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Abstract 

The work presented in this thesis concerns some aspects related to the Modelling of Contracts and 
Work-flows for Verification and Enactment. Worliflows help coordinate the enactment of business 

processes. Lacking in most contemporary approaches to workflow is a formal grounding to the 00 
semantics of workflow. A principal aim of this work is to address this shortcoming. 

We provide formal characterisations of workflow using a number of formal tools, viz. Milner's 

CCS, Cleaveland et al's Prioritised CCS (which we abbreviate to PCCS) and the Situation Cal- 

culus (thanks mainly to Reiter), which is based on First-Order Logic. We define the Liesbet 

meta-model for workflow to provide a reference ontology for the task of formalisation. We have 

also implemented a framework for the verification and enactment of Liesbet workflow models. 
Regarding verification, we are particularly interested in the key property of soundness, which is 

concerned with an absence of locking and redundant tasks in a workflow model. Our framework 

is capable of verifying this property of workflow models, as well as arbitrary temporal constraints 

which are constraints whose satisfaction is determined over successive states of enactment of a 

model. 

It has been widely noted that traditional approaches to workflow are too rigid and brittle to 0 
cope adequately with the typical operation of business processes. Thus, there is an evident need to 

support workflows; that are able to be flexibly enacted and are better able to cope with exceptional 
behaviour. We also seek to address this need. 

We make novel use of Hierarchical Task Network (HTN)-based planning techniques in order to 

provide a modelling, verification and enactment framework for flexible -. vorkflow. The framework 

uses a planner, called Theodore, that we have defined. and implemented in this work. We define 

a similar notion of soundness which the Theodore-based framework is able to verify, along with 

arbitrary temporal constraints. We also support the modelling of collaborative workflow where 

participating agents decide collectively how a prescribed task or process should be realised, as well 

as the notion of "what may I do next" querying where an agent is able to reason over which actions 
they may do next. 

Finally, we have been interested in investigating how concepts inherent in workflow might apply 
in the modelling of contracts. To achieve this, we have explicated a new perspective for workflow, 0 
namely ail institutional perspective, and define the notion of Institutional Work-flow Modelling 

The essence of 1XVNI lies (in part) in the identification that the structure of a workflow 

model necessarily entails the existence of counts as relations. These relations prescribe how the 

occurrence of certain actions, in the context of a particular -. vorkflow model, count as the occurrence 

of other actions. We argue that INNIM should be considered as a foundational basis for contract 

modellin-. We have also defined and implemented a framework for INNINI-based contract modelling 
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verification and enactment, which reuses tools from our framework for flexible ivorkflow at its core. 
We make available similar mechanisms for verifying the notion of soundness and arbitrary temporal C, 
constraints for contract fragnients, and for performing "what may I do next" querying. 00 
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Chapter I 

Introduction 

This thesis concerns some aspects related to the Modelling of Contracts and Work-flows for Ver- 

ification and Enactment. The term workflow (as will be elaborated) pertains to the automated 

embodiment of business processes. Lacking in most contemporary approaches to workflow is a 0 
formal grounding to the semantics of workflow. A principal aim of this work is to address this 

shortcoming. 
It has been widely noted (as we describe below) that traditional approaches to workflow are 

too rigid and brittle to cope adequately with the typical operation of business processes. Thus, 
there is an evident need to support workflows that are able to be flexibly enacted and are better 

able to cope with exceptional behaviour. We also seek to address this need. 
Finally, we have considered it of interest to see how our research on workflow might be reused 

in other contexts. We have long field an interest in the modelling of contracts, such as agreements 
between service providers and customers, which are in some contexts known as Service Level 
Agreements [681. We are interested in investigating how concepts inherent in workflow, and thus 00 
how workflow modelling techniques, might apply in the modelling of contracts. Studying contract 00C, 0 
modelling has also been of interest in itself, irrespective of how Ave might reuse our other work. 00 

In summary, the aims of the work described in this thesis are to address the issues of- 

9 Providing a formal grounding of workflow. 006 

*A inore flexible approach to workflow. 

e How workflow concepts might apply in tile modelling of contracts, and looking at the mod- 0 el 0 
elling of contracts generally. 00 

In order to realise these aims, we have carried out a diverse array of investigative work. AVC 

will elaborate on what we have done in the course of this introduction, which has tile following 

structure. Firstly, we provide an overview of the areas of interest in our work. Then, we outline the 

contributions of this thesis, followed by a description of the structure of the thesis. It is in these 

two sections that the reader should get a flavour of how we have proceeded to realise our aims. We 

conclude tile chapter with a declaration of originality and a list of publications contributing to the 00 
Nvork described herein. 
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2 Chapter 1. Introduction 

1.1 Overview of Areas of Interest 

In this section, we start by looking at what is workflow, and how we might provide a formal 

grounding to it. We then look at the need for flexible workflow modelling, followed by a brief 
t' 00 
synopsis of contract modelling. 

1.1.1 Workflow: An Approach to the Automated Modelling of Business 

Processes 

NVorkflows are primarily concerned with the co-ordination of tasks comprising business processes. 
The operation of companies and organisations is characterised by a number of business processes 
that need to be carried out in a way that is strategically aligned with the objectives of the business. 

The Workflow IManagement Coalition (NNTAIC) defines a business process to be "a set of one or more 
linked procedures or activities which collectively realise a business objective or policy goal, normally 

within the context of an organisational structure definin- functional roles and relationships" [136). 

Business Process Management (BPI\I) is a term that has been used to refer to "aligning business 

processes with an organisation's strategic goals, designing and implementing process architectures, 000 10 
establishing process measurement systems that align with organisational goals, and educating and 00000 
organising business managers so that they will manage processes effectively" [2]. In [74], BPI\l is 

000 
described as "process technolog enhanced with process management capabilities, implemented in 

ly 0 
a way that is appealing to business users". Although BPNI tends to be a term that is differently 

applied, the consensus behind its use seems to be the notion of a managed automation of business 

processes, where the management generally is meant to align the enactment of a process to the 

objectives of the (business) enterprise. 
Work-flow technologies [62,50) have become a key enabling technology for the implementation of 

BPNI. They handle the co-ordination of activities in a business process by initiating their execution 
through assigning agents at appropriate times to carry out the work. The term work-flow is defined 

by the WFMC to be: "[tilie automation of a business process, in whole or part, during which 
documents, information or tasks are passed from one participant to another for action, according 
to a set of procedural rules" [1361. Note that the term work-flow model refers specifically to the 

machine representation of a business process. 

The Ian-uaae used to express a workflow model is commonly referred to as a workflow Ianguage. 
In the context of formalising such languages, the term work/low meta-model, or work-flow ontology, 
is commonly used to refer to the collection of constructs used to represent a workflow model. 
Finally, the term work-flow management system (WfAIS) (a. k. a. process engine) is used to refer to 
the engine responsible for executing workflow models. 

Referring to Figure 1.1, a distinction can be made between different sorts of workflows based 

on their repetition, that is, how frequently a particular workflow is enacted by an enterprise [70]. 
Highly-repetitive workflows are called production work-flows, after the metaphor of a production 
line. Less repetitive workflows are often called collaborative work-flows, capturing the notion that 
they come about through ad hoc collaborat ions. Both sorts of workflows may be of high value to 

a business. Notably, workflow technologies have focussed on providing automation for production C3 C, 
workflow. In the literature, this sort of workflow is also known as traditional work-flow. It is the 

processes to which such workflows correspond that implement the core business of the company; 
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Figure 1.2: An Example Workflow Model. 
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and it is their efficient execution that provides a company with its competitive edge [70]. 

It is often convenient to divide the description of production workflows into several different 

perspectives. There have been several suggested taxonomies for -, vorkflow perspectives, e. g., [62, 

120]. We follow the one presented in [120]. Here, Van der Aalst describes a number of different 

perspectives, but we shall concentrate on just two - the control and data perspectives. Automation, 

through workflow technologies, has focussed primarily on these two perspectives. The control 

perspective is arguably the most important in the definition of a -. vorkflow model. It is concerned 

with the definition of a (partial) ordering by which activities should be executed (by a IWAIS). 

Figure 1.2 is all example of a -, vorkflow model defined at the control perspective. In the example, 

activity A is executed first. Once tile execution of A has completed, the execution of two sequences 
is initiated, in parallel. The first sequence consists of activities B and C, tile second of D and E. 
When initiation of the sequences occurs, tile execution of B and D, respectively, is initiated (at 

the same time)". It ma occur that B and D do not complete together, but, as soon as either does y0 

complete, tile next activity in its containing sequence is executed, i. e. C (following B) or E (following 

D). Once either C or E completes, its containing sequence also immediately completes, and, once 
both sequences have completed, not necessarily at the same time, execution of their containing 

parallel artefact immediately completes. Then, once this occurs, the execution of activity F is 

initiated, and, once that completes, execution of the workflow model completes. 
The data perspective is concerned with the management of data during the enactment of the 0 C, 

Production 
Claims Handling 
Loan Processing 
Accounting 

Administrative 
Travel expense reports 
Purchase Approvals 
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I Name I Organisation I Typ 

Business Process Modelling Notation (BPTNIN) [241 BNII Notation 

UNIL Activity Diagram [46] O', \ IC Notation 

WS Business Process Execution Language (WS-BPEL) [87] OASIS Orchestration 

XML Process Definition (XPDL) Language [1351 WfNIC Orchestration 

XLANG [103] Microsoft Orchestration 

Web Services Flow Language (NN'SFL) [69] IBNI Orchestration 

Web Services Choreography Interface Language (NN'SCI) [129] 
0 - 

NN13C Choreography 0 rNN 
'ebServices Choreography Description Language (WS-CDL) [137] 

1 
NN3C Choreo graphy 

Table 1.1: Some Principal Business Process Management Languages. Adapted from [56]. 000 

workflow model. We can define two types of data: control and application (or production) data. 

Control data is used to evaluate branching conditions, or, more generally, is used by the NNTIMS 

to determine how execution should proceed [13]. It is usually declared, or allocated, within a 

workflow model, and its scope of existence is the workflow model. It is simply meant to control 
the enactment of the model. Application data, on the other liand, is data that primarily exists 

outside of the model, but is imported and used by the model. For example, in the case of workflow 

models, such data may be documents, forms and tables [120]; or, in the case of service composition 
(see below), such data would be that sent and received in messages that are exchanged between 

services [13). 

Production workflows may be encapsulated as Web Services in order to make their functionality 

readily available to other business logic within the same company, or within another company. Web 

services are a key enabler of the Service- Oriented Architecture (SOA) [86]. They can be invoked 

by applications or other web services using standardised XMIbased Internet protocols, such as 
HTTP, SOAP, ANISDL and UDDI [32]. The SOA is a proposed means of improving the agility 

and competitiveness of enterprises - business logic may be packaged as components, with standard 
interfaces, and dynamically composed to provide new services which add value to a business' port- 
folio. lVeb services are proposed as "the cornerstone for architecting and implementing business 

processes and collaborations within and across organisational boundaries" [861. NN13C defines a 

web service as "a software application identified by a URI, whose interfaces and bindings are ca- 

pable of being defined, described and discovered as XNIL artefacts. A Web service supports direct 

interactions with other software agents using XNIIbased messages exchanged via Internet-based 

protocols" [139]. 

Web Services Composition (NNISC) is a principal aspect of the Web Services frainework, where 

composite (web) services may be created by inter-connecting deployed web services from potentially 

many different service providers. WS-BPEL [87] is a popular standardised language for (web) 
C, 0 

service composition. A composition is the equivalent of a workflow model in the context of SOA. 

Just as for a workflow model, a composition is concerned with the co-ordination of activities and 
the data that passes between them, except that these activities are now packaged as web services. 
As compositions and workflows share many similarities, they are typically discussed to. gether when 
talking about business process modelling 
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An important distinction should be made between Web Services Orchestration (NNIS-ORCH) 

and Web Services Choreography (NNIS-CHOR). WS-ORCH is concerned with definiD., composite 
web services from web services that may belong to the same enterprise, or many enterprises. 
WS-CHOR is concerned with defining, collaborations between web services [86,1331. NNIS-ORCIls 

are typically viewed as under-writing NAIS-CHORs, or facilitating the driving of IN'S-CHOR-style 
interactions across enterprise boundaries. That is, the WS-ORCH is the private, end-point, or 
local, perspective of the operation of a business process, which will need to support the public, 

, grIobal view (NNIS-CHOR) of the collaboration between the business process and others. In this 
work, we are solely concerned with Web Services Orchestration. An example of a WS-ORCII 
language is NA'S-BPEL [871. An example of a NNIS-CHOR language is NNIS-CDL (Web Services 
Choreography Description Language) [1371. 

In Table 1.1, we present a summary of some of the principal languages for BPT%l, pertaining to 
both workflow and service composition specification. 

1.1.2 Providing a Formal Grounding to Workflow 

In our work, we are interested in providing a formal -, rounding to workflow. In order to do so, 0 C, 
it is incumbent to attempt to understand the true nature of workflow, and its representational 

requirements, so that we may have a point of reference for any formal characterisation. In doing 

this, it is worthwhile being minded of an important distinction between various abstractions or 
views of workflow that may be used by different people or pieces of computer lo. ic. 

* Presentation view: Business managers, executives, customers. 

Authoring view: Business analysts and process authors - i. e. those responsible for captur- C, 
ing/authoring workflows. This view would have an associated ontoIog whose constructs 00 Oy 
would be considered to be intuitive to a process author. The ontolog would most likely 

OY 
be graphical in nature. For instance, Figure 1.2 might constitute a workflow model defined 

using such an ontology- 

e Information view: Serialisation (or file) format and reference point for the computational view 
(see below), in that it fixes the sufficient and (as much as possible) necessary representational 

requirements of the modelling approach. Note that in some modelling approaches, it may 00 
be appropriate to divide this view into two, along these two themes. However, we have not 

needed to make such a distinction in our modelling approach. 0 
Note that the information view will typically be closely aligned to the authoring view (for 

C, 0 
ease of mapping between the two views) and will, as a consequence, make similar ontological 00 
commitments to that of the authoring view, albeit they will likely be represented by distinct 

ontoloaies. 0 

Computational view: Process engine, or the process engine implementer. 
(a. (b. c. sjd. e. sj-ff. -9. f))\jsj might be a computational view of a particular workflow 0 
model, such as the one illustrated in Figure 1.2, where the ontology used would be CCS/7, - 
calculus-likel. 

'It is not important, at this stage, for the reader to necessarily understand the presented CCS process term. Just 
to know that it is a possible representation of the model presented graphically is sufficient. 
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Primarily, the computational view will define an ontology to provide a semantic characterisation 

of the ontology defined at the information view. That is, the computational view fixes the precise 

meaning of workflow models, by providing a semantic characterisation of information view models. 

The definition of the computational view will be facilitated by the use of some formal too], such 

as Petri nets or CCS/7, calculus. 

A computational view workflow model may be directly executable by a workflow engine; that 

is, the engine may directly understand and execute Petri nets or CCS/-,, -calculus. In this case, 

a translator will map models serialised using the information view format to the computational 

view. Or, as the computational view fixes the meaning of models, an engineer may implement 

a process engine capable of understanding models written at the information view, and ensure C, 0 
their enactment according to computational view semantics. In either case, it is imperative that 

the computational view provides an intuitive and tidy characterisation of the information view 

ontology- 

The authoring, information and computational views of a workflow model may be represented 

using the same ontology or using distinct ontologies. An example of the former is the use of 

Petri nets for workflow modelling where the same formal too] is used for all views. In the case 

where there are distinct ontolouies for different workflow views, it is typical for the information 

and authoring views not to be defined formally, i. e. using some mathematical formalism. Rather, 

they will usually be abstracting syntaxes, or ontologies, for the computational view. 

The existence of the computational view is important for precision and robustness in the def- 

inition of workflow models, and for verifying properties of workilow models, such as workflow 

soundness (see below). It is a notable characteristic of most workflow languages that they lack 

a robust semantics [121], which would be provided by the computational view, and a notable 

characteristic of most commercial workflow products that they have no support for verification of 

workflow models. 
Indeed, recently, the lack of formal models for such languages has become a contentious issue in 

workflow. Correspondingly, there has been a lot of confusion regarding the role of formal methods 

per se. In fact, as Van der Aalst explains: '*[ilt seems that formal methods are used to advertise 
languages rather than to improve their quality and applicability" [122]. 

The lack of any solid notion of a formal semantics - even for the control perspective - has not 
been helped by the main contributor to the standardisation process for workflow: the Worliflow 

Management Coalition (WRI IC). As [1241 notes: "[t1he lack of a forinal semantics [for tile work-flow 

constructs defined by tile WBICI has resulted in different interpretations by vendors of even basic 

control flow constructs, land] definitions in natural language such as provided by AVRI IC are not 00 
precise enou-, h. " 0 

The importance of a well-defined formal model for a workflow language is clear. It is only with 

such a model that we can go on to prove desirable properties about workflow models that have 

been specified using the associated workflow language. 

Workflow soundness [120] is an essential property of the control perspective, corresponding to 

an absence of certain deficiencies which would compromise the behavioural integrity of a Nvorkflow 

model. These deficiencies are locking and redundant tasks, which can quickly creep into workflow 

models as they are being defined. As [120] says: "errors [in the definition of workflow models] may 
lead to angry customers, back-log, damage claims, and loss of goodwill". It is important, therefore, C, 0n 
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that soundness of ivorkflow models is verified prior to model deployment. 

In this thesis, we are concerned with capturing the computational view of workflow as an end 
in itself, as well as for facilitating the verification of workflow properties. For these purposes it 

is also appropriate to define an information view ontology, to serve as an abstract syntax which 

can, on the one hand, act as a serialisation syntax, and on the other hand, act as a reference point 
for the computational view ontology to target. Its primary purpose, however, is to fix concisely 

what we are concerned with representing. As a result, it may closely resemble an authoring view 

ontology - which we do not define in this thesis. 

We have been interested in investi-atin- the use of existin- formal tools and Ian-ua-, es for the 

characterisation of the computational view of workflow, as we describe in the Section 1.2. There 

are a number of advantages to such an approach, including: 00 

The availability of accompanying, tools provides a means of quickly validating characterisa- 
tions. 

9 They provide a quick means of specifying characterisations, in that one is freed from think- 0 
ing about defining an appropriate representational device, and may concentrate instead on 00 
thinking about the appropriate semantics for (in this case) workflow. 0 

ip The characterisation of workflow can be used as a vehicle for understanding the representa- 
tional weaknesses of these formal tools and Ianguages, in the sense of how efficacious they 0 
are in characterising workflow in a succinct and clear way. 

We define mapping functions, which translate workflow models specified at the information 

view into models specified at the computational view. It is the definition of the mapping function, 

together with the semantics of the pertaining computational view ontology, which are constrained by 

the mapping function, that define a semantic characterisation of the information view meta-model. 
Finally, the ontological commitments that any approach to business process modelling makes 

should be sourýed from an understanding of the behavioural nature of business processes. Members 

of the BPIM community have previously set about characterising the behavioural nature of business 

processes, in the form of the YAWL (Yet Another Work-flow Language) workflow patterns [125,126, 

123,64). We have used these patterns as a basis for modelling in our work. 

1.1.3 The Need for Flexible Workflow 

Although workflow technologies are generally considered to be an important tool for most business 

enterprises, it is notable that their deployment has been limited to the support of simple and well- 
defined business processes. It has been questioned whether workflow, with its roots in characterising 

maim fact uri iia processes and consequential rigid pre-defined control structure, is suitable to be 

applied to the representation of business processes generally [961. 

Workflows and WRI ISs have problems dealing with exceptional circumstances constituting de- 

viations from the set workflow. Often in contemporary WRT ISs, the only way to handle change is 
to circumvent the system by going "behind its back". However, "if users are forced to bypass the 
NMI IS quite frequently, the system is inore a liability that an asset" [127]. 

It is possible in some (mainly academic NNIRT ISs) to specify exception handlers for so-called 

expected exceptions [28]. Expected exceptions, according to [251, are: "'those anomalous situations C, 
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that are known in advance to the Nvorkflow desi-ner". Provision can be made in the specification 0 
of a workflow for this kind of exception. Often this provision will be in the guise of active rules 0 

(a. k. a. Event Condition Action (ECA) rules), as these exceptional situations cannot be efficiently 
modelled and handled within the flow structure [25). 

Notwithstanding the very few commercial NNIRT ISs providing some support for handling expected 
exceptions, it is notable that thevast majority of commercial systems can only handle very simple 
exceptions, such as task deadline expiration. Instead, the workflow designer is forced to model 
exception handling using the flow constructs provided by the WfMS, which is not efficient, and 
will most often lead to spaglietti-coding [27]. 

Another type of workflow exception is unexpected exceptions. These, rather self-explanatorily, 
are exceptions that the workflow designer has not anticipated. They are typically handled by 0 
halting process execution and modifying the workflow definition at the scherna or instance level in 0 C, 
order to make it consistent with the actual process it represents [27]. 

In handling expected exceptions through active rules, or in handling unexpected exceptions 
through stopping the workflow execution, some academic NNIRT ISs support the notion of flexible 

workflows through allowing manual changes to the workflow definition at run-time. This form of 
workflow flexibility constitutes a significant research effort within the workflow community, see, 
for example, [39,26,95,134,36,1191. A variant on this notion is elaborated in [35,73,105], 

wherein flexibility stems from the capability, at run-time, to determine how a workflow (according 

to constraints) may be glued together using a selection of work-flow fragments. ID 0 4n 
In our work, however, we are interested in a kind of workflow flexibility that has been proposed in 

just a handful of academic research efforts, including: CrossFlow [55], Collaboration Management 

Infrastructure (CMI) [107,51], Case Handling [127,16,961, and work by Wainer and colleagues 
[131,132). The notion is to build flexibility into the specification of a workflow, rather than 

specifying a rigid control structure that is to be followed at all costs. 00 
Such flexibility means that, for any workflow instance, at any stage of its enactment, there will 

be potentially many possible path continuations that may be pursued, any of which represents a 

correct execution of the workflow. It is important not to confuse this sort of flexibility with the 

possible path continuations that may exist within a traditional workflow specification. In the case 

of traditional workflow, (it is usually the case that) only one path continuation is possible at any 

one time. Which continuation is chosen depends on conditions that are specified on the branches 

that come out of the current activity. In the flexible workflows that we are describing here, many 

possible path continuations may be possible. Which is chosen depends on some criteria that are 

applied during workflow enactment. For example, we may have a set of operational policies that 

serve to constrain, or direct, the enactment of a workflow instance. Which path continuation is 

chosen, at any one time, may be the one that best satisfies these policies. 

This idea is neatly encapsulated by the slogan: Flexible lVork-flow = Abstract Model + Policies 

for Refinement. That is, we define workflow in terms of a relatively abstract and flexible artefact, 

which is grounded by the use of applicable policies. We identify a correspondence between the 

refinement of abstract workflow to concrete workflow, through the use of a set of rules, and the 

operation of a Hierarchical Task Network HTN-based planer, which refines abstract task networks 
to concrete ones, through the use of decomposition rules. In identifying this correspondence, we 

are able to make use of an HTN-based planner to effect flexible workflow verification and planning. 
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Our flexible workflow modelling approach also provides support for collaborative work-flows, where 0 
agents are endowed with the capability to decide collectively how a prescribed task or process C, 
should be realised. 

1.1.4 Contract Modelling 

In the field of contract modelling, there have been a number of research contributions, such as 
[82,115,34,33,81,88,22,89,75,93], which have attempted to address the modelling of contracts 
for a number of purposes including automating reasoning over them. Common to all of them is 

the identification of normative concepts in contracts. 
Rom [5], a norm may be defined as: "a principle of right action binding upon the members of 

a group and serving to guide, controllor regulate proper and acceptable behaviour". A normative 

concept is a conceptualisation of a norm. Obligation, Permission, Power, Entitlement are common 
examples. (See also [63,92]. ) 

In order to explicate a means by which our work oil workflow modelling may be reused in the 

context of contract modelling, we identify a new perspective for workflow, namely an institutional 

perspective. We call our institutional account of workflow Institutional Work-flow Modelling (IWAI). 

The institutional perspective draws out the concepts of counts as and permission which we argue 

are inherent in workflow. The concept of count as, as [631 identifies, is closely related to the 

legal/contractual concept of power, in prescribing how powers may be exercised, arguably the 

most important and useful aspect of tile concept. 
Through identifying tile institutional concepts of counts as and permission in workflow, which 00 

quite naturally map respectively onto the notions of power and permission, or privilege, in contracts, 

we are able to propose a way in which IWINI may be reused in the modelling of contracts. Moreover, 

we argue that INNINI should be considered as a foundational basis for both normative and contract 

modelling. 

1.2 Contributions and Approach 

We consider the contributions made by this thesis to be ten-fold, viz. 
so, we 1) We address the issue of providing a formal grounding; to traditional workflow. In doin., ?Dt, 

contrast the suitability of a number of formal tools for this purpose, namely: 

" Milner's Calculus of Communicating Systems (CCS) [78,80] 
0 

" Cleaveland et al's Prioritised CCS (PCCS) [30,29], which we shall call PCCS for conve- 

nience 

" Situation Calculus (SitCalc) [76,77,98], based on First-Order Logic (FOL) 
0 

We chose these formalisms as they provide an interesting contrast in approach when used 0 
for modelling -. vorkflow, as will be elaborated in later chapters. 

A key motivation in addressing the issue of formal modelling of workflow was to facilitate 
00 

verification of workflow models, as well as providing a point of reference for implementing 

workflow engines. As described in the previous section, the verification of workflow models is 
0 

crucial in order to avoid costly errors in deploying workflow. 
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We have sourced the represent at ional requirements for our formalisations from the need to 
be able to represent the YAWL patterns [125,126,123,64], which is a key benchmark in the 
field of research in Business Process Management (13PINI), as well as being able to represent the 

control flow perspective of WS-BPEL, which is the primary NAIS-ORCH language today. 

2) We have provided an authoring, verification and enactment framework for traditional workflow 
based on our formalisation. As van der Aalst and colleagues argue [1231 "any proposed language 

should be supported by at least a running prototype in addition to a formal definition". We 

are of the same opinion, and thus considered it essential to provide such a framework. 

3) We have identified a reduced set of workflow patterns, using which (we have shown) all others 

may be represented, which we believe is a first to be published. Being able to propose such a 

set enables us to articulate the true nature of workflow and its fundamental represent ational 

requirements, which is an important result. 
4) We have demonstrated a number of important results using our formal characterisat ions of 

traditional workflow. 
5) NVe have proposed a characterisation of flexible workflow to be: Flexible Work-flow = Abstract 

Model + Policies for Refinement, in order that we are able to support a more flexible approach 
to workflow, including support for collaborative work-flows. In doing so, we have identified a cor- 

respondence to Hierarchical Task Network (HTN)-based planning. This enables us to recommend 
the use of an HTN planner for the verification and planned enactment of flexible workflows. 

6) NVe have implemented our own HTN-based planner, which in itself is a useful contribution as it 

provides many novel features. 

7) NVe have provided an authoring, verification and planned enactment framework for flexible 

workflow, which uses our HTN-based planner at its core. The term planned enactment means 
that a domain expert may plan the enactment of an abstract workflow through policies that 

are made available for its refinement. 
8) NVe have proposed a new perspective of workflow, namely an institutional perspective. We call 

our institutional account of workflow Institutional lVork-flow Modelling (INVNI). The institu- 

tional perspective draws out the concepts of counts as and permission that we consider to be 

inherent in workflow. By drawing out these concepts, we are able to identify how workflow C, 
may be reused in other contexts. We consider our institutional interpretation of workflow to be 

novel. 
9) We have been keen to see how our work on workflow modelling might be usefully applied 

elsewhere. By drawing out institutional concepts inherent in workflow, we have been able to 

propose how workflow may be used in the modelling of contracts. We assert that INNINI should be 

considered as a foundational basis for both normative and contract modelling. Our INVINI-based 

view of contract modelling is novel, and we consider it to be an extremely useful contribution 
to the field of contract modelling. 

10) We have provided an INVINI-based frainework for contract authoring, verification and (planned) 

enactment. 
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1.3 Structure of Thesis 

The structure of this thesis is as follows. In Chapter Two, we present a comprehensive overview of 
work that has been carried out regarding the modelling of traditional (i. e. production) workflows. 
This provides important contextual information for the presentation of the remainder of the thesis. 

In Chapter Three, we define a ineta-model for workflow called Liesbet, which constitutes an 
information view abstraction of, or ontology for, workflow. In defining Liesbet, we have sought 
to understand tile true nature of workflow, and thus the fundamental concepts that need to be 

represented. We are then able to use this information view of workflow as a point of reference 
for computational view formalisations of workflow. The representational requirements for Liesbet 
have been sourced from the need to be able to represent the YAWL , vorkflow patterns, as well as 
the control flow aspects of business process languages, such as WS-BPEL [871. 

In this chapter, we also take our first step towards greater flexibility in workflow models through 
the proposal of Synchronisation Rules. In contrast to tile view of flexible workflow that is principally 

espoused in this thesis (i. e. abstract model + policies for refinement), the appropriate slogan in 

this instance is more Flexible lVork-flow = Concrete Model + Policies for Constraint. That is 

to say, the initial model is fully-specified and tile policies (i. e. synchronisation rules) constrain 
enactment. The model may contain many possible enactment paths (in contrast to traditional 

workflow, where typically only one will turn out to be possible). Which of tile multiple paths is 

chosen is constrained by the policies. 
Later in Chapter Three, we present a reduced set of patterns with which (we show) all patterns 

may be represented. This is a useful result as it enables us to propose the true nature of workflow 
to be this reduced set. We propose the reduction at the level of tile Liesbet meta-model. That is, 

we define equivalences for the remaining constructs as definitions which make use only of constructs 
from the reduced set. These equivalences are argued (and shown) to be sound in Chapter Six. 

We finish the chapter by showing how Liesbet captures all of the YAWL patterns, as well as 
describing its support for modelling the control flow perspective of WS-BPEL. 

Chapter Four shows flow Liesbet can be used to represent some examples of workflow pro- 
posed by members of the BPNI community. These chosen examples have been suggested as bench- 

marks by which ontologies for workflow should be evaluated. The also provide a good coverage 0y00 
of Liesbet's constructs, thus providing some examples for the interested reader to understand the 

operation of the patterns. 
In Chapter Five, we present our proposed CCS-based characterisations of the operational 

semantics of Liesbet. We selected CCS/PCCS for two reasons: 
1) There has been quite a lot of talk within the BPAI community as to whether Petri nets or CCS/7, 

calculus is better suited for the characterisation of workflow, and specifically the YAWL patterns 
[122]. While we do not seek to compare these two formalisms at length, by characterising YAWL 

with CCS we are able to provide a contribution to this debate from one perspective. Note that 

we do present some points regarding their respective suitability at the end of Chapter Five. 0 ID 
2) The operational semantics of CCS/PCCS (in terms of facilitating compositional specifications 

of behaviour) should lend themselves quite well to the representation of workflow, and this is a 
point Ave seek to investigate. 

Ultimately, we conclude that while CCS/PCCS is able to capture certain aspects of semantics 
of Liesbet well, it is deficient in being able to capture st raight forwardly the additional constraints 00 
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specified for the intended semantics of Liesbet which are described above, and in Chapter Three. 

In Chapter Six, Ave present our Situation Calculus-based characterisation of Liesbet. A 

motivation for investigating the use of the Situation Calculus was that, as a logic-based formalism, 

it is quite different to a process algebra based approach for characterising the behaviour of dynamic 

systems. Moreover, we felt that certain aspects in which CCS/PCCS may be deficient may be better 

addressed using the Situation Calculus, such as capturing the additional constraints to the intended 

semantics. This intuition proved to be sound. It is interesting to note that the shortcomings of 

using CCS/PCCS tend to be advantages when using the Situation Calculus and vice-versa, and 0 4: 1 0 
thus presenting both in this thesis provides an insightful contrast. At the end of Chapter Six, -%ve 

provide a discussion regarding the relative merits of each approach. 

In Chapter Seven, we provide details regarding the verification approach for Liesbet models 

that we have implemented in our work. We are able to verify both soundness (i. e. absence of 

locking and dead tasks), and arbitrary temporal constraints written in a language such as CTL*. 

We present a number of ways in which the complexity of verification may be ameliorated, and give 

an interesting characterisation of the complexity of our verification approach. 

In Chapter Eight, we address the particularly significant issues of traditional workflow iden- 

tified earlier, that they are brittle in nature in the face of exceptional behaviour and ill-suited to 

the definition of collaborative workflow. In collaborative workflows, agents should have the facility 

to decide collectively how a prescribed task or process is to be realised. In this chapter, we provide 

a contribution to the modelling of flexible workflows, in order to address these issues. 

Our approach to flexible workflow modelling is based on the view that Flexible Work-flow 

Abstract Model + Policies for Refinement. We identify a correspondence between refining (as 

prescribed by our view on workflow) an abstract workflow (specified for flexible enactment) into 

a concrete one, and the operation of an Hierarchical Task Network (HTN)-based planner, which 

refines abstract task networks into concrete ones. In light of this correspondence, we make use of 

an HTN-based planner in our work, implementing our own planner called Theodore. 

A key theme in our work in flexible workflow modelling is the notion that we combine structure 

with flexibility. That is, we start with an abstract workflow model which provides some initial 

structure. Furthermore, Ave note there is structure inherent within the policies for refinement in that 

they prescribe networks of actions which are acceptable refinements of tasks being decomposed. 

Moreover, structure may be prescribed from the bottom-up, in specifying complete refinements 

of tasks. All of these dispensations, with respect to structuring, help reduce the complexity of 0 
-erif ication. 

Our work on both traditional and flexible workflow modelling leads us to question how we might 00 
apply this work in other contexts. We address this question in Chapter Nine. For our work, a 

natural application is that of contract modelling, where contracts are often cast as protocols (i. e., 0 
-. vorkflows) of behaviour between two or more parties. We have been motivated to look at the issue 

of contract modellin- for its own sake as well. 0 
In Chapter Ten, we present details of the implementation of the verification and enactment 

frameworks for Liesbet (for traditional workflow modelling) and Theodore (for flexible workflow 

modelling). In Chapter Eleven, we give examples of using our implementation to verify Liesbet- 

specified and Theodore-based workflow models. 

We conclude the thesis in Chapter Twelve with some salient points. We are able to propose 
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a minimal view of workflow, which we propose as its fundamental and true nature. We conclude 
that: 

* Workflow is little more than parallel composition with arbitrary synchronisation constraints 

on the progression of individual activities. 0 

Expressivity of workflow rests with the choice/suitability of the language for the synchroni- 

sation constraints. 

We argue that process algebras (such as CCS/PCCS) and logic-based formalisms (such as 
Situation Calculus) provide rather complementary features for the formalisation of workflow, as 

we see it. As such, the most appropriate means of formalisation would need to lie somewhere 
between the two. We specify a number of criteria that any bespoke formalism for workflow would 

need to take into account. We conclude the chapter with a statement regarding future work 0 
activities. 

Two appendices provide additional information regarding the CCS- and SitCaic-based char- 

acterisations of Liesbet. 

1.4 Declaration 

This thesis describes work carried out in the Department of Computing at Imperial College London 
00 

between 2003 and 2007.1 declare that the work presented in this thesis is my own, except where 

acknowledaed. 0 
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Chapter 2 

Background on 'h-aditional 

Workflow Modelling 

We now present an overview of work related to the traditional modelling of workflow, i. e. pro- 
duction workflow. It is necessary to do so in order to provide contextualising information that is 

pertinent to the rest of the thesis. The layout of the chapter is as follows. 

We start with a brief overview of the YAWL Worliflow Patterns, which constitute the principal 

representational requirements for our work on workflow modelling. We follow that with an intro- 

duction to the NVeb Service Composition language WS-BPEL which also contributes to the set of 

representational requirements. 
We then present an overview of other formal modelling approaches to workflow, in order that 

we may later contrast our approach with these. Finally, as we are interested in verification, it is 

interesting to note some approaches to the verification of WS-BPEL compositions. Z' 

2.1 YAWL Workflow Patterns 

The YAWL' Workflow PatternS2 are a collection of artefacts, for the control perspective of workflow. 
We proceed with an overview of these patterns. 

We cate-orise the presentation (slightly differently from [64]) into the following six categories: 0 CI 00 
(1) Parallel and Sequence Patterns - Sequence, Interleaved Parallel Routing, Parallel Split. 
(2) Choice Patterns - Exclusive Choice, Multiple Choice, Deferred Choice. 
(3) Synchronisation Patterns - Synchronisation, Simple Merge, Synchronising Alerge, Multiple 

Merge, Discriminator, Milestone. 
(4) Multiple Instance Patterns. 
(5) Cancellation Patterns - Cancel Activity, Cancel Case. 
(6) Structural Patterns - Arbitrary Cycles, Implicit Termination. 

We now describe each of these categories, in turn. The numbering associated with the pat- 
tern definitions is that used in [64]. Tile descriptions here are quite concise. More information 

concerning the patterns is given in Chapter Three. 
I YAWL is an acronym for Yet Another Workflow Language. 
2The collation of these patt erns preceded the definition of YAWL (by the same research group); but we choose to 

label them as the YAWL patterns, as they constitute the fundamental representational criteria for the YAWL language. 

15 
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2.1.1 Parallel and Sequence Patterns 

The patterns in this category concern prescribing an ordering over the execution of activities: C, 00 

* Sequence (Pattern #1 in [64]) prescribes a total ordering over (the running of) a collection 

of activities. 

9 Interleaved Parallel Routing (#17) which, in this thesis, ive intuitively call UnorderedSeq, 

prescribes no ordering over a defined collection of activities, but stipulates that they may not 0 
run concurrently. 

a Parallel Split (a. k. a. AND-split) (#2) prescribes that a defined collection of activities may 

run concurrently, without orderin. - constraints. 

2.1.2 Choice Patterns 

At a point, within a workflow model, execution may diverge along many branches. These patterns 

pertain to this notion: 

a Exclusive Choice (a. k. a. XOR-split) (#4) - execution continues alone-, one brancli of the 

choice artefact. 

Multiple Choice (a. k. a. OR-split) (#6) - execution may continue along :5n branches of the 

choice artefact, where n is the number of branches of the artefact. 

Deferred Choice (#16) - For the first two choice patterns, the choice of branches to follow 

is made based on control data maintained within the model (at the data perspective). For 

Deferred Choice, the choice of branch/es, along which execution may continue, is made by 

an external agent. 

2.1.3 Synchronisation Patterns 

When execution, of a workflow model, has gone down one or more branches of a choice or par- 0 
allel artefact, it would (typically) be desirable to (eventually) merge the pertaining threads of 
execution at a synchronisation point, before continuing execution. These patterns relate to such C, 
synchronisation: 

Synchronisation (a. k. a. AND-join) (#3) - For merging the threads of a Parallel Split artefact. 00 
That is, synchronisation is satisfied once all threads of the split have completed. 

Simple Aferge (a. k. a. XOR-join) (#5) - ror synchronising on the completion of the single 0 0. 
branch chosen for execution in an Exclusive Choice artefact. 

9 Synchronising Alerge (a. k. a. OR-join) (#7) - For synchronising on the completion of the, 

potentially, many branches chosen for execution in an Multiple Choice artefact. 

e Multiple Merge (#8) - Whenever any branch chosen (for execution) in a Multiple Choice 

artefact completes, execution of a named continuation activity is initiated. There will be a 

separate instance of the continuation activity created for every branch that completes. 
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4p Discriminator (#9) - Once a number of branches, chosen (for execution) in a Multiple Choice 

artefact, have completed then tile execution of a named continuation activity is initiated. 

Only a single instance of the continuation activity will be created. 0 

Milestone (#17) -A synchronisation point, in a ivorkflow model, that is satisfied iff one 

named activity has completed and another named activity is yet to start. 

2.1.4 Multiple Instance Patterns 

The following patterns allow a multiple number of instances of a named activity to be executed: 0 

e Multiple Instances without Synchronisation (#12) -A number of instances of a named activ- 
ity may be executed, without the need to synchronise continuation of the pertaining thread 

of execution on their completion. 

