runn, cald-0/cald, cotd-0/cotd,
find-0/find, ninit-0/ninit, comp-0/comp, canc-0/canc, exec_O/exec,

exec-1/execl, exec_7/exec2l I

***Instance: l: Sl
InitialState3[runn-1/riinn, cald-1/cald, cotd-1/cotd,

find-1/find, ninit-1/ninit, comp-1/comp, canc-1/canc, exec-1/exec,

prec-1/prec, prec-0/pprec, cald-0/pcald] I

A. 4. Alodel Checking Example 287

SeO[runn-l/runn, cald-1/cald, cotd_l/cotd,
find-1/find, ninit-1/ninit, comp-1/comp, canc_l/canc, exec-1/exec,

exec_2/exec3, find-2/find3, exec-3/exec2, find-3/find2, exec_6/execl]

***Instance: 2: A

InitialStateO[runn_2/runn, cald_2/cald, cotd-2/cotd,
find-2/find, ninit_2/ninit, comp-2/comp, canc_2/canc, exec-2/exec,

prec-1/pprec, cald-1/pcald] I

***Instance: 3: JOIN-SEC-B

Initialftate2(runn-3/runn, cald-3/cald, cotd_3/cotd,
find-3/find, ninit-3/ninit, comp-3/comp, canc_3/canc, exec-3/exec,

prec-3/prec, prec-1/pprec, cald-1/pcald] I

Seq2(runn-3/runn, cald-3/cald, cotd_3/cotd,
find_3/find, ninit_3/ninit, comp-3/comp, canc_3/canc, exec_3/exec,

exec_4/exec2, find-4/find2, exec-5/execil I

***Instance: 4: BJoin

InitialStateSCO[runn-4/runn, caLld-4/cald, cotd_4/cotd,
find-4/find, ninit-4/ninit, comp-4/comp, canc-4/canc, exec-4/exec,

prec-3/pprec, cald-3/pcald, canc-3/pcancl I

***GoQuery
('cotd-11: 5. ldoneO: 4. nil I doneO: 4. lcomp-4: 10. nil)\IdoneO}
[> 'find-4: 5. nil

)I

***Instance: 5: B

InitialStateSCO[runn-5/riinn, cald-5/cald, cotd_5/cotd,
find_5/find, ninit-5/ninit, comp-5/comp, canc-5/canc, exec-5/exec,

prec-3/pprec, cald-3/pcald, canc-3/pcancl I

***Instance: 6: C

InitialStateO[runn-6/runn, cald-6/cald, cotd-6/cotd,
find_6/find, ninit-6/ninit, comp-6/comp, canc-6/canc, exec-6/exec,

prec-1/pprec, cald-1/pcald) I

***Instance: 7: S2

InitialState3(runn_7/runn, cald_7/cald, cotd-7/cotd,
find-7/find, ninit_7/ninit, comp-7/comp, canc-7/canc, exec-7/exec,

prec-7/prec, prec-0/pprec, cald-0/pcald] I

Seq3[runn-7/runn, cald-7/cald, cotd-7/cotd,
find-7/find, ninit_7/ninit, comp-7/comp, canc-7/canc, exec-7/exec,

exec-8/exec3, find_8/find3, exec-9/exec2, find-9/find2, exec-12/execil I

288 Appendix A. PCCS Characterisation - Additional Information

***Instance: 8: D

InitialStateOCrunn_8/runn, cald_8/cald, cotd-8/cotd,
find-8/find, ninit-8/ninit, comp-8/comp, canc-8/canc, exec-8/exec,

prec-7/pprec, cald-7/pcald) I

***Instance: 9: JOIN-SEC-E

InitialState2[runn-9/riinn, cald-9/cald, cotd-9/cotd,
find_9/find, ninit-9/ninit, comp-9/comp, canc-9/canc, exec-9/exec,

prec-9/prec, prec_7/pprec, cald-7/pcaldl I

Seq(runn-9/runn, cald-9/cald, cotd-9/cotd,
find_9/find, ninit-9/ninit, comp-9/comp, canc-9/canc, exec-9/exec,

exec-10/exec2, find-10/find2, exec-11/execil I

***Instance: 10: EJoin

InitialStateO[rw: Ln-10/runn, cald_10/cald, cotd-10/cotd,
find-10/find, ninit-10/ninit, comp-10/comp, canc-10/canc, exec-10/exec,

prec-9/pprec, cald-9/pcald, canc-9/pcancl I

***GoQuery
(Icotd-5: 5. ldonel: 4. nil I donel: 4. lcomp-10: 10. nil)\{donel}
(> 'find-10: 5. nil

)I

***Instance: ll: E

InitialStateO[runn_ll/riinn, cald-11/cald, cotd-II/cotd,
find-11/find, ninit-11/ninit, comp-11/comp, canc-11/canc, exec-11/exec,

prec-9/pprec, cald-9/pcald, canc_9/pcanc] I

***Instance: 12: F

InitialStateO[runn_12/rurin, cald_12/cald, cotd-12/cotd,
find_12/find, ninit_12/ninit, comp-12/comp, canc_12/canc, exec_12/exec,

prec-7/pprec, cald-7/pcald) I

Basics6Ccomp-2/compl, comp-5/comp2, comp-6/comp3, comp-8/comp4, comp-11/comp5, comp-12/comp6l I

)exec-0: 3. pprec: 5. nil I 'find-0: 10. lrfind: 10. nil

) \{
runn-O, -cald-0, cotd-0, find-0, ninit-0,

runn-1, cald-1, cotd-1, find_l, ninit_l,

runn-2, cald-2, cotd_2, find-2, ninit-2,

runn-3, cald-3, cotd-3, find-3, ninit-3,

runn_4, cald-4, cotd-4, find-4, ninit-4,

runn-5, cald-5, cotd-5, find_5, ninit-5,

runn-6, cald-6, cotd_6, find_6, ninit-6,

comp-0, canc-0, exec-0, prec-0,

camp-1, canc-1, exec-1, prec-1,

comp_2, canc-2, exec-2, prec-2,

comp-3, canc-3, exec-3, prec-3,

comp-4, canc-4, exec-4, prec-4,

comp-5, canc-5, exec-5, prec-5,

comp-6, canc-6, exec-6, prec-6,

A. 5. Support for Non-monotonic and Distinct Reference Queries 289

runn-7, cald-7, cotd-7, find-7, ninit-7, comp-7, canc-7, exec_7, prec_7,

runn_8, cald_8, cotd-8, find-8, ninit-8, comp_8, canc-8, exec-8, prec-8,

runn_9, cald-9, cotd_9, find_9, ninit-9, comp-9, canc-9, exec-9, prec-9.

runn_10, cald-10, cotd-10, find-10, ninit-10, comp-10, canc-10, exec_10, prec-10,

runn-11, cald-11, cotd-11, find-11, ninit-11, comp_11, canc_11, exec-11, prec_11,

rurin-12, cald-12, cotd-12, find-12, ninit-12, comp-12, canc-12, exec-12, prec-12,

pprec, pcald}

Under CWB-NC, the proposition f ind (see Section 5.6.1) is found to be FALSE, as appropriate.

cwb-nc> load test. pccs
Execution time (user, system, gc, real): (0.047,0.000,0.000,0.047)

cwb-nc> load testp. mu
Execution time (user, system, gc, real): (0.015,0.000,0.000,0.015)

cwb-nc> chk WorkflowO find

Invoking alternation-free model checker.
Building automaton...
States: 35

Transitions: 36

Done building automaton.
FALSE, the agent does not satisfy the formula.

Execution time (user, system, gc, real): (6.844,0.000,0.062,6.844)

cwb-nc>

For the other workflow model, there should be no deadlock - we have removed one of the join

conditions responsible for the cyclic dependency. Its PCCS source is the same as that above with
activities 9 (SeqCancel) and 10 (EJoin) removed, and activity 11 (E) promoted to being a direct

child of activity 7 (S2).

The CWB-NC output when testing f ind on this model is as follows, correctly indicating an
absence of deadlock.

cwb-nc> load test. pccs
Execution time (user, system, gc, real): (0.031,0.000,0.000,0.031)

cwb-nc> chk WorkflowO find

Invoking alternation-free model checker.
Building automaton...
States: 99

Transitions: 106

Done building automaton.
TRUE, the agent satisfies the formula.

Execution time (user, system, gc, real): (11.656,0.000,0.403,11.656)

cwb-nc>

A. 5 Support for Non-monotonic and Distinct Reference Queries

In order to support non-monotonic and distinct reference queries, we need to clian. e the charac-
teristic of our PCCS-based characterisation that instances of synchronisation types are evaluated

290 Appendix A. PCCS Characterisation - Additional Information

between instances of other types grabbing execution rights. Instead, we need to move to a cliar-

acterisation where syrichronisation instances compete for these ri. ghts; and, once such an instance
has them, its respective GoQuery and/or StopQuery is fully evaluated to determine satisfiability,

prior to releasing them. This will ensure a sound characterisation for non-monotonic and distinct

queries. We also may support negated queries, and queries directly oil Initial and Running states

- as opposed to supporting queries on NotInitial. We do not provide further details here for

non-monotonic querying - although, it should be quite evident how this would be achieved.
With regard to distinct reference queries, it is important that they be evaluated atomically, so

that if all component sub-queries of a GoQuery, or StopQuery, for a type may be satisfied at some
time point, it will not be the case that another querying instance is able to "steal" the use of the

candidate instances. This is not relevant if we are not using distinct queries, because candidate
instances may be used without limit in satisfying such queries.

In the following, we give just a flavour of the PCCS-based support for distinct querying. We

present a more detailed overview of our support for distinct querying in Appendix Section B. I. 2,

which describes our SitCaic-based support for it.