9 Multiple Instances with Synchronisation (#13-#15) -A number of instances of a named 

activity need to be executed, with the need to synchronise continuation of the pertaining 

thread of execution on their completion: 

- Multiple Instances with a priori design-time knowledge (#13) - The number of instances 

is known when the Avorkflow model is being authored. C, 

- Multiple Instances with a priori run-time knowledge (#14) - Tile number of instances 

is known only at run-time, but before execution of the inultiple-instance artefact has 

been initiated. 

- Multiple Instances without a priori run-time knowledge (#15) - The number of instances 

is not known until execution of the multiple-instance artefact has been completed. 

2.1.5 Cancellation Patterns 

These patterns effect the cancellation of activities in a workflow model: 

Cancel Activity (#19) - Effects cancellation of a named activity. 

* Cancel Case (#20) - Effects cancellation of the entire instance of the workflow model bein. - 

executed. 

2.1.6 Structural Patterns 

These patterns pertain to miscellaneous artefacts wbich are considered to be essential in making 

the specification of workflow models as strai -lit forward as possible: 0 

Arbitrary Cycles (#10) - Entails the need to allow a thread of execution to jump to arbitrary 

points within a model. 

* Implicit Termination (#11) -A thread of execution should be implicitly terminated when 

there is nothina else for the thread to do. 
0 
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<receive> Causes execution thread to wait for a (matching) message to arrive 

<reply> Facilitates execution thread sending a message in reply to a message that was received 

by an inbound message activity (INIA), i. e. <receive>, <onNlessage>, or <onEvent> 

<invoke> Allows execution thread to invoke a one-way or request-response operation 

<assign> Used to update the values of variables with new data 

<exit> Causes process instance to end immediately 

<wait> Causes execution thread to wait for a given time period or until some absolute time 

<empty> "no-op7' activity, which trivially completes 

<sequence> Defines a collection of activities to be performed sequentially, in lexical order 

<if> Used to select exactly one activity for execution from a set of choices 

<while> Used to define that its single child activity is to be repeated as long as the specified 

<condition> is true 

<repeatUntil> Used to define that its single child activity is to be repeated until the specified 

<condition> becomes true, with at least one iteration 

<forEach> Iterates its child scope activity a number of times, either sequentially or concurrently 

<pick> Used to wait for one of several possible messages to arrive or for a time-out to occur. 

When one of these triggers occurs, the associated child activity is performed 

<flow> Used to specify one or more activities to be performed concurrently. <links> can 

be used within a <flow> to define explicit control dependencies between nested 

child activities 

Table 2.1: Some WS-BPEL Activity Types (Section 5.2 of [87]). 

2.2 Web Services Business Process Execution Language WS-BPEL 

In this section, we introduce the Web Services Business Process Execution Language WS-BPEL t871. 

WS-BPEL is an XNIL [130]-based language for specifying compositions of web services; and is quickly 

emeraing as the language of choice for this purpose. 
As presented in Section 1.1, WS-BPEL describes service compositions from an end-point, or local, 

perspective. It is, thus, an orchestration language. It can describe business processes in two ways, 

namely, as abstract processes, or as executable processes. Abstract processes model the multi-party 

conversation protocol, by which an end-point may effect its apposite behaviour, pertaining to a 

composition. Executable processes specify the implementation logic underwriting this end-point 0 C, 
behaviour. 

A WS-BPEL process is a nested specification of activities, consisting of a single root activit C, 0 Y_ 
Table 2.1 summarises a subset of the activity types of WS-BPEL. The set of activity types in 

WS-BPEL is not minimal. There are cases where the semantics of one activity can be represented 
using another activity. For example, sequential processing may be modelled using either the 

000 
<sequence> activity, or by a <flow> with properly defined links (as described in Section 11 of 
[871). 

The reason that the set is not minimal is due, in part, to the history of WS-BPEL. It is a 
fusion of two approaches to workflow description, namely, graph- and block-structured specification. 
A graph-structured specification is essentially a partial ordering over a collection of activities, 00 
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Pi 
Par 

SIS. Seq S2 

D ABC; 

Figure 2.1: Simple Workflow Model 
0 

0a- rise to constructs such as <flow> and <link> in WS-BPEL; whereas a block-structured villo 
specification defines a workflow specification as a nested collection of workflow artefacts, using 0 

consýtructs such as <flow> and <sequence>. 
This can be seen in Figure 2.2, which shows WS-BPEL representat ions of a workflow model, 

depicted in Figure 2.1, that will be used for illustration purposes throughout this thesis. The 

model is a parallel composition (Pi) of two sequences (Si and S2), each consisting of two atomic 

activities (A and B, and C and D, respectively). Tile first representation, shown in Figure 2.2, is the 
block-structured version; and tile second representation is the graph-structured version. 

In the block-structured representation, the two sequences are explicitly represented. In the 

, graph-structured representation, tile partial orderings pertaining to the sequences are prescribed n C, 
by links instead; thus, the sequencing is sornewhat obscured. V, 

2.2.1 Start Activities 

A WS-BPEL process instance is created whenever a start activity completes. A start activity is a 
<receive> or <pick> activity whose createInstance attribute is set to yes. When a message 
is received by such an activity, an instance of the business process is created if it does not already 
exist. (Section 5.5 of [87]. ) 

2.2.2 Standard Attributes and Standard Elements 

All activities have two optional standard attributes: the name of the activity, and an attribute, 
suppress JoinFailure, indicating whether the failureofajoin condition (described in Section 2.2.3) 

should be suppressed. (Section 10.1 of [87]. ) 
All activities, also, optionally have two standard elements: <sources> and <targets>, which 

themselves contain standard elements: <source> and <target>, respectively. These elements 
are used to establish synchronisation relationships through links (see Section 2.2.3). (Section 10.2 

of (87]. ) 

2.2.3 Information Concerning <flow> Activity Type 

The <flow> activity provides for concurrent execution of activities, while facilitating the expres- 

sion of synchronisation dependencies between activities that are nested within it to any depth. The 

<link> construct, as well as the standard attributes and standard elements (2.2.2) for activities, 

are used to express these dependencies. (Section 11.6 of [871). We have already seen an example 

of the use of links, in Figure 2.2. 0 



20 Chapter 2. Background on 7Yaditional Illork-flow Modelling 

<process name="Simple Workflow, Block Structured"> 

<flow name="P1"> 
<sequence naLme="SI--> 

<empty name="V/> 

<empty name="B"/> 

</sequence> 

<sequence name="S2"> 
<empty name="C"/> 

<empty name="D"/> 
</sequence> 

</flow> 

</Process> 

<Process name="Simple Workflow, Graph Structured"> 

<flow name="P1"> 

<links> 

<link name="toB"/> 
<link name="toD"/> 

<Ainks> 

<empty name="A"> 
<sources> 

<source linkName="toB"/> 

</sources> 

</empty> 

<empty name="B"> 

<targets> 

<target linkName="toB"/> 

</targets> 

</empty> 

<empty name="C"> 
<sources> 

<source linkName="toD"/> 

</sources> 

</empty> 

<empty name="D"> 
<targets> 

. <target linkName="toD"/> 

</targets> 

</empty> 

</flow> 

</Process> 

Figure 2.2: WS-BPEL Representations of the Simple Workflow Nlodel 
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An activity may declare itself to be the source of one or more links by including one or more 
<source> elements. Similarly, an activity may declare itself to be the target of one or more links 

by including one or more <target> elements. 0 
The source and target of a link may be nested arbitrarily deeply within the <f low> activity 

in which the link is declared, except for some boundary-crossing restrictions, described below in 
C, 

Section 2.2.4. 
Each <source> element may specify a <trans itionCondition>, as described in Section 2.2.5. 

Moreover, the <targets> container, within an activity definition, may specify a <joinCondition>, 

as also described in Section 2.2.5. 

2.2.4 Link Boundary Crossing Restrictions 

A link is said to cross the boundary of an activity iff its source, and/or target, is nested inside 

the activity, at any level, but the link is not declared inside that construct at any level. A link 

may not cross the boundary of a repeatable construct (<while>, <repeatUntil>, <f orEach>, 
<eventHandlers>) element. That is, a link used within a repeatable construct must be declared 

within a <f low> activity that is itself nested inside the repeatable construct. Also, links may not 

create control dependency cycles. (Section 11.6.1 of [871). 

2.2.5 Link Semantics 

If an activity that is otherwise ready to start (e. g., it is the current activity to be executed in a 

sequence) has incoming links then it may not start until the status of all its incoming links has 

been determined and the, implicit or explicit, join condition has been evaluated. Evaluation of the 

join condition may only be performed after the status of all incoming links has been determined. 

The expression for a join condition is constructed using boolean operators and the status values 

of the pertaining activity's incoming links. If no join condition is specified, its value is taken to be 

the disjunction of the status values of all incoming links. (Section 11.6.2 of [87]. ) 

A link may be in one of three states: true, false, or unset. When an activity A completes, 

we must determine the effects that the links, of which A is the source, has on the join conditions 

of activities which are the targets of the given links. 

We determine, in sequence, the status of the outgoing links of A. To determine the status for 

each link its transition condition is evaluated. If a transition condition has been omitted for a 
link, its value is taken to be true. For each activity B that has a synchronisation dependency on 
A, we check that B is otherwise ready to start and that the status of B's other links have been 

determined. If both of these conditions are satisfied then we evaluate B's join condition. If it 

evaluates to true, then execution of B is initiated. If false, then the (possibly inherited) value 

of the suppre ss JoinFai lure attribute would determine what entails. For the purpose of our 

work, we assume that this attribute is always set to true. In this case, we perform Dead-Path 

Elimination, as described in Section 2.2.6. 

2.2.6 Dead-Patli-Elimination 

The status of the outgoing links of an activity B must be set to false whenever either of the 0 
following conditions is satisfied (Sections 11.6.2 and 11.6.3 of [871): 
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If B is not performed due to the value of its (implicit or explicit) join condition being evaluated 

to false. 

e If, during, the performance of an activity A, the semantics of A dictate that activity B nested 0 
within A will not be performed as part of the execution of A. 

However, to preserve semantic integrity, this rule is only applicable once the status values of 

all of B's incoming links have been determined. An example where this additional criterion 0 
applies is presented in Section 3.6.1. 

2.2.7 <scope> Types 

<scope> is an additional activity type, used in WS-BPEL. A <scope> container has a single 0 
activity, which defines its primary behaviour. A scope may also specify a number of localised 

handlers of various kinds, which come into effect when the scope begins to be executed. Some of C, 
tile handlers that may be specified pertain to fault, compensation and termination liandling, which 

are issues that we do not currently address in our work. One kind of handler we do accommodate 
(from the control flow perspective) pertains to Event Handling. (Section 12 of [871. ) 

The type of events that an event handler may process are inbound message and timer events. 
Whenever a matching event is received by a handler, the single scope which the handler defines 0 C3 
is executed. Once the primary activity of a scope completes, its contained event handlers are 
immediately disabled. Any outstanding instances of activities created by the scope's event handlers 

0 
are allowed to complete, and the completion of the scope as a whole is delayed until they complete. 
(Sections 12.7 and 12.7.5 of [871. ) 

2.3 Formal Modelling Approaches for Workflow 

In this section, we review a number of formal modelling approaches which have, and could, be used 
to provide a formal semantics to workflow. We consider a handful in detail. However, it should 
be noted that there exist many other approaches that have been used for workflow modelling 01 
some of which will come to light when we review literature concerning workflow verification (see 
Section 2.4)- 

2.3.1 Background Concerning Formal Approaches 

We proceed by giving an overview of the following formal approaches: Petri nets [971, CCS [78,80, 
0 C, 0 

79] and PCCS [30,29]. We defer presentation of the Situation Calculus [98] to Chapter Six. 

Petri nets 

A classical Petri net [97,18] is a directed bipartite graph, having two node types: places and C, 0 
transitions. Places and transitions are connected to each other by directed arcs. Nodes of the 

same type may not be directly connected. Graphically, places are represented by circles and 
transitions are represented by rectangles. (See, for example, Figure 2.3). C, 0 

From [120], a Petri net is a triple (P, T, F), where: 

*P is a finite set of places. 



2.3. Formal Modelling Approaches for Work-flow 23 

Pi 

pi 
tj P2 '2 

P4 

Figure 2.3: An Example Petri net. 

*T is a finite set of transitions (P n 7' = 

9F C(P x 7')U(7'x P) is a set of arcs (flow relation). 

Input Place, Output Place, Preset, Postset 

oA place p is an input place of transition t iff there exists a directed arc from p to t. 

aA place p is an output place of transition t iff there exists a directed arc from t to p. 

9 The set of input places of a transition t is called its preset, and is denoted at. 

a The set of output places of a transition t is called its postset, and is denoted to. 

Marking, M-ansition Firing and Reachable 

A place can contain an arbitrary number of tokens (graphically represented as black dots). 

The distribution of tokens over places is called the net's marking. 

The marking of a Petri net evolves according to transition firing. A transition t may fire iff 
0 C, 

each place in st has a token. When a transition fires, it consumes a single token from each 0 
PE st and deposits a single token in each pE to. There are many enhancements of this 

simple model, such as having arcs specify an arbitrary number of tokens (. 2! 1) to be removed 
from a place when a transition fires - see, for example, [97,181. 

In Figure 2.3, transition tj is ready to fire, on account of the single place in its preset, pi, 

containing a token. On firing, the token is consumed from pi, and a token deposited in P2- 0 C, 
After this occurrence, 12 is ready to fire. On firiDg, the tok-en in P2 is consumed, and a Single 

token is deposited in each Of P3 and P4- 

eA markin-, Al,, is reachable from a inarkin-M, iff there is a sequence of transition firings that 0 C, 0 
takes the net from AI, to Al,,. There are two markin-s reachable from the initial markin- of C, 0 
the net shown in Fiaure 2.3. 

0 

ccs 

We present a brief overview of CCS. For readers unfamiliar with CCS, [49,78,80,79] are excellent 

starting points. In our work, we use the Concurrency Workbench for the New Century (CWB-NC) 
0 

[11], for verification purposes. The use of CWB-NC prescribes certain syntactic conventions, which 

will be highlighted as appropriate. 00 
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We assuine the availability of an infinite set of action nameS3 JV, ranged over by a, b,..., and a 

corresponding set of co-names (or, co-actions) A7 = Jula E JVJ, where Ar and A-7 are disjoint and 
in biject ion via and where =a = a. The set L=JV U A-7 is the set of labels, ranged over by I and 
1, and -r is a distinguished silent action, such that -r V L. The set Act=, C U 7- is the set of actions 
that may be performed by a CCS agent. We assign ce,, 3.... to range over Act. 

The set 9 of CCS a ents is defined inductively. It is the smallest set which includes the following 9 

expressions, where E and Ei are already in E (from [78]): 

" agent constants 

" a. E - prefix (a E Act). Note that in CWB-NC, Ia denotes 'U, an output on a 

:j 
Ej - summation, where the indexing set I may be empty, in which case we write 0 " EiE 

0 
(nil in CWB-NC) to indicate tile deadlocked agent 

" E, 1E,, - composition 

" E\L - restriction (L C L) 

" E[f] - relabelling. The relabelling function f: Act - Act relabels action narnes, where 
f (1) =f (1) and f (T) = -r. 

Ail a ent constant is an agent whose meaning is given by a definin- equation. In the definition g ZI 000 
AWE, A is an agent constant, and E an agent. The definitional mechanism is the means by ID 0 
which recursive behaviour may be defined. 

In CCS, a system is cliaracterised by a number of agents which may perform transitions. Note 

that ive often use the tern) synchronisation for 7--transitions, in order to emPhasise the notion 
that two agents are performing individual transitions in syncbrony. The transitions that a system 

may make define a labelled transition system [781 (9, Act, (-c-'+}), where --4C ExE is a transition 

relation for each ac Act. The operational semantics for the set of agents, C, is given by the 
definition of each transition relation over E. The following set of transition rules enable us to 
build the transition relations over each agent in S, using Act to be-in with. 

Act Sumi 
Ej 22+ Ej' EI 

a. E -c-4 E 
=, 

Ei Ej 

Com, Com" COM3 

E --* E' F -"+ PE -'+ OF -'ý P 

EIF -'-ý4 E'l F- EIF -Q-+ EIF' EIF -7-4 E'l P 

Res Rel Con 

E -"* E' (a, Z! V L) E -"* E' E E' (A cý-e-f E) 

E\L -a) E'\L E[f] f (-) E'[f A E' 

3Actions are also known as channels, conveying the notion of computation through communication. 
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9 Act allows us to infer transitions for prefixed agents. That is, the agent a. E may make a 00 
transition labelled with action a to the agent E. C, 

e Given an aaent, Ej which makes an aj-labelled transition to agent E', we may, by SUMj, 00 
infer an aj-labelled transition for a summation agent Ej., Ej, where j (=- I, such that it too C5 
transitions to E'. 

e Given an agent E which makes an a-labelled transition to agent E', Ave may, by Coml, infer an 

a-labelled transition for a composed agent EIF such that it transitions to E' I F. Similarly, 
C, 

COM2 allows us to infer an a-labelled transition for the ri-lit-liand a-ent in a composition. C, 0 

e Given two agents E and F that make complementary I-labelled transitions to E' and F', 0 
respectively, we may, by COM3, infer a 7--transition for the composed agent E IF to E'IF'. 

Given an agent E which makes an a-labelled transition to agent E', Ave may, by Res, infer 

an a-labelled transition for the restricted agent E\L so long as a or its co-action, is not in 

L. The restriction \L has the effect of restricting the scope of an action in E, when named 
in L, to be E. 

Given an agent E which makes an a-labelled transition to agent E' we ma', by Rel, infer 
0 C, 73 

an f (a) (relabelled) transition from E[f ] (which is the result of relabelling names comprising 

apnt E by f) to E'[f] (which is the result of a similar f-relabelling of E'). 
00 

Given an agent E which makes an a-labelled transition to agent E', we may, by Con, infer 

an a-labelled transition for A to E'just in case A is an agent constant whose definition is E. 

PCCS 

PCCS, as proposed in [29], is based on the prioritised calculus presented in [30]. It is essentially 
CCS with priorities which are specified as natural numbers attached to actions. The smaller 
the number, the higher the priority becomes, with zero having the highest priority. Note that 

just T-transitions of a certain priority take precedence over transitions of a lower priority. Non--r 

transitions are not capable of effecting any priority over other transitions. 
The set of labels, L, of the PCCS language is the union of a family of pairwise-disjoint, countably 

infinite sets of labels, 'Ck (for kc N). As documented in [29), Lk (ranged over by 1: k and 1: k) 

contains the action names of priority k that agents may synchronise over. The set of actions of 

priority k, ACtk, is defined as Lk U {-rk, ), where rk. V 'Ck- 7-k may also be denoted as 7- : k, for 

consistency. T: k actions represent internal computation steps of priority k within a model. The 

set of actions, Act, is defined as UACtk- 

The set 9 of PCCS agents is defined inductively. It is the smallest set which includes the 

following expr6ssions, where E and Ej are already in E: 

" agent constants 

"a: LE (a :kE ACtk) 

* Eic, Ej 

El I E,, 
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" E\L 

" Eff] 

" El[> E2 - disable. E2 disables El as soon as it is able to make a transition. 

The semantics of PCCS are given by a labelled transition system, in a similar way to that 

presented for CCS, previously. 
fck: kj)' 

The transitions that a system may make define a labelled transition system (E, Act, 
kk 

where c-: + CExE is a transition relation for each a: kE Act. If E c--: + E, then we say that E 

may en-age in action a of priority k and thereafter behave like agent E' [29]. 000 
The followina transition rules allow us to infer transitions for agents, E, within the set of agents 

Act 

a: k 
a: k. E +E 

Sum, sum') 
k a: k E 0': ý E' 7- :kdI, zJF) F --l F, r-k(? ý I- t, (E) 

E+F': '-: ) E' E+F>: > F' 

Com, COM2 

kk E '-': ý E' -r: kVI<k(EIF) F'-: ýF' T: ký I<k(E IF) 

c,: k : k. EIF' EIF + El FE IF c'-+ 

C0M3 

1: k 1: k E -, E'F - F' r. - k« I<k(EIF) 

-r: k EIF ý E'IF' 

Res Rel Con 

E ct: k a: k or ke E' (a: k, Zý: kV L) E --+ E' E --+ E' (A t-f E) 

,,: k f(ck: k) k E' E\L * E'\L E[f j+E if] A c-4 

Disable, Disable2 
k E 0-': + E' 7: kV I<k(F) F -% P 7-: kV I<k(E) 

a: k a: k E[>F -ý E'[>F E[>F -4 P 

The presentation of the given transition rules uses the notion of initial action sets, which are 0 
inductively defined as follows. 

Ik-(a: j. E) ý--ef { a: i1j=k} 

Iký (E + F) 't f Ik. (E) Li Iký (F) 
c lký (E[f 1) t-f 1f (a : k) 1a: kE Ik, (E) 
f lký (E\L) t Ik- (E)\L U 
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Ik, (E I F) 4--ef Ik, (E) U Ik. (F) U( -r :kI Ik- (E) n 7k, (F) =/ 0} 

Iký (A) tf Ik, (E) where A 4ef E 

Ik, (E[> F) V Ik. (E) U Ik-(F) 
I<k(E)tf UI Ij(E) Ij<k 

Note that Ik-(E) denotes the set of all initial actions of E with priority k and I<k(E) denotes 

the set of all initial actions of E with a higher priority than k. 

We now explain some of these rules. The rest are intuitive. Refer to [29] for more information. 

e Act - the agent a: k. E may perform an a-transition of priority k. 

e Sum, and Sum, ) - the agent E+F may perform an a-transition of priority k and behave 

thereafter as E' (resp. F) if E (resp. F) may perform an a-transition of priority k to 

yield E' (resp. P) and F (resp. E) does not pre-empt it by performing a higher priority n0 
-r-transition. 

e Com, and COM2 - the agent E IF may perform an a-transition of priority k and behave 

thereafter as E'IF (resp. EIF') if E (resp. F) may perform an a-transition of priority 
k to yield E' (resp. F') and EIF does not prc-empt it by performing a higher priority 00 
T-trailsition. 

0 COM3 - the agent EIF may perform a -r-transition of priority k and behave thereafter as 0 
E'IF' if E may perform an 1-transition of priority k to yield E' and F may perform an 
! 
-transition of priority k to yield P and E IF does not pre-empt it by performing a higher 

priority -r-transition. 

e Disable, and Disable2 - the acrent E[> F may perform an a-transition of priority k and 0 
behave thereafter as E'[> F (resp. F) if E (resp. F) may perform an a-transition of priority 
k to yield E' (resp. F') and F (resp. E) does not pre-empt it by performing a higher priority V, 0 
T-transition 

2.3.2 Application of Formal Approaches to Workflow Modelling 

We now proceed to give an overview of some formal-based approaches to workflow modelling. 
Firstly, we look at WF-nets [120], and follow that with reviews of a number of contributions whose 

common purpose is to formalise the YAWL patterns. 
The advantage of using, well-established formal tools, such as Petri nets and CCS, for workflow 0 C, 

modelling are the abundance of analysis techniques and automated tools that exist for them. This 

point will be elaborated in the review section on verification, see Section 2.4. 

WF-nets 

In [120], a Petri net which models the control perspective of Nvorkflow is called a lVork-flow net 
(WF-net). A Petri net (P, T, F) is a WF-net iff- 

" There is one source (resp. sink) place iGP (resp. oE P) such that ei =0 (resp. o* = 0). 

" Every node xEPUT is on a path from i to o. 
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AND-SPLIT AND-JOIN 

XOR-SPLIT XOR-JOIN 

Fioure 2.4: AND-split/join and XOR-split/join. 

'17ransitions correspond to tasks, although only a subset of these will correspond to tasks required 

of agents - tile others will pertain to internal housekeeping. Places are conditions oil the execution 

of transitions, i. e. tasks. 

The first condition ensures that it is clear how a case (i. e. execution instance of a workflow 

model) enters, and exits, the model. The second condition ensures that there are no dangling 

transitions (i. e. tasks), or conditions, in the definition of the model. 
In FiCrure 2.4, we present example nets encoding AND-split/join and XOR-split/join behaviours, Z' 0 

pertaining to YAWL patterns #2/#3 and #4/#5, respectively. In the first net, activity A is followed C, 
by both B and C in parallel. When both B and C are finished, D is executed. In the second net, 

only one of B or C is executed. 

YAWL -A Petri net based Approach to Workflow Modelling 

YAWL [125,126,123] is a Petri net-like graphical language, whose primary purpose is to facilitate C' 
the specification of workflow models, from the control perspective. It uses the YAWL workflow 

patterns as a basis for its definition; that is, tile patterns specify what the language should be able 00 
to represent succinctly. Tile creators of YAWL highlight three patterns that they assert as being 

00 
problematic to model using Petri nets (similarly, WF-nets): 

" Multiple-instance activity types - the burden of keeping track, splitting and joining of in- 
00 

stances is carried by the designer. 
C, 

" Advanced synchronisation patterns - for synchronising multiple paths, where it cannot be 
C, 

pre-determined ]low many of the paths will require synchronisation. 

* Cancellation patterns - it is hard to model cancellation patterns because it is not possible to 

predict how many tokens should be removed froin each pertinent place. 
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Interestingly, YAWL does not resolve the issue of advanced synchronisation particularly well, as 
is evidenced by later efforts, such as [1401, which try to resolve the matter. The lack of proper 

support for this issue goes against the desire, espoused in [1251, to not burden a workllow author 

with subtle, low-level concerns. 
YAWL defines EWF-nets, which extend WF-nets with direct support for multiple instances, com- 

posite tasks, OR-joins and removal of tokens. It defines a Petri net-like graphical notation; but, 

importantly, its semantics are not Petri net-based - rather, YAWL is based directly on a transition 

system-based semantics, where a binding relation determines possible transitions. Through these 

semantics, it also agrgrecrates support for AND/OR/XOR-splits and AND/OR/XOR-joins, in that 

every task is a kind of join and a kind of split. This is in contrast to needing to explicitly wire this 
functionality using regular Petri nets; that is, specifying workflow with Petri nets may be seen as 

a more low-level representation. 
A task in an EWF-net can have multiple instances; where it is possible to specify a lower bound 

and an upper bound for the number of instances that may be created after initiating the task. It 

is also possible to indicate that the task terminates the moment a certain threshold of instances 
has completed'. If no threshold is specified, the task completes once all instances have completed. 

The YAWL patterns (Section 2.1) are trivially supported, with the following caveats: 

Discriminator (#9) - Facilitated as a multiple-instance activity, "under the assumption of 
multiple instances of the same task" (125]. The threshold for instances completing, which will 0 
cause the execution of the continuation activity, is set as desired. Any remaining instances, C, 
still executing, are terminated. Its representation, as a multiple-instance activity, is not C, 
necessarily the intended sense of tile Discriminator pattern, as elaborated in Section 3.1.14. 

0 Implicit Termination (#11) - The authors of [125] make the point that this pattern should 

not be supported so that workflow authors think properly about termination. Our impression 

is that this is a Petri net-centric perspective, and whether an author should need to think 

about termination really comes down to the authoring tool they are using. If they are using a 
Petri net-based authorin tool, then this is a fair point - Petri nets naturally lend themselves 

to this way of thinking. If they are using something more abstract, then it is often the case 
that this pattern is justified. In our meta-model (see Section 3), it is arguably more natural 
to allow implicit termination. 

CCS-based Approaches to Modelling of YAWL Patterns 

There have been a few approaches to the modelling of the YAWL workflow patterns using CCS-based 
0 

approaches, namely: Stefansen [117,1161, Dong and Slienslieng [371 and Pulilinan and Weske [94]. 

Arguably, the most mature of these, currently, would appear to be the work of Stefansen. 

Some (slightly tweaked) examples of tile formalisation of the YAWL atterns that lie proposes are C, p 

as follows [117] (olnitting tile agent terminator nil for convenience): C, 0 

Sequence (#I) - (P[goldonel I go. Q)\Igo}. In Stefansen's fornialisation, an agent per- 
taining to a piece of worliflow logic will signal on done when it is otherwise finished. When 

'Although termination does not appear to be enforced by the semantics. That is to say, there is a transition 

specified by binding that does force such termination; but it is not specified at a higher priority and, as such, 
instances of the task may continue to execute, and complete, before the transition effecting termination occurs. 
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using specific instances of agents, it is appropriate to rename done to something unique, so 00 4D 
that its visibility is appropriately restricted. In this example, done is renamed to go, and 

a synchronisation on go will indicate that P has otherwise finished, and that Q may be 

progress. 

" Parallel (#2) - P, I P'. 

" Synchronisation (#3) - (Pi [okldonel I 
... 

I Pn[okldonel I ok ..... ok. Q)\Iokl. There 

needs to be n synchronisations on ok (indicating that all n parallel threads of execution have 

completed) before Q may execute. 

" See [1171 for patterns #4-#17. 

" Milestone (#18) - P,, t I I, a, R I Q' I Milestone, where proc Q' = isOn. (Q I Q). 

Here, P,, t is the agent P modified to output on set as its last action, irrespective of how it 

evolves, and dearR is the agent R modified to output on clear after its first action. set (resp. 

clear) sets (resp. clears) the milestone, i. e. starts (resp. stops) the period when execution of 
instances of Q may be initiated. Milestone keeps track of whether the milestone is currently 

set or cleared, and provides isOn to query whether it is set. The agent Q' is a wrapper for 

Q which also yields another copy of Q' meaning that unlimited copies of Q may be created 

while the milestone is set. 

Cancel Activity (#19) - If it were intended that the execution of an activity b, say, may 
be cancelled, then it would be represented as b. ('b + cancel), as opposed to b, otherwise. 
Synchronisation on cancel would have the effect of pre-empting the completion of b, which 

would, otherwise, be signified by the output on b. Note that in the example, given in [1171, 
C, 0 

where b is part of a three activity sequence, a. b. c, the remainder of the sequence is also 

cancelled (which is not necessarily an appropriate interpretation of the intended semantics 
for YAWL) - 

Cancel Case (#20) - Each activity is split in the way stated for pattern (#19), with the 

possibility of receiving a termination signal pertaining to case cancellation. 000 

2.4 Workflow Verification 

As we allude to in the introduction to this thesis (see Chapter One), it is important to analyse a 

workflow model before it is used. Indeed, [120] states "[tjhe correctness, effectiveness and efficiency 

of the business processes supported by [a] INIFTNIS are vital to [an] organ isat io n". van der Aalst 

[120] enumerates three types of analysis: 

Validation - testing whether the workflow behaves as expected; achieved through interactive 

simulation. 

Verification - establishing the correctness of a workflow. C, 

PerfoT7nance Analysis - evaluating the ability to meet requirements with respect to through- 00 
put times, service levels and resource utilisation. 



2.4. Work-flow Veriflcatlon 31 

These types of analysis are equally important when considering compositions of web services. 
Additionally, it may be useful to be able to check the internal behaviour (i. e., in a WS-BPEL 

context, executable process definitions) against the external business protocol that the participant 
is committed to provide (i. e. abstract process definitions) [91]. Another property of interest is to 

verify that two abstract processes are equivalent in their behaviour [1061. 

Verification and Performance Analysis require quite advanced analysis techniques. Regarding 

the work described in this thesis, we are only interested in verification, and will, thus, concentrate 

our review on this property. A good introduction to Performance Analysis techniques is [118]. 

For verification, in this work, we are concerned with checking that a workflow satisfies general 

properties such as freedom from locking; and, also, that we provide a facility for checking model- 

specific properties, or constraints. Regarding the first of these, we note that an important property 

of a WF-net is soundness. This property ensures that a WF-net will not be susceptible to locking, 

will complete properly, and does not have dead tasks. 
FYom [120), a WF-net N, with initial marking i (there is a single token at place i), is sound iff: 

a For every marking M, reachable from marking i, there exists a firing sequence leading from C, 0 C, 0 
AI to o (there is a single token at place o). This says that there is always the possibility of a 
completing the workflow instance, i. e. an option to complete. 

o is the only marking reachable from i with at least one token in place o. That is, once 
a token appears in o, then all others places must be empty. This says that completion is 
proper completion. 

There are no dead transitions in N, given i as an initial marking. That is, for all transitions 00 
t in N, there exists a marking M, reachable from i, where t is able to fire. This says that 0 
there are no dead tasks (i. e. unused tasks) in the Nvorkflow instance. 

The model-specific properties that -%ve seek to verify can be split into two classes (or may 
be composites of properties that fall into these two classes): safety and liveness (where liveness 

in the sense now described is different from that used in the context of Petri nets). Rom (59], 

safety properties specify occurrences which should never happen, and liveness properties specify 

occurrences that should eventually happen. In Linear Temporal Logic, Op is a safety property, and 
Op is a liveriess property. These classes may be further subdivided. For example, Op and p -4 Oil 

are both liveness properties, but the first may also be classified as guarantee and the second as 

response. Typically a temporal logic, such as LTL, CTL, or CTL* [38,611 will be used to specify 

safety and liveness properties. 
We now review a number of contributions that look at the verification of WS-BPEL compositions, 

as we have an interest in supporting this. These may be differentiated according to their respective 
foci of interest: 

" Koshkina and van Breti-el are concerned with verifying the integrity of individual composi- 
tions. 

" Nakajima / Fu and colleagues are concerned with verifying the interactions between compo- 

sitions. 

" Foster and colleagues are concerned with verifying that an abstract WS-BPEL specification C, C, 
complies with a conversation specification represented using Message Sequence Charts (MSCs 
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Koslikina and van Brengel introduce, in [65,66], a CCS-like process algebra called BPE-calculus, 

which is capable of modelling a subset of activities of WS-BPEL. Given definitions of the syntax and 
semantics of the BPE-calculus, the Process Algebra Compiler [113] is used to generate an extension 
module to the Concurrency Workbench for the New Century (CWB-NC) [11] to allow for verification 
of BPE-processes. Verification options that are supported by CWB-NC include model checking and 
equivalence checking (as exemplified in Chapter Five). 

Nakajima [83] presents a translation of WSFL [69] (a graph-structured predecessor of WS-BPEL) 
into Promela, which is the input language of the SPIN [59) model checker. SPIN may then be used to 

verify properties of WSFL compositions. [84] builds on the previous work in [831, in order to support 
the verification of WS-BPEL compositions, which are similarly represented in Promela, and verified 
using SPIN. Notabl in [84], the translation of WS-BPEL to Promela is divided into two phases. Y, 
First WS-BPEL compositions are translated to representations based on finite automata. Then, 

specifications in the latter representation are translated to Promela. This decoupling allows for the 

support of alternative composition languages and for the use of different rnodeI-cliecking tools. The 

work of Fu and colleagues [48,47] is similar to that of [84] in usinor an intermediary representation 
and target output language Promela, for use with SPIN. The intermediary representation formalism, 

used in Fu's work, is essentially the same as that used by Nakajima. Both works are also similarly 
concerned with the verification of interacting compositions. 

Foster and colleagues [45,44] propose a translation of a subset of WS-BPEL to FSP, which is a 
process calculus that can be used to concisely describe, and reason about, concurrent programs. 
The Labelled 7ý-ansition System Analyzer (LTSA) can be used to analyse, and verify properties of, 
FSP specifications. In their work, they are able to check whether a WS-BPEL composition satisfies 
a behavioural specification captured by Message Sequence Charts (MSCs). The WS-BPEL and MSC 

specifications are translated to FSP. UFSA is then used to check compatibility between them. 
In our work, we are concerned with verification of individual compositions only. In this sense, 

our work aligns more with Koslikina and van Brengel than the others. If we concern ourselves 
with the operation of a single end-point, that is, a single WS-BPEL composition, rather than the 
interaction between multiple compositions, verification of the control perspective of WS-BPEL is 
decidable. In this case, we abstract away from message queues. It is decidable because verification 
can be divided into a number of runs, according to link boundary-crossing restrictions (e. g. the 

contained activity within a <while> activity can be verified separately, and the <while> simply 
replaced by an <empty> activity), where the verification state space of each of these runs is 

necessarily finite - as there is no scope for infinite behaviour. 

Having presented this review of related work, we now proceed with the definition of our infor- 0 
ination view meta-model for traditional workflow, called Liesbet. This will be used to capture the 

real essence of workflow, serving, as a point of reference for the computational view formalisations 

to be presented in later chapters. 
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Liesbet Metamodel 

In this chapter, we define a meta-model for workflow called Liesbet, which constitutes an in- 

formation view abstraction of, or ontology for, workflow. In defining Liesbet, we have sought 
to understand tile true nature of workflow, and thus tile fundamental concepts that need to be 

represented. NNe are then able to use this information view of workflow as a point of reference 
for computational view formalisations of workflow. The representational requirements for Liesbet 

have been sourced from the need to be able to represent the YAWL workflow patterns, as well as 
the control flow aspects of business process languages, such as WS-BPEL [87]. 

We also present the definition of additional intended semantics for Liesbet, which prescribe 
further constraints regarding the evolution of Liesbet models. We consider it to be appropriate 
that internal behaviour is prioritised over external behaviour in the enactment of a workflow 

model, and that tile effects of external behaviour on the internal evolution of the model is realised 

atomically rather than allowing it to be interleaved with other (unrelated) internal behaviour. NN'e 

provide examples that clarify this matter. 

We take our first step towards greater flexibility in workflow models through the proposal of 00 
Synchronisation Rules. In contrast to the view of flexible workflow that is principally espoused in 

this thesis (i. e. abstract model + policies for refinement), the appropriate slogan in this instance 
0 

is more Flexible Work-flow = Concrete Model + Policies for Constraint. That is to say, the initial 

model is fully-specified and the policies (i. e. synchronisation rules) constrain enactment. The model 

may contain many possible enactment paths (in contrast to traditional workflow, where typically 

only one will turn out to be possible). Which of the multiple paths is chosen is constrained by the 

policies. 

We present a reduced set of patterns with which (we show) all patterns may be represented. 
This is a useful result as it enables us to propose the true nature of -. vorkflow to be this reduced set. 
NN'e propose the reduction at the level of the Liesbet rneta-model. That is, we define equivalences 
for the remaining constructs as definitions which make use only of constructs from the reduced set. 
These equivalences are argued (and shown) to be sound in Chapter Six. 

We also show how Liesbet captures all of the YAWL patterns, as well as describing its support 0 
for modelling the control flow perspective of WS-BPEL, in order to usefully facilitate verification of 0 
WS-BPEL compositions. 

The layout of this chapter follows the presented description. 

33 
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3.1 Liesbet: An Information View Meta-model for Work- 

flow 

3.1.1 Liesbet Fundamentals 

We have defined the Liesbet meta-model as an information view ontology for workflow. Its 

constructs are as follows. 

" Activity -Act. 

" Synchronisation types - Go and Stop. 

" Sequence and Unordered Sequence types - Seq, SeqCancel and UnorderedSeq. 

" Parallel, and Priority Parallel - Par and PriPar. 

" Exclusive Choice with and without default - Def aultChoice and Choice. 

" Deferred Choice - Def erredChoice. 

" JYiviaI Completion - Empty. 

" Free Choice - FreeChoice. 

" Multiple Choice - MultiChoice. 

" Multiple Merge - Multimerge. 

" Discriminator m from n- Discriminator. 

" Multiple-Instance Activities - Multi*. 

" Cancel Activity - CancelActivity. 

" Cancel Case - Exit. 

We define a syntax for Liesbet for the purposes of presenting it here. This is called Liesbet 
Easy Syntax. Its use is fairly intuitive. It is given a formal characterisation in later chapters using 
CCS/PCCS and the Situation Calculus. For the implei nentation of a verification and enactment 

engine for Liesbet, we use a persistence framework (see Section 10.1) with which an XAIL-based 

scrialisation syntax is defined. The definition of Liesbet Easy Syntax in Extended BNF (EBNF) 

[90] is presented in Figure 3.1. 

At this point, we introduce some terminology. A custornised activity type is a customisation 

of a Liesbet nieta-model construct when used in the specification of a Liesbet workflow model. 
In contrast, th6 term generic activity type is used synonymously with meta-model construct. For 

example, in the Liesbet model Seq(A, B), the Seq is a "sequence" generic activity type which is 

custornised to mean a sequence that contains two activity types, A and B. 
A basic activity type, defined using the Liesbet nieta-model construct Act, corresponds to a 

self-contained piece of work, where conceptually we would defer to the environment to inforni us 

when the work of the activity type has finished. Instances of basic types may be completed, or 

cancelled. 
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<Liesbet-Model> :: = <Activity-Type> I<Activity-Type-Def>) (<ISA-Decl>l 

<Activity-Type-Def> :: = <Activity-Type-Name> = <Activity-Type> 

<Activity-Type> :: = <Activity>(<ActConds>) 

<ISA-Decl> :: = ctype(<Activity-Type-Name>) ISA ctype(<Activity_Type_Name>) 
<Activity-Type-Name> :: = a 1PI-yj 

... 
<Activity> <Activity-Type-Name> I Act I <StructAct> 

<ActConds> [join(<GuardAct>)1 [, ] [trans(<GuardAct>)1 [, ] [ctype(<Activity-Type-Name)] 

<StructAct> <SyncActs> I <ParSeq> I <Choices> I <Merges> I 

<CancelActs> I <MultiActs> I Empty I Exit I FreeChoice 

<SyncActs> Go(<GoQuery>) I Go(<StopQuery>, <GoQuery>) I Stop (<StopQuery>) I 

Stop(<StopQuery>, <GoQuery>) 

<ParSeq> PriPar(<ExecActs>) I Par(<ExecActs>) I 

Seq(<ExecActs>) I SeqCancel(<ExecActs>) I UnorderedSeq(<ExecActs>) 

<Choices> Def aultChoice (<GuardContActs>, <ContAct>) I Choice (<GuardContActs>) I 

MultiChoice(<GuardContActs>) I DeferredChoice(<ContActs>) 

<Merges> Discriminator (<m>) (<GuardActs>, <ContAct>) I Multimerge (<GuardActs>, <ContActs>) 

<CancelActs> CancelActivity(<Activity-Type-Name>) I 

CancelActivity(<Activity-Type-Name> in <Activity-Type-Name>) 

<MultiActs> MultiLimit(<n>)(<ExecAct>) I MultiLimitSeq(<n>)(<ExecAct>) I 

Multi (<ExecAct>) I MultiSeq(<ExecAct>) 

<Gua, rdContActs> :: = <GuardAct>, <ContAct> f; <GuardAct>, <ContAct>l 

<GuardActs> <GuardAct> 1, <GuardAct>j 

<ContActs> <ContAct> <ContAct>} 

<ExecActs> <ExecAct> <ExecAct>} 

<GuardAct> <Activity-Type-Name> I <Activity-Type> 

<ContAct> <Activity-Type-Name> I <Activity-Type> 

<ExecAct> <Activity-Type-Name> I <Activity-Type> 

<n> : :=112... <m> :: = <n> 

<GoQuery> :: = <Query> 

<StopQuery> :: = <Query> 

<Query> :: = <Query>l ... I<Query> I <Query>+.. . +<Query> I -<Query> I <QueryOnAct> True False 

<QueryOnAct> :: = <StateQualification>-<QueryOnActStripped> 

<StateQualification> Completed I Cancelled I Finished I Running I Initial 

<QueryOnStrippedAct> 
-Act 

(<Act ivity-Typ e -Name>) 
I 

-All 
Wct ivit y-Typ e -Name>) 

-Act(<Activity-Type-Name> in <Activity-Type-Name>) I 

-Act(<Activity-Type-Name> 
dist in <Activity-Type-Name>) 

-All(<Activity-Type-Name> 
in <Activity-Type-Name>) 

Figure 3.1: EBNF Definition of Liesbet Eas Syntax 
0Y 
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Pi 
Par 

Sl se Seq S2 

ABCD 

Figure 3.2: Simple Workflow Model 

er 3. Liesbet Aletamodel 

4 In contrast, structured activity types, defined using any other Liesbet construct, exist mainly for 0 

the purpose of marshalling instances of basic activity types (i. e. Act types), where the enactment 0 
of instances of these other constructs (e. g., Par and Seq) is handled wholly within the realms of b 
the workflow en-ine. 0 

A workflow model will consist of a number of instances of custornised activity types. It is 

through activity instances that work is realised in the enactment of a workflow model. If an 0 
activity type is instantiated twice in a model, the work associated with that type will be carried 
out twice. 

Basic activity types defined in "Easy syntax" may either be simply defined in situ, or in a 

separate definition which is then referred to when instantiating the activity type elsewhere. For 
basic activities, defining them in situ is done simply by referring to them, e. g. A, or A(join(... 

Defining them separately would be done thus: A= Act, or A= Act (join( 
... Here, 

A is the customised type name and Act is the (only) generic type for basic activity types. join(... 
is one of three optional attributes that may be attached, in parentheses, to the right-hand side 

of a (customised) activity type. The others are: trans( ... ) and ctype( ... ). The latter is not 

applicable to basic activity types. These attributes will be elaborated as we go along. 
Structured activity types which are defined in situ derive their custornised type name from the 

use of such a ctype qualifier. An example might be Seq(C, D) (ctype W), 
... 

), where S2 is 

the custoinised type name. Structured activity types can also be defined separately and assigned 
a name, e. -. S1 = Seq(A, B). Here, S1 is the custornised type name. 

A hierarchy of type names may be specified using ISA relations. For example, we may have 

two sequences, S1 and S2, for which it is sometimes convenient to differentiate between them, and 

other times count them as the same type of sequence, with (customised) type name, S, say. In this 

situation, we may assert that: ctype(Sl) ISA ctype(S) and ctype(S2) ISA ctype(S). Type 
hierarchies must be acyclic. 

Activity types that are defined separately and not in situ are called defined types. Consider 

the simple Liesbet model, depicted in Figure 3.2, which will be used for illustrative purposes 
throughout this thesis. The model is a parallel composition (Pl) of two sequences (SI and S2), 0 
each consisting of two atomic activities (A and B, and C and D, respectively). 0 

This may be specified, using Liesbet Easy Syntax, as follows. 

Par(SI, Seq(C, D)(ctype(S2))(ctype(Pl)) 

Sl = Seq(A, B) 

Here, A, B, C and D are in situ definitions of basic activity types. We can tell this as they are 

not defined types. The second argument of the Par is a structured activity type defined in situ, 
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with specified customised type name: S2. In contrast, the first argument, S1, is a defined type. 

The definition of a workflow model will include just one defined type that is unnamed. This 

is taken to be the top-level activity of the workflow model. A workflow model is a hierarchical 

structure with this activity at its root. In the example, Par(Sl, Seq(C, D)) is the top-level workflow 

activity type. The ctype annotation specifies that its type name is P1. 

3.1.2 Finite State Machine for Activity Instances 

The following Finite State Machine (FS', %I) is defined for the operation of an activity instance. An 

activity instance may be in one of four states - Initial, Running, Cancelled or Completed. We 

also consider an activity instance to be finished, if it is in a Cancelled or Completed state. 

Initial -execute-> Running 

Initial -cancel-> Cancelled 

Running -complete-> Completed 

Running -cancel-> Cancelled 

An activity instance begins life in the Initial state. At some point, the parent of the activity 
instance will initiate execution of the instance. The instance will be moved into the Running 

state, by virtue of the execute action. 

e When the work of the instance is done, it is moved to the Completed state, by means of the 

complete action. 

e Rom the Initial and Running states, the instance may be moved into the Cancelled state, 
by means of the cancel action. This will have the effect of not only immediately cancellin., 

the activity instance itself, but also all of its descendants, in a single, atomic action. 

Cancellation of an activity may happen because of the execution of a CancelActivity in- 

stance (Section 3.1.16), because of a failed join condition (Section 3.1.7), or because of 
dead-path elimination. An activity type may specify a join condition, which serves as a 

pre-requisite for the execution of the pertaining activity. If the join condition fails, the activ- 
ity is cancelled. Dead-path elimination [70] is performed in workflow model enactment when 
it is identified that an activity instance will never be executed. This happens, for instance, 

when executing a Choice activity instance. Those continuation activity instances within the 

Choice instance that correspond to unselected branches are moved to the Cancelled state. 

Note that, for most workflow modelling scenarios, the lifecycle of a basic instance is adequately 

captured by th"e sequence of states: Initial-*Running--ýCompleted. In some scenarios, such as 

those outlined in [211, it may be appropriate to model an additional, intermediate state between 

Initial and Running. This would capture the notion that an activity has been enabled but is 

not yet running. This may simply be modelled, in Liesbet, by inserting a dummy activity Init, 

say, into a SeqCancel type (see later), thus: SeqCancel(Init, X), where X is the activity type 

constituting the work to be done. The dummy activity Init completing would conceptually signify C, 00 
the activity X moving to this intermediate state. 0 
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lisolated(P) 
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Isolated(S) 

join(Go(Completed-act( C-))-)-] 

FC1 
The join condition on activity type B will have a visibility horizon that is restricted to the isolated scope P 
and its descendants, but not including the isolated scope S and its descendants. The only candidate instance 

of activity type C for the query in the join condition of B is thus the instance marked *. 

Figure 3.3: Isolated Scopes in Operation 

3.1.3 Activity Visibility Horizons 

As explained in Sections 3.1.4 (below), instances (of certain activity types) may query the state of 

other activity instances, in order to synchronise their execution against these instances. However, 

since the enactment of a workflow model may create multiple instances of the same activity type, 

there is potential ambiguity about which specific instance is referred to in the query. In the example 

shown in Figure 3.3, the join condition on activity B queries the state of activity C of which there 

are three separate instances. Liesbet provides several methods for disambiguating such references, 

of which the isolated scope declaration is the most fundamental. 

Any activity may be marked as an isolated scope. In Easy Syntax this is achieved by encap- 

sulating the definition of an activity type in the container Isolated. In the example below, both 

activity types A and B are isolated scopes but C is not. The scope of an activity type is not isolated, 

by default. 

Par(Isolated(A), B) 

A=... 

B= Isolated( ... 
C= Seq( ... ) 

This has the effect of creating a visibility hoHzon on the workflow state for activity instances that 

exist within an instance of the isolated scopes A and B. 
When an instance i exists within the scope of another activity instance which is isolated, the 

instance i can only query the state of activity instances that are descendants of the isolated scope 
instance that is the most immediate ancestor of i, and this isolated scope instance itself. 'Moreover, 

if any of these descendant instances more immediately fall within the scope of a different isolated 

scope instance, then these particular instances will not be visible to the querying instance i. 

The visibility horizon for a querying instance is thus the sub-tree extending from its (immediate) 

ancestor isolated scope instance, from which are pruned any sub-trees extending from further 

isolated scope instances (as is demonstrated in the figure). 
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Cl ID 
, 'I-APar P 

Seq Isolated 

B 

Fcý 
join(Go(Completed act(C in P))) 

Ijoin(Go(Completed_act(D))) 

Since P is not an isolated scope in this example, the visibility horizon for the join condition on activity type 
A extends beyond P; and thus includes the instance of type D marked *. For the join condition on activity 
type B, its visibility horizon is determined according to type P, which is specified as a reference type. The 
horizon, with respect to type C, is thus the same as previously, in Figure 3.3. 

Figure 3.4: Reference Types in Operation 

There is another way of specifying a visibility horizon, for a querying instance; a reference type 

can be used to set the visibility horizon for a query on -, vorkflow state. There are two sorts of 

reference types, "plain" and "distinct". For either sort, the idea is that the target instances of a 

query (i. e. its visibility horizon) are limited to those which are descendant instances of an instance 

of the specified reference type - the reference instance. F'urthermore, the querying instance must 
be a descendant of the same reference instance. Thus, the reference instance is a common ancestor 
to both querying and target instances; and acts as a scoping instance, enforcing a visibility horizon 

for the query. 
The use of a reference type is similar to that of an isolated scope, in that it is used to place 

a limit on the instances that comprise a visibility horizon. A crucial difference, however, is that, 

in contrast to the use of isolated scopes, we may specify within individual queries (of which a 

querying instance may use several) what the visibility horizon for the query should be. That is, 

multiple queries may be made by a single querying instance, all with different visibility horizons. 
ID C, 

As a result, we can set a much finer granularity for the visibility of certain queries, rather than 

setting a universal visibility horizon for a whole tree of querying instances. 
0n 

For example, we may wish one query to be referenced according to a particular activity instance, 

but if we made that reference instance an isolated scope, it may undesirably hinder the visibility 
horizon of other querying instances that would exist within the isolated scope instance. However, 

through using reference queries, we avoid such a problem. 00 
Isolated scopes are used when we want to create a visibility horizon that is appropriate for 

all descendant instances of that scope instance (which do not have a more immediate parent 
instance that is also isolated). It is also necessary that marking an instance as isolated does 

C, 
not inappropriately prevent instances, existing outside the sub-tree rooted at the instance, from 

C, 
querying the state of instances within the sub-tree. Such pruning does not occur for scopes which 00 
are not marked as isolated. 
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Queries with reference types are useful when we want to achieve a finer level of granularity to 
the visibility horizons of individual queries. A workflow model may arbitrarily use a mixture of 
isolated scopes, and reference queries, notwithstandinO, the possibility of redundancy in certain 
combinations of such scopes and queries. Figure 3.4 shows an example of using queries with 
reference types. 

We now elaborate the distinction between plain and distinct reference types. Queries that 

make use of distinct reference types are the same as those using plain reference types, in the sense 0 
that the visibility horizon of a query is limited to the ancestor instance of the reference type; but 

there is the added criterion that the particular target instance, that satisfies a query, can not have 0 
been used before to satisfy distinct queries made with respect to the same reference instance. We 

ensure this by marking the reference instance with the instances that have been used, thus far, in 

satisfying queries within its scope. This allows us yet further granularity in satisfying queries, and 0 ID 0 
ensures that multiple querying instances that are satisfied according to a common query, such as Z' 0 
join condition instances in a Multi type - see Section 4.2 for an example, are satisfied by distinct 
target instances. C, 

3.1.4 Go and Stop Synchronisation Activity Types 

The synchronisation activity types of Liesbet represent synchronisation points in the workflow 

model, i. e. their completion or cancellation is blocked until some query on current workflow state is 

satisfied. An example is Go (StopQuery, GoQuery) in which StopQuery and GoQuery are queries 

on workflow state. Here, there is a race between which of these queries is satisfied first, which 

ultimately determines whether the synchronisation activity itself completes successfully or not. 

Easy Syntax 

Stop(StopQuery, GoQuery) 

Stop(StopQuery) 

Go(StopQuery, GoQuery) 

Go(GoQuery) 

A StopQuery or GoQuery query is a blocking query on current workflow state that must be 

satisfied. That is, a query blocks until it is satisfied. A query is any boolean compound (11sing 0 
for conjunction, "+" for disjunction and "-" for negation) of the following (where ctype is a 

customised type name): 

* Simple Queries 

- Completed-act (qtype) - This query is satisfied if and only if an instance of the activity 
type qtype, within the visibility horizon of the querying instance, has cornpleted. 0 

- Completed-all(qtype) - This query is satisfied if and only if all extant instances of 
the activity type qtype, within the visibility horizon of the querying instance, have 

completed. 

o Reference Queries 
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- Completed-act (qtype in rtype) - This query is the same as Completed-act (qtype) 

except that it specifies a plain reference type, rtype, in order to (further) constrain tile 

visibility horizon for the query. 

- Completed-act (qtype dist in dtype) - This query is the same as Completed-act (qtype) 

except that it specifies a distinct reference type, dtype, in order to (further) constrain 
the visibility horizon for tile query. 

- Completed-all (qtype in rtype) - This query is a combination of Completed-all (qtype) 

and Completed-act (qtype in rtype). 

We inay also write True for the query that is trivially satisfied, and False for the query that 

call never be satisfied (i. e. it forever blocks). 

Queries can also be inade to ascertain the existence of activity instances in tile Initial, 

Running, or Cancelled states, as well as finished instances (those in Completed or Cancelled 

states). 'ro use such queries, the keyword Completed is replaced with the keywords: Initial, 

Running, Cancelled or Finished, as appropriate. 

In the following exaniple, the query is satisfied if either all instance of activity type A or B has 

cornpleted, and all instance of activity type C has conipleted. 

( Completed-act(A) + Completed_act(B) )I Completed-act(C) ) 

Informal Operational Semantics 

When an instance of the activity type Go (StopQuery, GoQuery) is running, and StopQuery is 0 
satisfied before GoQuery, then the synchronisation activity instance goes to Cancelled. If GoQuery C, 
is satisfied, and StopQuery is not satisfied beforehand, then the synchronisation activity instance 

a goes to Completed. While neither query is satisfied, the instance remains in the Running state. 
There is a priority at work here in that, whenever we try to progress a Go instance, GoQuery is 0 

evaluated ahead of StopQuery. To effect the opposite, the author may use a Stop activity type, 

where the StopQuery is evaluated first. Thus, whether a Go or a Stop type is used in a particular 

circumstance depends on the appropriate priority regarding which of the queries is evaluated first. 

An instance of the activity type Go (GoQuery) will remain in the Running state until the GoQuery 

query is satisfied, whereupon it will move to Completed. Go(GoQuery) is thus equivalent in 

behaviour to Go(False, GoQuery). Similarly, an instance of Stop(StopQuery) will remain in 

the Running state until the Stopquery query is satisfied, whereupon it will move to Cancelled. 

Stop(StopQuery) is thus equivalent in behaviour to Stop(StopQuery, False). 

3.1. "5 Seq and SeqCancel - Sequence and UnorderedSeq - Unordered Se- 

quence 

The Seq/SeqCancel and UnorderedSeq Liesbet constructs are a direct facilitation of two of 
tile YAWL workflow patterns, viz. Sequence (#1) and Interleaved Parallel Routing (IPR) (#17), 

respectively. [125,64] characterises Sequence as a pattern where "[aln activity in a workflow process 
is enabled after the completion of another activity in the same process"'. For lPR [125,641, c4la] 

set of activities is executed in an arbitrary order: Each activity in the set is executed, tile order is 

decided at run-time, and no two activities are executed at the same moment". 
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Easy Syntax 

Seq(Actl, ..., Actn) 

SeqCancel(Actl, ..., Actn) 

UnorderedSeq(Actl, ..., Actn) 

Informal Operational Semantics 

When a sequence (Seq/SeqCancel) instance is running, it executes each constituent activity in 

the order specified, waiting for each to get to a finished (Completed or Cancelled) state. ror 

Seq, if a constituent activity is cancelled, then tile sequence continues as normal. For SeqCancel, 

tile sequence is immediately cancelled. When the last constituent activity finishes, Seq goes to 

Completed, and SeqCancel goes to Completed if the last constituent activity completed successfully 

and to Cancelled otherwise. 
For UnorderedSeq, the child instances contained therein may be executed in any order, but 

not concurrently. When all instance of such a type is set Running, one of its child instances is 

non-deterministically put into a Running state. The choice could be made by tile workflow engine, 

or could be made by the environment (in a deferred choice sense, see later). When the chosen 
instance eventually moves to a finished state (Cancelled, or Completed), another child instance is 

selected and put into the Running state. When all child instances have finished, the UnorderedSeq 
instance is completed. 

3.1.6 Par - Parallel 

The Par Liesbet construct is a direct facilitation of the Parallel Split YAWL workflow pattern, 
which is [125,641 "[a] point in the workflow process where a single thread of control splits into 

multiple threads of control which can be executed in parallel, thus allowing activities to be executed 
simultaneously or in any order". 

We also support a Priority Parallel (PriPar) construct. PriPar allows arbitrarily complex 
structured activities to be specified as running in parallel, but the progression of child instances of 00 
a PriPar occurs according to a total priority ordering. 

Easy Syntax 

PaLr(Actl, ..., Actn) 

PriPar(Actl, ..., Actn) 

Informal Operational Semantics 

When the parallel instance (Par) is running, it starts the execution of each child instance in parallel. 
Once all have reached a finished state (Completed or Cancelled), the parallel instance goes to 

Completed. Note that cancelling child instances does not cancel the Par activity. 
For PriPar, progression of Act, occurs at the highest level of priority, then Act), and so on, 

until Actn, which has the lowest priority. In terms of what is puslied to agents by the NMIS', 
0 

'A standard deployment configuration, which uses a WMIS, is where agents are offered items of -%vork in Nvork 
lists. An agent may accept an item of their choice from the work list, while it remains in their Nvork list. Once 

accepted, the agent marks the work item as finished at some later time. 
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a basic instance which is a descendant of, or is, Acti, say, can only be offered, or continue to be 

offered, if a basic instance which is a descendant of, or is, Actj, where j<i, is not offered. If 
it becomes possible to offer a basic instance "from" Actj, at a particular point in time, then all 
basic instances pertaining to children of the PriPar instance with a lower priority than j must be 0 
blocked (i. e. temporarily withdrawn from agent work lists). The PriPar construct captures the C, 
notion that certain work items will need to be completed more expediently than others. Its utility 
is contingent on appropriate role assignment. 00 

3.1.7 Activity Join and Transition Conditions 

An activity definition in Liesbet may optionally specify a join condition and/or a transition 

condition for the activity type. 
A join condition may be any activity type, although it would rarely be anything but a synchro- 

nisation activity type (Go or Stop). They are used to specify conditions under which execution of 
an activity may occur. When execution of an activity instance is initiated, the join condition, if 

specified, is evaluated. Once a join condition returns a result -a condition may block for some 
time, the pertaining activity is executed (moves to Running) if the join condition is satisfied, and 0 
cancelled otherwise. 

A transition condition for an activity A is used to specify a number of activities that must be 

executed after the main work item constituting A. Notably, these activities are considered to be 

part of A, i. e. A is not considered to have completed until these activities have themselves finished. 

For example, a transition condition may specify one or more synchronisation conditions that must 
be satisfied before the pertaining activity may complete. 

Activity types that are used as join conditions may not themselves specify join or transition 

conditions. The same applies to transition conditions. Moreover, it is not permitted to specify join 

or transition conditions for the root activity of a Liesbet Nvorkflow model. 

Easy Syntax 

Join and transition conditions, when specified, sit to the right of an activity type definition. They 
C, 

are given in a separate set of parentheses, and enclosed in the containers join and trans. There 

are thus three possible forms (besides an activity definition without join and transition conditions). 

A(join(AJoin)) 

AJoin = ... 

A(trans(ATrans)) 

ATrans = ... 

A(join(AJol-n), trans(ATrans)) 

AJoin = ... 
ATrans = 

Informal Operational Semantics 

An activity type with a join condition should be considered as being equivalent to a SeqCancel 

activity type containing (in order) the join condition activity type and the actual activity type. This 
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realises the desired behaviour, namely: that if the join condition does not complete successfully, 

the activity instance that it is attached to is not executed. If a transition condition is specified, 
then the join condition (if any) and the actual activity type are run first, followed by the transition 

condition. Even if the join condition or the instance of the actual activity type get cancelled, the 

transition condition will still be evaluated. 
In summary, the following rnappingS should be applied, at the level of the meta-model (that is, 

at the information view). Note that as there exist mappings for join and transition conditions at 

the level of the meta-model, they do not necessitate specific treatment at the computational vieW2. 

eA (join(Ajoin) trans (ATrans)) maps to Seq(SeqCancel(AJoin, A) , ATrans). 

e A(join(AJoin)) iiiaps to SeqCancel(AJoin, A). 

eA (trans (ATrans)) inaps to Seq (A, ATrans). 

3.1.8 Def aultChoice, Choice - Exclusive Choice With and Without De- 

fault 

The DefaultChoice/Choice Liesbet constructs are a direct facilitation of the YAWL workflow 

pattern Exclusive Choice, which is [125,64] "[a] point in the workflow model where, based on a 

decision or workilow control data, one of several branches is chosen7'. 

Easy Syntax 

DefaultChoice(Guardl, ContActl; ... ; Guardn, ContActn; ContActd) 

Choice(Guardl, ContActl; ... ; Guardn, ContActn) 

Informal Operational Semantics 

Each Guardi is a guard activity type, and each ContActi a continuation activity type. A guard 

will usually be a synchronisation activity type (Section 3.1.4), althou. -h it could actually be any 

activity type. ror exaniple, Empty, which is the basic activity type that trivially cornpletes (see 

Section 3.1.11), can be used to effect a non-deterministic choice. 
The first guard instance that goes to Completed initiates its corresponding continuation in- 

stance. All other continuation instances go to Cancelled. In the case of Def aultChoice, if all of 
the Guardi activities go to Cancelled, then an instance of the default continuation activity type, 

ContACtd, is executed. In the case of Choice, which has no default activity type, the Choice 

will itself go to Cancelled. The Def aultChoice/Choice instance cornpletes once the executed 0 
continuation instance has finislied. 

3.1.9 MultiChoice - Multiple Choice 

The MultiChoice Liesbet construct is a direct facilitation of the YAWL workflow pattern Multiple 
Choice, which is [125,64] "[a] point in the workflow model where, based on a decision or workflow 

217or the most part, although many Liesbet constructs (as discussed in Section 3.4) may be given a characteri- 
sation at the information view (in terms of a minimal set of Liesbet constructs), we elect to characterise them at 
the computational view (as discussed in later chapters). This enables us to discuss equivalences between characteri- 
sations. For simplicity's sake, join and transition conditions and DeferredChoice are exceptions to this convention. 
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control data, a number of branches are chosen". 

Easy Syntax 

MultiChoice(Guardl, ContActl; ... ; Guardn, ContActn) 

Informal Operational Semantics 

MultiChoice is similar to Choice, except that there is no race between guard instances to complete 
first. For MultiChoice, those guard instances that complete successfully have their corresponding 00 
continuation instances executed. Those that go to cancelled have their corresponding instances 00 
cancelled. 

3.1.10 DeferredChoice - Deferred Choice 

The Def erredChoice Liesbet construct is a direct facilitation of the Deferred Choice YAWL work- 
flow pattern, which is [125,64] "[a] point in the . vorkflow process where one of several branches 
is chosen. In contrast to the XOR-split [i. e. Exclusive Choice], the choice is not made explicitly 
(e. g. based on data or a decision) but several alternatives are offered to the environment ... This 

means that once the environment activates one of the branches the other alternative branches are 
withdrawn. It is important to note that the choice is delayed until the processing in one of the 

alternative branches is actually started, i. e. the moment of choice is as late as possible. " 

Easy Syntax 

DeferredChoice(ContActi, .... ContActn) 

Informal Operational Semantics 

The conceptual meaning of the Def erredChoice construct is that of an exclusive choice made 
by the environment between executing instances of continuation activity types ContActi, 0 
ContActn. A Def erredChoice instance goes to Completed when the chosen continuation instance 

0 
has finished. For simplicity, we model the Def erredCho. ice constructs at the information view, as 

presented in Section 3.4. 

3.1.11 Empty 

Do nothing but trivially complete! Useful, for example, for an empty default branch in a Def aultChoice 

activity. 

Easy Syntax 

Empty 

3.1.12 FreeChoice 

Non-deterininistically complete or cancel. 
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Easy Syntax 

FreeChoice 

3.1.13 Multimerge - Multiple Merge 

Chavter 3. Liesbet AIetamodel 

The Multimerge Liesbet construct is a direct facilitation of the Multiple Aferge YAWL workflow 
pattern, which is [125,641 "[a] point in a workflow process where two or more branches reconverge CD 
without synchronisation. If more than one branch gets activated, possibly concurrently, the activity 
following the merge is started for every activation of every incoming branch". 

00Z, 
[125,641 determines that the same continuation activity instance be executed for each path 

that merges. We can facilitate this, but more flexibly we allow the specification of many different 

continuation activities. 

Easy Syntax 

Multimerge(Guardl, ..., Guardn; ContActl, ..., ContActm) 

Informal Operational Semantics 

When running, any of the Guardi going to Completed will cause an instantiation and execution 

of one of the continuation activities - tile first to be completed initiates ContActl, tile second 
to complete initiates ContACt2, and so on. Note, however, the number of continuation activities, 

m, may be less than (or equal to) the number of Guardi activities, n. Once the m continuation 
instances have been set running, the remaining guard instances are cancelled. Any Guardi instances 

a- to cancelled do not result in the execution of a continuation activity. going 

3.1.14 Discriminator - Discriminator m from n 

The Discriminator Liesbet construct is a direct facilitation of the DiScHminator M from n YAWL 

workflow pattern, which is [125,64] "[a] point in a workflow process that waits for ?n of the incoming 

branches to complete before activating the subsequent activity". 

Easy Syntax 

Discriminator(m)(Gua, rdl, ..., Guardn; ContAct) 

Informal Operational Semantics 

When the Discriminator is running, it Avaits until m of the narned Guardi instances have gone C, 0 
to Completed, and then executes an instance of ContAct. Any outstanding guard instances are 
then cancelled. The discriniinator instance goes to Completed when the continuation activity and 

guard instances have finished. If a sufficient nuinber of guard instances fail for the threshold never o0 
to be reached, the discriminator instance is cancelled. 

3.1.15 Multi* - Multiple-Instance Activities 

Alultiple-instance activities enable the creation of multiple instances of the same ExecAct activity. 
There are four types of multiple-instance activity, which can be classified as four quadrants specified 
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along two axes. One axis is whether the number of child instances that may be created is limited, 

or not, and the other axis is whether child instances must execute sequentially, or not. This 

classification leads to the following types. 

Easy Syntax 

MultiLimit(n)(ExecAct(join(ExecActJoin))) 

Multi(ExecAct(join(ExecActJoin))) 

MultiLimitSeq(n)(ExecAct(join(ExecActJoin))) 

MultiSeq(ExecAct(join(ExecActJoin))) 

Informal Operational Semantics 

When a multiple-instance activity is set running, an initial instance of ExecAct is created. It will 0 
necessarily specify a join condition which is set running. The join condition would be in most 0 
cases an instance of a synchronisation type whose GoQuery would only be satisfiable in a distinct 

way from previous instances of the synchronisation type, for the same inultiple-instance activity. 
To this end, it would make use (not necessarily exclusively) of distinct sub-queries in the GoQuery 

part - see Section 3.1.4. This would ensure that the same satisfaction of ExecActJoin can not be 

used to create multiple instances of ExecAct. 

If the join condition completes successfully, its pertaining ExecAct instance is set running. 
Once this has occurred, for Multi and MultiLimit types, another instance of ExecAct is created, 

and its join condition is set running. For MultiSeq and MultiLimitSeq types, we must wait until 
the instance of ExecAct has finished before another is created. 

If the ExecActioin instance fails (i. e. goes to Cancelled), at any time, the i-nultiple-instance 

activity will not allow the creation of any more ExecAct instances, and goes to Completed once 

all its children have finished. 

We now describe the informal semantics for each of the Liesbet types introduced above. 

MultiLimit(n)(ExecAct(join(ExecActioin))) 

The threshold, n, specified for MultiLimit determines a maximum number of instances of 
ExecAct that may be created. The activity goes to completed when all created instances of 
ExecAct have finished executing. 

Multi(ExecAct(join(ExecActJoin))) 

Multi instantiates ExecAct instances according to ExecActJoin, but there is no firnit on the CD 
number of instances that may be created. 

MultiLimitSeq(n)(ExecAct(join(ExecActJoin))) 

As MultiLimit, but instances of ExecAct are executed sequentially. 

MultiSeq(ExecAct(join(ExecActJoin))) 

As Multi, but instances of ExecAct are executed sequentially. 
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3.1.16 CancelActivity - Cancel Activity 

The CancelActivity Lie sbet construct is a direct facilitation of the Cancel Activity YAWL workflow 
pattern [125,641, where an activitY is cancelled. 

Easy Syntax 

CancelActivity(qtype) 

CancelActivity(qtype in rtype) 

Informal Operational Semantics 

A CancelActivity instance will cancel all running (i. e. Running) and all possible future running 
(i. e. Initial) instances of the named activity type, qtype, within its visibility horizon. Optionally, 

CancelActivity may specify a plain reference type, rtype, see Section 3.1.3, to constrain the 

visibility horizon. 

3.1.17 Exit 

The Exit Liesbet construct is a direct facilitation of the Cancel Case YkWL workflow pattern 
[125,64], where a process instance is removed completely. 

Easy Syntax 

Exit 

Informal Operational Semantics 

An Exit activity instance cancels the root instance of the given Nvorkflow instance, which has the 

effect of cancelling the whole instance. 

3.2 Additional Constraints on the Intended Semantics for 
Liesbet 

At this point, it is necessary to augment the definition of the Liesbet meta-model, presented in 

the previous section, with some further prescriptions regarding the intended semantics of Liesbet. 

We consider it to be appropriate that internal behaviour is prioritised over external behaviour, 

and that the effects of external behaviour on the internal evolution of the model is realised atomi- 

cally rather than allowing it to be interleaved with other (unrelated) internal behaviour. 
0 

a Internal. behaviour is prioritised over external behaviour, that is, the progression of structured 
instances takes priority over the progression of basic activity instances. 

Elaborating, a workflow model should be seen, in enactment, as commencing with a number 0 C, 
of basic activities, or work items, that are offered by the Workflow Nlanagenient, System 0 
(NMIS), for completion by agents'. When one of these activities is completed, the MINIS C, 
offers a new set of activities to agents. Typically, this list will be an extension of the previous C, 

'A WRNIS may also support cancellation of basic instances by an agent. 
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list (with the completed instance withdrawn), where the extension may include some or no 

new instances. The process then repeats - i. e. completion, then a new offer of instances 

- until there is no work left to be done. Every time a basic instance is completed, it is 

appropriate that structured instances within the model (i. e. the marshalling activities) are 0 
advanced as far as possible, before any new offer of (basic) activities to (complete) is made. 
This includes prior to the first offer of basic instances. 

e The effects of external behaviour on the internal evolution of the model is realised atomically 
rather than allowing it to be interleaved with other (unrelated) internal behaviour. 

That is, whenever a childless instance (i. e., an instance of childless structured type, such 
as FreeChoice, or a basic instance) completes, or is cancelled, the effects of this should be 

atomically propagated as much as possible through the activity instance hierarchy. 

By this, we mean: 

- If the childless instance completes, then completion should be propagated up the in- 
0 

stance tree as far as possible. For every parent instance (starting with the parent of the 0 
instance being completed), iff all its other children have finished we may, in turn, mark 
it as completed. 

- If the childless instance is cancelled, then completion is propagated in the same way, 0 
unless the instance is a child of a SeqCancel instance, in which case cancellation is 

propagated upwards until a parent instance is reached which is not a SeqCancel, then 

completion continues to be propagated, according to the description in the previous 
bullet. 

- Once we reach a parent instance whose other children have not all finished, we advance 
this instance as much as possible. For example, if it is a Seq, we propagate execu- 0 
tion down through the instance sub-tree whose root is the next child of the Seq to be 0 
executed. 

According to these semantics, child-bearing instances are only ever progressed as a side-effect 0n0 
of the initial execution of the workflow instance, and of the subsequent completion/cancella- 
tion. of childless instances. We consider such side-effects to be a true reflection of the nature 
of the operation workflow. 

These notions will be crystallised in subsequent chapters. 

3.3 Synchronisation Rules 

We now introduce the notion of synchronisation rules. These are meant as a first step in providing a 

capability for the specification of flexible work-flow models. At the start of this chapter, we asserted 
that the kind of flexibility that we capture with synchronisation rules may neatly be expressed by 

the slogan: Flexible Work-flow = Concrete Model + Policies for Constraint. Synchronisation rules 

capture the policies, constraining the enactment of the workflow model which will have a number 

of possible enactment paths. 
The format for a synchronisation rule is: 

SyncRule(RType, CondQuery, GoQuery) 
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where: 

* RType (rule type) specifies the type of instances to which this synchronisation rule pertains. 

" CondQuery is (in effect) a filter on states - for states which do not match the CondQuery, 
instances of the given RType may be advanced without constraint (by a single step to the 

next state)- 

" GoQuery specifies a query that must be satisfiable in the current state, if the current state 

satisfies the CondQuery, for any instance of RType (including descendants thereof) to be 

advanced in the current state. 

Both CondQuery and GoQuery are constrained to be boolean compositions of simple queries 
(i. e. those without reference types), see Section 3.1.4. 

There is also a four-argunient variant, viz. SyncRule (Ref , RType, CondQuery, GoQuery). 
In this case, Ref is a reference type which acts as a scope for RType, CondQuery and GoQuery, 
in much the same way as reference types are used in queries within synchronisation types (see 
Section 3.1.4). That is, for any instance of RType in a model, we ascertain its ancestral instance 

of type Ref, which is then used to scope the queries CondQuery and GoQuery. The SitCalc-based 

characterisation that we afford synchronisation rules is presented in Appendix Section B. 2. 
To illustrate the utility of synchronisation rules, we present the following example (which is C, 

also used in Chapter Eleven to demonstrate verification of a model constrained with a synchro- 
nisation rule). Given the workflow model (which we use throughout this thesis for illustrative 

purposes): Par(Seq(A, B) , Seq(C, D)), it may be the case that we have a business rule that says 
that once activity A has been completed, further progression of activities C and D must be blocked 

until execution of B completes. Flexibility would come from enablinddisablirig this business rule, 
accordina to current priorities. A specific example might be where activity A corresponds to a 
customer returning a complaints form, and B corresponds to the processing of the form. In this 

case, we may seek to prioritise completion of B over C and D, which may relate to general Customer 
Relationship Management activities, such as making offers to the customer. 0 C5 

The described business rule would be effected as a synchronisation rule, viz. SyncRule(S2, 
Completed-act (A) , Completed-act (Sl)), where SI=Seq(A, B) and S2=Seq(C, D). The rule stipu- 
lates that as soon as the (only) instance of A is in the Completed state, descendants of S2 (namely, 
the instances of C and D), and S2 itself, may not advance until the sequence S1 (containin- A and 
B) has completed. 

Synchronisation rules may be used to effect Liesbet's PriPar construct. PriPar(AO,..., A,, ) 

will effect the running of basic activities within Aj at a higher priority than those in Ai, for j<i. 
For example, in the case of 

PriPar(Seq(A, Go( ... ), B), Seq(C, D)) 

A and C are both set running; but, to be-in with, only A may be completed. However, once A has 00 
been completed, and while the Go synchronisation instance is still running (and thus B has not 
been started), we may complete C, and then, even, complete D. 

This would be expressed as a Liesbet model, using a regular Par type, thus: 00 
P=Par(SI, S2), where Sl=Seq(A, Go( ... ) B) and S2=Seq(C, D), 

with the model bein- constrained according to the following synchronisation rule: 000 
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SyncRule(S2, -Finished-act(Sl in P), -Riinning-act(A in P) A-Running-act(B in P)) 
The rule says that if the current state is one where S1 has not finished executing, then for S2 

to be advanced then A and B cannot be Running. (For all states that do not match the CondQuery 
filter, i. e. those where S1 has finished, S2 may be advanced). 

A workflow author needs to be careful with the use of synchronisation rules, as it may be 

unclear how they will behave in the context of a particular workflow model. However, these rules 
have a natural cliaracterisation in our Situation Calculus-based semantics for Liesbet, and con- 

sequently are easily incorporated into our verification engine, meaning that workflow models that 
incorporate their use can strailit forwardly be checked for properties such as workflow soundness 
(see Section 7.1). 

3.4 Liesbet Constructs as Abbreviations 

Many of the constructs of Liesbet, i. e. those in a set labelled Liesbetabbrv7 may be cast as 

abbreviations. This means that they may alternatively be expressed in terms of other Liesbet 

constructs from a fundamental set of constructs, labelled Liesbetprim. This intuition (captured 

at the information view) is confirmed in Section 6.5, where we argue the following definitions of 

these abbreviations to be sound. This is an important contribution as it allows us to propose a 

fundamental set of primitives as embodying the real essence of ivorkflow. 

Liesbetabbrev Consists Of- Join/transition conditions, Seq, UnorderedSeq, Choice, DefaultChoice, 

MultiChoice, DeferredChoice, FreeChoice, Empty, Multimerge, Discriminator, MultiLimit, 

MultiLimitSeq, MultiSeq and Exit. 

Liesbetp, i,, which may be considered to be primitive, or fundamental to the expression of 

Liesbet models, consists of. Act, SeqCancel, Par, Go, Stop, Multi and CancelActivity. 