Distinct queries are satisfied against target instances, just as non-distinct queries are satisfied.
An instance t may be used to satisfy a distinct query just once per instance di, pertaining to

the distinct reference type of a query. (See Section 3.1.3 for more information regarding distinct

reference types.) For every pair (t, di) which could be used in the satisfaction of a specific query,
we make use of an agent ProxyInit (for satisfying queries pertaining to the Initial state), which
may evolve into agents ProxyRunn, ProxyCotd, or ProxyCald as the pertaining tracker agent for 0 C, C,
instance t evolves.

Each of these agents will make use of the followin- channels: C, 0

a Incoming:

- Proxy channels for querying each of the states: Completed, Cancelled, Finished,

Running and Initial - specifically, pcotd: 5, pcald: 5, pf ind: 5, priinn: 5 and pinit: 5.

-A channel for marking the proxy agent as expended: exp: 3 0 C,

9 Outgoing:
0 Z,

- Querying channels to be connected to t's tracker agent's state-querying cliannels -
specifically, cotd: 5, cald: 5, f ind: 5, runn: 5 and init: 5.

Tile ProxyInit agent would have the following PCCS definition:

proc ProxyInit

lcald: 3. ProxyCald + 'runn: 3. ProxyRunn + pinit: 5. ProxyInit + exp: 3. nil

While the proxy agent has not been used to satisfy a query for its pertaining (t, di) pair, the

agent:

" May evolve into ProxyRunn, ProxyCotd or ProxyCald, as appropriate, in response to changes
in the state of tile pertaining tracker agent for the instance.

C, C,

" Allows querying instances to ascertain that the target instance is in the Initial state, using 00C,
pinit, and facilitates the marking of the agent as expended, meaning that it can no longer

0000
be used to satisfy queries against the instance pair. 0

A. 6. CancelActivitv and Exit

A similar definition is appropriate for RroxyRiinn, viz.

proc ProxyRunn =
Icald: 3. ProxyCald + 'cotd: 3. ProxyCotd + prunn: 5. ProxyRunn + exp: 3. nil

For ProxyCotd and ProxyCald, we also allow 'finislied' queries, as shown.

proc ProxyCald =

pcald: S. ProxyCald + pfind: 5. ProxyCald + exp: 3. nil

proc ProxyCotd =

pcotd: S. PrpxyCotd + pfind: 5. ProxyCotd + exp: 3. nil

291

When we make use of a distinct query within a GoQuery, or a StopQuery, we use the proxy

channels in place of cotdt etc., as presented in the definition of QTj-j in Appendix Section A. 3.
The proxy agents and associated channels are constructed as part of the translation process as 0
needed. Then, if such a query is satisfied, there will be a residual piece of logic for the query which

marks (by I exp: 3) the specific target instance pairs, used in satisfying the query, as expended.

A. 6 CancelActivity and Exit

For Liesbet2, we translate synchronisation activity types by outputting PCCS agents which have
C, 0

been customised for the visibility horizons of the pertainin. - instances (see Appendix Section A. 3).
For CancelActivity, we adopt a similar approach.

The translation of CancelActivity types is defined by the following extension to Mpccsj-ý.

Mp ...
ECancelActivity(O)J(st-chsi -, ppreci, pcaldi)

InitialStateo(SCit Pprecl/pprect pcald, /pcald

I

CT(CTIOI (st-chsi -+»[Seil

The auxiliary function CTJ-] translates (as part of Step 3) the cancellation reference, which,

syntactically, will be of the form qtype, or qtype IN rtype, into an a. gent which effects cancel on
all instances within the visibility horizon of the cancellation instance. Similarly to QTJ-J, which
is used in the translation of queries for synchronisation types, CTJ-ý relies on the existence of a
relation, namely, CancInScope, which is built in Step 1 of the translation process. The definition of
CancInScope follows from that of CotdInScope, presented in Appendix Section A. 3. The definition

of CTJ-j is, then, as follows.

CTIOI(st-chsi --,)=
(fl,

cc Ic: 3). Icomp: 3. nil

where, for 0 being qtype,
C=I canct I 3rtype. CancInScope(canci, canct, rtype, qtype)

and for 0 being qtype IN rtype
C=(canct I CancInScope(canci, canct, rtype, qtype)

Tben, Ole definition of CT, whicli is responsible for constructing the definition of the customised 0
agent pertaining to the translated CancelActivity type is as follows. We pass in the output from 00
CTJ-ý.

292 AppendLy A. PCCS Characterisation - Additional Information

CT(tCanc-Ref) = lrunn: 10. tCanc-Ref + Icald: 5. nil

The translation of Exit is defined by the following extension to -A4pcc5j-jj where we assume
that the cancellation channel of the root instance, rcanc, is set aside by Mpccsj-j for use in

translating Exit types. 0

Mpccs [Exit] (st-chsi -, ppreci, pcaldi)=
InitialState 0 (SC,

,
ppreci /pprýý

,
pCald, /pcald

CT(Ircanc: 3. nil) (SCil

A. 7 MultiLimit' and MultiLimitSeq'

The MultiLimit' and MultiLimitSeq' multiple-instance activity types are represented in our
PCCS characterisation, in a st rai alit forward way. In section 3.5, we note that these types represent
a possibility for satisfying the representational requirements epitomised by the YAWL workflow
patterns, relating to multiple-instance activity types.

We have presented characterisations for Multi and MultiSeq in Section 5.5. It is worth noting
that, for verification, it is better efficiency-wise to use the limited-instance (MultiLimit/MultiLimitSeq)

types, rather than the Multi/MultiSeq types. This is because the auxiliary counter that is used
in the characterisation of an unlimited-instance type, to keep a track of the number of outstanding
child instances, is quite costly from the perspective of the size of the verification state-space.

The translation of MultiLimit' and MultiLimitSeq' is defined by the following extensions to
mpcCSI-J.

Mp, c,
[MultiLimit(n)(ExecAct (join (ExecActioin))) J(st-chsi ppreci, pcaldi) =

let st-chsij, --+ in ... st-chsij. - in let st-chsi., - in ... st-chsi. ý -+ in let preci in
MultiLimit"[SCi, SCijl,

jl, ---,
SCijn,

j., SCiei,
elp ... m

SCien,
en]

InitialState 2n [SC,
,

pprec,
,

pcaldi /pcald
,

pr, ci /Pý.
c

]

Mpý, EExecActJoin](st-chsiji --+, preci, caldi) I
...

I

Mpcc., EExe cAct Join] (st-chsij. ý, precj, caldi)

I

Mpýc., [ExecAct](st-chsi., --ý, precj, caldi) I
...

I MpccsjExecActj(st-chsiý. ý, precj, caldi)

Mpccs[MultiLimitSeq(n) (ExecAct (join (ExecAct Join))) I (st-chs i ý, ppreci, pcaldi) =
let st-chsiji ý in ... st-chsij. ý in let st-chSiel - in ... st-chsi.. ý in let preci in

MultiLimitSeq n (SC,, SC, jl, jl. ...,
scij., J., sci. 1'. 1, ---,

scie.
'e.

]

InitialState 2n [SC,
,

pprec
pprec t

pcaldi /pcald
v

P"c/preJ

.
A4p,, jExecActJoin](st-chsjp ý, precj, caldi)

Mp, ýý[ExecActJoiný(st-chsjj. ý, precj, caldi)

A. 7. MultiLimitn and KultiLimitSeq' 293

A4pccsjExecActj(sLchsj., ý, preci, caldi) I ... I M, C"lExecActl(st-chsiýý ý, precj, caldi)

The definition of the PCCS agents for MultiLimit' and MultiLimitSeq', for the case where 0
n is 3, are now presented.

proc MultiLimit3 =
Irunn: 10. lexecj3: 3. MultiLimit3f + Icald: 5. nil

proc MultiLimit3f =
'cotdj3: 10. lexece3: 3. lexecj2: 3. MultiLimit2f +
Icaldj3: 10. lcance3: 3. lcancj2: 3. lcance2: 3.3cancjl: 3. lcancel: 3. nil +
Icald: 5. nil

proc MultiLimit2f =
'cotdj2: 10. lexece2: 3. lexecjl: 3. MultiLimitlf +
Icaldj2: 10. lcance2: 3. lcancjl-. 3. lcancel: 3. nil +
'cald: 5. nil

proc MultiLimitlf =
'cotdjl: 10. lexecel: 3. nil + Icaldjl: 10. lcancel: 3. nil + Icald: 5. nil

proc MultiLimitSeq3 =
Iriinn: 10. lexecj3: 3. MultiLimitSeq3fj + Icald: 5. nil

proc MultiLimitSeq3fj =
'cotdj3: 10. lexece3: 3. MultiLimitSeq3fe +

Icaldj3: 10. lcance3: 3. lcancj2: 3. lcance2: 3. lcancjl: 3. lcancel: 3. nil +
Icald: 5. nil

proc MultiLimitSeq3fe =
Ifinde3: 10. lexecj2: 3. MultiLimitSeq2fj + 'ca-ld: 5. nil

proc MultiLimitSeq2fj =
'cotdj2: 10. lexece2: 3. MultiLimitSeq2fe +
Icaldj2: 10. lcance2: 3. lcancjl: 3. lcancel: 3. nil +
Icald: 5. nil

proc MultiLimitSeq2fe =
Ifinde2: 10. lexecjl: 3. MultiLimitlf + Icald: 5. nil

In the pres ented PCCS characterisation of MultiLimit and MultiLimitSeq, we create n in-

stances of the execution activity, ExecAct, and its associated join condition. Similarly to the
definition of Seqn agents, the first (join condition, execution activity) pair to be executed are
those with the Iii-liest index. This makes for more simple definitions of the MultiLi, itn and 0
MultiLimitSeq' agents. 0

We start by executing the first join condition instance. If it completes successfully then this C)
triggers the execution of its corresponding execution activity instance. If it gets cancelled, however,

0C, n0
all remaining execution and join condition instances get cancelled. For MultiL iMitn C, , as soon as

294 Appendix A. PCCS Characterisation - Additional Information

an execution activity instance has been set running, we initiate the execution of the next join 0
condition instance. This continues until we run out of instances. For MultiLimitSeq' types, we

need to wait for the execution activity instance that we have just set running to finish before we
initiate the execution of the next join condition instance.