Mapping Liesbetabbrev to Liesbetprim 

We now present Liesbetp, i,, -based clia ract erisat ions for each of the constructs in Liesbetabbrev- 
Note that we have used constructs in Liesbetabbrev in some of the following characterisat ions, such 0 

as Choice for the definition of DeferredChoice. However, their use can simply be replaced for 

the presented Liesbetri,,, -based charac t erisat ions, such as that for Choice. We have presented 
the clia rac terisat ions, in this way, for simplicity. 

In the following, we omit a presentation of the Liesbetpri, -based characterisations for join 

and transition conditions, as we have already presented these, in Section 3.1.7. 

9S= Seq(A, B, C) 

S= PaLr(A, B1, C2) 

B' = SeqCancel(Go(Finished_act(A in S)), B) 

Cl = SeqCancel(Go(Finished_act(B in S)), C) 

The execution of activity instance B (i. e. moving B to the Running state) (resp. C) is blocked 

until A (resp. B) has finished. 

oU= UnorderedSeq(A, B, C) 
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U Par(A', B', Cl) 

A' SeqCancel(AJoin, A) 

BI SeqCancel(BJoin, B) 

Cl SeqCancel(CJoin, C) 

AJoin = Go(-Running-act(B in U) -Running-act(C in U)) 

BJoin = Go(-Running-act(A in U) -Running-act(C in U)) 

CJoin = Go(-Running-act(A in U) -Running-act(B in U)) 

The execution of any of the activity instances, A, B, or C, is blocked whenever one of its 

siblings is in the Running state. 0 

9C= DefaultChoice(G1, Cl; ... ; Gn, Cn; De) 

C= Par(GCICancel, GCIMain,..., GCnCancel, GCnMain, Del) 

GCICancel = SeqCancel (Stop (-Initial-act (Cl in C) + Cancelled-act(GCIMain in C), 

-Initial-act(C2 in C) + ... + 

-Initial-act(Cn in C) + -Initial-act(Del in W, 

CancelActivity(GClMain in C)) 

GCIMain SeqCancel(Gl, ClJoin, Cl) 

ClJoin Go(Initial-act(C2 in C) I ... I Initial-act(Cn in C)) 

De' = SeqCancel(DeJoin, De) 

DeJoin = Stop(-Initial-act(Cl in C) ++ -Initial-act(Cn in C), 

Cancelled-act(Gl in C) 1 Cancelled-act(Gn in C» 

The execution of any of the continuation instances (not including the default instance) may 0 
only occur if its guard has been completed, and none of the other continuation instances 
have moved from an Initial state. The default instance may be executed iff all of the guard 
instances have been cancelled. 

oC= Choice(GI, Cl; ... ; Gn, Cn) 

The characterisation is the same as that for DefaultChoice, except that Nve define the De 
type ourselves, viz. 

De = CancelActivity(C in C) 

This has tile effect of cancelling the Choice if all of the guard instances get cancelled. 0 C, 0 

eM= MultiChoice(Gl, Cl; ... ; Gn, Cn) 

M= Par(SeqCancel(Gl, Cl), ..., SeqCancel(Gn, Cn)) 

aC= DeferredChoice(Cl, ..., Cn) 

C= Par(Chl, C11, ..., Chn, Cn') 

C11 = SeqC&ncel(Stop(Completed-act(Ch2) + ... + Completed-act(Chn), 

Completed-act(Chl)), Cl) 
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The environment signals a choice by completing one of JChl, 
..., ChnJ. Once a choice is 

0 C, 
made, the corresponding branch is executed and the rest are cancelled, by virtue of their join 

conditions. 

eM= Multimerge(Gl, ..., Gn; CI, ... ' CM) 

M= Par(Gl', ..., Gn', C1', ... ' Cm') 

Gil = Par(GICanc, GO 

GICanc = SeqCancel(Stop(Finished-act(G1 in Gil), 

-Initial-act(Cl in M) I ... I -Initial-act(Cn in M)), 

CancelActivity(Gll in M)) 

C11 = SeqCancel(ClJoin, Cl) 

C2' = SeqCancel(C2Join, C2) 

ClJoin = Go(Finished-act(Gl in M) Finished-act(Gn in M), 

Completed-act(Gl dist in M) + ... + Completed-act(Gn dist in M)) 

Moin = Go(Finished-act(GI in M) I ... I Finished-act(Gn in M), 

-Initial-act(Cl in M) I 

(Completed-act(Gl dist in M) + ... + Completed-act(Gn dist in M))) 

The first continuation instance may be set running if any of the guard instances has com- 

pleted. We use distinct queries so a record of which guard instance was used to satisfy the 

join condition for the continuation instance is kept. The second continuation instance may 
be set running only if the first continuation instance has already been set running and an- 

other guard instance has been satisfied. Once all guard instances have finished, we cancel the 

remaining continuation instances that are yet to be set running. Once all the continuation 

instances are no longer in the Initial state, we cancel outstanding guards. 00 

oD= Discriminator(m)(GI, ..., Gn; C) 

D= Par(Gl, ..., Gn, DJoin, C', Ti) 

DJoin = Go(Cancelled-act(GI dist in D) ++ Cancelled-act(Gn dist in D) 

... (n-m+l) times ... I 

Cancelled-act(GI dist in D) ++ Cancelled-act(Gn dist in D), 

Completed-act(Gl dist in D) ++ Completed-act(Gn dist in D) 

... m times ... I 

Completed-act(Gl dist in D) ++ Completed-act(Gn dist in D)) 

Cl = SeqCancel(CJoin, C)) 

CJoin = Go(Completed-act(DJoin in D)) 

Ti = Choice(Cancelled-act(DJoin in D), TiCanc, Completed-act(DJoin in D), TiComp) 

TiCanc = CancelActivity(D in D) 

TiComp = CancelActivity(Gl in D) CancelActivity(Gn in D) 

Here, we use the synchronisation activity DJoin to assess whether the threshold for guard 
instances completing successfully has been reached, or whether it will necessarily not be 
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reached. Once m guards have completed successfully, the instance of DJoin completes. But, 

if n-m+1 -uard instances cret cancelled, then m instances will never get completed. Thus, 
0 ID 

the instance of DJoin gets cancelled. The join for the continuation instance depends on the 0 
status of Djoin - once a result for DJoin is determined, a result for Cioin will be established. 
If DJoin completes, completion of Cioin will follow, causing the execution of C. In this case, 0 
Ti ensures that the remaining running guard instances are cancelled. If DJoin gets cancelled, 00C, 
Ti ensures that the whole discriminator activity is cancelled. 

o ML = MultiLimit(n)(E(join(J))) 

ML = Par(El, J(ctype(Jl)), E2, J2,..., En, Jn) 

El = SeqCancel(Go(Cancelled-act(Jl in ML), Completed-actOl in ML)), E) 

J2 = SeqCancel(Go(Cancelled-act(Jl in ML), Completed-act(Jl in ML)), J) 

E2 = SeqCancel(Go(Cancelled-act(J2 in ML), Completed-act(J2 in ML)), E) 

J3 = SeqCancel(Go(Cancelled-act(J2 in ML), Completed-act(J2 in ML)), J) 

n instances of E (the ExecAct) and J (the join condition) are created. Tile first join condi- 
tion, which is declared to be of type naine ii in the characterisation of ML, is immediately 

set running. If it gets cancelled, then El's join fails, as well as J2's. Cancellation is propa- 

gated through the remaining join and execution activity instances. If the first join condition 0 C, 
completes successfully, the first execution activity instance, El, is set running, as well as the 0 
next join condition, J2. If J2 fails, then cancellation is propagated to the remaining join and 

execution activity instances, as before. 

e MSL = MultiLimitSeq(n)(E(join(j))) 

MSL = Par(EI, J(ctype(Jl)), E2, J2,..., En, Jn) 

El = SeqCancel(Go(Cancelled-act(Jl in MSQ, Completed-act(JI in MSL)), E) 

J2 = SeqCancel(Go(Cancelled-act(Jl in MSQ, Finished-act(El in MSL)), J) 

E2 = SeqCancel(Go(Cancelled-act(J2 in MSQ, Completed-act(J2 in MSL)), E) 

J3 = SeqCancel(Go(Cancelled-act(J2 in MSQ, Finished-act(E2 in MSL)), J) 

As MultiLimit, except that when the first join condition completes successfully, the instance 

of El is set running, but the instance of J2 has to wait until El has finished before it is set 0 
running, and so on. 0 

9 MS = MultiSeq(E(join(j))) 

MS = Multi(E(join(J'))) 

JI = SeqCancel(Go(Finished-act(E dist in MS) + Running-act(MS dist in MS)), J) 

A MultiSeq type may be considered an abbreviation for a Multi type whose join is a corn- 
posite condition, which prescribes firstly that either: 
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- This is the first join condition instance, as determined by a distinct query on MS being 
0 

in the Running state, or 

- The previous execution activity instance must have finished, as determined by a distinct 

query on an instance of E finishing 

And secondly, that the original join condition on the execution activit instance, J, holds. 0y 

o Exit 

CancelActivity(Root) 

Root is a distinguished custornised type name, defined by Liesbet, for the root instance of 
a workflow model. 

e Erapty 

Go (True) 

o FC = FreeChoice 

FC = Choice(Empty, Empty; Empty, CancelActivity(FC in FC)) 

There is a race between which of the two Empty guard instances, in the Choice, will complete 
first. If the left-hand Empty guard instance wins out, then the continuation instance to be 

executed is an instance of Empty, which trivially completes. Thereafter, the Choice trivially 
completes. If the right-hand Empty guard instance whis out, then the continuation instance 00 
to be executed is an instance of CancelActivity, which cancels the Choice instance. 

3.5 Support for YAWL Workflow Patterns 

In Table 3.1, we present an overview of how the Liesbet meta-model supports the YAWL workflow 
patterns [1251. 

We provide tile following. comments to accompany this table: 
(i) Synchronisation, i. e. XOR/AND/OR-join behaviour, is supported thus: 

* Implicit Synchronisation when activity completes. 

o Arbitrary Synchroniser can run in parallel. 

(ii) Our version of the Discriminator pattern is more general than that presented in [1251. In [125], 

Discriminator is supported by means of a threshold on the number of completed instances 

of a multiple instance activity. While we also support this sort of Discriminator, our main 
support for the Discriminator pattern is through the Discriminator activity type, which 
can be used to synchronise on arbitrary activity instance executions, not just those of a 
continuation activity type belonging to a single multiple-instance activity instance. 0 43 0 

(iii) Liesbet comprehensively supports the definition of arbitrary cycles, by virtue of Multi types. 
Liesbet disallows the specification of cycles which may otherwise occur in a Liesbet model, 
as they may always be replaced by the use of Multi types. This restriction provides greater 
clarity and simplicity to the semantics of Liesbet. For example, the model A=Seq(A, B) 
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Workflow Pattern Satisfied Howý? ý 

1 Sequence Seq 
2 Parallel Split Par 
3 Synchronisation, a. k. a. AND-JOIN yes(i) 
4 Exclusive Choice DefaultChoice, Choice 
5 Simple Merge, a. k. a. XOR-JOIN Yes(i) 
6 Multiple Choice MultiChoice 
7 Synchronising Merge, a. k. a. OR-JOIN yes(i) 
8 Multiple Merge Multimerge 
9 Discriminator Discriminator(") 
10 Arbitrary Cycles yes(iii) 
11 Implicit Termination Yes(iv) 
12 Multiple Instances (Nils) Without Synchronisation Par, MultiLimit, MultiM 
13 Nils With A Priori Design Time Knowledge Seq with Par(10 
14 Nils Instances With A Priori Run Time Knowledge MultiLimit or Muiti(v") 
15 Nils Without A Priori Run Time Knowledge MultiLimit or Multi(viii) 
16 Deferred Choice DeferredChoice 
17 Interleaved Parallel Routing (Unordered Sequence) UnorderedSeq 
18 Milestone Stop or Go(") 
19 Cancel Activity CancelActivity(x) 
20 Cancel Case Exit(Xi) 

Table 3.1: Satisfaction of YAWL Workflow Patterns [125,64] 

contains a cycle, which may instead be written as Seq(Multi (A), B). A cycle check is made 
by the verification tool that we have implemented for Liesbet - see Section 10.3 - to ensure 
that cycles that may be introduced into a Liesbet model, other than through the use of C, 
Multi types, are not present. Note that the use of arbitrary cycles (by means of Multi 
types) should be carefully marshalled by an authoring tool, as their collective effect is often 

unclear. 
(iv) Liesbet operates on the basis of implicit termination. Unlike in Petri-net formalisations, for 

instance, where there is a need to aggregate tokens, and a useful way of doing this is to have 00 00 
an explicit end place for a construct, implicit termination is a good choice for Liesbet as it 

promotes an intuitive and succinct way of way of authoring Liesbet models. 0 
(v) We consider the following interpretations of this workflow pattern (#12): 

0 

The number of instances is known a pioii at design-time, in which case we can effect 0 
the pattern according to the following Liesbet coding. 0 ?D 

Par(ExecAct, ..., ExecAct, Cont) 

The execution of the ExecAct instances and the continuation of the workflow model 
(Cont) is initiated at the same time. That is, we do not synchronise Cont on the 
instances havin- finislied. 

0 
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The number of instances is unknown at design time, in which case we can effect the 0 
pattern with either a MultiLimit, or Multi, as follows. Again, we do not synchronise 
Cont on the ExecAct instances having finished. 

Par(MultiLimit(T)(ExecAct(join(ExecActJoin))), Cont) 

Par(Multi(ExecAct(join(ExecActJoin))), Cont) 

(vi) Pattern# 13 has the following simple coding in Liesbet and does need any additional Lie sbet C, 
construct. The execution of the continuation instance is synchronised on the completion of 
ExecAct instances. 

Seq(Par(ExecAct, ..., ExecAct), Cont) 

(vii) For pattern #14, we do not know how many instances will be created a priori at design- 
0 

time. However, this does not mean that we cannot bound the number of instances that may 
be created. By imposing a bound, we arrive at a simpler semantics for the pattern. The 

appropriate Liesbet construct, in this case, is MultiLimit (or MultiLimitSeq). If we do 

not wish to impose a bound, the appropriate Liesbet construct is Multi (or MultiSeq)- 

In order to represent a lower limit on the number of instances created, as described in [125], 

we could define a new Liesbet type as a macro, which would elaborate to: 
Par(ExecAct, ... 1 instances .... ExecAct, MultiLimit(m-1)(ExecAct(join(ExecActJoin)))) 

Here, there are I instances of ExecAct which are created alongside a MultiLimit which 
specifies a limit for further instances of m-1, where I is the least number, and rn is the 

maximum number, of instances that may be created overall. 
In order to place a threshold on completion, after which all outstanding instances get can- r, 
celled, as described in [125], we could define another new Liesbet type as a macro, which 

would (in tile case of Multi) elaborate to: 

P=PriPar(CancelActivity(M in P)(join(CAJoin)), M) 

M=Multi(ExecAct(join(ExecActJoin))) 

The join condition CAJoin, for the CancelActivity type, would be a Go activity type which 

would complete successfully once the given number of instances of the ExecAct success- 
fully completes. To see bow this may be expressed, refer to the elaborated definition of the 

Discriminator pattern, described in Section 3.4. 

Tile purpose of the CancelActivity activity is to cancel tile Multi once enough instances 

of its contained ExecAct type have completed. This behaviour is prioritised, as specified 
b using PriPar. It is notable that the formalisation in [125] does not appear to enforce y0 

such a prioritisation. That is, even though it specifies cancellation of remaining instances as 

a possible next transition (according to its transition systern-based semantics), it does not 

enforce such a transition as necessarily occurring next. 
(viii) Ibid, for pattern #15. 

(ix) Using the Stop and Go synchronisation types, in Liesbet, a workflow author has much 

greater expressivity in capturing intended synchronisation behaviour than just the Milestone 
0 

behaviour in YAWL. See also the conclusions to this thesis (Chapter Twelve) for more discus- 

sion, regarding this matter. 0 C, 
The Milestone YAWL workflow pattern is where (125,64] "[tllie enabling of all activity depends 

0 
oil the case being in a specified state, i. e. the activity is only enabled if a certain milestone 



58 Chapter 3. Liesbet AIetamodel 

has been reached which did not expire yet. Consider three activities named A, B, and C. 
Activity A is only enabled if activity B has been executed and C has not been executed yet, 
i. e. A is not enabled before the execution of B and A is not enabled after the execution of 
C. Iý 
The behaviour described in the example of the three activity types, A, B and C, can be effected 

with a Stop, thus: Stop (Completed-act (C) , Completed-act (B) ). 

(X) In Liesbet, cancellation is achieved by moving the implicit state machines for target activity 
instance/s, and the machines of their descendant instances, to the Cancelled state. 

(xi) In Liesbet, cancellation of the process instance is achieved by cancelling the root instance, 

which has the effect of propagating cancellation to all extant activity instances. 

3.6 Mapping WS-BPEL to Liesbet 

Having shown how we support the YAWL workflow patterns, it is instructive to consider how we 0 
might support (the verification of) the Web Services Composition language WS-BPEL. We present C' 01 
a mapping for the control flow aspects of WS-BPEL to Liesbet, omitting fault, compensation and 00 
termination handling, as well as correlation, in order to provide a means of verifying properties of 00 
WS-BPEL compositions, such as workflow soundness (see Sections 1.1 and 7.1). 

Note that the mapping, described here, will strip away all information that is not relevant to 0 
verifying WS-BPEL at the control perspective. As such, the resultant Liesbet model, while sufficient 
for some verification functions, does not represent a complete formalisation of the semantics of 
WS-BPEL. For instance, information pertaining to the data perspective of WS-BPEL models is not r, 
accounted for. In this case, we will assume that execution may proceed down any branch of 
<pick> construct, for example. This would not be a limiting assumption, but may be overly 

cautious for individual instances of the construct. 

3.6.1 Mapping of Join and Transition Conditions 

We assume that all links and activities within a composition are uniquely named, and that implicit 

join and transition conditions (see Section 2.2.3) are made explicit. If not, this would be trivially 

enforced by an assumed pre-processor. 
When an activity specifies incoming links, in WS-BPEL, then it is specifying a join condition on 

its execution. Such an activity is mapped, to Liesbet, as we would map the specification of a 
join condition in Liesbet, i. e. to a two-child SeqCancel, where the first child is the join activity 
type, as presented in Section 3.1.7. When an activity specifies outgoing links then it specifies a 

number of accompanying transition conditions. These are collected together, when mapped to 

Liesbet, in tlib Seq containing the join/inain activity and transition condition types, described in 

Section 3.1.7. 

Elaborating, for an activity with incoming and outgoing links, the Liesbet mapping would be: 
n00n 

Seq(SeqCancel(JC, A) , LTC,, LTC, ), where JC is the mapped join condition type, A is the 

mapped main activity, and LTC,, LTC,, are the mapped transition conditions of the activity, 
in the order that the appear in the original <sources> WS-BPEL container. For an activity with y 
just incoming links, the Liesbet mapping would be: SeqCancel (JC, A). For an activity with just 
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outgoing links, the Liesbet mapping would be: Seq(A, LTC,, ..., LTC, ). For an activity with 0ý0 
no links, the Liesbet inapping would be: A. 

For an activity with outgoing links, any of the mapped transition condition types, LTC,, 

LTC, is derived as follows. If tile link transition condition is simply the expression true, then 

tile mapped type will be a named Empty type. This will trivially complete. Otherwise, as tile 

transition condition has tile possibility of evaluating to either true or false, the mapped type 

will be a named FreeChoice type, which will non-deterministically complete or get cancelled. The 

name given to a mapped transition condition type is its (unique) pertaining link name. 
We now consider the mapping of join conditions. As all example, which will make the reading 

of the following description easier to follow, consider tile WS-BPEL process fragment in Figure 3.5. 
Ignoring the "tricky" labelling afforded to this fragment for the time being, we note the top-level 000n0 
<f low> activity contains a pair of . <link> definitions and three activities, which use these links. 

The <empty> activity, contained within the <if > activity, is a target of tile toSkipped link, 

whose source is contained within the <receive> activity. Its implicit join condition is that the 

toSkipped link evaluates to true. The mapping of tile source of this link would be a link transition 

condition, as described above, attached to the mapping of the <receive> activity. 0 
In general tern-is, the join condition of all activity is mapped to a Go type. Its GoQuery is a 

direct i-napping of the join condition specified in the original WS-BPEL source. Each query on link 

status, participating in the original join condition, will be mapped to a Completed-act MINKNAME 

in FLOWACT) query, where LINKNAME is the unique name given to the link, and FLOWACT is the 

name of the <f low> activity which defines the link. In WS-BPEL terms, this has the effect of 

querying whether the status of the link is true. In the source presented in Figure 3.5, the implicit 00 
join condition of the <empty> activity would be mapped to a Go type with GoQuery (in part): 
Completed-act(toSkipped in foobar). 

Arbitrary join conditions are mapped to a Liesbet expression tLiesbetiC by the mapping 0 
function, MBPELg-J, defined thus. Without loss of generality, or expressivity, we cast a join 0 
condition as an arbitrarily nested expression that makes use of just one- and two-argument boolean 

operators. 

-MBPELI-C] ý -MBPELJCý 

-'%4BPELjCj 
A C21 ý A4BPEL[Cil I MBPELIC21 

MBPELICI V C21 ý MBPELICII + MBPELIC21 

MBPELjQuery on link: LINKNAME, flow: FLOWACT] = Completed-act(LINKNAME in FLOWACT) 

The inapped Go type, effecting the join condition, is: Go (allLinksIn, tLiesbetJC I allLinksIn), 
where allLinksIn is a query which is only satisfied if all of the inapped incoining links have a 
value, that is all of tile pertaining source activities (either FreeChoice, or Empty, as inapped) have 
finished. The definition of allLinksIn is thus: Finished-act (LINKNAME, in FLOWACTI) I ... I 
Finished-act (LINKNAME,, in FLOWACTn) 7 where there is an occurrence of Finished-act (LINKNAMEj 
in FLOWACTi) for every link, i, whose status is queried within tile join condition. 

The specification of allLinksIn in the GoQuery ineans that all links have to have a 
before the query, i. e. join condition, call return a result. The specification of allLinksIn as the 
StopQuery means that, once all links have a value, if the GoQuery cannot be satisfied then tile join 

condition inust be false. Thus, Nve fail (i. e. cancel) the join condition (i. e. Go type). 
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It is worth making a note about the criterion, specified at the end of Section 2.2.6; namely, that 

an activity's incoming links must all have had their values determined before outgoing links can be 

set to f alse (as part of dead-path elimination). Ali example of the pertaining issue is as follows. It 
is taken, nearly verbatim, from Section 11.6.2 of [87]. In the example, tile toSkipped link creates 
a control dependency from the <receive> activity to the <empty> activity in the <if >. The 
f romSkipped link creates a dependency from the <empty> activity to the <reply> activity. These 
two links create a transitive dependency from the <receive> activity to tile <reply> activity. 
Even though the <if> condition evaluates to false, thus skipping the <empty> activity, the 
transitive dependency is retained; and the status of f romSkipped is not set to false until after 
the status of toSkipped is known. 

The semantic charact erisat ions for Liesbet, in the forms presented in Sections 5 and 6, are 

not capable of accounting for this criterion. To do so requires a non-trivial extension to these 

characterisat ions, which is not interesting from the point of view of this thesis. However, we have ID 
accommodated it in our implementation of the verification engine for Liesbet, and details of the 0 
required extensions to the semantic characterisations of Liesbet is presented in the documentation 

for the engine, which is available from the author on request. 0 

Some further notes are appropriate. WS-BPEL scopes may be marked as isolated, which does 

not carry quite the same meaning as our use of the word in a Liesbet context. For the discussion 
0 

here, it suffices to say that for a WS-BPEL marked as isolated, the status of links leaving the scope 0 
will not be visible to targets outside the scope until tile scope has completed (see Section 2.2.7). In 

mapping this criterion, the allLinksIn expression, for join conditions having incoming links which 

cross isolated scope boundaries, will include further Fini shed-act (SCOPE in FLOWACT) queries on 
the given scopes, where FLOWACT for any such query is the name of the <flow> activity defining 

tile link. 

The mapping from WS-BPEL includes the generation of a number of synchronisation rules, 

which prevents the execution of activities, which are not start activities, until a start activity has 

completed (see Section 2.2.1). We identify all of tile activities, in a composition, which could 

count as start activities. We then divide this group into those activities which are marked as 

start activities (by virtue of their createInstance attribute being true), and those that are not. 
For every activity in the latter group, we write a synchronisation rule indicating that it may not 

advance until an activity from the former group has been executed. Instances of a synchronisation 

rule, applied for this purpose, would look as follows. 

SyncRule(Acti, True, Finished-act(Act,, I) + ... + Finished-act (Act,,, )) 

Here, Acti. is the name of an activity from the set of non-starters, and each Act,, j is one of the 

start activities. The rule says that a non-starter may only advance once a starter has finished. 

A scope with event handlers is mapped to: S=Par (A, EvHal, ..., EvHa,, ), where A is the main 

activity of the scope, and each EvHai is an event handler. An Event Handler is a Multi activity 
type, whose join condition is a Stop activity type whose StopQuery is Finished-act (A in S), 

which will have the effect of disabling the event handler from creating further instances once A has 

finished (see Section 2.2.7). 
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<flow name="foobar"> 

<links> 

<link name="toSkipped" /> 

<link name="fromSkipped" /> 

</links> 

<receive ... 
<sources> 

<source linkName="toSkipped" 

</sources> 

</receive> 

<if> 

<condition> 

... <! -- evaluates to false 

</condition> 

<empty name="skipped"> 
<targets> 

<target linkName="toSkipped"> 

</targets> 

<sources> 

<source linkName="fromSkipped"> 

</sources> 

</empty> 

</if> 

<reply ... > 

<targets> 

<target linkName="fromSkipped" 

</targets> 

</reply> 

</flow> 

Figure 3.5: Process Fragment Capturing Soine'Ricky WS-BPEL Link Semantics 

3.6.2 Mapping of Other Activity Types 

The inapping for the other activity types, presented in Table 2.1, is presented in Table 3.2. 

We also note that WS-BPEL provides no direct support for YAWL patterns: Multiple Merge, 

Discriminator, Arbitrary Cycles, Interleaved Parallel Routing and Milestone. In many cases, where 

use of one of these patterns would be desirable to a workflow model author, the specific functionality 

required would still be able to be captured in WS-BPEL. However, to do so may be non-trivial. The 

common cause behind the said modelling difficulty for all five listed patterns is WS-BPEL's link 

semantics. For WS-BPEL to more easily support these patterns, modification of its link semantics 



62 ter 3. Liesbet Aletamodel 

<receive>, <reply> 

<invoke>, <assign>, <, wait> 

Abstracted as Empty activity type 

<exit> Exit 

<empty> Empty 

<sequence> Seq 

<if> Choice, DefaultChoice 

<while> MultiSeq 

<repeatUntil> MultiSeq with "free iteration" 

<forEach> MultiLimit, MultiLimitSeq, Multi, MultiSeq 

<pick> Choice 

<flow> Par 

Notes: 

9 For <repeatUntil>, its mapping is a MultiSeq with a "free iteration", meaning that 

the join condition on the contained execution activity (ExecAct) is a distinct query on 

the MultiSeq having been started, in disjunction with the mapping of <repeatUntil>'s 

condition. 

e For <pick>, the onMessage and onEvent conditions are mapped to Empty, which trivially 

completes. 

Table 3.2: Mapping of Some WS-BPEL Activity Types to Liesbet 0 

would be necessary. 

3.7 Concluding Remarks 

In defining Liesbet, we have sought to understand the true nature of workflow, and thus the 
fundamental concepts that need to be represented with Liesbet. We have presented the constructs 
of Liesbet, along with a specification of their informal operational semantics. In Chapters Five 

and Six, we will provide formal characterisations of the semantics of these constructs. We have 

also presented the definition of additional intended semantics for Liesbet, which prescribe further 

constraints regarding the evolution of Liesbet models. 00 
We have taken our first step towards greater flexibility in workflow models through the proposal 

of Synchronisation Rules, which may be used to provide a notion of flexibility that may be captured 
as Flexible lVork-flow = Concrete Model + Policies for Constraint. We have described how such 
rules may be useful. For instance, we are able to capture the behaviour of Liesbet's PriPar 

construct using such a rule. 
We have also presented a reduced set of patterns with which (we show) all patterns may be 

represented. This is a useful result as it enables us to propose the true nature of workflow to be 

captured by (the semantics of) this reduced set. We provide further elaboration of this point in 

the conclusions to this thesis, presented in Chapter Twelve. 

We have also documented how Liesbet captures all of the YAWL patterns, as well as describing 
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its support for modelling the control flow perspective of WS-BPEL, in order to usefully facilitate 
0 

verification of WS-BPEL compositions. 

In the next chapter, we present some example workflows represented using Liesbet in order C, 
that the reader may gain some insight into how it is used. C, 0 



Chapter 4 

Liesbet Meta-model Examples 

In this chapter, we show the use of Liesbet to represent some examples of workflow, proposed 
by members of the Business Process Management (BPNI) community. It is insightful to consider 0 C, 
the modelling of these examples using Liesbet as most of them (as indicated by [8] citations) 00 
have been su--ested as benchmarks by which ontologies for workflow should be evaluated. The 

nO 0y 
also provide a good coverage of Liesbet's constructs, which is useful for the interested reader in 

00 
understanding the operation of the patterns. 

The Synchronisation Example (4.1) provides a simple example of synchronisation between 
the execution of one activity instance and the completion of another, where these instances 

execute in parallel threads. This is a motivating example from [122]. 0 

e The Distinct Query Example (4.2) provides an example of the need for distinct reference 
queries. This sort of query is principally required within Multi* activity types (but may also 
be required in other types, such as Multimerge) to differentiate between instances of activity 
types in satisfying a query. 

9 Examples (4.3), (4.4) and (4.5) are some benchmark examples from [8]. 

4.1 Synchronisation Example 

This is an example of where we need to synchronise the execution of one activity instance to 

occur after another has finished. As can be seen from Figure 4.1, we execute A, then execute the 

sequences B, C, D and E, F, G in parallel, and after both sequences have completed, we execute H. 

There is a join condition on the execution of F that (the instance of) C must have completed first. 

The Liesbet definition is st ra ight forward, viz. 

Seq(A, Par(Seq(B, C, D), Seq(E, F, G», H) 

F= Act(join(Go(Completed-act(C»» 

We start by representing the workflow model without the additional synchronisation. This is 
0 

accounted for by the first line, which is a sequence of a basic instance A, a parallel instance, followed 

by a basic instance H. The parallel instance consists of two sequences of three basic instances: B, 

C and D, and E, F and G. 

64 
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Par'. #ý 

Figure 4.1: Synchronisation Example [122] 

MultiLimit(2) 

A 

Par B 
P MultiLimit(2) 

3. Lim M mult. ultiLimit(2) 

join (Go (Completed act(A dist in P) I Completed_act(B dist in 

Figure 4.2: Distinct Query Example 

The synchronisation is added in the second line, where it says that F is a basic activity instance 

that has a join condition, which is a Go activity type with GoQuery Completed-act(C), which 

means that the join condition will block until the instance of C has been completed. 

4.2 Distinct Query Example 

In Figure 4.2, we present an example illustrating the need for distinct querying. Here, we use 00n 
distinct querying in order to appropriately satisfy the join condition on basic instance C, which is C, 
the execution activity type (ExecAct) in a MultiLimit instance. 

The Liesbet definition of the model is as follows. 

P= Par(MLA, MLB, MLC) 

MLA= Multi-Limit(2)(A) 

MLB= MultiLimit(2)(B) 

MLC= MultiLimit(2)(C(join(Go(Completed-act(A dist in P) I Completed-act(B dist in P))))) 

The join condition on C, in MultiLimit instance MLC, is only satisfied when distinct instances 

of A and B (as created by MLA and MLB instances) liave completed. If distinct querying were not 

used then any completed instance of A and any completed instance of B could be used to satisfy 

the join conditions of the two instances of C, created by MLC. 
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chtck insufance 

, Aij D-- -sp 1it At ID-j 0 in 

phone garage 

start register classify 

check insurance check damage history phon-ý gjraq, ý 

letter 

&Cidý Z-ý 
end 

Pay 

Fi-ure 4.3: Insurance Company Workflow as a YAWL EWF-net, from [8] 
0 

4.3 Insurance Company 

The following example is of an Insurance Claim Handling Procedure, adapted from [8). 
0 

An insurance company processes claims from its drivers for traffic accidents, using the following 

procedure. Every claim made is Registered, and then Classified. There are two categories 

of classification: simple and complex claims. For simple claims two activities need to be 

executed: Check Insurance and Phone Garage. These activities are independent of each other. 
The complex claims require three activities to be executed: Check Insurance, Check Damage 

History and Phone Garage. These activities need to be executed sequentially in the order 

specified. Then, having completed the two (for simple), or three (for complex), activities, a 
Decision regarding paying the claim is made. If the decision is to pay, then Payment will be 

made. Then, in any event, a letter will be Sent to the claimant outlining the decision. 

A representation of this example, as a workflow model, using a YAWL ENNIF-net is shown in 0 
Figure 4.3. A representation in Liesbet is as follows. Note that, for simplicity, we do not include 0 
a specification for the decision activities: SimpleClaimDecision and PayDecision. These would 
likely be elaborated to Go or Stop types. 

Seq(Register, Classify, SimComChoice, PayChoice, SendLetter) 

SimComChoice= DefaultChoice(SimpleClaimDecision, Par(CheckInsurance, PhoneGarage); 

Seq(CheckInsurance, CheckDamageHistory, PhoneGarage)) 

PayChoice= DefaultChoice(PayDecision, Pay; Empty) 

At the top-level, we simply have a sequence, largely consisting of the basic activities given 
in italics in the example text. Tile two activity types in the Seq that are not basic activities 

are SimComChoice and PayChoice. The first, SimComChoice, makes a Def aultChoice based oil 

whether the claim is classified as simple or not (i. e. complex claim). This is respectively determined 

by whether theguard activity, SimpleClaimDecision, completes successfully, or is cancelled. If it is 

a simple claim then tile given Par of basic activities CheckInsurance and PhoneGarage is executed. 
If it is a complex claim then tile given Seq of basic activities CheckInsurance, Che ckDamageHi story 

and PhoneGarage is executed. PayChoice is simply another Def aultChoice based on whether the 
Insurance Company decides to pay the claim or not. This is respectively determined by whetber 
tile guard activity, PayDecision, completes successfully, or is cancelled. If the claim is to be paid, 
Pay is executed, otherwise we do nothing (as reflected by Empty). 0 
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Figure 4.4: Complaints Handling Workflow as a YAWL EWF-net, from [81 
0 C, 

4.4 Complaints Handling 

The followin., example is of a Complaints Handling Procedure, adapted from [8]. 

A travel agency has a complaints department. Each complaint is first Registered. After 

registration a form is Sent to the customer with questions about the nature of the complaint. 
There are Vwo possibilities: the customer returns the form within a stipulated time or not. 
If the form is returned in time, it is Processed automatically resulting in a report which can 
be used for the actual processing of the complaint. If the form is not returned on time, a 
time-out occurs resulting in an empty report. Note that this does not necessarily mean that 

the complaint is discarded. 

After registration and in parallel with the form handling, the preparation for the actual pro- 

cessing is started. First, the complaint is Evaluated to ascertain whether further processing is 

needed or not. Note that this decision does not depend on the form handling. If no further 

processing is required and the form is handled, the complaint is Archived. If further processing 
is required, the activity Process Complaint is executed, in which certain further actions may 
be proposed. For the processing of the complaint, the report resulting from the form handling 

is used. The result of the Process Complaint activity is Checked for quality. If the result of the 

check is not satisfactory, the Process Complaint and Check activities are repeated until the 

result is satisfactory. If the result is satisfactory, an employee Executes the proposed actions. 
After this the processed complaint is Archived. 

67 

A representation of this example, as a workflow model, using a YAWL ENN'r-net is shown in 
Figure 4.4. A representation of this example in Liesbet is as follows. Note that, for simplicity, 
we do not include a specification for the decision activity: EvaluateDecision. This would likely 
be elaborated to some Go or Stop type. Tile TimeOut activity is a timer, which completes once 
its implicit expiry time has elapsed. FormReturned completes once the complainant has returned 
their complaint form. We do not model these activity types further either. 

Seq(Register, HandleProcessPar, Archive) 
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HandleProcessPar = Par(Seq(SendForm, HandleFormPar), 

Seq(Evaluate, DefaultChoice(EvaluateDecision, PCMultiSeq; Empty))) 

HandleFormPar= DefaultChoice(Go(TimeOut, FormReturned), HandleForm; EmptyReport) 

PCMultiSeq= MultiSeq(PCSeq(join(Go(Completed-act(Check in PCMultiSeq), 

Cancelled-act(Check dist in PCMultiSeq) + 

Completed-act(HandleFormPar dist in HandleProcessPar))))) 

PCSeq= Seq(ProcessComplaint, Check) 

The workflow model, at the top-level, consists of a sequence of Register and Archive activities 

with some other processing, given by HandleProcessPar in between. HandleProcessPar is a 

parallel activity consisting of handling, and processing, the complaint. 
For handling the complaint, we first execute SendForm, and then HandleFormPar to handle 

the form, if returned. HandleFormPar executes a DefaultChoice whose single guard activity 

completes successfully if the form is returned. In this case, HandleForm will be executed. If the 

guard instance gets cancelled, which would occur if a time-out for return of the form expires first, 
D C, 
then EmptyReport, instead, will be executed. The result of executing HandieForm will be a report 

used in the processing of the complaint. The result of executing EmptyReport will be the generation 

of an empty report. 
For processing the complaint, we evaluate the complaint in Evaluate. We then make a decision, 

on the basis of the evaluation, to proceed with processing the complaint or do nothing further 

with it, regarding processing. If we decide to proceed with processing, the MultiSeq activity, 
PCMultiSeq, is executed. This activity type handles the possible multiple iterations of processing 
the complaint and the result of the processing being checked as to whether it is satisfactory. Its 

execution activity type is PCSeq, which consists of basic activities ProcessComplaint and Check, 

in sequence. The first instance of PCSeq, i. e. the first iteration of the process complaint loop, will 
be executed once the HandleFormPar activity has completed. That is, once a report, either empty 

or completed by the complainant, has been filed. Future instantiations of PCSeq depend on the 

outcome of Check. If Check completes successfully then PCMultiSeq will not instantiate further 

iterations of PCSeq and will instead complete. If Check gets cancelled, then another instance of 
PCSeq is executed. 

4.5 Travel Agency 

Adapted from [8]: 

Consider a fragment of a Travel Agent's process for booking trips, which involves five steps: 

Register, (Booking of) Flight, (Booking of) Hotel, (Booking of) Car and Pay. The process 

starts with activity Register and ends with Pay. The booking activities Flight, Hotel and Car, 

which may succeed or fail, occur in between, in parallel. Cancellation of the instance of the 

booking process will occur in the event of a failed booking activity. 

Presented in the following sub-sections are a number of variants of the Travel Agency scenario. 0 C, 

Travel Agency 1 

Adapted from [8]: 
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Figure 4.5: Týravel Agency I Workflow as a YAWL ENU-net, from [8] 
C, 0 

Every trip involves all three booking activities. If all three succeed, payment follows. Otherwise 
0 

the process instance is cancelled. Cancellation is delayed until all three booking activities have 

finished. 