A. 8 MultiMerge"

The translation of MultiMerge" is defined by the following extension to M
0 pccSJ-j-

.
A4p, jMultiMerge(Chg1,

... Chgn, Chcl, ..., Chcm)l(st-chsi -, ppreci, pcaldi)=
let st-chsiz, ý in ... st-chsig. in let st-chsic, --+ in ... st-chsic. - in let preci in

MultiMerge'-'[SCi, SCjgj,
gj,

scig.
e., scici, cl, ...,

sci.,.]

InitialState'
+n [SC,, ppreci /ppýec

,
pcald, /pcald

,
preci /prec

MpccsEChg1ý(sLchsjgj ý, precj, caldi) I A4pcc, jChgnj(sLchsjs ý, preci, caldi)

. A4pccýjChc1](sLchsj, j ý, precj, caldi) I Mpcc, jChcmj(st-chsj, ý -+, preci, caldi)

The definition of the PCCS agent for MultiMerge", for the case where n is 4 and m is 2, is

now presented. n is the number of guard instances of the Multimerge type, and in is the number

of continuation instances.

proc MultiMerge2-4

riinn: 10. 'execgl: 3. lexecg2: 3. lexecg3: 3. lexecg4: 3. MultiMerge2-4f + 'cald: 5. nil

proc MultiMerge2-4f

cotdgl: 10. lgo: 3. lused: 3. nil + Icaldgl: 10. lused: 3. nil

'cotdg2: 10. lgo: 3. lused: 3. nil + Icaldg2: 10.. Iused: 3. nil

'cotdg3: 10. lgo: 3. lused: 3. nil + Icaldg3: 10. 'used: 3. nil

cotdg4: 10. lgo: 3. lused: 3. nil + Icaldg4: 10. 'used: 3. nil

go: 3. lexeccl: 3. (go: 3. lexecc2: 3. (go: 3. (go: 3. stop: 3. nil + stop: 3. nil) + stop: 3. nil) +

stop: 3. lcancc2: 3. nil) +

stop: 3. lcanccl: 3. lcancc2: 3. nil

used: 3. used: 3. used: 3. used: 3. 'stop: 3. nil
)\Igo, stap, used}

In MultiMerge", all of the guard instances are set running. Then, the first guard instance to 000
complete successfully triggers the execution of the first continuation instance. This is facilitated

C,

A. 9, Discriminatozjn-" 295

in MultiMerge"f by signalling on go. The second guard to complete successfully triggers the 0 C, CICI
execution of the second continuation instance, and so on. Notably, once m guard instances have

completed successfully, and the execution of 7n continuation instances has been initiated, there

will not be any more continuation instances to execute, notwithstanding the fact that more guard
instances may complete successfully. Whenever, guard instances get completed or cancelled, a

synchronisation is made on used. This occurs so that when all guard instances have finished, we C,
may cancel the unused continuation instances (by signalling on stop). C, 0

A. 9 Discriminator7n-n

The translation of Discriminatorm-n is defined by the following extension 0 to mpccSpj-

Mp,,, IDiscriminator(m) (Chgl,.
. ., Chgn, Chc)j(st_chsj --+, ppreci, pcaldi)=

let st-chsig, ý in ... st-chsi, -+ in let st-chsi, ý in let preci in

Discriminator" [SCj, SCjgj, j, ...,
SCjý,., SCi, j

InitialState n+l (SC,, pprec, /pprec
,

pcald, /pcald
,

pre ci /P...]

MpýcýEChglj(st-chsigi ý, precj, caldi) I ... I A4pccýjChgnj(st-chsi, -, preci, caldi)

Mp,, EChc](st-chsiý --ý, preci, caldi)

The definition of the PCCS agent for Discriminator", for the case where n is 4 and 7n is C,
2, is now presented. n is the number of guard instances of the Discriminator type, and 7n is its

completion threshold, for executing the continuation instance. C,

proc Discriminator2-4

runn: 10. lexecgl: 3. lexecg2: 3. lexecg3: 3. lexecg4: 3. Discriminator2-4f + 'cald: 5. nil

proc Discriminator2-4f

, cotdgl: 10. lwin: 3. nil + Icaldgl: 10. llose: 3. nil

, cotdg2: 10. 'win: 3. nil + Icaldg2: 10. llose: 3. nil

, cotdg3: 10. 'win: 3. nil + Icaldg3: 10. 'lose: 3. nil

, cotdg4: 10. lwin: 3. nil + Icaldg4: 10. llose: 3. nil

lose: 3. lose: 3. lose: 3. lcanc: 3. nil

win: 3. win: 3. execc: 3. nil

)\Iwin, lose}

Ifind: 5. nil

296 AnDendix A. PCCS Characterisation - Additional Information

In Discriminatorm-n, all of the guard instances are set runnino'. Whenever one of them

completes (resp. gets cancelled), a synchronisation on win (resp. lose) occurs. If sufficient

synchronisat ions on win occur (i. e. the completion threshold is met), the continuation instance

is executed. If sufficient syn chro n isat ions on lose occur (i. e. the failure threshold is met), the

Discriminator instance, as a whole, is cancelled. The failure threshold corresponds to the number

of , ruard instances which must fail (i. e. get cancelled) in order that the completion threshold can

never be reached. Its value is (n - rn) + 1. Once the Discriminator instance has finished, tile

residual logic of the generic type aprit, is garba ge- collected. 00C, C,

Appendix B

SitCalc Characterisation -
Additional Information

In this appendix, we complete the presentation of the SitCalc characterisation for Liesbet, and
the presentation of the translation function Msjtc,, j&].

B. 1 Remaining SitCalc Characterisation of Liesbet

In this section, Ave present the SitCalc-based characterisation of the Liesbet types omitted from

the presentation in Chapter Six.

Completion and Cancellation Actions on Childless Structured In-

stances

Childless structured instances may be explicitly completed (or cancelled). (Notably, child-bearing

structured instances are completed/cancelled implicitly as a side-eff ect of some action occurrence

on another instance. For instance, a child-bearing instance may be completed through propagation

as a side-effect of a descendant instance finishing.) The childless types in question are: FreeChoice,

Empty, Go, Stop, CancelActivity and Exit.
There are four action schemas that are concerned with the completion and cancellation of

childless structured instances. We concentrate on the most general two for the time being - the

other two are concerned with something very specific, namely, the completion or cancellation of Go

or Stop synchronisation types which make use of distinct querying (see Appendix Section B. 1.2).

The two general action schemas are complete/1 and cancel/l. The action precondition axioms
for these actions are now presented. Note that the CType/2 (resp. GType/2) fluent records the

custoinised (resp. generic) type of an instance i in situation s.

Poss (complete (i), s) =- State U, s) =Running A (GType(i, s)=GId-FRE V GType(i, s)=GId-EMP V

GType(i, s)=GId-CAN V GType(i, s)=GId-CAR V GType(i, s)=GId-EXI V
(CType(i, s) = CUSTOMISED-SYNC-TYPE A CUSTOMISED-COMPLETION-CONDITION) V ...)A

-(3p, i,, c, g, sc, f, j). Poss(add-activity(p, il, c, g, sc, f, j), s)

Poss (cancel W, s) =- State (i, s)=Running A (GType(i, s)=GId-FRE V

297

298 Appendix B. SitCaic Characterisation - Additional Information

(CType(i, s) = CUSTOMISED-SYNC-TYPE A CUSTOMISED-CANCELLATION-CONDITION) VA

-(3p, i', c, g, sc, f, j). Poss(add-activity(p, il, c, g, sc, f. j), s)

The first of these axioms (for complete/1) says that it is possible to complete a FreeChoice

(GId-FRE), Empty (GId-EMP), CancelActivity (GId-CAN or GId-CAR), or customised synchronisation
(Go or Stop) instance iff the instance is running, and it is not possible to add another instance (via

add-activity/7) to the CNNIS. Further information regarding the facilitation of CancelActivity

in the SitCalc semantics for Liesbet is presented in Appendix Section B. I. 5.

Note that these axioms are, for the most part, domain-independent, but they may be custornised

for a particular model with respect to the use of synchronisation types. For any occurrence of a

customised synchronisation type, in the precondition axiom for complete/1, its corresponding

completion condition (which must also hold for tile action to be possible) will be the GoQuery of

the pertaining synchronisation instance. We present an example of this at the end of this section.

The second of these axioms is similar to tile first, except that Empty, CancelActivity, and

Exit instances may not be (explicitly, at least) cancelled. These possibilities are thus removed

from the axiom for cancel/l. Note that occurrences of a customised cancellation condition in an

instance of the cancel/1 action precondition axiom correspond to the StopQuery of the pertaining

synchronisation instance. Clearly, if a synchronisation type only has one type of query then it will

only appear in one of the complete, cancel/1 axioms (i. e. complete/I for GoQuery only, and

cancel/1 for StopQuery only)-

For complete/1 actions, we need to modify the definition of Completing/3, and CompletingAction/2,

viz.

Completing (i, a, st) =- (a=comp-bas(i) V a=complete(i)) A st=Completed

CompletingAction(i, a) ý- a=comp-bas(i) V complete(i)

For cancel/I actions, we need to modify the definition of CancellingAction/2, viz.

CancellingAction(i, a) =- a=canc-bas(i) V cancel(i)

We also modify the action precondition axioms for comp-bas, canc-bas/1 to say that these

actions are only possible if a complete, cancel/1 on an instance is not possible. This is a straight-
forward extension.

Finally, the customised completion/cancellation conditions, in these precondition axionis, will

make use of (instances of) the InScope/5 predicate. This predicate determines the visibility horizon

for instances, and has the following definition.
C,

InScope(i, t, r, c, do(a, s)) =-

(3p, g, sc, f, j). sc=NONE A (((3c'). a--add-activity(p, i, cl, g, sc, f, j) A

(Ingcope(p, t, r, c, s) V (CType(p, s)=r A CType(t, s)=c A Descendant (p, t, s)))) v

(a=add-activity(p, t, c, g, sc, f, j) A (3c'). InScope(i, p, r, cl, s))) V

InS cope (i, t, r, c, s)

Referring to Figure B. 1, the successor state axioni for InScope/5 says that a target instance
0 C, 1=1

B. I. Remaining SitCalc Characterisation of Liesbet 299

r An instance i has target t (of customised type c) in its visibility horizon iff there is 0
a reference instance (of type r) which is ancestral to both instances, and there is no
intervening isolated scope (see Section 3.1.3). t may not be an ancestor of i. 0

Figure B. l: InScope/5, Defining Visibility Horizons.

t is in the visibility horizon of an instance i, with reference type r, and custornised type c (in

situation do (a, s)) iff

the instance i is being added to tile CINIS (via action a) and (i) i is not isolated (sc=NONE),
0

and (ii) its parent p has t (with respect to r and c) in its visibility horizon OR its parent p
is itself of type r and t (of custornised type c) is a descendant of p

OR

the target t is being added to the CWS (via a) and (i) t; is not isolated, and (ii) t's parent
is in tile visibility horizon of i

OR

e InScope for i, with t/r/c, holds in the previous situation. (Once an instance of this fluent

is asserted to the BXr, it persists thereafter.)

As an example of the dispensation made for synchronisation types within the precondition

axioms for complete, cancel/1, say we have a Go instance with GoQuery Completed-act (q), and

customised type name CId-G. Then, according to the definition of the translator (for Liesbet 0
models) presented below in Appendix Section B. 2, the pertaining fragment of the precondition 0 rý
axiorn for complete/1 would look as follows, albeit presented in an abridged form here.

0

CType(i,
_s)

= CId-G A (3t, r). InScope(i, t, r, q, s) A State (t, s) =Completed It is Nvorth not-

ing that, in Section 6.2.2, we made the assertion that most of the SitCalc-based characterisation
of a Liesbet model instance n-my be considered as foundational axioms, as they are domain-

independent in nature. It is trivial to specify versions of the axionis presented here for cancel,
complete/1 which are also doinain-independent. They inay instead refer, in a domain-independent

way, to auxiliary fluents, whose instances would be used to represent the domain-dependent infor-

mation.

300 Appendix B. SitCalc Characterisation - Additional Information

B. 1.2 Distinct Querying

Distinct queries are supported by means of custornisat ions to action precondition axioms for two

further action schemas, viz. complete, cancel/3. Actions pertaining to these sclienias take two

additional arguments compared with actions for synchronisation types which do not make use of
distinct querying.

To recap from Section 3.1.4, a GoQuery or StopQuery, within a synchronisation type, may be

a composite query, meaning that it may contain a number of sub-queries which are composed into

boolean expressions, where some of the sub-queries may be queries involving distinct reference
types, i. e. distinct queHes. There are some restrictions on the use of distinct queries which make
their semantic characterisation much simpler:

" They are not allowed to be tinder the scope of a negation at any level of nesting. 0

" In any one GoQuery, or StopQuery, the sarne distinct reference type should be used, which

will necessarily resolve to the same instance.

" Disjunction exists only at the outer-i-nost query level of a GoQuery or StopQuery.

" The target instances that may be used to satisfy each distinct query within a conjunct (of
0

the top-level disjunction - see previous point) inust fall into disjoint sets.

In satisfying a composite query involving distinct queries, we must mark as expended the

target instances used to satisfy the query against the common instance of the distinct reference
type. The two additional arguments for the action scliernas, complete, cancel/3, are: di, which
is the instance of tile distinct reference type used to satisfy the Go/StopQuery, and 1 which is a
list of targets to mark as expended against di.

As disjunction exists at the outer querying level only, we can construct the customisation of
the pertinent action precondition axiom (for GoQuerys, this will be the axiom for complete/3,

and for StopQuerys, cancel/3), as a disjunction where we assign the target instances to mark as

expended in each of the conjuncts, by assigning the action argument 1.

For example, we may have the following query, used to complete a Go type, CId_G.

Finished-act(CId-A dist in CId_P) I Finished-act(CId-B dist in CId_P)

Finished-act(CId-C in CId_P) +

Finished-act(CId-D dist in CId_P) I Finished-act(CId-C in CId_P)
Here, the query is satisfied either by satisfying distinct queries on A and B and a non-distinct

query oil C or by satisfying a distinct query on D and a non-distinct query oil C. Note that tile
disjunction appears at the outer-most level.

The action precondition for complete U, di, 1) is custornised to include the case of completing
CId_G using this query. Art abridged version follows.

Poss(complete(i, di, l), S)

CType(i, s)=CId-G A

(3til, ti2, ti3). DistInScope(i, di, CId-P, s) A

(1=Ctil, ti2l A -DistQuery(til, di, s) A -DistQuery(ti2, di, s) A

InScope(i, til, CId-P, CId-A, s) A InScope(i, ti2, Cld-P, CId-B, s) A

B. 1. Reinaininz SitCalc Characterisation of Liesbet 301

(3ti). InScope(i, ti, CId-P, CId-C, s) V

1=[ti3l A -DistQuery(ti3, di, s) A InScope(i, ti3, CId-P, CId-D, s) A

Gti)
. InScope U, ti, CId-P, CId-C, s))

One or more instances of the fluent DistInScope(i, di, d, s) are asserted to the BXF when-

ever an activity instance is added to the CNVS. The fluent asserts di to be the instance of dis-

tinct reference type d to be used for querying instance i, which is the instance being added. 0n
Dist; Query(t, di, s) recordsexpended target instancest against distinct (referencetype) instances

di.
Finally, for complete/3 actions, we need to modify the definition of Completing/3, and

CompletingAction/2, viz.

Completing(i, a, st) =-
(a=comp-bas(i) V a=complete(i) V (3di, l). a=complete(i, di, l)) A st=Completed

CompletingActi0n(i, a) =- a=comp-bas(i) V complete(i) V (3di, l). a=complete(i, di, l)

For cancel/3 actions, we need to modify the definition of CancellingAction/2, viz.

CancellingAction(i, a) =- a=canc-bas(i) V cancel(i) v (3di, l). a=cancel(i, di, l)

B. 1.3 UnorderedSeq

To suPport UnorderedSeq, Nve firstly augment the definition of SetRunning/5, to include a case
for GId-UOS, viz.

SetRunning(p, ij, st, s) -ý p=i A st=Running V

State (p, s)=Running A

(GType(p, s)=GId-UOS A (st=Running V st=Initial) V

-GType(p, s)=GId-UOS A (st=Running A f=EXEC V st=Initial A -f=EXEC)) V

-State (p, s)=Running A st=Initial

Here, we allow the children of UnorderedSeqs to (non-deterministically) be set to an Initial

or Running state. We also chan0le the definition of ExecuteNextChild/4 to handle the case of 0
completion being propagated to UnorderedSeq instances which still have children to run, in order 0 C,
to make a similar dispensation. In this case, we simply allow execution to be propagated to some
yet-to-be-run child of tile UnorderedSeq.

ExecuteNextChild(il, i, st, s) = (3p, i"). Child(p, il, s) A

(PropagateRunningDownInc(ill, i, st, s) A

((GType(p, s)=GId-SEQ V GType(p, s)=GId-SEC) A Next Init ialChild (p, iI "s) V

GType(p, s)=GId-UDS A Child(p, i", s) A State (i ", s) =Initial) V

(3gp). Child(gp, p, s) A (GType(gp, s)=GId-EXC V GType(gp, s)=GId-DEF) A

(3b). Child(gp, b, s) A -p=b A PropagateCancelDownInc(b, i, st, s))

We augment these measures with two state constraint axioms, which are added to the BN-r.

302 Annendix B. SitCalc Characterisation - Additional Information

The first says that if an UnorderedSeq is running, then at least one child should also be

running.

(Vi). GType(i, s)=GId-UOS A State (i, s) =Running D (Dc). Child(i, c, s) A State (c, s) =Running

e The second says that no more than one child should run at any one time.

(Vi). GType(i, s)=GId-UOS A State U, s)=Running D

((Vc, c'). Child(i, c, s) A Child(i, cl, s) A

State(c, s)=Running A State(c', s)=Running D c=c')

B. 1.4 Merge Types

Merge types, i. e. MultiMerge and Discriminator, also need dispensations to be made for them

in the definitions of PropagateCancelUp/4 and ExecuteNextChild/4.