A representation of this example, as a workflow model, using a YAWL EWF-net is shown in 

Figure 4.5. A representation of this example in Liesbet is as follows. 
0 

Seq(Register, Book, PayCancelChoice) 

Book = Par(Flight, Hotel, Car) 

PayCancelChoice = DefaultChoice(PayDecision, Pay; Exit) 

PayDecision = Stop(Cancelled-act(Flight) + Canc6lled-act(Hotel) + Cancelled_act(Car), 

Completed-act(Flight) I Completed_act(Hotel) I Completed-act(Car)) 

Here, we execute basic activity Register and structured activities Book and PayCancelChoice 
in sequence. Book consists of the basic activities of booking a Flight, a Hotel and a Car, C, 
which are carried out in parallel. Once Book has finished, PayCancelChoice is executed. It is 

a Def aultChoice activity whose single guard is completed iff all three booking activities complete 
successfully but fails (i. e. gets cancelled) iff any of the booking activities fails. If the former hap- 

pens, Pay is executed. If the latter happens the Liesbet activity Exit is executed, which has the 

effect of cancelling the process instance. 
0 

Travel Agency II 

This example is the same as JYavel Agency 1, except that (adapted from [81): 

CNOK canrel 
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cNOK 

Figure 4.6: 'IYavel Agency II NNorkflow as a YAWL ENVF-iiet, froin [8] 
06 

Cancellation of the process instance should occur the moment the first activity fails and, at 
the same time, all outstanding booking activities should be withdrawn. 

A representation of this example, as a workflow model, using a YAWL ENNIF-net is shown in CI 
Figure 4.6. A representation of this example in Liesbet is as follows. 

Par(Seq(Register, Book), PayCancelChoice) 

Book = ... as Travel Agency I 

PayCancelChoice = ... as Travel Agency I 

PayDecision = ... as Travel Agency I 

This representation differs from that for Travel Agency I, in that the choice of whether to 

pay or cancel the process instance is inade in parallel with the Book activity, meaning that the 

process instance may be cancelled once any of the booking attempts fail. That is, if at any time a 
PayDecision gets cancelled (due to one of the booking activities failing , Exit, which has the 

effect of cancelling the process instance, will be executed. 0 

Travel Agency III 

This example is the same as 'IYavel Agency II, except that (adapted from [8]): 

A trip may omit any of the booking activities, but clearly must involve at least one. If all 

of the attempted bookings activities succeed, the payment follows. Otherwise, the process 
instance is cancelled. 
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cNOK 

Figure 4.7: 'lYavel Agency III Workflow as a YAWL ENNIF-net, from [8] 
00 
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A representation of this example, as a workflow model, using a YAWL ENNIF-ilet is sbown in 
Figure 4.7. A representation in Liesbet is as follows. Note that, for simplicity, we do not in- 

clude a specification for the decision activities: BookFlightDecision, BookHotelDecision and 
BookCarDecision. Tliese would likely be elaborated to Go or Stop types. 

... Root act as Travel Agency II 

Book = MultiChoice(BookFlightDecision, Flight; 

BookHotelDecision, Hotel; 

BookCarDecision, Car) 

PayCancelChoice ... as Travel Agency II 

PayDecision = Stop( 

(Cancelled-act(Flight) Completed-act(BookFlightDecision)) + 
(Cancelled-act(Hotel) Completed-act(BookHotelDecision)) + 
(Cancelled-act(Car) I Completed_act(BookCarDecision)) + 
(Cancelled-act(Flight) I Cancelled-act(Hotel) I Cancelled-act(Car)), 

(Completed-act(Flight) + Cancelled-act(BookFlightDecision)) 

(Completed-act(Hotel) + Cancelled-act(BookHotelDecision)) 

(Completed-act(Car) + Cancelled_act(BookCarDecision)) 

) 

This representation differs froin that for 'Ravel Agency II, in that the Book activity is now a 
MultiChoice, meaning that not all booking activities have to be executed. As such, PayDecision 

0 C, 
is adjusted accordingly, to account for booking activities not being executed. PayDecision will 000 
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succeed iff all of the attempted booking activities succeed. It will fail iff an attempted booking 

activity fails, or no booking activity is attempted at all. 

4.6 Concluding Remarks 

It is interesting to note that the YAWL representation of this example is not quite the same as the 

Liesbet one. This is of note because the representation in YAWL would actually be significantly 

more complex to match the Liesbet representation. The difference lies in what happens if all 
three activities get cancelled. It would be bizarre if the Pay activity were still executed in this 

instance. This is what happens in the YAWL model, however. 

We argue that the increase in complexity is significant because there would be a need to 

specify a number of additional places and transitions in order to capture the desired semantics. In 

contrast, in our Liesbet representation, it is an extra line in the StopQuery of the Stop type, i. e., 
(Cancelled-act (Flight) I Cancelled-act (Hotel) I Cancelled-act(Car)). We assert that 

the advantage of using a single artefact (the Stop instance) to model whether we Pay or not, with 
the capacity for arbitrarily complex querying on -, vorkflow state, is quite evident when compared 

with the YAWL model. An example of this even in the presented figure is the additional 'bypass' 

transitions that are needed to capture the choice of whether a booking activity is carried out or not. 
Such transitions are replicated for each activity. By admitting the possibility that activities may 
be cancelled as a fundamental aspect of the semantics, there would be no need to explicitly model 

cancellation (or bypassing) as they have done. NVe consider YAWL, and Petri riet-based approaches 
generally, to be too low-level for modelling workflow, as we argue in the conclusions to this thesis, 

in Chapter Twelve. 

F'urther examples of Liesbet workflow models are presented in Chapter Eleven. 

In the next chapter, we consider the CCS/PCCS-based cliaracterisation of the Liesbet meta- 

model. This is the first of the two main approaches, that Ave have taken in our work, for the formal 

characterisation of Liesbet. 



Chapter 5 

CCS-based Characterisat ions of 
Liesbet 

We now present two formal characterisations of Liesbet using Milner's CCS [78,80,79] and 
Cleaveland's et al's Prioritised CCS (PCCS, for short, hereafter) [30,29]. 

We selected CCS/PCCS as appropriate formalisms to investicrate for two reasons: 
1) There has been quite a lot of talk within the BPINI community as to whether Petri nets or CCSI-r, - 

calculus is better suited for the characterisation of Nvorkflow, and specifically the YAWL patterns 
[1221. While we do not seek to compare these two formalisms at length, by characterising YAWL 

with CCS we are able to provide a contribution to this debate from one perspective. Note that 

we do present some points regarding their respective suitability at the end of Chapter Five. 

2) The operational semantics of CCS/PCCS (in terms of facilitating compositional specifications 

of behaviour) should lend themselves quite well to the representation of workflow, and this is a 
point Ave seek to investigate. 

We start with CCS, presenting a description of how we have used it to provide a characterisation 
of Liesbet, and how we have used the Concurrency Workbench for the New Century (CWB-NC) [11] 

for the purpose of verifying properties of Liesbet models. We also present a result regarding the 

completion of CCS-characterised Liesbet workflow models. Then, we briefly discuss the utility 

of CCS for capturing the semantics of Liesbet, and for facilitating verification. The discussion 

also motivates the use of PCCS for capturing the semantics of Liesbet. We then proceed with a 

presentation of some aspects of the PCCS characterisation that we have given to Liesbet, deferring 

the presentation of remaining aspects to Appendix A, in order to save space. We conclude the 

chapter with a further discussion. 

5.1 Using CCS to Provide an Operational Meaning to Liesbet 

We present our CCS-based characterisation for just a subset of Liesbet, which we label Liesbet 1. 
It is possible to give a CCS-based characterisation to the whole of Liesbet, as we discuss in 
Section 5.7. We define Liesbetl to consist of the following constructs: 

* Basic Activities: A, B, C, .... 

73 
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Pi 
Par 

Sl Se Seq S2 

CD ABA 

Figure 5.1: Par(Seq(A, B), Seq(C, D)) - Simple Workflow Model 
0 

o Sequence: Seq. 

* Parallel Split: Par. 

e Default and Exclusive Choice: Def aultChoice and Choice. 

* Multiple Choice: MultiChoice. 

9 Empty: Empty. 

e FreeCliolce: FreeChoice. 

5.1.1 Par(Seq(A, B), Seq(C, D)) -A Simple Example 

We start by introducing the characterisation of a sim le example Liesbet model in CCS, shown in p 
Figure 5.1. The model is Par(Seq(A, B) Seq(C, D)), and is used for illustrative purposes through- 

out this thesis. 

Informally, enactment of this model proceeds as follows. The root instance (Pl) is executed, 

and eventually this execution is propagated to S1, S2, as well as to basic instances A and C. When 

either one of the basic instances completes (or cancels), the next basic instance in the parent Seq is 

executed. Whenever both instances in one of the Seqs have finished (i. e. have been completed, or 

cancelled), the respective Seq instance itself is completed. Once both sequences have completed, 
the root Par is completed. 

A possible representation of the given workflow in CCS could be, simply: a. b. nil I c. d. nil. 
This adequately captures the intended semantics of the given workflow. Here, we are representing 
the completion of workflow tasks as CCS transitions. However, there are a number of dispensations 

that we have to make in representing Liesbet models, which mean that, even for the simplest 

workflow models, their representation in CCS will not be as simple as this. Chief amongst these 

are: 

The need to support arbitrary querying of workflow state. This means that we need to 

maintain agents for activity instances, which can be queried as to the state of their pertaining 
instances. 

A means of prioritising tile evolution of structured instances over basic instances. This is a 

requirement of any characterisation of Liesbet, as described in Section 3.1. In the absence 

of all explicit notion of priority in CCS, Nve need to effect some kind of sclieduler for the 

progression of structured instances over basic instances. 
0 
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The general form of our CCS characterisation of Liesbet, in light of these requirements, is as 
follows. 

tracker agents I generic type agents I scheduling agents 
Racker agents maintain the state of activity instances, viz. Initial, Running, Completed, or 

Cancelled. A tracker agent is an instance of one of the following agent schemas: InitialState, 0 43 0 
RunningState", CompletedState and CancelledState. In these schemas, n is the number of 

child instances of the pertaining instance and r is a (run-time) count of the number of child 
instances yet to finish. There will be an instance of one of these agents for every activity instance 

in a Liesbet model. 
Generic type agents maintain the logic for the various Liesbet types, Seq, Par etc. There will 

be an instance of one of these agents for every structured instance in a Liesbet model. Finally, the 

scheduling agents ensure the priority, in enactment, of structured instances over basic instances. 
00 

Tracker and generic type agents employ a number of channels, which are now briefly enumer- 

ated. 

State Channels - used to update and query a tracker aprit, regarding the state of its pertaining 000C, 
activity instance: 

- exec (resp. comp, canc, pcanc) - used to instruct the instance to move to the Running 
(resp. Completed, Cancelled, Cancelled) state. 

runn (resp. cotd, cald, f ind, ninit) - used to query whether the instance is in the 

Running (resp. the Completed, the Cancelled, a finished (Completed or Cancelled), 

or not Initial) state. An answer will follow on the yes or no channel (as appropriate). 
Note that for our CCS-based characterisation of Liesbet, presented here, we restrict 
the support for state querying within synchronisation activities (i. e. Go and Stop types 

to just monotonic querying, with no support for distinct queries. Monotonic queries are 

queries that, once satisfied, are never able to not be immediately satisfiable. This means 
that the queries within synchronisation types are able to be satisfied gradually, as the 

workflow model evolves, safe in the knowledge that once we have marked component 

sub-queries of a query as being satisfied, they will remain so. This also necessitates that 

the use of ne-ation not be allowed in queries; and we remove the capability of specifying 

queries on Running and Initial. To conipe nsate, we add the possibility of specifying 
NotInitial queries, such as NotInitial-act, in Liesbet models. These queries would 

refer to an instance not being in an Initial state. Such querying is supported, by 

tracker agents, on ninit. Note that we do allow Running queries, on runn, at some 

points within the characterisation of Liesbet, on the basis that their use is necessarily 

sound. 

- yes, no - for responses to queries. 

9 Completion channels - used to signal to a parent instance that a child instance has finislied: 0 

- pprec - used by a child instance to signal to its parent that it has finished. 0 

- prec - used by a parent instance to listen for a child instance to signal that it has 

finished - corresponds to the pprec channel in child instances 
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Propagation of execution occurs by virtue of both tracker and generic type agents; whereas 

propagation of completion occurs solely by virtue of tracker agents. 
A representation of the model, presented in Figure 5.1, in CCS (according to our CCS-based 

C, 
characterisation of Liesbet) is as follows. 

lInitialState 21 lInitialState 2 lInitialState 21 

Par 2 ISeq 21 Seq2 I 

InitialStateo lInitialStateo lInitialStateo I InitialStateo 

Note that the tracker agents for P1, S1 and S2 occupy the first line of the presented process 
term (from left to right, respectively). The generic type agents occupy the second line. The 

tracker agents for the basic activity instances, A, B, C and D, occupy the third line (frorn left to 

right, respectively). There are also some auxiliary agents, which are represented by ellipsis 
In what follows, we present a narrative of one possible way in which this model may be enacted. 

There are, in fact, several ways. The boxes that surround some of the CCS agents indicate that 
the agent is involved in the next sequence of transitions to be presented for the narrative. 

Briefly, the tracker agent for P1 is put into a Running state, by a synchronisation (with a 
scheduling agent) on its exec channel, execpl, the result of which is as follows. 00 

T(CXCCP1) 

RunningState 2-2 lInitialState 2 

Par 21 Iseq 2 

InitialStateo lInitialStateo 

lInitialState2 I 

I Seq2 I 

lInitialStateO lInitialStateo I 

In the generic type agent for Pl, i. e. Par2' t' C, we clieck that Pi is in a Running state, by synchro- 
nising on runripl, which is offered by its tracker agent. C, 0 

-r(runnpl) 

RunningState2-2 IlInitialS IlInitialState2l I 
Eifl I Seq2 I Se(42 I 

InitialStateo lInitialStateo lInitialStateo lInitialStateo I 

Given that it is running, the Par2 0 executes both of its child Seq instances, by synchronisin, on 
the exec channels, execsi and execs2, of their tracker agents. 0 

T(execsl) r(execs2) 

RunningState 2-2 RunningState 2-2 RunningState 2-2 

nil Se7q- 
jInitialSta InitialStateo I-InitialStat lInitialStateo I 

Then, the generic type agents for the Seq instances identify that they have been set running (by 
t' 00 

synchronising on runnsl and runns2 and respectively synclironise on the exec channels, execa 

and execc, of the tracker agents of their first child instances, which are basic instances. Both of C, 
the Seq 2 agents evolve to a new agent called Seq 2f, which is responsible for executing the next C, CD n 
child instance as appropriate (but not yet). 



5.1. Using CCS to Provide an Operational Aleaning to Liesbet 77 

-r(runnsl) T(excca) r(runns2) -r(execc) 

RunningState 2-2 IlRunningState 2-2 1 IRunningState 2-2 1 

nil I Seq 2f I Seq2f I 
I RunningStat-e0"] lInitialStateo IRunningStateo-O lInitialStateo I 

Basic instances are completed (resp. cancelled) by synchronising on the comp (resp. canc) ID 
channels of their pertaining tracker aprits. In what follows, we complete A by synchronising on 

compa, which is provided by its tracker agent (the first agent on the last line). 
00 

7-(compa) -r(precsl) 
----+ ---- 4 

RunningState 2-2 

nil 

CompletedState 

lRunningState 21 

Seq qf 

InitialSta 

RunningState2-2 

Seq2f I 

RunningStateo-O IlInitialStateO 

Whenever an instance (basic or structured) finishes, completion is propagated upwards, through 0 C, 
the tracker agents, as far as possible. That is, when an instance finishes, its tracker agent synchro- 

nises with its parent tracker agent, on pprec, to indicate as much to the parent. In the presented 

process term, the tracker apnt for A uses the channel precs1. This causes the count ofyet-to-finish 
instances to be decremented, as can be seen for the tracker agent for S1 (the second agent on the 

first line), which goes from RunningState 2.2 to RunningState 2-1. 

In the example, once a basic instance in one of the sequences has finished, the pertaining Seq2f 0 
agent will execute the next child instance, by synchronising on the exec channel offered by the in, 0 
child instance's tracker agent. 0 

7-(execb) T(compc) T(precs2) T(execd) 

I RunningSta IlRunningState 2-1 RunningState2-1 I 

nil I nil nil I 

CompletedState IlRunningstateo-O lCompletedState I RunningStateo-f) I 

When a parent tracker agent has been notified that all of its children have finished, it completes 
itself and notifies its parent of it finishing. This occurs for S1 as now shown. C, 

-r(compb) T(precsl) T(prccpl) 
---- 4 

IRunningSta 

nil 
CompletedState 

CompletedState 

nil 
CompletedState 

RunningftateE 

nil 
lCompletedState Ru=ingStateo-O 

The synchronisation occurring on precsl causes a synchronisation on precpi, followed by the 

tracker agent for SI moving to CompletedState. Finally, the tracker agent for the Par instance 

will transition to CompletedState once both of its child Seq instances have finished, and have 

notified it as much (on precpl), viz. 

T(compd) T(precs2) T(precpl) 
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CompletedState lCompletedState 

nil nil 
CompletedState lCompletedState 

ICompletedState 

I nil 
ICompletedState lCompletedStatel 

We now proceed to describe how we translate a workflow inodel written in Liesbet into one 
in CCS, which will serve to present our CCS characterisation of Liesbet. 

5.1.2 Translation of Liesbetl 

The translation process comprises two steps- 

1. Firstly, we work on the Liesbetl workflow model definition, which constitutes a tree of 

activity types, composing the CCS workflow as we work down from the root of the model 0 
tree to its leaves. The result of translating a node within the model tree, is a collection of 0 
aaents (for the node) which run in parallel with the translation of the rest of the workflow 0 
model. 

2. Finally, we add a few housekeeping agents, which mainly concern the scheduling of structured ý0C, 
and basic activity instances. 

Step 1 

We define a translation function, M ... 1-1, which we apply to the root activity type of the workflow 

model. It recurses its way down the workflow model tree. On translating a node within the model 
tree, we allocate a collection of state channels for each of the node's children (if it has any). In 

applying M ... 
I-], we pass the state channels of the node that we are translating, along with the 

precompletion channel, prec, of its parent instance. 

For convenience, in the following definition, we abbreviate the channel list: 
0 

exec, comp, canc, pcanc, ninit, runn, cotd, cald, find, yes, no 

by st-chs --ý, corresponding to a collection of state channels and a 

execi, compi, canci, pcanci, niniti, runni, cotdi, caldi, findi, yesi, noi 

by st-chsi --ý. 
We also abbreviate the relabellino, of state channels in an a-ent: 0 C, 
[execilex, 

c, 
compi /comp, canci /canc pconci /pcancin initi /ninit 

'runni 
/runn cotdi Icotd 

'caldi 
/cald, findi /find, 

y not es, /Yes 
, 

/no] 

by (SCil and where both sets are indexed: 
[execi/Cýecj'COMPI, /co canct pcancj . niniti runnt cotdi /cot 

'cold& 
findi 

M PjI 
/cancj 

7 
/pcancj, /ntnttj 

, 
/runnj 

, dj Idj , 
/findi, 

y"S'/YCjj'no' /nojl 

by [SCi, j]. 
Finally, let a, b, c in allocates channel names a, b, c, not used before in the translation pro- 

cess, for use in the subsequent agent definition. 
In the following presentation of A4 ... I-], we assume that a Liesbet model has been pre- 

processed in order to replace the use of defined types by in situ definitions, see Section 3.1. 
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" M,,, jAct (-) ý (st-chsi ý, ppreci) 

InitialStateo[SCi. Pp"c/ppr. cl 

" M, cý[Seq(Chl,.. . 'Chn)I(st-chsi ppreci)= 

let st-chsi, --+ in ... st-chsi. ý in let preci in 

Seq' (SCi, SCi. j, ..., SCii,. ] 

InitialState n [SC, 
, 

pprecl/pp,. c , 
prec, /prec 

Mccý[Chlj(st-chsjj ý, precj) I ... I A4 .. [Chn](st-chsi. --+, preci) 

" McýýJPar(Chl, ... Chn)](st-chsi ý, ppreci)= 

let st-chsii ý in ... st-chsi. --+ in let preci in 

ParnIsci, Scii'll 
.... 

sci.,. ] 

I 

InitialState" (SCj, pprec, /pprec 
, 

preci /prec I 

I 

. 
Mccý[Chlj(st-chsii ý, preci) I ... I Mcc, [Chn](st-chsi. ý, precj) 

" Mccs[DefaultChoice(Chgi, . .. Chgn, Chcl, ..., Chcn, Chd)i(st-chsi --+, ppreci)= 

let st-chsig, ý in ... st-chsi, -4 in let st-chsic, - in ... st-chsic. ý in let st-chSid 

in let preci in 

DefaultChoice'[SCi, SCjgj, gj, ---p 
SCign, 

gnp 
SCicl, 

cls .... 
SCic., 

cn , 
SCid, 

d) 

InitialState2n+l ISCi, Pp"C'/ppr. ý , pr, c, /,,. c 

Mcc, EChg1ý(sLchsj, j --+, preci) I 
... 

I A4ccsEChgnj(sLchsjgn ---+, preci) 

Mccý[Chc1j(sLchsjcj -, preci) I 
... 

I MccsEChcnj(sLchSicn --+, preci) 

. 
A4cc, jChdj(sLchsid 

, preci) 

" Mcc, jChoice(ChgI, 
... 

Chgn, Chcl, 
... 

Chcn)](st-chsi -+, ppreci)= 

let st-chsig, ---ý in 
... st-chsi.. ý in let stxhsjýj'ý in 

... st-chsicn in let preci in 

Choice'[SCi, SCjgj, 
gj, ---, 

SCig-, 
gn, 

SCicl, 
cl, ..., 

SCicn, 
cn) 

InitialState 2n (SC,, pproc, /pprec 
, 

proc, /prec 

. 
A4cc, EChgIj(sLchsjg, -, preci) I 

... 
I MccýjChgnj(sLchsi, 

, preci) 

Mccýjchc1j(sLchsj, j --+, preci) I 
... 

I A4,, jChcnj(sLchsjcý ý, precj) 

4o MccýEMultiChoice(Chgl, 
... 

Chgn, Chcl, 
... 

Chcn)](st-chsi 
, pprecj)= 

let st-chsigi ý in 
... st-chsig, in let st-chsic, ý in 

... st-chsic. ý in let preci in 

MultiChoice n (SC,, scigý,, 
ý, 

SCign, 
gn. 

SCicl, 
cl. 

SCi-, 
c. 

] 

I 

InitialState 2n [SC, 
, 

pprec, /ppr. 
ý 

prec, /prec 
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. 
A4, ýEchgl](st-chsj, j ý, precj) I ... I M, ýEChgnj(st-chsi, --+, preci) 

M, ý[Chclj(st-chsj, j --+, preci) I MccsýChcn](st-chsj, ý --+, preci) 

a M,,, JEmptyj(st-chsj ý, ppreci)= 

Empty(SCil 

InitialStateo [SCi, pp, ec, /pp... ] 

9 Mcc, lFreeChoice](st-chsi 
, ppreci)= 

FreeChoice(SCil 

InitialState ocsci, Ppreci/pp. l 

For the definition of A4 ... E-ý, for the types presented here, Nve note: 

" Mcc8j-jj for basic instances, will output a single state tracker agent (which starts life as 
InitialStateo). 

" Mccsl-]) for structured types, such as Seq, will output an InitialStaten tracker agent 
(where n is the number of children of the type), as well as an agent which will effect the 
logic of the type (a generic type agent), such as Seq', and the output from translating the 

children (if extant). 

The definitions of the various tracker and generic type agents are now presented and explained. 0 C, 
Note that as Ave have used CWB-NC [11] to simulate workflow models, the definitions are presented 
in the input syntax of the workbench. 

The general form of a tracker agent will be to: 

nt li, vin " Vo accept a cancellation demand on canc and evolve to the CancelledState age a 

cancelled its children (if any). 

" To accept a cancellation demand from its parent tracker agent on pcanc and evolve to the 0 
CancelledState agent having cancelled its children (if any). This applies to just Initial 

and Running state tracker agents. 0 

" Indicate appropriate yes or no answers to queries regarding its state, and then to evolve back 

to the same agent. 

For specific tracker agents, there may be some additional behaviour that it admits, as will be 

i-nade clear. 
For any particular CCS workflow model, there will exist an aggent definition (output by the 

translator) of (the tracker agent) InitialState n 0 for every distinct number, n, of child types that 

an activity type has within the model. In the case of the model presented in Figure 5.1, there are 0 
types with two and zero children - hence the definitions of InitialState 2 and InitialStateo. 

proc InitialStateO = 

canc. lpprec. pyes. lyes. CancelledState + 

pcanc. lyes. CancelledState + 



5.1. Using CCS to Provide an Operational Aleaning to Liesbet 81 

exec. RunningStateO-O + 

runn. Ino. InitialStateO + 

ninit. 'no. InitialStateO + 

cotd. Ino. InitialStateO + 

cald. Ino. InitialStateO + 

find. Ino. InitialStateO 

proc InitialState2 = 

canc. lpprec. pyes. 'pcanci. yesl. lpcanc2. yes2. lyes. CancelledState + 

pcanc. lpcancl. yesl. lpcanc2. yes2. lyes. CancelledState + 

exec. RiinningState2-2 + 

riinn. Ino. InitialState2 + 

ninit. Ino. InitialState2 + 

cotd. Ino. InitialState2 + 

cald. Ino. InitialState2 + 

find. Ino. InitialState2 

InitialState' accepts a synchroilisation on: 

" canc and becomes CancelledState - which corresponds to the state Cancelled, once we 
have signalled oil pprec to indicate to the parent instance that the instance in question has 

moved to a finished state, and received all acknowledgement back on pyes, then, signalled to 0 Z, 
the instance's children (if extant) that they should cancel (on pcanci) and have responded 
to the initial synchronisation on yes. We elaborate further with respect to pprec in the 
description of the RunningState" agents. 0 
Note that the acknowledgement on yes is appropriate, as we need to force the described 
intermediate steps before we can allow the agent initiating the cancellation to continue. 

" pcanc, signifying that the parent instance's tracker agent has been cancelled, and that the 000 
instance should itself move to a cancelled state after cancelling its own children. 

pcanc is used by a tracker agent to signal to the tracker agents of the pertaining instance's 0000 
children that they too should cancel. canc, on the other hand, is used within generic type 

agents. Tile difference being that, in response to canc, we signal to the parent state tracking 
instance that we have finished. In the case of pcanc, as the cancellation is initiated by the 

parent, there is no need to do this. 

e exec and beconies RunningState" - which corresponds to the state Running. 

9 ninit, runn, cotd, cald, f ind and becomes InitialStatel again - querying whether 00 
its corresponding instance is in a not Initial, Running, Completed, Cancelled, or finished 

(i. e. Completed or Cancelled) state. The answer is no to all - as signalled. 0 

There will exist agent definitions (output by the translator) of RunningState" for every 
distinct number, n, of child types that an activity type has within the model, and for all r such 
that 0<r<n, if n>0, and for r=0, if n=0. ror the same workflow model, then, we have 

copies of RunningState2-2, RunningState2-1 and RunningStateO-O. 

proc RunniiagStateO-O = 
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canc. lpprec. pyes. lyes. CancelledState + 

pcanc. lyes. CancelledState + 

comp. lpprec. pyes. lyes. CompletedState + 

ninit. lyes. RunningStateO-O + 

runn. lyes. RiinningStateO-O + 

cotd. Ino. RunningStateO-O + 

cald. Ino. RiinningStateO-O + 

find. 'no. RunningStateO-O 

proc RunningState2_1 = 

canc. lpprec. pyes. lpcancl. yesl. lpcanc2. yes2. lyes. CancelledState + 

pcanc. lpcanci. yesl. lpcanc2. yes2. lyes. CancelledState + 

prec. lpprec. pyes. lyes. CompletedState + 

ninit. lyes. RunningState2-l + 

runn. lyes. RunningState2-l + 

cotd. 'no. RunningState2_1 + 

cald. Ino. RiinningState2-l + 

find. Ino. RunningState2-l 

proc RunningState2-2 = 

canc. lpprec. pyes. lpcanci. yesl. lpcanc2. yes2. lyes. CancelledState + 

pcanc. lpcancl. yesl. lpcanc2. yes2. lyes. CancelledState + 

prec. lyes. RiinningState2-l + 

ninit. lyes. RunningState2-2 + 

runn. lyes. RiinningState2-2 + 

cotd. Ino. RunningState2-2 + 

cald. Ino. RunningState2-2 + 

find. Ino. RunningState2-2 

When running, instances of childless types will have copies of RunningStateo-O as their tracker C, 
ag, ents. This agent constant offers the possibility of it transitioning to CompletedState, by accept- 
ing a synchronisation on comp, reflecting the completion of its pertaining activity instance. When 

000 
a synchronisation on comp occurs, the parent is instructed to perform a precompletion step, as 
described below. 

Running instances of child-bearing types will have copies of RunningState" its their tracker 

ao, ents, where n>I and r>1. The occurrence of a child finishina will cause as nchronisation 0--0y 
on prec to occur. This causes a precompletion step to take place. When r, the count of child 
instances yet-to-finish, is greater than one, performing a preconipletion step means evolving to the 

agent RunningStaten-r-1. When r=1, this means reporting completion to its respective parent 
tracker agent on pprec, and evolving to the agent CompletedState. 

There will also exist definitions of CompletedState and CancelledState, which report that 

their associated instances are in Completed and Cancelled states, respectively. Note that, in 

CancelledState, we support a synchronisation on exec, as attempting to execute a cancelled 
instance is allowed, albeit it has no effect. This would occur if, for instance, a Seq instance had 

had some of its children cancelled by a CancelActivity instance (see Section 3.1.16). 

proc CompletedState = 
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canc. CompletedState + 

ninit. lyes. CompletedState + 

runn. Ino. CompletedState + 

cotd. lyes. CompletedState + 

c'ald. Ino. CompletedState + 

find. lyes. CompletedState 

proc CancelledState = 

canc. CancelledState + 

ninit. lyes. CancelledState + 

runn. 'no. CancelledState + 

cotd. Ino. CancelledState + 

cald. lyes. CancelledState + 

exec. lyes. CancelledState + 

find. lyes. CancelledState 

We now present the definitions of the various agents for generic activity types, starting with 000 
Seq. For Seq, there will be a Seq' agent, and Seq'f agents, for every distinct number, n, of 00 
children of Seq types in a model and for all r such that 2>r>n, whose definitions are output 
by the translator. 

A Seq' agent first ascertains that it is not cancelled and that it is running, then it executes 
its first child instance, labelled n, and then transitions to a "finishing" agent, Seqlf, which effects 

the remaining logic. Note that child instances of a sequence are numbered in decreasing order, so 

the first to be executed is n, the second n-1, and so on. This convention simplifies the definition 

of the agents. 
Seq'f waits for the first instance to finish, and then executes the next child instance. After 

that, the agent Seq n-If is exposed. And so on, until Ave reach Seq 2f 
, whereon, we wait for the 

penultimate instance to finish, and then execute the last. Following that, we expose the agent 

Idle, to effect idling, which is necessary for scheduling purposes. We explain this further in Step 

2 of the translation process, where we also explain the use of the channels lock, idle, prog and 

reset. 

proc Seq2 = 
lock. Icald. (yes. lidle. reset. Idle + no. 'riinn. (yes. 'exec2. lprog. Seq2f + 

no. lidle. reset. Seq2)) 

proc Seq2f = 
lock. Ifind2. (Yes2. lexecl. lprog. Idle + no2. lidle. reset. Seq2f) 

proc Idle = 
lock. lidle. reset. Idle 

For Par, there will be a Par' agent for every distinct number, n, of children of Par types in 
0 

a model, whose definitions are output by the translator. We present the agent definition for the 0 
case where n is 2. A Par' agent will simply execute all of its children together (within the same 0 C, 
execution window, see Step2). 
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proc Par2 = 
lock. Icald. (Yes. lidle. reset. ldle + no. 'runn. (Yes. 'execl. 'exec2. lprog. Idle + 

no. 'idle. reset. Par2)) 

For Def aultChoice, there will be Def aultChoicen, Def aultChoice"f and Def aultChoicenf COMP 

agents, for every distinct number, n, of continuation child types (not including the default) of 
Def aultChoice types in a model, whose definitions are output by the translator. We present the 

agent definitions for the case where n is 2. 

In DefaultChoice 2f, which is exposed once we ascertain that the choice activity type has 

been put into a running state (by its parent) and the guard instances of the choice type have 

been set running, we check to see whether any of the guard instances have completed. If so, we 43 ?ý 

expose Def aultChoice2f CoMp, which serves to execute a continuation instance pertaining to one 
of tile completed guard instances. It also cancels the remaining continuation instances (including 

the default instance). If, on the other hand, none of the guard instances have completed; but, 

commensurately, none of them are running either, then all of them must have been cancelled. In 0 
this case, we execute the default continuation instance. If none of these possibilities obtain, we 
expose another copy of Def aultChoice 2f. 

proc DefaultChoice2 = 
lock. Icald. (Yes. lidle. reset. Idle + 

no. 'runn. (Yes. 'execgl. lexecg2. lprog. DefaultChoice2f + 

no. lidle. reset. DefaultChoice2)) 

proc DefaultChoice2f = 
lock. Icotdgl. (yesgl. DefaultChoice2fComp + 

nogl. lcotdg2. (yesg2. DefaultChoice2fComp + 

nog2. lrtlnngl. (yesgl. lidle. reset. DefaultChoice2f + 

nogl. lriinng2. (yesg2. lidle. reset. DefaultChoice2f + 

nog2. lcanccl. yescl. Icancc2. yesc2. 
lexecd. lprog. Idle)))) 

proc DefaultChoice2fComp = 
'cotdgl. (yesgl. (Iwin. 'execcl. Itidy. nil + 'lose. 'canccl. yesci. Itidy. nil) + 

nogl. llose. Icancci. yesci. Icancgi. yesgl. ltidy. nil) 
'cotdg2. (yesg2. (Iwin. 'execc2. ltidy. nil + 'lose. Icancc2. yesc2. ltidy. nil) + 

nog2. 'lose. 'cancc2. yesc2. lcancg2. yesg2. ltidy. nil) 

win. tidy. lose. tidy. Icancd. yesd. lprog. Idle)\Iwin, lose, tidyI 

For Choice', which has no default continuation instance, we do much the same. However, in 

the case that all guard instances get cancelled, we cancel tile choice instance, as shown. 0 ID 

proc Choice2 = 

lock. 'cald. (Yes. lidle. reset. Idle + 

no. 'runn. (yes. 'execgl. lexecg2. lprog. Choice2f + 

no. lidle. reset. Choice2)) 

proc Choice2f = 
lock. 'cotdgl. (yesgl. Choice2fComp + 
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nogl. lcotdg2. (yesg2. Choice2fComp + 

nog2. lriinngl. (yesgl. lidle. reset. Choice2f + 

nogi. Iriinng2. (yesg2. lidle. reset. Choice2f + 

nog2. lcanc. yes. lprog. Idle)))) 

proc Choice2fComp 

'cotdgl. (yesgi. (Iwin. 'execcl. Itidy. nil + Ilose. Icanccl. yescl. Itidy. nil) + 

nogl. 'lose. Icanccl. yescl. Icancgl. yesgl. ltidy. nil) 
'cotdg2. (yesg2. (Iwin. 'execc2. ltidy. nil + Ilose. Icancc2. yesc2. ltidy. nil) + 

nog2. llose. Icancc2. yesc2. lcancg2. yesg2. ltidy. nil) 
win. tidy. lose. tidy. 'prog. Idle)\Iwin, lose, tidy} 

For MultiChoice, there will be MultiChoice' and MultiChoice'f agents, for every distinct 0 
number, n, of continuation child types of MultiChoice types in a model, whose definitions are 
output by the translator. We present the agent definitions for the case where n is 2. 

For MultiChoicen, once it is running, and we have executed its guard instances, we proceed to 
MultiChoic, nf, whereon, we check for continuation instances that are still in the Initial state. 
For those that are, we check their guard instances and act appropriately - for those which have 

now completed successfully, we execute their corresponding continuation instances, for those which 0 
have been cancelled, we cancel their corresponding continuation instances, and for those which are 
still running, we do nothing. 

proc MultiChoice2 = 

lock. Icald. (Yes. lidle. reset. Idle + 

no. 'riinn. (yes. 'execgl. lexecg2. lprog. MultiChoice2f + 

no. lidle. reset. MultiChoice2)) 

proc MultiChoice2f = 
lock. ('ninitcl. (yescl. ldone. nil + 

nocl. Icotdgl. (yesgl. lexeccl. lwork. ldone. nil + 

nogl. 'caldgl. (yesgl. lcanccl. yescl. lwork. ldone. nil + 

nogl. 'done. nil)) 

Ininitc2. (yesc2. ldone. nil + 

noc2. lcotdg2. (yesg2.2execc2. lwork. ldone. niI + 

nog2. 'caldg2. (yesg2. 'cancc2. yesc2. lwork. ldone. nil + 

nog2. ldone. nil)) 

done. done. Ifindgl. (yesgl. lfindg2. (yesg2. lreport. Idle + 

nog2. lreport. MultiChoice2f) + 

nogl. lreport. MultiChoice2f) 

work. (report. lprog. nil I work. nil) + report. lidle. reset. nil 
)\Iwork, report, done} 

Finally, the definitions of FreeChoice and Empty are presented. In the first case, we inay 
either cornplete or cancel the instance -a non-deterniinistic choice. In the second case, we trivially 
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complete the instance. 

proc FreeChoice = 
lock. Icald. (Yes. 'idle. reset. Idle + 

no. 'runn. (yes. (Icomp. yes. 'prog. Idle + Icanc. yes. lprog. Idle) + 

no. 'idle. reset. FreeChoice)) 

proc Empty = 
lock. Icald. (yes. lidle. reset. Idle + 

no. 'runn. (yes. Icomp. yes. lprog. Idle + 

no. lidle. reset. Empty)) 

Step 2 

In step 2, xve add three agents to run at the top-level: 

A sinale instance of BasiCSb, C, where b is the number of basic activity instances in the workflow 
model. This agent is called the basics arbiter because it arbitrates the completion of a single 00 
basic instance. In the case of the model presented in Figure 5.1, the value of b would be four, 

and the agent constant that we would add would look much as follows. 

Basics4[comp-2/compl, yes-2/yesi, comp-3/comp2, yes-3/yes2, 

comp-5/comp3, yes-5/yes3, comp-6/comp4, yes-6/yes4l 

Here, we relabel the comp and yes channels to be those of the basic activity instances. The 
definition of Basics4 is as follows. 

proc Basics4 = 
bas. (Icompl. yesl. lbas. Basics4 + 'comp2. yes2. lbas. Basics4 + 

'comp3. yes3. lbas. Basics4 + 'comp4. yes4. 'bas. Basics4) 

We complete exactly one running' basic activity instance, deferring completion of any others 
that are running. 

aA single instance of Scheduler", where s is the number of sh-actured activity types in the 0 
workflow model. ror a model with three structured activity instances, the agent added would 
be Scheduler3' prefixed by an exec action, to be carried out on the root instance of the 
workflow model, viz. 

)exec-O. Scheduler3 

The Scheduler$ agent effects a lock on execution rights for (the generic type agents pertaining C, 0 C, 0 
to) structured activity instances. Only one instance may hold the lock at any time; and 
instances may only progress when the hold the lock. Scheduler' allows any structured ID y 

activity instance to claim such a right, which the instance will later yield. In the following 00 
example definitions, we consider the case where m is 3, i. e. there are three structured activity 
instances in the model. 

'Communication on comp is not offered by tracker agents if the instance is not running. 
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proc Scheduler3 = 
'find-O. (yes-O. Irfind. nil + 

no-O. Ilock. (idle. Ilock. (idle. Ilock. (idle. 

lbas. bas. 'reset. 'reset. 'reset. Scheduler3 + 

prog. 'reset. 'reset. Scheduler3) + 

prog. 'reset. Scheduler3) + 

prog. Scheduler3)) 

In Scheduler3' we first check whether the root instance of the workflow model has finished. 