We firstly consider the case where cancellation has been propagated to a guard or continuation 00
instance of a MultiMerge (GId-MUM) or Discriminator (GId-DIS) type. In the event that a guard
is cancelled, the following applies. In a Multimerge, if the guard is the last running, we need to

cancel remaining continuation instances (i. e. those which have not been executed); and if all other C,
continuation instances have finished, propagate completion upwards (including the Multimerge

instance). In a Discriminator, we check whether the guard being cancelled is sufficient for the C, in
failure threshold to have been reached (i. e. the minimum number of guard instances that need
to fail to signify that the completion threshold can never be reached). If the threshold has been

reached, we cancel the single continuation instance, cancel the remaining guards, and propagate

completion upwards (including the Discriminator instance).

In the case that a continuation instance has been cancelled, the following applies. In a
Multimerge, we check whether it is the last one to have been in an Initial state; if so, cancel any

remaining guards that are still running. We also check whether all other continuation instances

are now finished; if so, propagate completion upwards (including the Multimerge instance). In a
Discriminator, we cancel any guards that are still running, and propagate completion upwards 000
(including the Discriminator instance). 0

The appropriate augmentation to PropagateCancelUp/4 is as follows.
C,

PropagateCancelUp(il, i, st, s) =-

as above for the case where il is the root instance ...
(3p). Child(p, i', s) A

as above for CId-SEC, CId-F-XC, CId-DEF ...
GType(p, s)=GId-MUM A (PropagateCancelDownInc(il, i, st, s) V

(Guard(il, s) A AllGuardsFinished(p, il, s) A

(CancelRemainingConts(p, i, st, s) V

NoContsRunning(p, il, s) A PropagateCompleteUpInc(p, i, st, s)) V

Cont(il, s) A (NoContsInitial(p, i', s) A CancelRemainingGuards(p, i, st, s) V

AllContsFinished(p, il, s) A PropagateCompleteUpInc(p, i, st, s)))) V

GType(p, s)=GId-DIS A (PropagateCancelDownInc(i', i, st, s) V

(Guard(il, s) A DiscThreshFailed(p, s) V Cont(i', s)) A

(CancelRemainingGuards(p, i, st, s) V CancelRemainingConts(p, i, st, s) V

PropagateCompleteUpInc(p, i, st, s))) V

B. I. Remaining Sit Cal c Characterisa tion of Li esbe t 303

as above for all other cases

Instances of the fluent Guard/2 are asserted to the BXF when guard instances of merge

types are added to the CNNIS, and persist thereafter. Specifically, whenever tile parameter f in

add-activity/7 is set to EXEC, and the parent instance is a Multimerge or a Discriminator

type, an instance of the fluent Guard(i, do(a, s)), where i is the identifier of the instance being

added, will be asserted to the BXr. Instances of Cont/2 are asserted to the BAT whenever the

parameter f in add-activity/7 is set to CONT, and persist thereafter.

The predicate PropagateCompleteUpInc UI, i, st, s) is the same as PropagateCompleteUp/4,

except that it also sets the state of iI to be Completed. Its variant does not do this. The predicate
Al lGuardsFini shed (p, gu, s) holds just when all guards of p, bar gu (which is being cancelled),
have finished (in situation s), viz.

AllGuardsFini shed (p, Su, s) =- (Vgul). Guard(gul, s) A Child(p, gul, s) A -gu=gul D

(State (gu I, s) =Completed V State(Su', s)=Cancelled)

The predicate AllContsFini shed (p, gu, s) has an identical definition, except that it applies

to instances for which Cont/2 holds (i. e. continuation instances).

The predicate NoContsInitial(p, i, s) (resp. NoContsRunning/3) holds iff no continuation
instance, bar i, of the merge instance, p, is in an Initial (resp. Running) state. The definition

C,
of NoContsInitial/3 follows. The definition of NoContsRunning/3 is a trivial variation.

NoContsInitial(p, i, s) =- (Vc). Cont(c, s) A Child(p, c, s) A -c=i D -State (c, s) =Initial

The predicate CancelRemainingGuards/4 propagates cancellation through those guard in-
0 C, CD

stances which are still running, viz. 0

CancelRemainingGuards(p, i, st, s) -=
(3gu). Guard(gu, s) A Child(p, gu, s) A

State (gu, s)=Running A PropagateCancelDownInc(gu, i, st, s)

The definition of CancelRemainingConts/4 is trivially different - it just applies to those con-

tinuation instances which are in the Initial state.
Another dispensation that needs to be niade concerns ExecuteNextChild/4. We need to

niodify the definition of this predicate for the occasion when a guard instance in a Multimerge 0
or Discriminator is coinpleted. The appropriate augnientation to ExecuteNextChild/4 is as
follows.

ExecuteNextChild(il, i, st, s) = (3p, i"). Child(p, i', s) A

as above for GId-SEQ, GId-UOS, GId-SEC, GId-EXC, GId-DEF

(GType(p, s)=GId-MUM V GType(p, s)=GId-DIS) A Guard(il, s) A

FirstInitialContinuation(p, c, s) A

(GType(p, s)=GId-MUM A

(PropagateRunningDownInc(c, i, st, s) V

AllGuardsFinished(p, il, s) A CancelRemainingConts(p, c, i, st, s) V

NoContsInitial(p, c, s) A CancelRemainingGuards(p, il, i, st, s)) V

GType(p, s)=GId-DIS A Dis cThre shRe ached (p, s) A

304 Appendix B. sitCalc Characterisation - Additional Information

(PropagateRiinningDownlnc(c, i, st, s) V CancelRemainingGuards(p, i', i, st, s)))

In the foregoing, FirstInitialContinuationAction/3 holds for the first continuation instance
C,

of a inerge instance that is yet to be run - the instance is in an Initial state, viz. 0

FirstInitialContinuation(p, c, s) = Cont(c, s) A Child(p, c, s) A State (c, s) =Initial A

-(3c'). (cl<c A Cont(cl, s) A Child(p, c', s) A State (cl, s)=Initial)

The predicate CancelRemainingGuards/5 (resp. CancelRemainingConts/5) is .1 variant of
its four-arity counterpart. It takes an additional argument (#2), which gives the guard being, en 0
completed (resp. continuation being started), so that cancellation is effected on all other running 0 C,
guards (resp. yet-to-start continuations). The definition of CanceiRemainingGuards/5 is now
presented. The definition of CancelRemainingConts/5 is a simple variant.

CancelRemainingGuards(p, il, i, st, s) =- (3i"). Guard(ill, s) A Child(p, i", s) A -i"=il A

State (i I', s)=Rilr3ning A PropagateCancelDownlnc(i", i, st, s)

For Discriminator, if the guard instance completing means that tile (completion) threshold for 00
cruards conipleting has now been reached (see Section 3.1.14, for more information), as determined 00
by DiscThreshReached/2, then the continuation instance is executed and remaining guards are 0 4D
cancelled.

The definitions of DiscThreshReached/2 (and DiscThreshFailed/2, from above) are as fol-

lows.

DiscThreshReached(i, s) =- (3t, f, c). DiscThresh(i, t, s)=c A t=c+l

DiscThreshFailed(i, s) =- (3t, f, c). DiscFailThresh(i, f, s)=c A f=c+l

Each Discriminator instance maintains instances of the DiscThresh(i, t, s)=c -and
DiscFai1Thresh(i, f, s)=c fluents, which are initially asserted to the BXr by the translator,

see Section 6.3. The parameter d is the Discriminator instance, t is the completion threshold, f
is the threshold for failed (i. e. cancelled) guards, and c is the count of completions in DiscThresh/3

and the count of failures in DiscFailThresh/3.
There are the following successor-state axionis for these fluents:

DiscThresh(d, t, do(a, s))=c -= CompletingDiscAction(a, d, s) A

(3c'). DiscThresh(d, t, s)=cl A c=c'+l V

-CompletingDiscAction(a, d, s) A DiscThresh(d, t, s)=c

DiscFailThresh(d, f, do(a, s))=c =- CancellingDiscAction(a, d, s) A

(3c'). DiscFailThresh(d, f, s)=c' A c=cl+l V

-CancellingDiscAction(a, d, s) A DiscThresh(d, f, s)=c

Here, CompletingDiscAction(a, d, s) (resp. CancellingDiscAction(a, d, s)) holds when the

action a causes one of the guards of d to be completed (resp. cancelled). The definition of
CompletingDiscAction(a, d, s) is now presented. TlicdefiiiitionofCancellingDiscAction(a, d, s)
is trivially similar - we test for a state change to Cancelled, instead of Completed. 0

B. 1. Reniainin. L-SitCalcC]jaracterisationofLiesbet 305

CompletingDiscAction(a, d, s) =- (3i, st). Child(d, i, s) A Guard(i, s) A

StateChange(i, a, st, s) A st=Completed

B. I. 5 CancelActivity and Exit Types

When a CancelActivity instance is completed, it is likely that there will be a number of instances

in its visibility horizon which should be cancelled. In order to support this, we need to augment 0
the definition of the predicate StateChange/4. The updated definition of this predicate follows; in

it, we have added that a completing cancel activit which has iI in its visibility horizon, causes 0 Y,

cancellation to be propagated up from i

StateChange(i, a, st, s) a
(3p, c, g, sc, f, j). a=add-activity(p, i, c, g, sc, f, j) A SetRunning(p, i, f, st, s) V

Completing(i, a, st) V

(3i'). CompletingAction(il, a) A PropagateCompleteUp(il, i, st, s) V

(3i'). ((CancellingAction(i', a) V CompletingCancelActivity(a. il, s)) A

PropagateCancelUp(il, i, st, s))

The predicate CompletingCancelActivity/3 holds just when a is a complete/1 action on a
CancelActivity instance, which causes the cancellation of target instance i, viz. 0

CompletingCancelActivity(a, i, s) =- (3i'). a=complete(il) A

(3q, q', r, r'). (CancelAct(i', q, s) V CancelAct(il, q, r, s)) A

InScope(il, i, rl, q', s) A IsType(rl, r) A IsType(q', q) A

(State(i, s) = Running V State(i, s) = Initial)

The fluents CancelAct/3 and CancelAct/4 record the target customised type, qtype, and plain
reference type (if applicable), rtype, of CancelActivity types - see Section 3.1.16. Instances of
these fluents are asserted to the BAT whenever a CancelActivity is added to the CWS, using
add-activity/7, and thereafter persist. The use of IsType/2 is explained in Section 6.3.

The effects of completing a (running) Exit (GId-EXI) instance are to cancel the whole model,
as determined by the following modified definition of StateChange/4 - see the last two lines.
This simply says that each instance i for which CType is defined (which is just a mechanism for

enumerating all instances) should be cancelled.

StateChange(i, a, st, s) =-
(3p, c, g, sc, f, j). a=add-activity(p, i, c, g, sc, f, j) A SetRunning(p, i, f, st, s) V

Completing(i, a, st) V

(3i,). CompletingAction(i', a, s) A PropagateCompleteUp(il, i, st, s) V

(3i,). ((CancellingAction(i', a) V CompletingCancelActivity(a, il, s)) A

PropagateCancelUp(il, i, st, s)) V

(3i,). a=complete(il) A GType(il, s) = GId-EXI A (3c). CType(i, s)=c A

-State U, s) =Completed A st=Cancelled

We also need to say that the completion of Exit instances should not be propagated upwards. 0
To this end, we migrate to a version of CompletingAction of arity three; its additional argument in 0

306 Appendix B. SitCalc Characterisation - Additional Information

is the situation term s. In the new definition, we except complete/l actions on Exit instances

from being a "completing action". 00

CompletingActi0n(i, a, s) H a=comp-bas(i) V (complete(i) A -GType(i, s)=GId-EXI) V

(3di, l). a=complete(a, di, l)

B. 1.6 Multiple-Instance Types

The SitCalc-based characterisation of Multi* activity types is now presented. There is a sig
nificant overlap between how limited and non-limited Multi* types are treated. There are also
important differences.

As was done for choice types, the translator wraps (join condition, execution activity) pairs of
all Multi* types in a containing SeqCancel type, which makes for a simpler characterisation.

For MultiLimit (GId-MLI) and MultiLimitSeq (GId-MLS), the translator will specify tile cre-
ation of n (join condition, execution activity) pairs, where n is the limit, or threshold, of the type,

see Section 3.1.15. For Multi (GId-MUL) and MultiSeq (GId-MUS), the definition of the translator

specifies that just one (join condition, execution activity) pair be created initially. When the join

condition of tile given pair completes successfully, another such pair is created. For Multi, its join

condition is immediately set running. For MultiSeq, we wait until the execution activity instance
from the previous pair finishes before setting the join condition of the new pair running. Pairs

continue to be created, in this way, until a join condition fails.
We support the Multi* types, as we do merge and choice types, by dispensations within

tile definitions of PropagateCancelUp/4 and ExecuteNextChild/4. Tile modified definition of
PropagateCancelUp/4 is now presented (in full). The changes from its previous definition are
localised to the case where the parent, p, (of the instance, i from which cancellation is being

propagated) is an instance of a SeqCancel type. In this case, we need to discern whether its

respective parent (if extant) is an instance of a Multi* type; and, if so, act appropriately, as will
be described.

PropagateCancelUp(il, i, st, s) =-

ý(3p). Child(p, il, s) A PropagateCancelDownInc(i', i, st, s) V

(3p). Child(p, il, s) A

GType(p, s)=GId-EXC A

(AllRemGuardsCald(p, il, s) A PropagateCancelUp(p, i, st, s) V

-AllRemGuardsCald(p, i', s) A PropagateCancelDownInc(il, i, st, s)) V

GType(p, s)=GId-DEF A
(Default(i', s) A AllRemGuardsCaLld(p, il, s) A PropagaLteCaLncelUp(p, i, st, s) V

-Def_ault(il, s) A AllRemGuardsCald(p, il, s) A (3d). Default(d, s) A Child(p, d, s) A

(State (d, s) =Initial A PropagateRunningDownInc(d, i, st, s) V

-State (d, s) =Initial A PropagateCancelUp(p, i. st, s)) V

-AllRemGuardsCald(p, i', s) A PropagateCancelDownInc(il, i, st, s)) V

GType(p, s)=GId_MUM A (PropagateCancelDownInc(i', i, st, s) V

(Guard(i', s) A AllGuardsFini shed (p, i I, s) A

(CancelRemainingConts(p, i, st, s) V

NoContsRunning(p, il, s) A PropagateCompleteUpInc(p, i, st, s)) V

B. 1. Remaining Sit Cal c Characterisation of Li esbe t 307

Cont(il, s) A (NoContsInitial(p, il, s) A CancelRemainingGuards(p, i, rt, s) V

AllCont sFini shed (p, V, s) A PropagateCompleteUpInc(p, i, st, s)))) V

GType(p, s)=GId-DIS A (PropagateCancelDownInc(il, i, st, s) V

(Guard(il, s) A DiscThreshFailed(p, s) V Cont(il, s)) A

(CancelRemainingGuards(p, i, st, s) V CancelRemainingConts(p, i, st, s) V

PropagateCompleteUplnc(p, i, st, s))) V

GType(p, s)=GId-SEC A

((3gp). Child(gp, p, s) A

((GType(gp, s)=GId-MLI V GType(gp, s)=Gld-MLS V

GType(gp, s)=GId-MUL V GType(gp, s)=Gld-MUS) A

((3e). Gua, rd(i', e, s) A

(CancelRemainingPairs(gp, p, i, st, s) V

CompleteDnExecActsFinished(gp, p, i, st, s)) V

(3gu). Guard(gu, il, s) A (PropagateCancelDownInc(p, i, st, s) V

PropagateCompleteUp(p, i, st, s))) v

-GType(p, s)=GId-MLI A -GType(gp, s)=GId-MLS A

-GType(gp, s)=GId-MUL A -GType(gp, s)=GIdMS A

PropagateCancelUp(p, i, st, s)) V

-(3gp). Child(gp, p, s) A PropagateCancelDownInc(p, i, st, s)) V

-GType(p, s)=GId-SEC A -GType(p, s)=GId-EXC A -GType(p, s)=GId-DEF A

-GType(p, s)=GId-MUM A -GType(p, s)=GId-DIS A

(PropagateCancelDownInc(il, i, st, s) V PropagateCompleteUp(il, i, st, s))

Instances of GuardQ , e, s) are asserted to tile BAT when an execution activity instance, e (of

a Multi* type), is added to the CNVS, and persist thereafter. The j parameter of add-activity/7

specifies the identifier of the pertaining join instance, j, and is assigned by the translator (see

Section 6.3).

According to the foregoing, whenever a join condition (of a Multi* type) is being cancelled
(given by the GO Guard (i e, s) case), we propagate cancellation down to any (join condition,

execution activity) pairs, which are yet-to-run. These will only exist for limited types, as these are

created by the translator a prioti. This is effected by the CancelRemainingPairs/5, which has

the following definition.
0

CancelRemainingPairs(gp, p, i, st, s) =- (3b). Child(gp, b, s) A b>p A

PropagateCancelDownInc(b, i, st, s)

We also propagate cancellation down through the (join condition, execution activity) pair whose ID 0
join condition is being cancelled. Moreover, if all of the execution activity instances (which may C,
have previously been set running) have finished, we complete the Multi* instance and propagate 0
completion upwards. This is effected by the CompleteOnExecActsFinished/5, which has the

followin- definition. 0

CompleteOnExecActsFinished(gp, p, i, st, s) -ý
((Vb, gu, c). Child(gp, b, s) A b<p A Child(b, c, s) A Guard(gu, c, s) D

-State(c, s)=Running) A

PropagateCompleteUpInc(gp, i, st, s)

308 Appendix B. SitCalc Characterisation - Additional Information

Whenever an execution activity instance is cancelled (given by the (3gu) . Guard(gu, i s)

case), we propagate cancellation throughout the (join condition, execution activity) pair, just in

case the execution activity instance was cancelled (i. e. externally) prior to the join condition
finishing. We also propagate completion upwards from the pair itself, which will have the effect
(by virtue of ExecuteNextChild/4) of executing another (join condition, execution activity) pair
(specifically, the join condition would be set running), for MultiLimitSeq/MultiSeq types, if

extant. For MultiLimitSeq, it may be the case that there is no further pair to be set running. This

would happen if all n pairs have been executed. When all (join condition, execution activity) pairs
have finished, in a Multi* instance, propagating completion upwards (from a cancelled execution 00
activity instance) will complete the Multi* instance. In this case, we continue to propagate

completion further upwards.
The modified version of ExecuteNextChild/4 is as follows.