If it has finished, we expose the action I rf ind (explained further in Section 5.1.4), and, 

thereafter, evolve to nil. Otherwise, we signal on I lock to indicate to the structured activity 
instances that one of them may claim the lock (on execution rights). Then, the instance that 

claims the lock, signals on I prog to indicate that it has made progress, or signals on I idle 

to say that it has not. If all instances signal on I idle, then none of them can currently 

progress. It is then appropriate to try to complete a single basic activity instance. We 

do so by synchronising on 'bas with the Basics b agent, which causes the latter agent to 
000 

expose logic to effect the completion of a basic instance. When that has occurred, a further 

synchronisation takes place on bas to hand control back to the scheduler. We then reset 

all of the structured instances so that they may attempt to reclaim execution rights, and 

re-expose the Scheduler3 agent. If progress was made by a structured instance, previously, 

then we signal on reset just as many times as there were structured instances that reported 

idle. Then, we re-expose the Scheduler3 agent, in order that we may try the full set of 

structured instances again (before trying the basics, if that becomes appropriate 

9 Finally, Ave add the acrent, pprec. lpyes. nil, to run in parallel at the top-level. This effects 

a synchronisation on pprec with the root instance's tracker agent, which will be a progressed 00 
copy of RunningStatel-D (and returns acknowledgment on pyes). Essentially, this allows C, 
the root instance's tracker agent to signal that it has finished and, thereafter, evolve to 00 
CompletedState, or CancelledState. All other activity instances signal to their respective 0 
parent instances. As the root instance has no parent, we need to make this dispensation. 

5.1.3 A Complete Example 

We now present the output of M ... 1-1, in full, for the workflow model shown in Figure 5.1, which 
has the definition in Liesbet: Par(Seq(A, B) , Seq(C, D)). Note that the file has been generated 

automatically using the support that we provide in our verification framework for Liesbet, which 
is documented in Section 10.3. 

* *** *s*** ** ****** ******** ** *** ** ** ** ** 

* CCS Verification Run 

#0 

Generated from: file: samples/LiesbetTest. liesbet 

On: Fri Jul 14 11: 52: 13 BST 2006 

proc InitialStateO = 
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caLnc. lpprec. pyes. 'yes. CancelledState + 

pcanc. lyes. CancelledState + 

exec. RunningStateO-O + 

riinn. 'no. InitialStateO + 

ninit. Ino. InitialStateO + 

cotd. 'no. InitialStateO + 

cald. Ino. InitialStateO + 
find. 'no. InitialStateO 

proc InitialState2 = 

canc. lpprec. pyes. 'pcancl. yesl. lpcanc2. yes2. lyes. CancelledState + 

pcanc. lpcanci. yesl. lpcanc2. yes2. lyes. CancelledState + 

exec. RiinningState2-2 + 

riinn. Ino. InitialState2 + 

ninit. Ino. InitialState2 + 

cotd. 'no. InitialState2 + 

cald. 'no. InitialState2 + 

find. Ino. InitialState2 

proc RunningStateO-O = 

canc. lpprec. pyes. lyes. CancelledState + 

pcanc. lyes. CancelledState + 

comp. lpprec. pyes. lyes. CompletedState + 

ninit. 'yes. RunningStateO-O + 

runn. lyes. RunningStateO-O + 

cotd. Ino. RunningStateO-O + 

cald. 'no. RunningStateO-O + 

find. 'no. RunningStateO-O 

proc RunningState2-1 = 

canc. lpprec. pyes. lpcancl. yesl. lpcanc2. yes2. lyes. CancelledState + 

pcanc. lpcancl. yesl. lpcanc2. yes2. lyes. CancelledState + 

prec. lpprec. pyes. lyes. CompletedState + 

ninit. lyes. RiinningState2-l + 

runn. lyes. RunningState2-1 + 

cotd. Ino. RunningState2-l + 

cald. Ino. RunningState2-l + 
find. Ino. RunningState2-l 

proc RunningState2-2 = 

canc. lpprec. pyes. lpcancl. yesl. lpcanc2. yes2. lyes. CancelledState + 

pcanc. lpcancl. yesl. lpcanc2. yes2. lyes. CancelledState + 

prec. 'yes. RunningState2-l + 

ninit. 'yes. RiinningState2-2 + 

runn. 'yes. RunningState2-2 + 

cotd. Ino. RunningState2-2 + 

cald. Ino. RunningState2-2 + 
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find. Ino. RiinningState2-2 

proc CompletedState = 

canc. CompletedState + 

ninit. lyes. CompletedState + 

runn. 'no. CompletedState + 

cotd. lyes. CompletedState + 

cald. Ino. CompletedState + 

find. lyes. CompletedState 

proc CancelledState = 

canc. CancelledState + 

ninit. lyes. CancelledState + 

riinn. Ino. CancelledState + 

cotd. Ino. Ca. ncelledState + 

cald. lyes. CancelledState + 

exec. 'yes. CancelledState + 

find. lyes. CancelledState 

proc Basics4 

bas. ( 

'compl. yest. lbas. Basics4 + 

'comp2. yes2. lbas. Basics4 + 

'comp3. yes3. lbas. Basics4 + 

'comp4. yes4. 'bas. Basics4) 

proc Idle = 
lock. lidle. reset. Idle 

proc Scheduler3 = 
'find-O. (yes-O. 'rfind. nil + no-O. Ilock. (idle. Ilock. (idle. Ilock. (idle. lbas. bas. 

Ireset. 'reset. 'reset. Scheduler3 + 

prog. 'reset. 'reset. Scheduler3) + 

prog. 'reset. Scheduler3) + 

prog. Scheduler3)) 

proc Seq2 = 
lock. Icald. (yes. lidle. reset. Idle + 

no. 'riinn. (yes. 'exec2. lprog. Seq2f + 

no. lidle. reset. Seq2)) 

proc Seq2f = 
lock. Icald. (Yes. lidle. reset. Idle + 

no. Ifind2. (Yes2. lexecl. lprog. Idle + 

no2. lidle. reset. Seq2f)) 
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proc Par2 = 
lock. Icald. (yes. lidle. reset. Idle + 
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no. 'riinn. (yes. 'execl. 'exec2. lprog. Idle + 

no. lidle. reset. Par2)) 

proc WorkflowO 

***Instance: O: Pl 

InitialState2[yes-0/yes, no-0/no, runn-0/runn, cald-0/cald, cotd-0/cotd, 
find-0/find, ninit-0/ninit, comp-0/comp, pcanc-0/pcanc, canc-0/canc, exec_O/exec, 

prec-0/prec, 

pcanc-1/pcancl, yes-1/yesl, pcanc-4/pcanc2, yes-4/yes2l I 

Par2[yes-O/yes, no-0/no, runn-0/runn, cald-0/cald, cotd-0/cotd, 
find-0/find, ninit-0/ninit, comp-0/comp, pcanc-0/pcanc, canc-0/canc, exec-0/exec, 

exec-1/execl, exec-4/exec2l I 

***Insta, nce: I: Sl 

InitialState2[yes-1/yes, no-1/no, runn-1/runn, cald_l/cald, cotd-1/cotd, 
find-1/find, ninit-1/ninit, comp-1/comp, pcanc-1/pcanc, canc-1/canc, exec-1/exec, 

prec-1/prec, prec-0/pprec, yes-0/pyes, 

pcanc-2/pcancl, yes-2/yesl, pcanc-3/pcanc2, yes-3/yes2l I 

Seq2[yes-1/yes, no-1/no, runn-1/runn, cald-1/cald, cotd_l/cotd, 
find-1/find, ninit-1/ninit, comp-1/comp, pcanc_l/pcanc, canc-1/canc, exec-1/exec, 

exec-2/exec2, find-2/find2, yes-2/yes2, no-2/no2, exec-3/execil I 

***Instance: 2: A 

InitialStateOEyes-2/yes, no-2/no, runn-2/runn, cald-2/cald, cotd-2/cotd, 
find-2/find, ninit-2/ninit, comp-2/comp, pcanc-2/pcanc, canc-2/canc, exec-2/exec, 

prec-1/pprec, yes-1/pyes] I 

***Instance: 3: B 

InitialStateO(yes-3/yes, no-3/no, runn_3/runn, cald_3/cald, cotd_3/cotd, 
find-3/find, ninit-3/ninit, comp-3/comp, pcanc-3/pcanc, canc-3/canc, exec-3/exec, 

prec-1/pprec, yes-1/pyes] I 

***Instance: 4: S2 

InitialState2[yes-4/yes, no-4/no, runn-4/runn, cald_4/cald, cotd-4/cotd, 
find-4/find, ninit-4/ninit, comp-4/comp, pcanc-4/pcanc, canc-4/canc, exec-4/exec, 

prec-4/prec, prec-0/pprec, yes-0/pyes, 

pcanc-5/pcancl, yes-5/yesl, pcanc-6/pcanc2, yes-6/yes2l I 

Seq2(yes-4/yes, no-4/no, runn-4/runn, cald_4/cald, cotd-4/cotd, 
find_4/find, ninit_4/ninit, comp-4/comp, pcanc-4/pcanc, canc-4/canc, exec-4/exec, 

exec-5/exec2, find-5/find2, yes-5/yes2, no_5/no2, exec-6/execil I 
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***Instance: 5: C 

InitialStateO[yes-5/yes, no-5/no, runn-5/runn, cald-5/cald, cotd-5/cotd, 
find-5/find, ninit-5/ninit, comp-5/comp, pcanc-5/pcanc, canc-5/canc, exec-5/exec, 

prec-4/pprec, yes-4/pyes) I 

***Instance: 6: D 

InitialStateO(yes-6/yes, no-6/no, runn-6/runn, cald_6/cald, cotd-6/cotd, 
find-6/find, ninit-6/ninit, comp_6/comp, pcanc-6/pcanc, canc-6/canc, exec-6/exec, 

prec-4/pprec, yes-4/pyes) I 

Basics4[comp-2/compl, yes-2/yesi, comp-3/comp2, yes-3/yes2, 

comp-5/comp3, yes-5/yes3, comp-6/comp4, yes-6/yes4l I 

'exec-O. Scheduler3 I pprec. lpyes. nil 

Af 
rurin-0, cald-0, cotd-0, find-0, ninit-0, COMP-0, pcanc-0, canc_O, exec-0, prec-0, yes-0, no-0, 

runn_1, cald-1, cotd-1, find-1, ninit-1, comp-1, pcanc-1, canc_1, exec-1, prec-1, yes-1, no-1, 

runn-2, cald-2, cotd_2, find-2, ninit-2, comp-2, pcanc-2, canc-2, exec-2, prec_2, yes-2, no_2, 

runn-3, cald-3, cotd-3, find-3, ninit-3, comp_3, pcanc-3, canc_3, exec-3, prec-3, yes-3, no_3, 

runn-4, cald-4, cotd-4, find-4, ninit-4, comp_4, pcanc_4, canc-4, exec-4, prec-4, yes-4, no-4, 

runn-5, cald-5, cotd-5, find-5, ninit-S, comp-5, pcanc-5, canc_5, exec-5, prec-5, yes-5, no-5, 

runn_6, cald-6, cotd-6, find-6, ninit-6, comp-6, pcanc-6, canc-6, exec-6, prec_6, yes_6, no_6, 
bas, pprec. pyes, lock, idle, prog, reset} 

5.1.4 Model Checking CCS Characterised Liesbetl with Concurrency 

Workbench 

For the CCS characterisation of Liesbet, we describe a single, simple test. We wish to check 
that along all enactment paths, tile root instance will reach a finished state (either Completed, or 
Cancelled); and thus the workilow model as a whole will complete successfully along all paths. 
This is a key property to check in verifyin., the soundness of workflow models, as described in 

Section 7. L 

In the definition of the scheduling agent, Scheduler-, once we have identified that tile root 
instance has reached a finished state, we signal on the channel rf ind. For the time being, this 
is the only unrestricted channel of a CCS Liesbet model. The test that we write is the simple 

modal-nm formula: /A. <->ttA [- I rf ind] X, which is written, for use in CWB-NC, as follows. Note 

that we name the proposition that we are testing cotd, as the proposition holding signifies that 

the model completes successfully alon., all paths. 

prop cotd = 
min X= <->tt A [-Irfind]X 

This says that along all enactment paths the action rf ind must eventually occur. The output 0 
from running this test under CWB-NC for the example model is presented. 

>cwb-nc. bat ccs 
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cwb-nc. bat ccs 

Currently supported languages are : ccs, pccs, SCCS, tccs, csp, lotos 

The Concurrency Workbench of the New Century 

(Version 1.2 --- June, 2000) 

cwb-nc> load test. ccs 

Execution time (user, system, gc, real): (0.008,0.000,0.004,0.012) 

cwb-nc> load test. mu 

Execution time (user, system, gc, real): (0.000,0.000,0.000,0.002) 

cwb-nc> chk WorkflowO find 

Invoking alternation-free model checker. 

Building automaton... 

States: 833 

Transitions: 977 

Done building automaton. 

TRUE, the agent satisfies the formula. 

Execution time (user, system, gc, real): (1.872,0.048,0.372,1.919) 

cwb-nc> 

5.1.5 Model Equivalence for CCS-characterised Liesbetl 

The question of when two work-flows are equivalent is an important issue in the study of -%vorkflow. 
As reported in [57], it may be non-trivial to arrive at a formalisation of equivalence for some 

approaches to workflow representation. A key issue lies with how to treat internal actions - those 

actions which progress the model but are not concerned with tile fulfilment of (basic) activity 
instances. 

Prioritising the execution of internal actions (i. e., in the case of Liesbet, progressing structured 

activities over basic activities) helps to resolve this issue (in part), and some examples, presented 
in [57], would not occur under this assumption. 

Orthogonally, we may consider the observable behaviour of a workflow model to be sufficient 
for defining equivalence. This is the view taken in many approaches, such as [64]. There, two 

workflows are considered to be equivalent iff they are observationally equivalent (as defined by 

Milner for CCS [781). Activity completions are considered to be the only observable actions; and 
there is an additional requirement that all enactment paths within the workflow models must lead 

to completion of the workflow instance. 

The definition of Observational Equivalence requires some additional notation. The transition 

E =a=>E', for aE Act, means that E may transition to E' through an a-transition prefixed and 

postfixed by >0 7--transitions. That is, E =cW if E(--T+)P(-"+)(-T+)q, where p, q ý-f 
0. Also, for 

A 
tE Act*, tE& is the sequence gained by deleting all occurrences Of T from t. 

43 0 

Observational Equivalence (or Weak Bisimilarity), from [781, is the largest symmetric relation 
A 
Ck 

such that E : z- F iff whenever E I% E' then F E'. 

Elaborating, two CCS agents are observationally equivalent iff, whenever either agent can make 000 
an a-transition, the other agent can perform a sequence of transitions f (a); and the agents which 
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result (from carrying out these transitions) are themselves observationally equivalent. If ck is a 

non-T transition, f (a) is the same non-7-transition, prefixed and postfixed by >- 0 7-transitions. 
If a is a T-transition, f (a) is >0 7--transitions. 

In order to be able to define an appropriate notion of equivalence between Liesbet models, we 

need to make visible transitions pertaining to the completion of basic activities. To this end, we 

au-ment Bas iCSb C, as follows (here, for the case that n is 4). We add an additional output, for each 
completion option compi, on a visible channel eyesi. This will make the completion option (which 

is only offered by the corresponding tracker agent if the pertaining instance is running) visible in 

assessing observational equivalence. C, 

proc Basics4 

bas. ( 

compl. yesl. 'eyesl. bas. Basics4 + 

comp2. yes2. 'eyes2. bas. Basics4 + 

comp3. yes3. 'eyes3. bas. Basics4 + 

comp4. yes4. 'eyes4. bas. Basics4) 

Thus, the only transitions made visible to the environment are reIabelled eyesi transitions, for 
basic activity instances, and a rf ind transition to indicate that the workflow model is finished. In 

this context, we may define two CCS-characterised Liesbet models to be model equivalent iff they 

are observationally equivalent (according to these offered transitions). 0 
The concept of model equivalence is demonstrated in the following examples. 

Liesbet Model Equivalence, Example 1: v Strong Equivalence 

Observational equivalence is a weaker notion than strong equivalence. For strong equivalence, we 
do not abstract away from T-actions. An example that highlights this distinction is tile following 

simple one. 
Let Liesbet Model Workf lowo be defined as: A, and Liesbet Model Workf lowl be defined as 

Par(A). These two models are model equivalent, as they both effect just A. However, they would 
not be equivalent if we were to define model equivalence oil the basis of strong equivalence. This 
is because, for model Workflowl, there is more internal activity in encapsulating A within a Par 

activity type. 
We present results of checking observational and strong equivalences between Workf lowO and 

Workf lowl. Tile CCS source for these workflow models follows. In presenting the source, we mostly 
omit tile definition of tracker and generic type agents for brevity. Their definitions are identical to 6 C, 
those presented in Section 5.1.2. 

CCS Verification Run 

#0 

Generated from: file: samples/LiesbetEquivTestAO. liesbet 

On: Tue Jul 11 14: 24: 13 BST 2006 

appropriate tracker and generic type agents 
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proc Basicsl = 
bas. Icompl. yesl. leyes-a. 'bas. Basicsl 
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proc SchedulerO = 
'find-O. (Yes-O. Irfind. nil + no-O. Ibas. bas. SchedulerO) 

proc Schedulerl = 
'find-O. (Yes-O. Irfind. nil + no-O. Ilock. (idle. lbas. bas. 'reset. Schedulerl + 

prog. Schedulerl)) 

proc WorkflowO 

***Instmce: O: A 

InitialStMeO[yes-0/yes, no-0/no, runn-0/runn, cald-0/cald, cotd-0/cotd, 
find-0/find, ninit-0/ninit, comp-0/comp, pcanc-0/pcanc, canc-0/canc, exec-0/execl I 

Basicsl(comp_O/compl, yes-0/yesi, eyes-a/eyesil I 

'exec-O. SchedulerO I pprec. lpyes. nil 

Al 
runn-0, cald-0, cotd-0, find-0, ninit_O, comp_O, pcanc_O, canc-0, exec-0, prec-0, yes-0, no-O, 
bas, pprec, pyes, lock, idle, prog, reset) 

proc Workflowl 

***Instance: O: Pl 

InitialStatel(yes-0/yes, no-0/no, runn-0/runn, cald-0/cald, cotd-0/cotd, 
find-0/find, ninit-0/ninit, comp-0/comp, pcanc-0/pcaLnc, canc-0/canc, exec-0/exec, 

prec-0/prec, pcanc-1/pcancl3 I 

Pari(yes-0/yes, no_o/no, runn-0/runn, cald_O/cald, cotd-0/cotd, 
find-0/find, ninit-0/ninit, comp_o/comp, canc_O/canc, exec-0/exec, 

exec-1/execil I 

***Instance: l: A 

InitialStateO[yes-1/yes, no-1/no, runn_l/runn, cald_l/cald, cotd-1/cotd, 
find-1/find, ninit-1/ninit, comp-1/comp, pcanc-1/pcanc, canc_l/canc, exec-1/exec, 

prec-0/pprec, yes-0/pyes] I 

Basicsl(comp-1/compl, yes-1/yesl, eyes-a/eyesil I 

, exec-O. Schedulerl I pprec. lpyes. nil 

M 
runn-0, cald-0, cotd-0, find-0, ninit_O, comp_O, pcanc_O, canc-0, exec-0, prec-0, yes-0, no-O, 
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runn-1, cald-1, cotd_1, find_1, ninit_1, comp-1, pcanc-1, canc-1, exec-1, prec-1, yes-1, no-1, 

bas, pprec, pyes, lock, idle, prog, reset} 

If we check the observational equivalence of these workflow models under CWB-NC, we can see 
that they are found to be equivalent. 

cwb-nc> eq -S obseq WorkflowO Workflowl 

Building automaton... 
States: 42 

Transitions: 40 

Done building automaton. 
Transforming automaton... 
Done transforming automaton. 
TRUE 

Execution time (user, system, gc, real): (0.012,0.000,0.000,0.011) 

cwb-nc> 

But, if we check for strong equivalence, we can see that they are not found to be equivalent. 0 
Strong equivalence is too strong a notion for workflow model equivalence. That is, the internal 

behaviour of a model is not important, as Ion-, as the observable behaviour in terms of basic 
0 

instances offered for completion, and in terms of completion of the model as a whole, is the same. 

cwb-nc> eq -S bisim WorkflowO Workflowl 

Building automaton... 
States: 42 

Transitions: 40 

Done building automaton. 
FALSE... 

WorkflowO satisfies: 
<t><t><t><t><t><t><t><t>[t)ff 

Workflowl does not. 
Execution time (user, system, gc, real): (0.008,0.004,0.000,0.012) 

cwb-nc> 

Liesbet Model Equivalence, Example 2: v Trace Equivalence 

Observational equivalence is a stronger notion than trace equivalence. For trace equivalence, we are 

concerned solely with comparing the possible sequences of basic activity completion of workflow 

models. For ob servational equivalence, however, we seek to compare the choices of basic activities 
to complete at corresponding stages of evolution of workflow models. 

An example that highlights this distinction is the following simple one. Let Liesbet model 
Workf lowO be defined as Seq(A, Choice(Empty, B, Empty, C)), aiidletLiesbetiiiodelWorkflow1 
be defined as Choice (Empty, Seq(A, B), Empty, Seq(A, C)). ForWorkf1ow0, wedonotmake 

a commitment on the choice between B and C until after we have performed A. For Workf lowl, 

in contrast, we make the choice before we execute A. These models do not maintain the same 

choices of activities to complete at corresponding points in their evolution. That is, after A has 
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been completed, both B and C are available in Workf lowO, whereas only one of B or C is available 
in Workf lowl. However, the two models are trace equivalent, as they both manifest the sequences 

of activity completion: A, B and A, C. 

We present results of checking observational and trace equivalences between Workf lowO and 
Workf lowl. The CCS source for these workflow models follows. In presenting the source, we mostly 

omit the definition of tracker and generi c type agents for brevity. Their definitions are identical to 

those presented in Section 5.1.2. 

CCS Verification Run 

#0 

Generated from: file: samples/LiesbetEquivTestBO. liesbet 

On: Wed Jul 12 16: 41: 00 BST 2006 

appropriate tracker and generic type agents 

proc Basics3 

bas. ( 

'compl. leyesi. yesl. lbas. Basics3 + 

'comp2. leyes2. yes2. lbas. Basics3 + 

'comp3. leyes3. yes3. lbas. Basics3) 

proc Basics4 

bas. ( 

'compl. leyesl. yesl. lbas. Basics4 + 

'comp2. leyes2. yes2. lbas. Basics4 + 

'comp3. leyes3. yes3. 'bas. Basics4 + 

'comp4. leyes4. yes4. lbas. Basics4) 

proc Scheduler = 
'find-O. (Yes-O. Irfind. nil + no-O. Ilock. (idle. Ilock. 

(idle. Ilock. (idle. Ilock. (idle. lbas. bas. 'reset. 'reset. 'reset. 'reset. Scheduler + 

prog. 'reset. 'reset. 'reset. Scheduler) + 

prog. 'reset. 'reset. Scheduler) + 

prog. 'reset. Scheduler) + 

prog. Scheduler)) 

proc Schedulerl = 
'find-O. (Yes-O. Irfind. nil + no-O. Ilock. (idle. Ilock. 

(idle. Ilock. (idle. Ilock. (idle. 'lock. (idle. 'bas. bas. 'reset. 'reset. 'reset. 'reset. 'reset. SchedulerI + 

prog. 'reset. 'reset. 'reset. 'reset. Schedulerl) + 

prog. 'reset. 'reset. 'reset. Schedulerl) + 

prog. 'reset. 'reset. Schedulerl) + 

prog. 'reset. Schedulerl) + 

prog. Scheduleri)) 
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proc WorkflowO 

***Instance: O: Sl 

InitialState2[yes-0/yes, no-0/no, runn-0/runn, cald-0/cald, cotd-0/cotd, 

find-0/find, ninit_O/ninit, comp-0/comp, pcanc-0/pcanc, canc-0/canc, exec-0/exec, 

prec-0/prec, 

pcanc-1/pcancl, yes-1/yesl, pcanc-2/pcanc2, yes-2/yes2l I 

Seq2[yes-0/yes, no-0/no, runn-0/runn, cald-0/cald, cotd-0/cotd, 
find-0/find, ninit_O/ninit, comp-0/comp, pcanc-0/pcanc, canc_O/canc, exec-0/exec, 

exec-1/exec2, find-1/find2, yes_l/yes2, no-1/no2, exec-2/execil I 

***Instance: I: A 

InitialStateO[yes-1/yes, no-1/no, runn_l/runn, cald_l/cald, cotd_l/cotd, 
find-1/find, nirlit-1/ninit, comp-1/comp, pcanc-1/pcanc, canc-1/canc, exec_l/exec, 

prec-0/pprec, yes-0/pyes] I 

***Instance: 2: CH 

InitialState4[yes-2/yes, no-2/no, runn-2/runn, cald_2/cald, cotd_2/cotd, 
find-2/find, ninit-2/ninit, comp-2/comp, pcanc-2/pcanc, canc-2/canc, exec-2/exec, 

prec-2/prec, prec-0/pprec, yes-olpyes, 

pcanc-3/pcancl, yes_3/yesl, pcanc_4/pcanc2, yes-4/yes2, 

pcanc-5/pcanc3, yes-5/yes3, pcanc-6/pcanc4, yes-6/yes4l I 

Choice2(yes-2/yes, no-2/no, runn-2/runn, cald_2/cald, cotd-2/cotd, 
find-2/find, ninit_2/ninit, comp_2/comp, pcanc-2/pcanc, canc_2/canc, exec_2/exec, 

exec-3/execgi, exec-4/execcl, canc_3/cancgl, canc_4/canccl, yes-4/yescl, cotd-3/cotdgl, 

runn-3/runngl, yes-3/yesgl, no-3/nogi, cald-3/caldgl, 

exec_5/execg2, exec-6/execc2, canc-5/cancg2, canc_6/cancc2, yes-6/yesc2, cotd_5/cotdg2, 

runn_5/runng2, yes-5/yesg2, no-5/nog2, cald-5/caldg2l I 

***Instance: 3: Eml 

InitialStateO[yes-3/yes, no-3/no, runn-3/runn, cald-3/cald, cotd-3/cotd, 
find-3/find, ninit-3/ninit, comp-3/comp, pcanc-3/pcanc, canc-3/canc, exec_3/exec, 

prec-2/pprec, yes-2/pyes] I 

Empty(yes-3/yes, no-3/no, runn-3/runn, cald-3/cald, cotd-3/cotd, 
find-3/find, ninit-3/ninit, comp-3/comp, pcanc-3/pcanc, canc-3/canc, exec-3/execl 

***Instance: 4: B 

InitialStafeO[yes-4/yes, no-4/no, runn-4/runn, cald-4/cald, cotd_4/cotd, 
find-4/find, ninit-4/ninit, comp-4/comp, pcanc-4/pcanc, canc-4/canc, exec-4/exec, 

prec-2/pprec, yes-2/pyes] I 

***Instance: 5: Em2 

InitialStateO[yes-5/yes, no-5/no, runn-5/runn, cald_5/cald, cotd_5/cotd, 
find_5/find, ninit-5/ninit, comp-5/comp, pcanc-5/pcanc, canc-5/canc, exec-5/exec, 
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prec-2/pprec, yes-2/pyes] I 

Empty[yes-5/yes, no-5/no, runn_5/runn, cald_5/cald, cotd-5/cotd. 
find_5/find, ninit-5/ninit, comp-5/comp, pcanc-5/pcanc, canc-5/canc, exec-5/execl I 

***Instance: 6: C 

InitialStateO(yes-6/yes, no-6/no, runn_6/rurin, cald-6/cald, cotd-6/cotd, 

find-6/find, ninit-6/ninit, comp-6/comp, pcanc-6/pcanc, canc-6/canc, exec-6/exec, 

prec-2/pprec, yes-2/pyes3 I 

Basics3[comp-1/compl, yes-1/yesl, eyes_a/eyesl, 

comp-4/comp2, yes-4/yes2, eyes-b/eyes2, 

comp-6/comp3, yes-6/yes3, eyes-c/eyes3l I 

'exec-O. Scheduler I pprec. lpyes. nil 

Af 
runn_O, cald_O, cotd-0, find-0, ninit-0, comp-0, pcanc_O, 

runn-1, cald_I, cotd-1, find-1, ninit-1, comp-lo pcanc-1, 

runn-2, cald-2, cotd-2, find_2, ninit-2, comp-2, pcanc-2, 

runn-3, cald-3, cotd_3, find-3, ninit-3, comp_3, pcanc-3, 

r=_4, cald_4, cotd-4, find-4, ninit-4, comp-4, pcanc-4. 

runn_5, cald_5, cotd-5, find-5, ninit-5, comp_5, pcanc_5, 

runn_6, cald-6, cotd-6, find-6, ninit-6, comp_6, pcanc-6, 
bas, pprec, pyes, lock, idle, prog, reset} 

canc_O, exec-0, prec-0, yes-0, no-O, 

canc-1, exec-1, prec_l, yes_l, no_l, 

canc-2, exec-2, prec_2, yes_2, no-2, 

canc_3, exec-3, prec_3, yes_3, no-3, 

canc-4, exec-4, prec-4, yes-4, no-4, 

canc-5, exec-5, prec-5, yes-5, no-5, 

canc-6, exec-6, prec-6, yes_6, no-6, 

proc Workflowl 

***Instance: O: CH 

InitialState4[yes-0/yes, no-0/no, runn-0/runn, cald-0/cald, cotd-0/cotd, 
find-0/find, ninit-0/ninit, comp-0/comp, pcanc-0/pcanc, canc_O/canc, exec-0/exec, prec-0/prec, 

pcanc-1/pcancl, yes-1/yesi, pcanc-2/pcanc2, yes-2/yes2, 

pcanc-5/pcanc3, yes-5/yes3, pcanc-6/pcanc4, yes-6/yes4l I 

Choice2[yes-0/yes, no-0/no, runn-0/runn, cald-0/cald, cotd_O/cotd, 
find O/find, ninit-0/ninit, comp-0/comp, pcanc-0/pcanc, canc-0/canc, exec-0/exec, 

exec_l/execgl, exec_2/execcl, canc_l/cancgl, canc-2/canccl, yes-2/yescl, cotd-1/cotdgl, 

runn-1/runngl, yes-1/yesgi, no-1/nogl, cald-1/caldgl, 

exec-5/execg2, exec_6/execc2, canc_5/cancg2, canc-6/cancc2, yes-6/yesc2, cotd-5/cotdg2, 

runn-5/runng2, yes-5/yesg2, no-5/nog2, cald-5/caldg2l I 

***Instance: l: Eml 

InitialStateOEyes-1/yes, no-1/no, runn-1/runn, cald-1/cald, cotd_l/cotd, 

find I/find, ninit-1/ninit, comp-1/comp, pcanc-1/pcanc, canc-1/canc, exec-1/exec, 

prec-0/pprec, yes-0/pyes] I 
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Empty[yes-1/yes, no-1/no, runn-1/runn, cald-1/cald, cotd-1/cotd, 
find_l/find, ninit-1/ninit, comp-1/comp, pcanc-1/pcanc, canc-1/canc, exec-1/execl I 

***Instance: 2: Sl 

InitialState2[yes-2/yes, no-2/no, runn-2/runn, cald-2/cald, cotd-2/cotd, 
find_2/find, ninit_2/ninit, comp-2/comp, pcanc-2/pcanc, canc-2/canc, exec-2/exec, 

prec-2/prec, prec-0/pprec, yes-0/pyes, 

pcanc-3/pcancl, yes-3/yesl, pcanc-4/pcanc2, yes-4/yes2l I 

Seq2[yes-2/yes, no-2/no, runn-2/runn, cald-2/cald, cotd-2/cotd, 
find_2/find, ninit-2/ninit, comp-2/comp, pcanc-2/pcanc, canc-2/canc, exec-2/exec, 

exec-3/exec2, find-3/find2, yes-3/yes2, no-3/no2, exec-4/execl] I 

***Instance: 3: A 

InitialStateO[yes-3/yes, no-3/no, runn-3/runn, cald_3/cald, cotd-3/cotd, 
find-3/find, ninit-3/ninit, comp-3/comp, pcanc-3/pcanc, canc-3/canc, exec-3/exec, 

prec-2/pprec, yes-2/pyes) I 

***Instance: 4: B 

InitialStateO[yes-4/yes, no-4/no, runn-4/runn, cald-4/cald, cotd-4/cotd, 
find_4/find, ninit_4/ninit, comp-4/comp, pcanc-4/pcanc, canc-4/canc, exec-4/exec, 

prec-2/pprec, yes-2/pyes] I 

***Instance: 5: Em2 

InitialStateO[yes-5/yes, no-5/no, runn-5/runn, cald-5/cald, cotd-5/cotd, 
find-5/find, ninit-5/ninit, comp-5/comp, pcanc-5/pcanc, canc-5/canc, exec-5/exec, 

prec-0/pprec, yes-0/pyes] I 

Empty[yes-5/yes, no-5/no, runn-5/runn, cald-5/cald, cotd-5/cotd, 
find-5/find, ninit-5/ninit, comp-5/comp, pcanc-5/pcanc, canc-5/canc, exec-5/execl I 

***Instance: 6: S2 

InitialState2[yes-6/yes, no-6/no, runn-6/runn, cald_6/cald, cotd-6/cotd, 
find-6/find, ninit-6/ninit, comp-6/comp, pcanc-6/pcanc, canc-6/canc, exec-6/exec, 

prec-6/prec, prec-0/pprec, yes-0/pyes, 

pcanc-7/pcancl, yes_7/yesl, pcanc_8/pcanc2, yes-8/yes2l I 

Seq2[yes-6/yes, no-6/no, runn-6/riinT,, cald-6/cald, cotd-6/cotd, 
find-6/find, ninit_6/ninit, comp-61comp, pcanc-6/pcanc, canc-6/canc, exec-6/exec, 

exec-7/exec2, find_7/find2, yes-7/yes2, no-7/no2, exec-8/execl] I 

***Instance: 7: A 

InitialStateOEyes-7/yes, no-7/no, riinn_7/runn, cald_7/cald, cotd-7/cotd, 
find_7/find, ninit-7/ninit, comp-7/comp, pcanc-7/pcanc, canc-7/canc, exec-7/exec, 

prec-6/pprec, yes-6/pyes] I 

***Instance: 8: C 
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InitialStateO[yes-8/yes, no-8/no, runn-8/runn, cald-8/cald, cotd-8/cotd, 
find-8/find, ninit-8/ninit, comp-8/comp, pcanc-8/pcanc, canc-8/canc, exec-8/exec, 

prec-6/pprec, yes-6/pyes] I 

Basics4[comp_3/compl, yes-3/yesl, eyes-a/eyesl, 

comp-4/comp2, yes-4/yes2, eyes-b/eyes2, 

comp-7/comp3, yes-7/yes3, eyes-a/eyes3, 

comp-8/comp4, yes-8/yes4, eyes-c/eyes4l I 

, exec-O. Schedulerl I pprec. lpyes. nil 

Af 
r=-O, cald_O, cotd-0, find-0, ninit_O, comp-0, pcanc_O, canc-0, exec-0, prec-0, yes-0, no-O, 

runn-1, cald-1, cotd-1, find-1, ninit-1, comp-1, pcanc-1, canc-1, exec-1, prec-1, yes_1, no-1, 

runn-2, cald-2, cotd-2, find-2, ninit-2, comp-2, pcanc-2, canc-2, exec-2, prec-2, yes_2, no-2, 

runn-3, cald-3, cotd-3, find_3, ninit-3, comp-3, pcanc-3, canc-3, exec-3, prec-3, yes-3, no-3, 

runn-4, cald_4, cotd-4, find-4, ninit-4, comp_4, pcanc_4, canc-4, exec-4, prec-4, yes-4, no-4, 

runn_5, cald_5, cotd-5, find-5, ninit-5, comp_5, pcanc-5, canc-5, exec-5, prec-5, yes-5, no-S, 

runn-6, cald-6, cotd-6, find_6, ninit-6, comp-6, pcanc-6, canc-6, exec-6, prec_6, yes_6, no-6, 

runn-7, cald-7, cotd-7, find_7, ninit-7, comp-7, pcanc-7, canc-7, exec_7, prec-7, yes-7, no-7, 

runn-8, cald-8, cotd-8, find-8, ninit-S, comp-8, pcanc-8, canc-8, exec_8, prec-8, yes-8, no-8. 
bas, pprec, pyes, lock, idle, prog, reset} 

If we check the observational equivalence of these workflow models under CWB-NC, Ave can see 
that they are not found to be equivalent. As reported, Workf lowO is capable of completing either 
B or C after completing A, but Workf lowl is not capable of this. 

cwb-nc> eq -S obseq WorkflowO Workflowl 

Building automaton ... 

......... 1000 ......... 2000 ......... 3000 ......... 4000 ......... 5000 

......... 6000 ......... 7000 ......... 
States: 7955 

Transitions: 10570 

Done building automaton. 
Transforming automaton... 
Done transforming automaton. 
FALSE... 

WorkflowO satisfies: 

<<'eyes-a>>(<<'eyes-b>>tt A <<Ieyes_c>>tt) 

Workflowl does not. 
Execution time (user, system, gc, real): (646.728,65.880,383.524,712.701) 

cwb-nc> 

But, if we clieck for trace equivalence, we can see that they are found to be equivalent. 'Iyace 

equivalence is too weak a notion for workflow model equivalence. That is, two (or more) models 

may demonstrate trace equivalence when their observable behaviour is not tile same. 
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cwb-nc>eq -S trace WorkflowO Workflowl 

Building automaton ... 

......... 1000 ......... 2000 ......... 3000 ......... 4000 ......... 5000 

......... 6000 ......... 7000 ......... 
States: 7955 

Transitions: 10570 

Done building automaton. 
Transforming automaton... 
Done transforming automaton. 
TRUE 

Execution time (user, system, gc, real): (22.201,0.640,5.216,22.842) 

cwb-nc> 

5.2 Completion Result for Liesbetl Models 

Result: 

A Liesbetl model (constructed according to the syntactical constraints defined by the 

rneta-model) is guaranteed to complete (that is, all instances report completion, or 
cancellation) in a finite number of steps. 

Proof. 
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Base cases We work inductively from the base case of a Liesbeti model consisting of one 

activity instance. Such an instance must be of a childless generic type, namely, a basic 

activity, FreeChoice, or Empty. 

In the case of a basic activity instance, the CCS-based model that the translator outputs 

would be as follows. 

InitialStateOCSC-ol I Basicsi[SC-o, t] I 'exec-O. SchedulerO I pprec. lpyes. nil 

Here, Basicsl has the definition: 

proc Basicsl = 
bas. Icompl. yesl. 'bas 

And, SchedulerO: 

'find-O. (Yes-O. 'rfind. nil + no-O. Ibas. bas. SchedulerO) 

With reference to the definition of InitiaiftateO, presented in Section 5.1.2, and to the 

foregoing, it is clear that the only transitions that the model is capable of making can be 

characterised by a single chain of synchronisations, followed by a visible (output) transition 

on rf ind, indicating that the root instance (and thus the model enactment) has completed. 0 
The single chain is made up of the following synchronisations on channels (in order): exec-0, 43 0 
f ind-0, no-O, bas, comp-0, pprec, pyes, yes-0, bas, f ind-0, yes-0, followed by an output 
transition on rf ind. 
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In the case of structured childless activity types, such as FreeChoice, the single-act CCS- 
based model output from the translator would look as follows. 

InitialStateO[SC-ol I FreeChoice(SC_ol I 'exec-O. Schedulerl-NoBasics I pprec. lpyes. nil 

FreeChoice bas the definition presented in Section 5.1.2, namely: 

proc FreeChoice = 
lock. Icald. (Yes. lidle. reset. Idle + 

no. 'riinn. (yes. (Icomp. yes. lprog. Idle + Icanc. yes. lprog. Idle) + 

no. lidle. reset. FreeChoice)) 

Note that, there is no BasiCSb agent, as there are no basic instances in the model. The 0 
scheduler agent needs to reflect this also. Its definition would be as follows. 

'find-O. (yes-O. Irfind. nil + no-O. Ilock. prog. SchedulerO) 

In the case of a single FreeChoice instance, there are two possible enactment chains. They 
diverge depending on whether the FreeChoice instance is completed, or cancelled. The 

chains have a common prefix of synchronisations on channels (in order): exec-0, f ind-0, 

no-0, lock, cald-0, no-0, runn-0, yes-0. 