ExecuteNextChild(il, i, st, s) = (3p, i"). Child(p, i', s) A

(PropagateRiinningDownInc(ill, i, st, s) A
((3gp). ((gp=p A (GType(p, s)=GId-SEQ V GType(p, s)=GId-SEC V

GType(p, s)=GId-MUS V GType(p, s)=GId-MLS) V

Child(gp, p, s) A GType(gp, s)=Gld-MLI A (3e). Guard(il, e, s)) A

NextInitialChild(gp, ill, s)) V

GType(p, s)=GId-UOS A Child(p, ill, s) A State (i I', s)=Initial) V
(3gp). Child(gp, p, s) A (GType(gp, s)=GId-EXC V GType(gp, s)=GId-DEF) A

(3b). Child(Sp, b, s) A -p=b A PropagateCancelDownInc(b, i, st, s) V
(GType(p, s)=GId-MUM V GType(p, s)=GId-DIS) A Guard(il, s) A

FirstInitialContinuation(p, c, s) A
(GType(p, s)=GId-MUM A

(PropagateRunningDownInc(c, i, st, s) V

AllGuardsFini shed (p, i I, s) A CancelRemainingConts(p, c, i. st, s) V

NoContsInitial(p, c, s) A CancelRemainingGuards(p, il, i, st, s)) V

GType(p, s)=GId-DIS A DiscThreshReached(p, s) A

(PropagateRunningDownInc(c, i, st, s) V CancelRemainingGuards(p, il, i, st, s))))

When an execution activity instance in a Mult iLimitSeq/MultiSeq has finished (and, thus, its

containing SeqCancel completed), we execute the next (join condition, execution activity) pair,
if extant. For MultiLimit types whose join condition is completing, we execute the next (join

condition, execution activity) pair, if extant.

B. 2 Augmentations to MSRCaj-ý

In the following, ive present the definition of Msjtc,, j, j-j for those Liesbet types not covered in
-0 Section 6.3. Note that the result of translating a Liesbet model, using A4sjtc,, jcj-], is to assert 00

a set of ground atoms to the BK-r, which pertain to instances of fluents that hold in the initial

state, So. Additionally, four of the action precondition axioms, presented in the previous section,
i. e. those for complete, cancel/1,3, may be customised.

0 The definition Of -MSi(CalcH
for synchronisation types is as follows. We present the trans-

lation of a Stop type, with both StopQuery and GoQuery queries, whose unique generic type

B. 2. Augmentations to Msjtc,, Ij-ý 309

identifier is GId-DST (the convention being D for double query and ST for Stop). We show just

the translation of a non-isolated type - the isolated case follows as above. For Stop with just

StopQuery (GId-SST), we remove the AssertStopGoQuery instruction from the following. For

Go with both queries (GId-DGO), we change AssertStopStopQuery to AssertGoStopQuery

and AssertStopGoQuery to AssertGoGoQuery, and remove AssertGoStopQuery for the

single-queried case (GId-SGO), which uses just GoQuery.

- Msitc,, I, [Stop (StopQuery, GoQuery) (ctype (ctype) (p, i, f, j)

Assert(Activity(p, i, c, GId-DST, NONE, f, j))

where c=genTypeId(ctype)

AssertStopStopQuery(QTsc[StopQuery](i), c); AssertStopGoQuery(QTsc[GoQuery](i), c);

The helper translation function, QTscE-], translates a compound Liesbet synchronisation

query into a query made against the fluent state of the basic action theory, taking the

instance identifier of the synchronisation instance (which makes use of the query) as its

sinale aramment. Its definition is as follows. We omit details of translating distinct queries
(i. e. queries which make use of distinct reference types, see Section 3.1.3), as these are

more involved. We have previously given a flavour of how distinct queries are constructed in

SitCalc in Appendix Section B. 1.2.

- QT[Truej WT

- Q7-jFalsej(i) I

- QTýCompleted-act(qtype)j(i)

(3t, r, q'). InScope(i, t, r. q', s) A IsType(q', q) A State (t, s) =Completed, where q--genTypeId(qtype)

andIsType(ql, q) -= q=q' V ISA(q', q) V (3q"). ISA(q', q") A IsType(q", q)

- Q7-[Completed-all(qtype)](i) =

(Vt, r, q1). InScope(i, t, r, q', s) A IsType(q', q) D State (t, s) =Completed, where ...

- Q7-[Completed-act(qtype in rtype)](i) =

(3t, r', q'). InScope(i, t, r', q1, s) A IsType(q', q) A IsType(rl, r) A State (t, s) =Completed,

where ... and r=genTypeId(rtype)

- QT[Completed-all(qtype in rtype)](i)

(Vt, r1, q'). InScope(i, t, r, q, s) A IsType(ql, q) A IsType(rl, r) D State (t, s) =Completed,

where ...

- For Cancelled, Initial and Running queries, replace occurrences of Completed accordingly in

the foregoing.

- For Finished queries, we construct a disjunction of the pertinent Completed and Cancelled

queries. ror instance, QTJFinished-act(qtype)](i) = QTECompleted-act(qtype)](i) V
QT[Cancelled-act(qtype)](i)

- QTJ-QJ(i) = -QTJQI(i)

- QTJQ1 I ... IQ,, I(i) Q'riQ,](i)A
... AQTJQ. I(i)

- QTJQI+... +QýJ(i) QTJQII(i)V... VQTJQ. I(i)

310 Appendix B. SitCalc Characterisation - Additional Information

The instruction AssertStopStopQuery (q, c) adds: CType U, s) =c Aq within the body of the

action precondition axiom for cancel M, constituting one of the replacements for the con-
junct: CType(i, s) = CUSTOMISED-SYNC-TYPE A CUSTOMISED-COMPLETION-CONDITION, described in

Appendix Section B. 1.1. Note that c is textually replaced by the given actual parameter, as
is q.

Similarly, the instruction AssertStopGoQuery (q, c) adds: CType U, s) =cAqA -Poss (cancel M s)

within the body of the action precondition axiom for complete W. Note the extra condition,

requiring that it is not possible to cancel the synchronisation instance, which enforces the 0
priority of StopQuerys over GoQuerys for Stop synchronisation types.

The instructions for Ass ertGoStopQuery (q, c), and AssertGoGoQuery(q, c), similarly add

the conjunct CType(i, s) =cAq to the action precondition axioms for cancel(i), and

complete(i), respectively, with the difference that the condition -Poss (complete W, s)
is asserted for AssertGoStopQuery(q, c); this time, no additional condition is asserted for

AssertGoGoQuery(q, c), thus enforcing the appropriate priority in this case.

For CancelActivity types:

-M sit cýt, [CancelAct ivity (qtype) (ctype (ctyp e)) I (p, i, f, i)

Assert(Activity(p, i, c, GId-CAN, NONE, f, j))

where c=genTypeId(ctype)

AssertCancelAct(i, q, c)

where q--genTypeId(qtype)

- MsitcýlcjCancelActivity(qtype in rtype)(ctype(ctype))J(p, i, f, j)

Assert(Activity(p, i, c, GId-CAR, NONE, f, j))

where c=genTypeId(ctype)

AssertCance1ActRef(i, q, c, r)

where q--genTypeId(qtype) and r=genTypeId(rtype)

The instruction AssertCancelAct(i, ql cI) (resp. Assert; CancelActRef (i, ql cl rl)) in-

serts c=c' A q--ql (resp. c=cl A q=ql A r=rl) as a conjunct of the pertinent disjunction in

the successor state axiom for CancelAct (resp. CancelAct; Ref), which now follows.

CancelAct(i, q, do(a, s)) -=
(3p, c, g, sc, f, j). (a=add-activity(p, i, c, g, sc, f, j) A

(c=CUSTOMISED-CANCEL-ACT-TYPE A q=CUSTOMISED-QUERY-TYPE VV

CancelAct(i, q, s)

CancelActRef(i, q, r, do(a, s)) =-

(3p, c, g, sc, f, j). (a=add-activity(p, i, c, g, sc, f, j) A

(c=CUSTOMISED-CANCEL-ACT-TYPE A q--CUSTOMISED-QUERY-TYPE A

r=CUSTOMISED-REF-TYPE V ...)) V

CancelAct(i, q, r, s)

B. 2. Augmentations to Msitc,,,, J-l 311

9 Choice (Chgl,..., Chgn, Chcl,..., Chcn) (ctype (ctype))] (p, ij j)

Assert(Activity(p, i, c, GId-EXC, NONE, f, j, SO))

where c=genTypeId(ctype)

Assert(Activity(i, ii, sec, Gld-SEC, NONE, EXEC, NONE, SO))

where il=genInstIdO and sec=genTypeIdO;

M sjtcýj, jChglj (i 1, gl, EXEC, NONE);

where gl=genInstIdO

. Msjtcýj, [Chc 1] (i 1, c 1, NONE, NONE);

where cl=genInstIdO

Assert(Activity(i, in, sec, GId-SEC, NONE, EXEC, NONE, SO))

where in=genInstIdO and sec=genTypeIdo;

Msitc. lýlChgnj (in, gn, EXEC, NONE),

where gn=genInstIdO

Msitcý1clChcril (in, cn, NONE, NONE);

where cn=genInstIdO

0 A4sitcýl, [DefaultChoice(Chgl,..., Chgn, Chcl,..., Chcn, Chd)(ctype(ctype))I(p, i, f, j)

Assert(Activity(p, i, c, GId-DEF, NONE, f, j, SO))

where c=genTypeId(ctype)

Assert (Activity U. il, sec, GId-SEC, NONE, EXEC, NONE, SO))

where il=genInstIdO and sec=genTypeIdo;

A4sjtCýj, jChglj (il, gl, EXEC, NONE);

where gl=genInstIdO

. Msjjcýj, [Chc 11 (i 1, c 1, NONE, NONE);

where cl=genInstIdO

Assert(Activity(i, in, sec, GId-SEC, NONE, EXEC, NONE, SO))

where in=genInstIdO and sec=genTypeIdo;

MsjtcýjcjChgn] (in, gn, EXEC, NONE);

where gn=genInstIdO

Msitcýjc[Chcn] (in, cn, NONE, NONE);

where cn=genInstIdO

MsjjcýjcjChcd3 (i, d, DEFAULT, NONE);

where d=genInstIdO

312 dix B. SitCaic Characterisation - Additional Information

MsiicýiciMultiChoice(Chgl,..., Chgn, Chcl,..., Chcn)(ctype(ctype))I(p, i, f, j)

Assert(Activity(p, i, c, GId-MUC, NONE, f, j, SO))

where c=genTypeId(ctype)

Assert(Activity(i, il, sec, GId-SEC, NONE, EXEC, NONE, SO))

where il=genInstIdo and sec=genTypeIdo;

Msjtcýjc[Chglj (il, gl, EXEC, NONE);

where gl=genInstIdO

Msitcoic[Chcli (il, cl, NONE, NONE);

where cl=genInstIdO

Assert(Activity(i, in, sec, GId-SEC, NONE, EXEC, NONE, SO))

where in=genInstIdO and sec=genTypeIdO;

Msitc. lýiChgn] (in, gn, EXEC, NONE);

where gn=genInstIdO

M sjtcýjc jChcnj (in, cn, NONE, NONE);

where cn=genInstIdO

Msitc. l, [MultiMerge(Chgl,..., Chgn, Chcl,..., Chcm)(ctype(ctype))I(p, i, f, j)

Assert(Activity(p, i, c, GId-MUM, NONE, f, j, SO))

where c=genTypeId(ctype)

MsjtcaicEChgl] (i, gl, EXEC, NONE);

where gl=genInstIdO

.
A4sjtcýj, [Chgn] (i, gn, EXEC, NONE);

where gn=genInstIdo

Msjtc. jý[Chclj U, cl, CONT, NONE);

where cl=genInstIdO

MsjtcýjcjChcmj U, cn, CONT, NONE);

where cn=genInstIdO

e Msjtcýj, [Discriminator (m) (Chgl,. .., Chgn, Chc) (ctype (ctype)) I (p, i, f, j)

Assert(Activity(p, i, c, GId-DIS, NONE, f, j, SO))

where c=genTypeId(ctype)

Assert(DiscThresh(i, m, SO)=O); Assert(DiscFailThresh(i, f, SO)=O)

where f=eval(n-m+l)

MsjtcýjcjChglj (i, gl, EXEC, NONE);

B. 2. Augmentations tO MSitCalJ-

where gl=genInstIdO

Msjtcýj, EChgnj U, gn, EXEC, NONE);

where gn=genInstIdo

Msjtcýjý[Chcj U, C, CONT, NONE);

where c=genlnstIdo

0 A4sitcýl, [MultiLimit(n)(ExecAct(join(ExecActJoin))(ctype(ctype))I(p. i, f, j)

Assert(Activity(p, i, c, GId-MLI, NONE, f, j, SO))

where c=genTypeId(ctype)

Assert(Activity(i, ii, sec, GId-SEC, NONE, EXEC, NONE, SO))

where il=genInstIdO and sec=genTypeIdo;

Msjtcýj, [ExecAct Join] (il, j 1, EXEC, NONE);

where jl=genInstIdo

Msjtcýjc[ExecActj (il, e I, NONE, j 1);

where el=genInstIdo

Assert (Activity U, i2. sec, GId-SEC, NONE, NONE, NONE, SO)) do not EXEC all butfirst join

where i2=genInstIdo and sec=genTypeIdo;

Msjtc,, jcjExecActJoin] (i2j 2, EXEC, NONE);

where j2=genInstIdo

M SifCalc [ExecActl U2, e2, NONE, j 2);

where e2=genInstIdO

Assert (Activity U, in, sec, GId-SEC, NONE, NONE, NONE, SO))

where in=genInstIdO and sec=genTypeIdo;

M sitc. 1, [Exe cAct Join] (in, jn, EXEC, NONE);

where jn=genInstIdo

Msitc. tc[ExecActl (in, en, NONE, jn);

where en=genInstIdo

0 Msitc. lý[MultiLimitSeq(n)(ExecAct(join(ExecActioin))(ctype(ctype))I(p, i, f, j) =

Assert(Activity(p, i, c, GId-MLS, NONE, f, j, SO))

where c=genTypeld(ctype)

313

Assert(Activity(i, ii, sec, GId-SEC, NONE, EXEC, NONE, SO))

where il=genInstIdo and sec=genTypeldo;

314 B. SitCalc Characterisation - Additional Information

.
A4sjtc,, j, jExecActJoinj (i I, j 1, EXEC, NONE)

where j 1=genInstId 0

Msjtcýj, jExecActj (i I, el, NONE, j I);

where el=genInstIdO

Assert (Activity U, i2, sec, GId-SEC, NONE, NONE, NONE, SO)) do not EXEC all butfirst join

where i2=genInstIdO and sec=genTypeIdo;

M sitCalc [Exe cAct Join] (i2, j 2, EXEC, NONE);

where j2=genInstIdO

MsitCalc[ExecActj U2, e2, NONE, j2);

where e2=genlnstIdO

Assert (Activity (i, in, sec, GId-SEC, NONE, NONE, NONE, SO))

where in=genlnstIdO and sec=genTypeIdo;

.
A4sjtc. j, jExecActJoin] (in, jn, EXEC, NONE);

where jn=genlnstIdO

.
A4sjtc,, j, jExecActj (in, en, NONE, jn);

where en=genInstIdO

0 Msitc. 1, EMulti(ExecAct(join(ExecActioin))(ctype(ctype))I(p, i, f, j)

Assert(Activity(p, i, c, GId-MUL, NONE, f, j, SO))

where c=genTypeId(ctype)

Assert (Activity U, i I, sec, GId-SEC, NONE, EXEC, NONE, SO))

where il=genInstIdO and sec=genTypeIdo;

Msjtc,, j, jExecActJoinj(i EXEC, NONE);

where j'=genInstIdO

Msitc. 1, [ExecActl W, e I, NONE, j 1);

where el=genInstIdO

Assert(ActivityTemplate(sec, ROOT, O, sec, GId-SEC, NONE, EXEC, NONE, SO))

M Sit Ca1q_,,.,, lExecAct Join] (sec, O, jt, EXEC, NONE);

where jt=genInstIdO

Msjtc. jc, _P,,,,
jExecActj (sec, 0, et, NONE, j);

where et=genInstIdO

Note that the translation function MSitCa1q_,
P1.,,

1-1 is identical to Msitcýjcj-j, except that it

asserts ActivityTemplate/9 formulas to the basic action theory for the initial state, So, rather than

Activity/8 formulas. It also uses a distinct copy of the genInstId/O function so that instance

B. 2. Augmentations to Msitc. 1cl-] 315

numbers are generated from the value one (inclusively). These will be relative ids, which will be

made absolute when join and execution activity instances are added. A4SitCaICt,,.
p,, j,

J-J takes

an extra parameter, which is the custornised activity type of the SeqCancel used to contain (join

condition, execution activity instance) pairs of the Multi type.

Msitcýl, [MultiSeq(ExecAct(join(ExecActJoin))(ctype(ctype))I(p, i, f, j)

Assert(Activity(p, i, c, GId-MUS, NONE, f, j, SO))

where c=genTypeId(ctype)

Assert(Activity(i, i', sec, GId-SEC, NONE, EXEC, NONE, SO))

where il=genInstIdO and sec=genTypeIdO;

MsjtcajcjExecActJoinj(iI jI EXEC, NONE);

where j'=genInstIdO

Msjtc. jcjExecActj (iI, eI, NONE, j');

where el=genInstIdO

Assert (ActivityTemplate (sec, ROOT, 0, sec, GId-SEC, NONE, NONE, NONE, SO)) Don't execute AlultiSeq

join, exec pair immediately

MsjtCajcf,,,
Pj, f,

[ExecActJoinj (sec, 0, j t, EXEC, NONE);

where jt=genInstIdO

Msitcýjý,
_P1.,,

[ExecActj (sec, 0, et, NONE, j);

where et=genInstIdO

We also need to process the ISA specifications, for custornised activity types, within a Liesbet

model. These are handled by A4sjjc,, j, j-j in a separate translation pass. For every ISA defini-

tion in a Liesbet model, MSUCaicl-] inserts them into the BAT, (almost) as is, as situation-
independent atoms. That is, if ctype(q) ISA ctype(q') exists in the Liesbet model, then

ISA (q, qI) is asserted to the BX_r. Note that the translator ensures that there are no cycles en-

gendered by the type definitions.

Finally, we discuss the processing of synchronisation rules, described in Section 3.3, by Msitc,, Ic
The use of these rules is naturally accommodated in our SitCalc characterisation of Liesbet, by

means of a straightforward augmentation of the action precondition axioms. The rules, which

will have the scherna: SyncRule(RType, CondQuery, GoQuery), are handled by MSjjC,, jcj-j in

a separate pass. For each synchronisation rule instance that exists, MSitCaIcH will modify all

completion and cancellation action precondition axioms, by inserting an additional necessary con-
dition on the right-hand side of each of these axioms, viz.

(Vi', c'). (Descenda. nt(iI, i, s) V il=i) A
IsType(cl, c) A CType(il, s)=c' A QTjCondQueryjW ý QTJGoQueryj(i)

where c=genTypeId(RType)

This says that for a completion or cancellation action to occur, concerning instance i, if i is
C,

a descendant of an instance iI (in s), or iI is i, then if iI is of customised type RType (or some

sub-type thereof) and CondQuery holds for i then GoQuery must hold for i.

316 Appendix B. SitCalc Characterisation - Additional Information

For the 4-argunient synchronisation rule variant, SyncRule (Ref , RType, CondQuery, GoQuery), 0
we simply tag all atomic queries within CondQuery and GoQuery with the Ref argument, which 00
is a plain reference type (see Section 3.1.3). For instance, Completed-act(A) would become

Completed-act(A in Ref).