Having established the FreeChoice is running, we may either cancel or complete it. There- C, 
after, both enactment chains have the same suffix of synchrou isat ions: pprec, pyes, yes-0, 
prog, f ind-0, yes-0, followed by an output transition on rf ind. 

For Empty, there is a single enactment cliain, as we may only complete the instance. 0 
Clearly, for all of the base cases, the instances need to be have been set running for them 
to complete, or cancel. We have shown that once such an instance has been set running, 
it will eventually finish (complete, or cancel). There is no possibility of locking for the 
cliaracterisations of the base cases. 
Moreover, we propagate the finishing (completion, or cancellation) of the instance up to the 60 
parent by means of pprec. (In the case of a sin. -le-act model, there is no parent so the 

synchronisation occurs with the dummy agent pprec. lpyes. nil. 

For completed childless instances, it is imperative that their generic types agents forever idle ID 0 
so that they never starve other instances of the opportunity to progress. As FreeChoice and 
Empty both evolve to the agent Idle, this behaviour is assured. 

e Induction step: 

We proceed by showing that the introduction of any instance of a child-bearing generic activ- C, 0 ID 
ity type does not affect the completion result that we are seekingo to prove. By introduction, 

we mean that the instance coalesces a number of distinct Liesbet models, for which com- 

pletion is guaranteed (by the induction hypothesis), as children. An example might be to 00 
coalesce two models, MI and M2, as children of a Par type, viz. Par(MI, M2). 

When introducin- a child-bearing instance, we need to ensure the following behaviour. The 00r, 
instance must eventually propagate execution (or cancellation) to each of its children. It 0 
niust otherwise idle until all of its children have finished, at which point the instance should 
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itself complete, and propagate completion upwards. Its generic type agent should thereafter 

forever idle. The idling ensures that instances elsewhere are not starved of the opportunity 
to progress. 

Fýrorn inspection, it is clear that all of the child-bearing types effect the required behaviour, 
It, 

in their agent definitions. For example, Par propagates execution to all of its child instances, 

and thereafter reports idle until all of them have finished, whereon it completes itself and 

propagates completion up to its parent. 0 

0 

As completion is guaranteed for Liesbetl modeIs, there can be no source of Iocking in such 0 
models. Furthermore, enactment is guaranteed to be finite. 

5.3 Discussion: CCS for Liesbetl 

As stated in Section 3.2, any characterisation of Liesbet must prioritise the progression of struc- 
tured activity instances over the progression of basic instances. In the absence of an explicit notion 

of priority in CCS, the only way to effect such a priority is to use a scheduler for activity instances. 

The operation of such a scheduler would be to interrogate (potentially) all structured instances 

to ascertain whether they can progress, and to only progress a basic instance if the structured 
instances cannot. 

The use of an explicit scheduler is rather costly in terms of the state space that is entailed. 
Often, it will be the case that an activity instance will be incapable of progressing in the current 

state, but there will still be the cost (in terms of transitions and states) of identifying as much. 
However, its cost can be somewhat offset by the use of a locking mechanism on execution rights. 

In enabling structured activity instances to make numerous transitions without interleaved tran- 

sitions pertaining to other activity instances - tile instance enjoys an execution window, we effect 

a partial-order reduction (POR) on the state space [38,59]. A POR removes certain permutations 

of transitions from a state space. Through a POR, we are seeking to institute a greater degree 

of total-orderino, between the transitions that may be made between any two states, which serves 
to reduce the state space between tile two states. This will reduce the complexity of verification, 

which is proportional to the size of the state space entailed by a CCS model. 
However, the complexity of verification remains punitive, for even the simplest of models (as can 

be seen from the example of Section 5.1.3, when checked against a proposition in Section 5.1.4). A 

significant improvement can be made in the verification complexity by using a variant of CCS which 
has built-in support for the expression of priority, viz. PCCS. In the next section, we present a 

characterisation of Liesbet, using PCCS. The capability of expressing priorities of certain actions 

over others removes tile need for all explicit scheduler, and as a consequence considerably reduces 
the size of state spaces that are entailed from PCCS-characterised Liesbet models compared with 
their respective C CS-charact erisat ions. 

As we argue in the concluding remarks to this chapter (in Section 5.7), it is possible to provide 

a mapping for the whole of Liesbet into CCS. We omit the presentation of such a mapping due 

to space constraints. We do present such a mapping in our presentation of PCCS-based semantics 
for Liesbet, which is now given. C3 
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5.4 Using PCCS to Provide an Operational Meaning to 

Liesbet 

We are motivated to use PCCS to provide a formal characterisation of Liesbet because of the 

punitive verification complexity of our CCS-based characterisation. The capacity for expressing 

priority in PCCS means that the use of an explicit scheduler is not required. Instead, we can use 
transitions of differing priorities to ensure that structured instances get progressed ahead of basic 

0 t5 0 
instances. The absence of an explicit sclieduler should greatly improve the efficiency of verification 
for all but the simplest of models. 

In this section, Nve present our PCCS-based characterisation of Liesbeti. We defer the presen- 
tation of our PCCS characterisation of the rest of Liesbet to Appendix A, in order to save space 
here. 

5.4.1 PCCS: Liesbetl 

In our PCCS characterisation of Liesbet, we maintain the notion of an execution window, where 

activity instances claim a lock on execution rights in order to progress meaningfully before yielding 

so that another instance may grab the lock. This is effected without the use of an explicit scheduler 
(as in our CCS-based characterisation) by specifying that activity instances specify transitions at 

a certain priority level when seeking to claim the lock, and subsequently specify transitions at a 
higher priority level in order to maintain ownership of the lock. Eventually, an instance will yield C, 
such rights implicitly by not effecting further synchronisations at this elevated level of priority. C, 0 

In summary, we make use of the following priority levels (where the higher the number, the 00 
lower the priority). Note that it is the relative ordering of priorities that is important, not the 

specific numbers. 

9 20 - For tile basic activity arbiter to claim execution rights. It is appropriate for the arbiter 
to claim execution rights at the lowest level of priority, as it should not operate unless work 0 
cannot be done otherwise in the model. However, once it has claimed execution rights, all 0 
of its subsequent behaviour operates at the highest levels of priority (3-6) until the arbiter 

wishes to yield execution rights. 

10 - The initial action of a structured instance will execute at this level to clairn execution 

rights, i. e. at a higher level of priority than the arbiter for basic instances, but at a lower 
00 

level of priority than 3-6, which are the levels at which agents who have already claimed 

execution rights operate. 

-., pertaining to a structured instance, or basic e 3-6 - Actions which are part of an agent 
instance arbiter) which has claimed execution rights. The varying levels are used to cut 
down tile number of possible patlis between pairs of states, where these various paths are 

unimportant to the global evolution of the model. Thus, tile variety of levels lielp in effecting 

a POR. Note that levels 3 and 5 are the levels that are principally used. 

-6- Used within synclironisation types - which largely run at 5- to specify a lower 

priority for the success of StopQuerys (resp. GoQuerys) compared with GoQuerys (resp. 

StopQuerys) which take precedence in Gos (resp. Stops). 
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-5- The principal priority level used within synchronisation activity types. As described 

in the characterisation of Liesbet2, their queries get satisfied over the course of the 

enactment of the workflow model; but, for better POR, it is appropriate for this to occur 
between activity instances of other types holding execution rights. As a result, they do 

not hold the same priority level as actions of those instances that hold execution rights 
(i. e. 3); but they hold a higher priority than actions of those instances that seek to 

claim execution rights (i. e. 10, or 20)- 

-4- This is a level used within synchronisation types for handshaking synchronisations. 
These communicate to an agent effecting subsequent behaviour that a precursive agent 000 
has completed its activity. The priority level is used wholly for effecting POR between 

actions pertaining to handshaking and those not. 

-3- This is the main priority level used for activity instances that have previously claimed 
execution rights. While sync] ironisat ions are possible at this level, logic pertaining to 000 
other activity instances may not be advanced. This is because all such other logic will 
be guarded by actions which have priorities set to 10 or 20, as the pertaining activity 00 
instances are yet to successfully claim execution rights, or, set to 5, in the case of 
synchronisation types. 

The definition of the translation function, A4,,,,, j-j, for PCCS Liesbetl is largely the same 

as that presented in Section 5.1.2, for CCS. The only difference is that we pass the name of an 
instance's cancellation channel, cald, to MpccsE-j when translating one of its child instances, so 
that a child instance may detect when its parent has been cancelled, and, as a consequence, cancel 
itself. This pull approach is different to that taken in the CCS characterisation, where instances 

explicitly push cancellation to their children using pcanc. Now, we remove the use of pcanc actions 

which makes the definitions of agents simpler. In the CCS characterisation, without being, able to 

specify priorities for transitions, there is no simple way of implementing a pull approach. 
We omit a presentation of Mpccsj-j for Liesbetl types as it is the same as the CCS charac- 

terisation, save for this one aspect. However, as an example of its definition for PCCS, we show 
Mpcc,, I-] applied to the Seq activity type, where st-chs --+ is defined as it was for the CCS cliar- 

acterisation, but without a pcanc channel, and without answer channels yes and no. That is, for 

the PCCS characterisation, we abbreviate the channel list: exec, comp, canc, ninit, runn, 

cotd, cald, f ind by st-chs --+. 

MpccsjSeq(ChI, 
... Chn)](st-chsi --+, ppreci, pcaldi)= 

let st-chsi, --+ in ... st-chsi. ý in let preci in 

See [SCj, SCi.,,, SCjj, j 

InitialStiten [SC, ppr. ci/,,,., prec, /prec 
v 
Pca'd ý /pc-Id 

Mpccs[Ch I] (st-chsi, --+, pre ci caldi) I... I MpccjjChnj(st-chsjý ý, pre ci caldi) 

The definition of the state tracking agent, InitialState', where n is 2, is as follows. 00 

proc InitialState2 = 
Ipcald: 5. CancelledState + 
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canc: 3. lpprec: 5. CancelledState + 

canc: 10. lpprec: 5. CancelledState + 

exec: 3. RunningState2 

ter 5. CCS-based Characterisations of Liesbet 

Notably, in using a blocking paradigm, we do not need to facilitate synchronisation on all of 

an activity instance's state channels. We do need to support a number of priority levels, however, 

which differ for the various channels. 
This agent accepts: 

9A synchronisation on I pcald, allowing us to detect when the parent instance has been can- 0 
celled. Its priority is set at level 5 to make sure that it takes place in between an agent. 0 
yielding execution rights and another claiming thern. 

A synchronisation on canc, at levels 3, and 10, to effect a cancellation. Level 3 is the main 

priority level used when an agent pertaining to an activity instance holds execution rights. 
Level 10 is used for agents seeking to claim execution rights. 00C, 
Having synchronised on canc, the InitialStaten agent signals to its parent that it has 

00C, 
finished on pprec (at level 5), and then moves to a Cancelled state. A priority of 5 is 

used for pprec, as it should have a IoNver priority than other possible synchronisations of 
the activity instance holding execution rights; but it should occur before execution rights are 

yielded. This distinction effects a POR. 

A synchronisation on exec may occur once an agent has execution rights (level 3), which 

exposes a RunningState2 agent. C, 

The definition of RunningStater, where r is 0-2 is as follows. Note that RunningState agents, 
in the PCCS characterisation, are not annotated by the pair n-r. This is because we do not need 
to keep track of n any longer, as we do not push cancellation on to child instances. We simply o 
decrement the r count whenever a child instance signals that it has finished (on prec). 0 

proc RunningStateO = 

comp: 20. lpprec: 5. CompletedState + comp: 10. lpprec: 5. CompletedState + 

comp: 3. lpprec: 5. CompletedState + 

runn: 10. RunningStateO + runn: 5. RunningStateO + runn: 3. RunningStateO + 

ninit: 5. RunningStateO + 

Ipcald: 5. CancelledState + 

canc: 3. lpprec: 5. CancelledState + canc: 10. lpprec: S. CancelledState 

proc RunningStatel = 

prec: 5. lpprec: 5. CompletedState + 

runn: 10. RunningStatel + runn: 5. RunningStatel + runn: 3. RunningStatel + 

ninit: 5. RunningStatel + 

'peald: 5. CancelledState + 

canc: 3. lpprec: 5. CancelledState + canc: 10. lpprec: 5. CancelledState 

proc RunningState2 = 

prec: 5. RunningStatel + 
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runn: 10. RunningState2 + runn: 5. RunningState2 + runn: 3. RunningState2 + 

ninit: 5. RunningState2 + 

)pcald: 5. CancelledState 

canc: 3. lpprec: 5. CancelledState + canc: 10. lpprec: 5. CancelledState 

0 In RunningStateO, we support the completion of childless activity instances, at levels 20 - 
for basic instances, 10 - for structured instances where we are seeking to claim execution 

rights, and 3- where we already have execution rights. We further support confirmation 
that we are running at 10 - to gain execution rights, 5- for synchronisation types, and 3- 

when we already have execution rights, and confirmation at 5 that the instance is not in the 

Initial state. Also, as well as supporting querying whether the parent is alread cancelled, 00y 
at 5, we support cancellation of the instance at 3 and 10. 

e For RunningStatel, compared with RunningStateO, we disallow explicit completion, as 

we did in our CCS-based characterisation (see Section 5.1.2). Instead, when a (final) child 
instance signals that it has finished on prec (at priority 5), we propagate completion upwards 00 
(on pprec), and then move to CompletedState. 

The single change for RunningState', where r>1, from RunningStatel again Concerns 0 
prec. When a child signals that it has finished on prec, we decrement the count of outstand- 
ing child instances that are running. Thus, the agent to be exposed is RunningStater-1. C, 0 

For CompletedState and CancelledState, we support a number of querying actions at levels C, 
10 - an agent does not have execution rights, and 5- for queries within Liesbet s nchronisation 00y 
types. We do not need to support querying at level 3, as there is never a need for it (in our charac- 
terisations of the Liesbet generic activity types). However, sometimes, an instance may attempt 
to cancel one of its children when the child instance has already been cancelled, or completed. As 

such, we support a cancel action at level 3. Similarly, it may be the case that an instance attempts 
the execution of one its children when the child instance has already been cancelled, as already 
described in Section 5.1.2. As such, we support an execute action at level 3, for CancelledState. 

proc CompletedState = 

cotd: 10. CompletedState + 

cotd: 5. CompletedState + 

find: 10. CompletedState + 

find: 5. CompletedState + 

ninit: 5. CompletedState + 

canc: 3. CompletedState 

proc CancelledState = 

cald: 10. CancelledState + 

cald: 5. CancelledState + 
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find: 10. CancelledState + 

find: 5. CancelledState + 

canc: 3. CancelledState + 

ninit: 5. CompletedState + 

exec: 3. CancelledState 

5. CCS-based Characterisations of Liesbet 

The definitions of the agents effecting tile various Liesbet generic activity types are now C, C, 0 
presented. For Par' and Seq, when it is 2: 

proc Par2 = 
Irunn: 10. lexecl: 3. lexec2: 3. nil + Icald: 5. nil 

proc Seq2 = 
)r, lnn: 10. 'exec2: 3. Seq2f + 'cald: 5. nil 

proc Seq2f = 
Ifind2: 10. lexecl: 3. nil + Icald: 5. nil 

As can be seen, an agent such as Par2 attempts to claim execution rights at priority level 10, 00 
by establishing that its pertaining instance is in a Running state. If the attempt is successful, it 

Z, 0 
thereafter operates at level 3 as it has these rights. Alternatively, to claiming execution rights, the 

agent may with higher priority synchronise on cald (at 5), which would occur if its tracker agent 
had moved into a Cancelled state. In this case, the logic effecting the generic activity type should 
be garba ge- collected, as it is no longer pertinent. 

Notably, these are much simpler definitions, thanks to the use of the blocking paradium, with 

priority, than those presented for the standard CCS characterisation. 
For Par', we simply initiate the execution of all child instances in turn. As execution rights 

are solely held by this agent, these actions will happen contiguously. 
For Seql, child instances are indexed in decreasing order, which makes for simpler agent defini- 

tions. We start by initiating the execution of the first child instance, it. Then, we expose a Seef 

agent, and yield execution rights. Seqf is responsible for waiting for the running child instance 

to finish, claiming execution rights once this occurs, and initiating the execution of tile next child 
instance. After that, if n>2, tile agent constant See-' is exposed, or nil, if n=2. 

Note that completion of child-bearing activity instances is effected within the pertaining state 
tracking agent, as done in the CCS-based characterisation. 

The Def aultChoicen and Choicen types look as follows when n is 2. 

proc DefaultChoice2 = 
Irlinn: 10. lexecgl: 3. lexecg2: 3. DefaultChoice2f + Icald: 5. nil 

proc DefaultChoice2f 

'cotdgl: 10. lexeccl: 3. lcancg2: 3. lcaLncc2: 3. nil + 



5.4. Using PCCS to Provide an Operational Meaning to Liesbet 109 

Icaldgl: 10. lcanccl: 3. llose: 3. nil 
I 

'cotdg2: 10. lexecc2: 3. lcancgl: 3. lcanccl: 3. nil + 

)caldg2: 10. lcancc2: 3. llose: 3. nil 

I 
lose: 3. lose: 3. lexecd: 3. nil 

)\Ilose) (> Ifind: 5. nil) 

proc Choice2 = 
Prunn: 10. lexecgi: 3. lexecg2: 3. Choice2f + Icald: 5. nil 

proc Choice2f 

'cotdgl: 10. lexeccl: 3. lcancg2: 3. lcancc2: 3. nil + 
'caldgl: 10. lcanccl: 3. llose: 3. nil 

Jcotdg2: 10. lexecc2: 3. lcancgl: 3. lcanccl: 3. nil + 
'caldg2: 10. lcancc2: 3. llose: 3. nil 

I 
lose: 3. lose: 3. lcanc: 3. nil 

)\(lose) [> 'find: 5. nil) 

For both Def aultChoice' and Choice', we initiate the execution of the guard instances. 
Then, in Def aultChoicenf and Choice'f, if a guard instance completes successfully, we initiate 
the execution Of its continuation instance and cancel all other guard and continuation instances. If 
the guard instance gets cancelled, we signal on lose. As detection of completion, or cancellation, 
is set at priority 10, and subsequent actions are set at 3, these transitions will occur contiguously. 
For DefaultChoice2f, if all the guard instances get cancelled then sufficient synchronisat ions on 0 t3 
lose will take place for the execd action to be exposed. This action is subsequently effected, which 
causes the execution of the default continuation instance to be initiated. In Choice2f, in the same 
eventuality, the Choice instance as a whole is cancelled. 

proc MultiChoice2 = 
Iriinn: 10. 'execgl: 3. lexecg2: 3. MultiChoice2f + Icald: 5. nil 

proc MultiChoice2f = 
'cotdgl: 10. lexeccl: 3. nil + Icaldgl: 10. lcanccl: 3. nil + Icald: 5. nil 

'cotdg2: 10. lexecc2: 3. nil + Icaldg2: 10. lcaacc2: 3. nil + Icald: 5. nil 

Similarly, for MultiChoicen, we start by executing the guard instances. Then we seek to 0 ?ý 
execute or cancel each continuation instance based on whether its pertaining guard instance has 

completed successfully, or has been cancelled. 

proc FreeChoice = 
'runn: 10. (Icomp: 3. nil + Icanc: 3. nil) + Icald: 5. nil 
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proc Empty = 
Prunn: 10. 'comp: 3. nil + Icald: 5. nil 

5. CCS-based Characterisations of Liesbet 

For a FreeChoice instance, we make a non-deterministic choice between completing the in- 

stance, or cancelling it. Empty instances are necessarily completed. 0 
The definition of Basics' is similar to the standard CCS characterisation of Liesbet. We 

do not need to synchronise on a channel (bas) to claim execution rights, as we did for the CCS 
0 

version, as we claim execution at a lower level of priority (20) than for structured instances. We 

simply complete one of the outstanding basic instances. 
0 

proc Basics4 = 
'compl: 20. Basics4 + 

'comp2: 20. Basics4 + 

'comp3: 20. Basics4 + 
'comp4: 20. Basics4 

5.5 Multi and MultiSeq 

Although they are not part of Liesbetl, it is sufficiently interesting to consider the characterisation 00 

of Multi/MultiSeq types in the main text. The primary novelty in their characterisation is that 

they may have an unlimited number of child instances. This means that we need to maintain 

an auxiliary counter agent in order to keep track of the number of such instances (yet to finish). 0 
This is in contrast to the approach used for all other types where the count of such instances is 

maintained by virtue of which tracker agent currently obtains for the instance. 

The translation of Multi and MultiSeq is defined by the following extensions 0 to MPCCSJ-j- 

The definition of the translation function makes use of auxiliary functions, AIT and AITS, which 

will be explained in due course. 

Mp ... iMulti(ExecAct(join(ExecActJoin)))](st-chsi --+, ppreci, pcaldi) - 
let st-chsij --+ in let st-chsie --4 in 

AIT(Mp, c., 
jExecActJoin] (st-chsij --, preci, caldi) , 

MpccsEExecAct] (st-chsi. ---), preci, caldi)) [SCj, SCij, j , SCie, e] I 

InitialState [SCj, pprec, /pprec 
P 

pcaldi /pcald] 

MpccsiMultiSeq(ExecAct(join(ExecActJoin)))I(st-chsi -, ppreci, pcaldi) 
let st-chsij -+ in let st-chSie ---ý in 

, 
AITS(Mp, c,, 

IExecActJoin] (st-chsij -+, preci, caldi) , 

. 
Mp,,,, ýExecActi(st-chSie--), preci, caldi))[SCi, SCij, j, SCie,. ] I 

InitialS"tate [SCi, pprec, /pprec 
t pcald, /pcald] 

Recall from Section 3.1.15, a multiple-instance activity type defines an execution activity type, 

ExecAct, of which several instances may be executed. Whether an instance of ExecAct is executed 
depends on its associated join condition, ExecActJoin. When a Multi* instance is set running, 
it creates an instance of ExecAct and its join condition. If the join condition is evaluated to hold 
(at some point subsequently), the ExecAct instance is executed. Also, another ExecAct instance 
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and join condition instance are created. For Multi, the join condition is set running immediately. 
For MultiSeq, we wait until the previously executed ExecAct instance has finished. Once a join 

condition instance fails (i. e. goes to Cancelled) its pertaining ExecAct instance is cancelled, and Iz ?3 
no more child instances are created. When all ExecAct instances have finished, the Multi instance 
is completed. 

For the characterisation of Multi* types, we maintain a counting agent, which starts life as 
ZeroCount, representing the number of outstanding ExecAct instances yet to finish. For the tracker 

agents, we make use of a reduced set of just four: InitialState, RunningState, CompletedState 

and CancelledState. This is sufficient because we make use of the counting agent to keep track of 
the number of outstanding child instances. CompletedState and CancelledState have the same 
definitions as presented in Section 5.4.1. The definition of InitialState is identical to that of 
InitialStateO, presented there, except that whenever the agent evolves to InitialStateO (resp. 

RunningftateO), it now evolves to InitialState (resp. RunningState). 
The RunningState agent is a parallel composition of RunningStateAgent and ZeroCount 

agents. The definition of RunningStateAgent is identical to that of RunningState', from Sec- 

tion 5.4.1, except that: 

0 The agent evolves to RunningStateAgent whenever it evolved back to RunningState' before. 

41 The handlinar of prec, indicating the completion of a child, is now handled elsewhere (within 
06 

agents output by All' and AITS). 0 

0 There is now a capability to complete the agent also, once we identify that (i) a join condition 
for an ExecAct has failed (i. e. has gone to cancelled), and (ii) there are no outstanding ?D0 
ExecAct instances to finish (as identified by a synchronisation on zero). 

The agent ZeroCount, together with OneCount, is used to keep a count of the number of 

outstanding - i. e. yet to finish - instances of ExecAct. When the count is increased from zero 
to one, the agent ZeroCount evolves to the parallel composition: OneCount I ZeroCount. The 

presence, at any time, of n instances of OneCount indicates that the value of the counter is n. The 

definitions of ZeroCount and OneCount are from [80]. 

proc RunningState = 
RuriningStateAgent I ZeroCount 

proc RunningStateAgent = 

runn: 10. RunningState2 + runn: 5. RunningState2 + runn: 3. RunningState2 + 

ninit: 5. RunningState2 + 

)pcald: 5. CancelledState + 

canc: 3. lpprec: 5. CancelledState + canc: 10. lpprec: 5. CancelledState + 

comp: 5. lzero: S. Ipprec: 5. CompletedState 

proc ZeroCount = 
inc: 5. (OneCount[il/i, zl/z, dl/dl I ZeroCount[il/inc, zl/zero, dl/dec])\Iil, zl, dl} + 

zero: 5. ZeroCount 

proc OneCount = 
inc: 5.1i: 5. OneCount + dec: S. ('d: 5. OneCount + Iz: 5. ZeroCount) 
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The auxiliary function All' (resp. AITS) is used to construct a Multi (resp. MultiSeq) agent, 0 
which is customised for the particular ExecActJoin and ExecAct types used within the multiple- 
instance type being translated. AIT (resp. AITS) takes two parameters, which are agents that 

result from applying. A4 
00 0 p,,, J-] to the given ExecActJoin and ExecAct types. In the following, we 

denote these agents by the names pExecActJoin and pExecAct. 0 
All' inserts the following customised agent into the output of translating a Multi type using 

mpCCSI-ý- 

Irunn: 10. Multi-cust + Icald: 5 

. AlTalso inserts a number of customised agent definitions into the main PCCS source, including 0 C, 
a definition for Multi-cust, viz. 

proc Multi-cust = 
MultiExec-cust I pExecActJoin I lexecj: 3 

proc MultiExec-cust = 
'cotdj: 10. (pExecAct I lexece: 3. linc: 5. prece: 5. ldec: 5. nil I Multi-cust) + 

Icaldj: 5. (Icald: 5. nil + 'comp: 5. nil) 

In the foregoing, an instance of the join condition, ExecActJoin, is initially set running. This 

occurs as a result of the I execj :3 action synchronising with its complementary action in the tracker 

agent for the join condition instance, InitialState'(SCjl, which is part of pExecActJoin. If 

the join condition instance completes successfully, we execute an instance of the execution activity 

of the Multi type, ExecAct, and increase the counter for outstanding child instances. At the same 
time, we execute another instance of ExecActJoin. Eventually, an execution activity instance 

will finish (as indicated on prece), and, when this occurs, we decrement the counter. If an 
ExecActioin instance gets cancelled, at any stage, we signal completion of the Multi instance t3 C3 C, 
on comp, as long as the Multi instance has not already been cancelled. On synchronising on comp, 
RunningStateAgent will wait until all existing child execution activity instances have finished (as 

determined by synchronising on zero), and then evolve to CompletedState. 

The characterisation of MultiSeq in PCCS is the same, except that in the definition for 

MultiExec-cust, output by AITS, we do not expose a fresh Multi-cust agent until we identify 
C, 

that the previous ExecAct instance has finished executing. The definition of MultiExec-cust is 
thus as follows. 

proc MultiExec-cust = 
'cotdj: 10. (pExecAct I lexece: 3. linc: 5. prece: 5. ldec: 5. Multi-cust) + 
Icaldj: 5. (Icald: 5. nil + 'comp: 5. nil) 

5.6 A Complete Example of Using PCCS for Liesbetl 

We present the PCCS-based characterisation of the same example used in Section 5.1.3 for the 

standard CCS characterisation of Liesbetl, namely Par(Seq(A, B) , Seq(C, D)). 
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PCCS Verification Run 

#0 

Generated from: file: samples/LiesbetTest. liesbet 

On: Mon Jul 31 15: 29: 07 BST 2006 

proc InitialStateO = 
)pcald: 5. CancelledState + 

canc: 3. lpprec: 5. CancelledState + 

canc: 10. lpprec: 5. CancelledState + 

exec: 3. RunningStateO 

proc InitialState2 = 
spcald: 5. CancelledState + 

canc: 3. lpprec: 5. CancelledState + 

canc: 10. lpprec: 5. CancelledState + 

exec: 3. RiinningState2 

proc RunningStateO = 

comp: 20. lpprec: 5. CompletedState + comp: 10. lpprec: 5. CompletedState + 

comp: 3. lpprec: 5. CompletedState + 

runn: 10. RunningStateO + runn: 5. RunningStateO + riinn: 3. RunningStateO + 

ninit: 5. RiinningStateO + 

Ipcald: 5. CancelledState + 

canc. 3. lpprec: 5. CancelledState + canc: 10. lpprec: 5. CancelledState 

proc RunningStatel = 

prec: 5. lpprec: 5. CompletedState + 

riinn: 10. RunningStatel + riinn: 5. RunningStatel + runn: 3. RunningStatel + 

ninit: 5. RunningStatel + 

spcald: 5. CancelledState + 

canc: 3. lpprec: 5. CancelledState + canc: 10. lpprec: 5. CancelledState 

proc RunningState2 = 

prec: 5. RiinningStatel + 

runn: 10. RunningState2 + runn: 5. RunningState2 + riinn: 3. RunningState2 + 

ninit: 5. RiinningState2 + 

)pcald: S. CancelledState + 

canc: 3. lpprec: 5. CancelledState + canc: 10. lpprec: 5. CancelledState 

proc CompletedState = 

cotd: 10. CompletedState + cotd: 5. CompletedState + 

find: 10. CompletedState + find: 5. CompletedState + 

ninit: S. CompletedState + 

canc: 3. CompletedState 
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proc CancelledState = 

cald: 10. CancelledState + cald: 5. CancelledState + 

find: 10. CancelledState + find: 5. CancelledState + 

ninit: 5. CancelledState + 

exec: 3. CancelledState + 

canc: 3. CancelledState 

proc Basics4 = 
'compl: 20. Basics4 + 

'comp2: 20. Basics4 + 

'comp3: 20. Basics4 + 

'comp4: 20. Basics4 

proc Seq2 = 
'runn: 10. 'exec2: 3. Seq2f + Icald: 5. nil 

proc Seq2f = 
Ifind2: 10. lexecl: 3. nil + Icald: 5. nil 

proc Par2 = 
Yrunn: 10. 'execl: 3. lexec2: 3. nil + 'cald: 5. nil 

proc WorkflowO 

***Instance: O: Pl 

InitialState2[runn_O/riinn, cald-0/cald, cotd-0/cotd, 
find-0/find, ninit-0/ninit, comp-0/comp, canc-0/canc, exec_o/exec, 

prec-0/prec, cald-0/pca: Ldl I 

Par2[runn-0/runn, cald-0/cald, cotd_O/cotd, 
find-0/find, ninit-0/ninit, comp-0/comp, canc-0/canc, exec-0/exec, 

exec-1/execl, exec-4/exec2l I 

***Instance: l: Sl 

InitialState2(runn_l/runn, cald_l/cald, cotd-1/cotd, 
find-1/find, ninit-1/ninit, comp-1/comp, canc-1/canc, exec_l/exec, 

prec-1/prec, prec-0/pprec, cald-0/pcald] I 

Seq2[runn-1/runn, cald_l/cald, cotd_l/cotd, 
find-1/find, ninit-1/ninit, comp-1/comp, canc-1/canc, exec-1/exec, 

exec-2/exec2, find_2/find2, exec-3/execl] I 

***Instance: 2: A 

InitialStateO[runn-2/riinn, cald_2/cald, cotd-2/cotd, 
find-2/find, ninit-2/ninit, comp-2/comp, canc-2/canc, exec-2/exec, 

prec-1/pprec, cald-1/pcald] I 
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***Instance: 3: B 

InitialStateO(runn-3/runn, cald-3/cald, cotd-3/cotd, 
find-3/find, ninit-3/ninit, comp-3/comp, canc-3/canc, exec-3/exec, 

prec-1/pprec, cald-1/pcald] I 

***Instance: 4: S2 

InitialState2[runn_4/runn, cald_4/cald, cotd-4/cotd, 
find_4/find, ninit-4/ninit, comp-4/comp, canc-4/canc, exec-4/exec, 

prec-4/prec, prec-0/pprec, cald-0/pcald) I 

Seq2[rjjnn-4/runn, cald-4/cald, cotd-4/cotd, 
find_4/find, ninit-4/ninit, comp-4/comp, canc-4/canc, exec-4/exec, 

exec-5/exec2, find_5/find2, exec-6/execl] I 

***Instance: 5: B 

InitialStateO[runn-5/runn, cald-5/cald, cotd-5/cotd, 
find-5/find, ninit-5/ninit, comp-5/comp, canc_5/canc, exec-5/exec, 

prec-4/pprec, cald-4/pcald) I 

***Instance: 6: C 

InitialStateO[runn-6/runn, cald-6/cald, cotd-6/cotd, 
find_6/find, ninit-6/ninit, comp-6/comp, canc-6/canc, exec-6/exec, 

prec-4/pprec, cald-4/pcald) I 

Basics4[comp-2/compl, comp-3/comp2, comp-5/comp3, comp-6/comp4l I 

'exec-0: 3. pprec: 5. nil I 'find-0: 10. lrfind: 10. nil 

M 
runn-0, cald_O, cotd-0, find_O, ninit-0, comp-0, canc-0, exec-0, prec-0, 

runn-1, cald_l, cotd-1, find-1, ninit-1, COMP-1, canc-1, exec-1, prec-1, 

runn-2, cald_2, cotd-2, find_2, ninit-2, comp_2, canc-2, exec-2, prec-2, 

runn-3, cald_3, cotd-3, find-3, ninit-3, comp-3, canc-3, exec-3, prec_3, 

runn-4, cald-4, cotd-4, find_4, ninit-4, comp-4, canc-4, exec-4, prec_4, 

runn-5, cald-5, cotd-5, find_5, ninit_5, comp-5, canc-5, exec-5, prec_5, 

runn-6, cald-6, cotd-6, find_6, ninit-6, comp_6, canc_6, exec-6, prec-6, 

pprec, pcald} 

5.6.1 Model Checking PCCS Characterised Liesbetl with Concurrency 

Workbench 

For a simple model-checking test, with CWB-NC, we test the same proposition as that used in 
0 

Section 5.1.4, save for the priority level, viz. 

prop cotd = 
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min X= <->tt A [-Irfind: 10]X 

This proposition asserts that, along all enactment paths, the model will reach a completed 0 
state. The result of the model checking exercise follows. A significant reduction in states and 
transitions is evident over the corresponding standard CCS model, viz. 53 v 833 in states, and 57 

v 977 in transitions. 

cwb-nc> chk WorkflowO find 

Invoking alternation-free model checker. 
Building automaton... 
States: 53 

Transitions: 57 

Done building automaton. 
TRUE, the agent satisfies the formula. 

Execution time (user, system, gc, real): (4.078,0.000,0.093,4.078) 

cwb-nc> 

5.7 Concluding Remarks 

In this chapter (together with Appendix A), we have presented a comprehensive formalisation of 
the Liesbet meta-model using PCCS. The formalisation represents a contribution to the Business 

Process Management community. We argue that it trivially follows from this that a full CCS 

characterisation of the Liesbet meta-model is possible. That is, the only fundamental difference 

between the CCS- and PCCS-based characterisations is the use of the explicit scheduler in the CCS 

characterisation. As the issue of the scheduler is orthogonal to all other aspects of the respective 

characterisat ions, it stands to reason that a full CCS characterisation would trivially follow from the 

PCCS characterisation. We decided against explicitly defining a full CCS-based characterisation 

of Liesbet, as we believe it to not be sufficiently important to do so, in light of our PCCS-based 
0 

characterisation. 
As may be seen from the model checking example for Liesbeti, presented in Section 5.6.1, 

we are able to characterise Liesbet models using PCCS that have a significantly lower verifica- 
tion complexity (in terms of the size of the entailed state space) than models characterised using 
CCS. Tile principal reason for such a reduction is the absence of all explicit scheduler in the 

PCCS characterisation to enforce the intended semantics of Liesbet, presented in Section 3.2. 

Improved verification complexity was a key motivation for investigating the use of PCCS for the 

characterisation of Liesbet over CCS. 

There is an interesting dichotomy at play in our PCCS-based characterisation of Liesbet. We 

could make the verification complexity of PCCS-characterised Liesbet models even better by using 

further prioritý levels to achieve an even better partiaI-order reduction (POR) on the state space. 

However, these are not strictly necessary to capture the intended semantics of Liesbet, which are 

sufficiently captured without their use, and they would greatly obscure the clarity of the PCCS- 

based cliaracterisation of Liesbet. For instance, in the characterisation of synchronisation types, 

presented in Appendix Section A. 3, we use many handshaking actions. These could be mutually- 

differently prioritised to effect better POR, but the order in which they occur is not important 

for the characterisation to be sound. In fact, we could remove some of the use of priorities in the 
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current characterisation, and still have a sound characterisation. These handshaking actions occur 

at a distinct level of priority from all other actions. We could soundly remove this dispensation, 

which arguably would make for better clarity in specification but at the cost of increased verification 

complexity. 
Notably, even when we opt for maximising POR in order to reduce verification complexity 

as much as we can, the performance of verification under CWB-NC is still painfully slow for all 
but the simplest PCCS-characterised examples. An example is that of the Travel Agent model, 

presented in Section 4.5, which took several hours to return a result for checking whether the 

model completes along all enactment pathS2 CI . The principal reason for this is the inability of the 

CCS-based cli arac t erisat ions to practicably capture the intended semantics for Liesbet, presented 
in Section 3.2. 

Our PCCS-based characterisation of Liesbet exposes the real weaknesses of using process 0 
algebra, such as CCS/PCCS, for the representation of workflow. Formalisms such as these suffer 

on at least two principal counts: 

It is not possible to arrive at the intended semantics for Liesbet without a lot of abstraction. 
It is only through abstraction that we may count more that one transition occurring at a time 

to be atomic, which is a key requirement of the intended semantics (in propagating effects of 0 C, 
completing/cancelling childless instances up tile tree, for instance). Although, CCS/PCCS 
has a notion of abstraction in distinguishing internal (T) transitions from external ones, it is 00 
not possible to instruct CWB-NC to take account of this difference in constructing the state 
space of models. The lack of such a capability is hardly surprising, i. e., a CCS/PCCS model 
is fundamentally characterised by all of its transition types, the distinction between external 
and internal transition types is purely cosinetic. As such, to perform model checking on a 
CCS/PCCS, as CWB-NC does, it would always be necessary to construct the state space for a 
model accounting for all transition types, at least initially. It is tile construction of the entire 
space that kills CWB-NC when used for verification of PCCS-characterised Liesbet models. 

The efficiency (and clarity) of performing queries as part of progressing synchronisation types 

is not good. In order to carry out a single atomic query, there is no limit to the number of 
instances that may be need to be queried as to their state. All of these individual queries 
themselves require several transitions. The state space for querying alone quickly explodes. 
Again, this is behaviour that needs to be captured as atomic, together with the consequences 

of completing/cancelling synchronisation instances being atomically propagated. C, C, 00 

Interestingly, it is quite evident that Petri nets would not fair any better in characterising C, C, 
Liesbet than our CCS-based characterisations do. The principal reason lies in us making the 0 
recording of the state of activities explicit. Because of this, Petri nets would handle the character- 
isation of Liesbet in largely the same way in having tracker, generic type and scheduler agents. C, 0 CD 0 
Moreover, the same shortcomings in the expression and evaluation of syncbronisation conditions 

would exist 
It is also notable that none of the problems asserted (in Section 2.3.2) for Petri net-based charac- 

terisations of the YAWL patterns would exist in a Petri net-based characterisation of Liesbet. These 

20n a 3.2GIlz Linux box with 1GB RANI. 
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problems were concerned with: tracking multiple-instances, advanced synchronisation and cancel- 
Iation. This is because we resolve these issues at the information view (i. e. in defining Liesbet) 

prior to any characterisation using Petri nets/CCS/PCCS. This is a point that is discussed further 

in the conclusions to this thesis, in Chapter Twelve. 

It is worth noting, purely subjectively, that the specification of semantics for the generic type 

agents is quite clear and succinct. It is evidently appealing to be able to express the semantics 

using the programmin-like, compositional constructs of CCS/PCCS. Tile down-side of using such 

a language is that we would want the operational semantics that are associated with it to admit 
the notion that multiple transitions may occur atomically, as we have stated. We would imagine 

that this would be quite difficult to achieve in a process algebra such as CCS/PCCS. Thus, we have 

some clarity (especially when compared with the Situation Calculus characterisation, presented in 

the next chapter) at the cost of atornicity, which is another apparent dichotomy. 

We carry our experiences of using CCS/PCCS to characterise Liesbet over to the next chapter 

where we consider the characterisation of Liesbet usinc, a louic-based formalism, namely the 0 it, 
Situation Calculus. It proves interesting to see how the two evidently contrasting formalisms differ 

in the characterisation of Liesbet. 
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Situation- Calculus Based 

Semantics 

In this chapter, we present our Situation Calculus-based characterisation of Liesbet. A motiva- 
tion for investigating the use of the Situation Calculus was that, in being a logic-based formalism, 

000 ID 
it is quite different to a process algebra based approach for characterising the behaviour of dy- 

namic systems. Moreover, we felt that certain aspects in which CCS/PCCS may be deficient may 
be better addressed using the Situation Calculus, and vice-versa, making the investigation of us- 
ing the Situation Calculus to characterise Liesbet complementary to the investigation of using 
CCS/PCCS. 

We proceed with an introduction to the Situation Calculus (SitCalc), followed by a presen- 
tation of our SitCalc-based characterisation of Liesbet, deferring some aspects of the presen- 
tation to Appendix B to save space. Then, we present the definition of a translation function, 

. 
A4sjjc,, j, j-j, which translates Liesbet models to SitCaic, as well as a couple of results: one 

regarding the completion (in enactment) of SitCaic-based Liesbet models; and the other demon- 

strating that the chara cterisat ions presented in Section 3.4 of Liesbet constructs as abbreviations, 
Liesbetabbrev, are sound. At the end of the chapter, we present a discussion as to the relative 

merits of a logic-based approach, i. e. using, the Situation Calculus, versus one based on process 

algebra such as CCS/PCCS. 

6.1 Introduction to the Situation Calculus 

The Situation Calculus (SitCaic), originally thanks to McCarthy [761 and McCarthy and Hayes 

[77], is a framework for the description of dynamic domains. A significant contribution to the 

definition of SitCaic has been made by Reiter, and a number of his colleagues, over many years. 
A good summary of these efforts is presented in [981. 

The language, Lsijc, ýI,, is second-order with equality; although from a domain engineer's per- 

spective, it is essentially a first-order framework - it prescribes just a single second-order axiom. It 

is many-sorted, having three distinguished sorts: action, situation and object; where object counts 00 
as an aggregating sort for an unbounded number of other doniain-dependent sorts. 

Actions are the only means by which changes are made to the world. They have prescribed 0 

119 
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effects on fluents, which are mutable domain properties. Situations are defined inductively from 

the initial situation So, using the distinguished function do. The application do(a, s) denotes 

the situation that follows from performing the action a in situation s. Thus, situations represent 
histoHes of actions on the initial situation. The notion of situation is not synonymous with that 

of domain state; two situations may be different and yet may assign the same truth values to all 
fluents comprising the state of a domain. This is a distinguishing feature of Reiter's formulation 

of SitCalc [98]. 

Assuming a standard alphabet of connectives and quantifiers, L,, jt,,, j, has the following alphabet 
[98]: 

a Countably infinitely many individual variable symbols of each sort. For actions (resp. situa- 
tions), we use a (resp. s), and subscripted and superscripted variations thereof. For variables 

of sort object, we use lower-case roman letters other than a and s, with possible sub/super- 

scriptin.. In addition, Csitcalc includes countably infinitely many predicate variables of all 

arities. 

e Two function symbols of sort situation: the constant So and do : action x situation -+ 
situation. 

a Two binary predicate symbols: E:: situation x situation, defining in ordering relation on n0 

situations (that is, s E: s' means that s is a sub-history of s'); and Poss : action x situation 
meaning that it is possible to perform the action a in situation s. 0 

a For each n>0, countably infinitely many predicate symbols of sort (action U object)', for 

situation-independent relations like human(Joe), oddNumber(m). 

9 For each n>0, countably infinitely many function symbols of sort (action U object)' --+ 
object, for situation-independent functions like sqrt(x), height (. AftEverest). 

e ror each n>0, a finite, or countably infinite, number of function symbols of sort (action U 

object)n --+ action. These are action functions, and denote actions such as pickup(x) and 

move(A, B). They are distinguished by the requirement that they be axiomatised by action 

precondition axioms, as described below. In most applications, they are finite in number. 

e ror each n>0, a finite, or countably infinite, number of function symbols of sort (action U 

object)' x situation --+ action U object. These are functional fluents and denote functions 

whose value is situation-dependent, such as age(Alary, s), or primeAlinister(Italy, s). 
Functional fluents always take just one argument of sort situation, and it is always the 
last argument. In most applications, they are finite in number. C, 

For each n>0, a finite, or countably infinite, number of predicate symbols with arity 71 +1 

and sort (actionUobject)' x situation. These are relational fluents and denote relations whose 

value is situation-dependent, such as ontable(x, s), or husband(Alary, John, s). Relational 

fluents always take just one argument of sort situation, and it is always the last argument. 
In most applications, they are finite in number. 

Note that, in this cliapter, the scope of quantifiers should be taken to be remainder of the 
formula, from where they are used, up to the quantifier name being used agam. 



6.1. Introduction to the Situation Calculus 121 

There are four domain-independent, foundational axioms, E, described for SitCaic [98], wbere 

s E: s' is an abbreviation for sC s' Vs= s', viz. 

do(al, sl) = do(a2, S2) Dal =a2 As, = S2 

(VP). P(So) A (Va, s)[P(s) D P(do(a, s))] D (Vs)P(s) (6.2) 

SO (6.3) 

s E: do(a, s') -= s E: s' (6.4) 

The first of these axioms (1) is a unique names axiom for situations, defining a necessary 

condition for txvo situations to be equal; namely that they be derived from ail application of the 

same action to the same situation. 
The second of these (2) is the single (prescribed) second-order axiom, and defines the domain 

of situations to be the smallest set which includes the initial situation, So, that is closed under 
the application of the function do to an action and a situation. This captures the notion that 

situations are finite sequences of actions. 
From [981, we note that any model of these two axioms will have as its domain of situations 

the smallest set S satisfying: 0 

* co E S, where co is the interpretation of So in the model. 

a If uES, and AEA, then do(A, a) E S, where A is the domain of actions in the model. 

The first two axioms imply that two situations will be the same iff they result from the same 

sequence of actions applied to the initial situation, So. The other two axioms, (3) and (4), capture 
the notion of a sequence of actions preceding another - that is, the notion of a sub-history. The 

operator [:: provides an ordering on situations, where s E: s' means that the action sequence, or 

situation, s' can be obtained from s by applying one or more actions to s. 
aom E, it can be shown that the situations in any model M of E can be represented as a tree 

-a situation tree, where every node branches on all elements of Act (which, along with OIJ and 
Sit partition the domain of M, according to the sorts action, object and situation, respectively). 

A basic SitCalc action theory (BAT), D, consists of the foundational axioms, E, as well as a 

number of other domain- dependent axioms, viz. 

e Action Precondition Axioms, constituting D,, p, with the form: 

Poss(A(xl,..., Xn), S) ý rIA(Xl, 
... 1 Xni S)i 

where A is an n-ary action function symbol and lIA(X1, 
... 1 Xni S) is a formula that is uniform 

in s (that is, determined according to the current situation s, alone) and whose free variables 

are among xi, ..., Xn, S- 0 

* Successor-state Axioms, constitutin4g, Dssa: 

- For relational fluents, with the form: 

F (x 1, ..., x, do(a, s)) ý- (IýF (X 11 .... x, a, s), 

where F is an+ 1-ary predicate symbol and 'I'F(, 'rl, 
.... x, a, s) is a formula which is 

uniform in s, and whose free variables are among xi, ... 7 
Xn7 a, s. 

0 
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- For ftinctional fluents, with the forin: 

er 6. Situation- Calculus Based Semantics 

f (X,,..., x, do(a, s)) =y =- Of (xl,.. 
-, Xn, y, a, s), 

where f is an+ 1-ary function symbol and of (xl,..., x, y, a, s) is a formula which is 

uniform in s, and whose free variables are among xi, ... 7 Xn9 y, a, s. C, 

e Unique-name axioms for actions, constituting 'D,,,,,, which state that for any two actions to 0 
be identical, they must have identical function symbols and identical arguments: 

For distinct action names, A and B, 
AG) =/- B(V) 

Identical actions have identical arguments 0 
x�) =A (yl, 

---, Y, ) D XI ý Yl, ---, Xn ý Yn- 

* VS., the initial state of the domain -a set of first-order sentences, uniform in the initial 

situation So. 

We also require that models of basic action theories satisfy the following fluent consistency 

property, which ensures that a functional fluent has just one value y for a given set of parameters 0 
and situation. Suppose that f is a functional fluent whose successor state axiom in D,,,, is: 

(xi,..., x, do(a, s» =y -= 
Of (xi,..., x, y, a, s). 

Tlien, 

D h-- (V; ) (3y) Of (xi.... 
iXniy, a, s) A 

«VY7Y, )ý5f(Xll 
... lXn7y, a, s) A Of(xi,..., x�, y', a, s) D y=y') 

Situation trees represent the evolution of situations, according to the application of all actions 

within the domain of actions. Notably, the application of an action to a particular situation may 

not always be possible, according to D,, p, This means that certain sequences of actions, i. e. "ghost" 

situations, within the situation tree may not be possible. '1ý, pically, it is desirable to ignore these 

sequences within models of a SitCalc theory. To mark those sequences that should not be ignored, 0 
we define the notion of an executable situation. All of the actions named within such a situation 

must be executable, according to 1),, p, in their respective situations of application. We include the 
following abbreviation in the axiomatisation of SitCalc, which defines an executable situation to 
be one where it is possible to execute all of the actions occurring in the action sequence: 

ef executable(s) 't (Va, s'). do(a, s') C; sD Poss(a, s). 

6.2 SitCalc-based Semantics for Liesbet 

In this section, we concentrate on presenting the SitCalc-based characterisation of just a handful 

of Liesbet constructs so as not to disrupt the presentation with too many small points of detail. 

A presentation of the SitCalc characterisation for the remaining constructs is given in Appendix 

B. 

6.2.1 Par(Seq(A, B), Seq(C, D)) -A Simple Example 

We start this section with an example, in order to ground the presentation of the SitCalc se- 

mantics for Liesbet. In Figure 6.1, we see a graphical representation of a simple workflow model: 00 
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Pi 
Par 0 

Sl Se Seq S2 
00 

A 

Initial state 

0 -Running state 

V- Completed state 

X- Cancelled state 

Figure 6.1: Enactment State 0 of Par(Seq(A, B) Seq(C, D)) 
Possible Successor States: I 

Pi 
Par 0 

SIS, 
ý 

Seq S2 
00 

000 ABD 

Initial state 

0 -Running state 

q- 
Completed state 

X- Cancelled state 

FiOure 6.2; Enactment State 1 of Par(Seq(A, B) Seq(C, D)) 
Possible Successor States: 2,8 

Pi 
Par 

s1s. Seq S2 

AB 

0- Initial state 

Running state 

Completed state 

X -Cancelled state 

Figure 6.3: Enactment State 2 of Par(Seq(A, B) Seq(C, D)) 
Possible Successor States: 3,6 

Pi 
Par 0 

Sl Se Seq S2 

AB 

0- Initial state 

0 -Running state 

q- 
Completed state 

X- Cancelled state 

Figure 6.4: Enactment State 3 of Par(Seq(A, B) Seq(C, D)) 
Possible Successor States: 4 

Pi 
Par 0 

Sl Se Seq S2 

ABc 

0- Initial state 

0 -Running state 

NI - Completed state 

X- Cancelled state 

Figure 6.5: Enactment State 4 of Par(Seq(A, B) Seq(C, D)) 
Possible Successor States: 5 



124 Chapter 6. Sit ua tion- Calculus Based Semantics 

Pi 
Par 

Seq 2 

C B 

0- Initial state 

0 -Running state 

q- Completed state 

X- Cancelled state 

Figure 6.6: Enactment State 5 of Par(Seq(A, B) Seq(C, D)) 

Pi 
Par 0 

s1s. Seq S2 

Bc 

0- Initial state 

0 -Running state 

q- 
Completed state 

X- Cancelled state 

Figure 6.7. - Enactment State 6 of Par(Seq(A, B) Seq(C, D)) 
Possible Successor States: 4,7 

Pi 
Par 0 

Sl se Seq 2 

ABC 

0- Initial state 

-Running state 

- Completed state 

X- Cancelled state 

Figure 6.8: Enactment State 7 of Par(Seq(A, B) Seq(C, D)) 
Possible Successor States: 5 

Pi 
Par 0 

Sl Se Seq S2 

0 A Bc 

0- Initial state 

-Running state 

- Completed state 

X- Cancelled state 

Figure 6.9. - Enactment State 8 of Par(Seq(A, B) Seq(C, D)) 
Possible Successor States: 6,9 

Pi 
Par 0 

Sl se Seq 2 
0 

D ABC; 

Initial state 

0 -Running state 

N' - Completed state 

X- Cancelled state 

Figure 6.10: Enactment State 9 of Par(Seq(A, B), Seq(C, D)) 
Possible Successor States: 7 
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Par (Seq (A, B) , Seq(C, D)), that we have used for illustrative purposes throughout this thesis. In 

the initial state of the workflow model (state 0), all activity instances are in an Initial state, as 

can be seen. 
When the root activity instance (PI) is set running (Figure 6.2), execution is also propagated 

to appropriate descendants, resulting in state 1. Here, the two sequences, S1 and S2, which are the 

children of P1, are set running, as well as their respective first children, A and C. A key theme of 
these semantics is that actions that are performed on one instance, namely, completion, cancellation 

or execution, may have side-effects on other instances. In this case, the side-effect is to propagate 

execution downwards. Propagation of side-effects largely happens to ancestors or descendants of 
the activity on which an action is being performed. Thus, descendant and child are key relations 
in tile semantics presented here. 

In state 1 of the workflow model, we have the option to complete either basic instances A, or C1. 

Completing A takes us to state 2, represented in Figure 6.3. As can be seen, an effect of completing 
A is to set the second basic instance of the sequence S1, namely B, running. In state 2, we have 

the option of completing B, or C. Let's say that we complete B, taking us to state 3 (as shown in 

Figure 6.4). Completing B has the effect of also completing the sequence S1. That is, completion 
is propagated upwards. 

In state 3, we may only complete basic instance C, and doing so has the effect of setting instance 

D running, as can be seen from Figure 6.5. Then, in state 4, we may only complete D, which has 

the effect of completing S2, P1 and thus the model as a whole, which can be seen in Figure 6.6, 

which is state 5. 

There are some alternative enactments that are possible, which we shall now elaborate. 

41 In state 2, we may instead complete C, which results in the model state (#6) shown in 

Figure 6.7. If we then complete B, we arrive at a matched state. In SitCalc terms, a 0 
matched state is a situation which has the same fluent state as a previously visited situation, 

and, in verification, we would backtrack. In this case, the matched state is 4. 

" In state 6, we may instead complete D, which results in the model state (#7) shown in 

Fi-ure 6.8. If we then complete B, -%ve arrive at another matched state, namely state 5. 
0 

" In state 1, we may instead complete C, which results in the model state (#8) shown in 

Figure 6.9. Completing A then takes us to matched state 6. 
00 

" Alternatively, in state 8, if we complete D, we arrive at model state (#9), shown in Figure 6.10. 

In this state, the sequence S2 and its descendants C and D have completed, but, A, B (and 

Sl) are still running. Completing A then takes us to matched state 7. 
00 

In summary, there are ten distinct states for this example workflow model, shown in Figures 6.1- 0 
6.10. We now proceed to give an overview of how appropriate semantics for Liesbet, as exemplified 0 
here, are realised using SitCa1c. 0 

6.2.2 Introducing SitCalc-based Semantics for Liesbet 

We start our presentation of the SitCaic-based semantics for Liesbet by describing how the C, 
example model, presented in the previous section, may be characterised using SitCalc. Firstly, 0 

'For this example, we consider that basic instances may only be completed. (We do not consider cancellation. ) 
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Activity(O, 0,0, GId-PAR, NONE, NONE, NONE, SO) //P 

Activity(O, 1,1, GId-SEQ, NONE, EXEC, NONE, SO) //Sl 

Activity(O, 2,4, GId-SEQ, NONE, EXEC, NONE, SO) //S2 

Activity(l, 3,2, GId-BAS, NONE, EXEC, NONE, SO) //A 

Activity(l, 4,3, GId-BAS, NONE, NONE, NONE, SO) //B 

Activity(2,5,5, GId-BAS, NONE, EXEC, NONE, SO) //C 

Activity(2,6,6, GId-BAS, NONE, NONE, NONE, SO) //D 

Figure 6.11: Representation of Par(Seq(A, B) Seq(C, D)) in SitCalc C, 

for any SitCalc-characterised Liesbet model, there are a number of actions which may be carried 
out on the model. These actions are to complete or cancel an activity. Additionally, all activity 
instances extant in a model need to be added prior to any enactment of the model'. We use the 
term Current Work-flow State (MVS) to mean the ag, regation of instances which have already been 

added, plus their respective states. This is different from the notion of a SitCalc domain/action 

theory, or BXr. 
There is a partial ordering over these different action types, reflecting certain priorities, which 

is enforced by the action precondition axioms, presented a little later: 

9 Adding (add-activity/7) activity instances to the CNNIS has highest priority. ID 0 

Completing or cancelling (complete, cancel/ 1,3) a (childless) structured instance has next 

priority. 

Completing or cancelling (comp-bas, canc-bas/1) a basic instance has lowest priority. t, 0 

Not all instances will be completed or cancelled by explicit occurrences of these action types. 

Often an instance may be executed, completed or cancelled as an implicit side-effect of an action 
being effected on another instance. We have already seen this phenomenon in the example presented 
in the previous section (6.2.1). 

A representation in SitCalc of the Liesbet model discussed in Section 6.2.1 is given in Fig 

ure 6.11. There are also a number of, what we consider to be, foundational axioms for workilow, 

presented in Figure 6.12. These are domain-independent axioms. The SitCalc characterisation 

of a Liesbet model is the sum of these foundational axioms and a set of Activity/8 initial state 

atoms which complete tile specification of a particular workflow model (as presented in Figure 6.11, 

for the example in question). This sum of these axioms constitutes a Basic Action Theory (or BAT) 

in SitCa1c. 
Note that for simplicity, in the following account, ive only allow completion (and not call- 

cellation) of basic instances. We use a number of domain-independent and domain-dependent 

identifiers, such as GId-BAS, or CId-A, respectively, which resolve to natural numbers. 
The representation admits the possibility of just two actions, as indicated by the action pre- 

condition axioms which comprise the definition of Poss/2. 

2Apart from dynamically-added instances, i. e. execution acti-vity (ExecAct) instances (or descendants thereof), 

which are added as Multi/MultiSeq types (described in Section 3.1.15) are enacted. 
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IE 

Poss(comp-bas(i), s) = State U, s) =Running A GType(i, s)=GId-BAS A I- 

(3p, iI, c, g, sc, f, j) . Poss (add-activity (p, V, c, g, sc. f, j) , s) 

Poss(add-activity(p, i, C, g, sc, f, j), s) =- Activity(p, ilCIgISC. flj, s) A I 

-(3p,, il, cl, gl, scl, fl, jl). Activity(pl, il, cl, gl, scl, fl, j', s) A i'<i 

I State (i, do(a, s))=st =- StateChaLnge(i, a, st, s) V State(i, s)=st A -(3st'). StateChange(i, a, stl, s) 

StateChange(i, a, st, s) =- (3p, c, g, sc, f, j). a--add-activity(p, i, c, g, sc, f, j) A SetRunning(p, i, f, st, s) V 

Completing (i, a, st) v (3i, ). CompletingAction(il, a) A PropagateCompleteUp(il, i, st, s) 

SetRunning(p, i, f, st, s) _= p=i A st=Running V 

State (p, s)=Running A (f=EXEC A st=Running V -f=EXEC A st=Initial) V 

-State (p, s)=Running A st=Initial 

I Completing (i, a, st) =- a=comp-bas(i) A st=Completed 

CompletingAction(i, a) =- a=comp-bas(i) 

PropagateCompleteUp(il, i, st, s) =- (3i"). AllDescSiblingsFinished(il, i'l, s) A 
(st=Completed A i=i" V ExecuteNextChild(ill, i, st, s)) V ExecuteNextChild(il, i, st, s) 

AllDescSiblingsFinished(il, i, s) -= Descendant (i, i', s) A 

(Vd). (-d=il A Descendant (i, d, s) A -Descendant (d, i I, s) A 

-Descendant(il, d, s) :) State(d, s)=Completed) 

ExecuteNextChild(il, i, st, s) =- (3p, i"). Child(p, il, s) A PropagateRiinningDownInc(i", i, st, s) A 

GType(p, s)=Gld-SEQ A NextInitialChild(p, ill, s) 

NextInitialChild(p, i, s) =- Child(p, i, s) A -(3i'). (Child(p, il, s) A il<i A State (i ', s)=Initial) 

PropagateRiinningDownInc(il, i, st, s) -- (3i"). PropagateRiinningDownInc(ill, i, st, s) A 

Executes(il, i", s) V 

i'=i A st=Running 

Child(p, i. do(a, s)) =- (3c, g, sc, f, j). a=add-activity(p, i, c. g, sc, f, j) A -p=i V Child(p, i, s) 

Descendant (anc, i, do(a, s)) =- (3p, c, g, sc, f, j). a=add-activity(p, i, c, g, sc, f, j) A -p=i A 
(P=anc V Descendant (anc, p, s)) V Descendant (anc, i, s) 

Executes (p, i, do (a, s)) -= 
(3p, c. g, sc, f, j). a=add-activity(p, i, c, g, sc, f, j) A -p=i A f=EXEC V 

Executes(p, i, s) 

Activity(p, i, c, g, sc, f, j, do(a, s)) =- -a=add-activity(p, i, c, g, sc, f, j) A Activity(p, i. c, g, sc, f, j, s) 

Figure 6.12: SitCalc Foundational Axiorns for Workflow 
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poss(comp-bas(i), s) = State (i, s)=Running A GType(i, s)=GId-BAS A 

(3p, i', c, g. sc, f, i). Poss(add-activity(p, il, c, g, sc, f, j). S) 

Poss(add-activity(p, i, c, g, sc, f, j), s) -- Activity(p, i, c, g, se, f, j, s) A 

-(3p,, i', C', g', sc', f', j'). Activity(pl, i', C', g', Sc', f', j', S) A il<i 

The first of these says that it is possible to complete a basic instance (which is of generic type 

GId-BAS), in the current situation, iff it is running and as long as it is not possible to add an 

activity instance to the CNNIS (using add-activity/7). Meanwhile, the action precondition axiom 
for add-activity/7 says that it is possible to add an activity instance, i, to tile CNAIS, in the 

current situation, iff it is yet-to-be-added (as indicated by an instance of the Activity/8 fluent, 

pertaining to i, holding in the current situation) and there is no activity yet-to-be-added with a 
lower instance identification number. 

Tile remaining foundational axioms, presented in Figure 6.12, are mainly successor-state axioms 0 CD 
for fluents that are used in the characterisation of Liesbet models. The principal fluent in the 

SitCalc-based characterisation of Liesbet is State/2, viz. 

State (i, do(a, s))=st -= StateChange(i, a. st, s) V State(i, s)=st A -(3st'). StateChange(i, a, st', s) 
StateChange(i, a, st, s) =- (3p, c, g, SC, f, i). a=add-activity(p, i, c, g, sc, f, j) A SetRunning(p, i, f, st, s) V 

Completing (i, a, st) V (3i'). CompletingAction(il, a) A PropagateCompleteUp(il, i, st, s) 

This functional fluent is inertial, i. e. instances of it only change in value according to prescribed 

action occurrences. The predicate StateChange (i, a, st, s) prescribes the circumstances according 
to which an instance i may change its state to st, in situation s, as a consequence of the occurrence 

of action a. 
The first case to consider is when we are adding, an instance to the CINIS. As already described, 

adding instances is effected using add-activity(p, i, c sc, f J), where i is a (unique) identifier 
00 tgp 

-a natural number - for the instance being added, p is the instance number of i's parent instance, 

c: (resp. g) is an identifier specifying the customised (resp. generic) type of the instance, and f 
is a multi-purpose flag. The remaining parameters are used as we build on this initial character- 
isation. Specifically, sc is a flag indicating whether the activity instance is an isolated scope (see 

Section 3.1.3), and j is the join condition instance of a (join condition, execution activity) pair 
(of an instance of a Multi/MultiSeq type) when the instance being added is the corresponding 00 
execution activity instance. 

The predicate SetRunning/5 

SetRunning(p, i, f, st, s) =- p=i A st=Running V 

State (p, s)=Running A (f=EXEC A st=Rllnning V -f=EXEC A st=Initial) V 

-State (p, s)=Running A st=Initial 

is used to determine the effects of adding all activity on State/2, i. e. whether tile instance should 
be put directly into the Running state or into tile Initial state. If the parent instance identifier, 

p, is tile same as the identifier for the instance being added, i, this indicates that i is tile root 
instance of the workilow model. This particular instance is always set running, when it is added to 0 
the CNNIS. For all other instances, the following rules apply. If the parent instance is not running C, C'I 
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(d, il , s) 18 Instance being completed 

0 candidate instance for 

completion 
F] discounted "d" instances 

counted "d" instances, 
which must have completed 

iId, s) attempting to propagate 
completion up 

A11I)escSiblingsFinished(i'. i, s) x 
Descendant(i, il, S) A (Vd). f-d=iR A Descendant(i, d, S) A -Descendant (d, i' S) A 

-Descer. dant(i', d, s) D SEate(d, s). Completed) 

Figure 6.13: Depiction of AllDescSiblingsFinished/3 0 

In the presented instance tree, (the black) instance iI is the one being completed. 
As a consequence of the action on i 1, we may complete (the clear) instance i iff all 
descendants of i, bar those in boxes, have completed. The pertaining descendant 

instances, i. e. the counted d instances, are those shown in grey. Note that we show r, 
iI having children as a general case. For the case where iI is a basic instance being 

0 C3 0 
completed, it will have none. 

then the instance is set to the Initial state. If the parent instance is running, then the value of 

the multi-purpose flag, f, is used to determine whether the instance should be set running. The 

value of this flag is prescribed by the assumed translator for Liesbet models to SitCalc, presented 
in Section 6.3. For children of Par types, and for the first children of Seq types, the flag is set to 

EXEC; otherwise, for now, it is set to NONE. A value of EXEC indicates that the instance should be 

set running on the basis of its parent running. 
We also capture the effects that the completion of a basic instance has on the CNN'S. We use 

the predicate Completing/3 to prescribe that a completing basic instance should be assigned the 

Completed state. We use the predicate CompletingAction/2 to signify (for now) a completing 

action on a basic instance. 

Completing( i, a, st) ý- a=comp-bas(i) A st=Completed 
CompletingAction(i, a) =- a=comp-bas(i) 

On completing a basic instance, we propagate completion upwards as far as possible. We use 00 
PropagateCompleteUp/4 for this purpose. 

PropagateCompleteUp(i', i, st, s) -= 
(3i"). AllDescSiblingsFinished(il, ill, s) A 

(st=Completed A i=i" V ExecuteNextChild(i", i, st, s)) V ExecuteNextChild(il, i, st, s) 
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execution is propagated 
down the sub-Iree at i, 

ExeýteNaxtChild(i', i, st, s) -- 
(3p, i,, ). Child(p, i', S) A PropagateRwýir. gDcýInc(il', i, St, S) A 

GType(p, s)=Gld_SEQ A NextlnitialChild(p, i", s) 

Figure 6.14: Depiction of ExecuteNextChild/4 0 

If completion propagates up to an instance i 1, then we check to see whether its parent 

p has any children left in the Initial state. If so, execution is propagated down the 

sub-tree rooted at the next child iII which is in the Initial state. 

This predicate will complete an instance i iff the basic instance, i I, being completed is a 0 
descendant of i, and all siblings of activity instances on the path (in the activity tree) from iI to 0 
i (exclusively) have completed. It uses the predicate AllDescSiblingsFinished/3 to determine 

this. 

AllDescSiblingsFinished(il, i, s) -= Descendant (i, i ', s) A 

(Vd). (-d=il A Descendant (i, d, s) A -Descendant (d, i 1, s) A 

-Descendant(il, d, s) D State(d, s)=Completed) 

The operation of this predicate is depicted in Figure 6.13. Instances of the Descendant/3 fluent 
0 

(resp. Child/3), are asserted whenever an activity instance is added to the CNVS, and persist in 

accordance with the successor-state axiom presented next. 

Child(p, i, do(a, s)) =- (3c, g, sc, f, i). a=add-activity(p, i, c, g, sc, f, j) A -p=i V Child(p, i, s) 
Descendant (anc, i, do (a, s)) ý- (3p, c, g, sc, f, j). a=add-activity(p, i, c, g, sc, f, j) A -p=i A 

(p=anc V Descendant (anc, p, s)) V Descendant (anc, i, s) 

An example of completion propagating upwards can be found between enactment states 4 and 
5 in the enactment narrative described in Section 6.1, where, on instance D completing, completion 
is propagated to SI and P. 
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PropagateCompleteUp/4 will also initiate the execution of children of Seq instances, using 

ExecuteNextChild/4. 

ExecuteNextChild(il, i, st, s) =- (Elp, ill). Child(p, il, s) A PropagateRiinningDownInc(ill, i, st, s) A 

GType(p, s)=GId-SEQ A NextInitialChild(p, ill, s) 

The operation of this predicate is depicted in Figure 6.14. Assuming that Ave are interested 

in setting the next child of a Seq instance running, this predicate stipulates that an instance i is 

to be set running (on account of the completion of an instance i 1, which is the previous child of 
the Seq) iff i is the instance, or a descendant of the instance, next to be set Running in the Seq 

instance. 

The predicate Next Init ialChild/3 determines the next Initial child in the Seq, so that it 

may be executed. 

NextInitialChild(p, i, s) =- Child(p, i, s) A -(3i'). (Child(p, i', s) A i'<i A State W, s) =Initial) 

The parameter pis the Seq instance, iII in Next InitialChild(p, i II s) is the next child 

of the Seq instance that should be set running. The predicate PropagateRunningDownInc/4 0 
determines whether descendants of i should be moved to a Running state, or kept in an Initial 

state. 

PropagateRunningDownInc(il, i, st, s) =- (3i"). PropagateRiinningDownInc(i'l, i, st, s) A 

Executes(i', ill, s) V 

il=i A st=Running 

PropagateRunningDownInc/4 uses the predicate Executes (p, i, s) for this purpose, where p 
being set running also causes i to be set running in situation s iff this predicate holds. 

000 

Executes (p, i, do(a, s)) =- (3p, c, g, sc, f, j). a=add-activity(p, i, c, g, sc, f, j) A -p=i A f=EXEC V 

Executes(p, i, s) 

An example of execution being propagated to the next instance of a Seq can be found between 

enactment states 1 and 2 in the enactment narrative described in Section 6.1, where on instance A 

completing, execution is propagated down to B. 
As prescribed in Figure 6.11, the atomic state that holds in the initial situation, So, comprises 

seven instances of the Activity/8 fluent. According to the axiom for executable situations, pre- 

sented in Section 6.1, the only next executable situation is Sj=do(add_activity(0,0, CId_P' 

GId-PAR, NONE, NONE, NONE) , 
SO), i. e. one where instance 0 has been added to the CNVS. The 

effects of adding instance 0 to the CNVS, in terms of fluent state in S1 are: (i) according to State/4 

and associated predicates, State (0, SI) =Running now holds, (ii) the instance of Activity/8 for 

instance 0 ceases to hold (according to the ssa for Activity/8, presented next), and (iii) all other 
instances of Activity/8 persisting from So according to the following successor-state axiom. 00 ID 

Activity(p, i, c, g, sc, f, j, do(a, s)) =- -a=add-activity(p, i, c, g, sc, f, j) A Activity(p, i, c, g, sc, f, j, s) 



132 Chapter 6. Sit ua tion- Calculus Based Semantics 

The only next executable situation to S, is where instance 1, which is a Seq instance, has been 

added. The fluent state in this new situation, S2, is characterised by (i) State(O, S2)=Running 

persisting from S1, (ii) State(i, Sq)=Running, Child(O, 1, S, )) and Descendant(O, 1, Sq) 

now holding, and (iii) instances of Activity/8 for activity instances 2-6 persisting from S1. 
Whenever there are activities to be added to the CNNIS, the only executable next situation will 

involve adding the next activity instance in the order determined by their instance numbers. In 
this example, this means that there is a chain of eight executable situations from So (inclusively). 
Let's label the situation which results from adding all of the activity instances to the CNAIS, S7. All 

models of the BAT must include the followin- atoms. This corresponds to state 1 in Section 6.2.1 0 
(Figure 6.2). 0 

State(O, S7) = Running 

State(l, S7) = Running 

State(2, S7) = Running 

State(3, S7) = Running 

State(4, S7) = Initial 

State(5, S7) = Running 

State(6, S7) = Initial 

In executable situations that extend S7, the only possible actions involve the completion of basic 
instances. III S7, there are two possible next executable situations, pertaining to the completion 
of A (#3), and C (#5), i. e. do(comp-bas(3), S7) and do(comp-bas(5), S7). Completing on A 

causes B (#6) to be set running, according to the ssa for State/2, specifically the part which is 

captured by the ExecuteNextChild/4 predicate. 
Having completed A (#3), we arrive at state 2 in Section 6.2.1 (Figure 6.3). All models of the 

BAT must include the following atoms, where S8=do(comp-bas(3), S7). 0 

State (0, SS) = Running 

State (1, S8) = Running 

State (2, S8) = Running 

State(3, S8) = Completed 

State(4, S8) = Running 

State(5, S8) = Running 

State(6, S8) = Initial 

Continuing to follow the evolution of the example, presented in Section 6.2.1, when we complete 
the basic instance B (#4), completion is propagated to the parent Seq instance S1 (#1), accordingr 
to the PropagateCompleteUp/4 predicate. This means that all models of the BXr must include 

the following atoms, where Sq=do(comp-bas(4), Ss). 0 

State(O, S9) = Running 

State(l, S9) = Completed 

State(2, S9) = Running 

State(3, S9) = Completed 

State(4, S9) = Completed 
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SO 
I 

S, = do(adct-activity(0,0 .... ), S, ) 

S7 = do(add-activity(2,6 .... ), Sd 

S, = do(comp-ýbas(3), S, ) 

Sq = do(comp-ýbas(4), S, ) 

I 

SI, = do(comp--bas(5), Sq) 
I 

S, = do(compLbas(6), Slo) 

S17 = do(comp-bas(5), S, ) 

N 

S12 = do(comp-bas(5), S, ) 

), S,, ) S, = do(comp-bas(4 
7ý1 

1 S15 = do(comp-bas(6), S,, ) 

S14 = do(comp-bas(6), S,, ) 
I 

S23 ý do(comp-bas(6), S, 
7) 

I 

S21 = do(comp-bas(3), S,, ) 
I 

S21 = do(comp-bas(4), S,, ) 

S, = do(comp-bas(3), S,, ) 

S2, = do(comp-bas(4), S,, ) 
SI, = do(comp-ýbas(6), S,, ) I 

I 
S, = do(comp-bas(6), S,, ) 

S16 ý do(comp-bas(4), S,, ) S2, = do(comp-ýbas(4), S,, ) 

Figure 6.15: Executable Situation 'IYee for Par(Seq(A, B) Seq(C, D)) 
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State(5, S9) = Running 

State(6, SO = Initial 

When the other two basic instances complete, completion is propagated to S2 (#2) and the C, 
root instance P1 (#0). This means that all models of the BAT must include the following atoms, CD 
where Sjj=do(comp-bas (6) , do(comp-bas (5) , Sq)). This is state 5 in Section 6.2.1 (i. e. Figure 

6.6). 

State(O, S11) = Completed 

State(l, S11) = Completed 

State(2, S11) = Completed 

State(3, S11) = Completed 

State(4, S11) = Completed 

State(5, S11) = Completed 

State(6, S11) = Completed 

Other enactments are possible, as reflected in the narrative for the example presented in Sec- 

tion 6.2.1. Any model for the BXF presented in Figure 6.11 may be drawn as a tree of (executable) 

situations, as depicted in Figure 6.15. 

Note that, in order to support the cancellation of basic instances, we make available another 

action, canc-bas/l. The ramifications on the BAT of supporting this action are straightforward: 

wherever we consider the completion of a basic instance, we must also now consider its cancellation. 
We need to include in the BM an action precondition axiom for canc-bas/l, which has the same 
form as that for comp-bas/1. We also need to make some changes to StateChange/4, but we shall 
defer presentation of these until Section 6.2.3, for convenience. 

Note that whenever we describe augmentations to the BXF involving chan-'es to or additions 

of action pre-condition or successor-state axioms, these are to be classified as augmentations to 

the foundational axioms for workflow, whose initial set is presented in Figure 6.12. 

Finally, in the definition of AllDescSiblingsFinished/3, we need to modify the consequent 

of the implication to include a case for the state of an instance being cancelled, viz. 

AllDescSiblingsFinished(i', i, s) =- Descendant (i, il, s) 
(Vd). (-d=il A Descendant (i, d, s) A -Descendant (d, il, s) A -Descendant (il, d, s) D 

State (d, s) =Completed V State (d, s) =Cancelled) 

In the following subsections, we present the SitCalc characterisation of SeqCancel and choice 
types, as well as some information concerning the characterisation of Multi* types. We defer the 

presentation of synchronisation types (i. e. Go and Stop), UnorderedSeq, CancelActivity, Exit, 

merge types and multiple-instance types to Appendix B, to save space. 0 

6.2.3 SeqCancel 

There are two aspects to consider for a SeqCancel instance, narnely, how execution of its child 
instances (after the initial child instance) is facilitated and how cancellation of the instance as a 

whole is facilitated, in the event that one of its child instances gets cancelled. For the first of 0 
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attempting to propagate 

a SeqCancel 
completion up 

ICancel 

cancellation is 
propagated downwards 

ICancel 

instance being cancelled 

candidate that will be 0 
cancelled 

t 
attempting to propagate 
cancellation up 

PropagateCancelUp(il, i, st, s) -- 
-(3p)-child(p, i,, S) A PropagateCancelDownInc(il, i, st, s) v 

(3p). Child(p, il, s) A 
(GType(p, s)=GId_SEC A PropagateCancelUp(p, i, st, s) v 

-GType(p, s)=GId_SEC A(PropagateCancelDownInc(ii, i, st, s) v 
PropagateCompleteUp(i-, i, st, s)) 

Figure 6.16: Depiction of PropagateCancelUp/4 0 

We propagate cancellation up through parent SeqCancel types, until a parent is 

reached which is not an instance of SeqCancel. Then, we propagate cancellation down 

through the tree rooted at the most senior of the SeqCancel types, and thereafter 

propagate completion up. Propagating cancellation downwards ensures that instances 
0 CI 0 

which do not lie on the path along which cancellation is propagated upwards also get 60 
cancelled. That is to say, tile other children of a SeqCancel need to be cancelled, 

when cahcellation is propagated through one of them. 
00 
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these, we augment ExecuteNextChild/4 for the case where GType(p, s)=GId-SEC, which sits in 

disjunction with GType(p, s)=GId-SEQ. 

For the other aspect, if a child instance of a SeqCancel is cancelled, then the parent SeqCancel 

instance must also be cancelled. In fact, cancellation should be propagated upwards, as long as 

each respective parent is a SeqCancel type, and, completion propagated thereafter. We achieve 

this behaviour through a modification to the definition of StateChange/4, viz. 0 

StateChange(i, a, st, s) =- 

(3p, c, g, sc, f, j). a=add-activity(p, i, c, g, sc, f, j) A SetRunning(p, i, f, st, s) V 

Completing(i, a, st) V 

(3i'). CompletingAction(il, a) A PropagateCompleteUp(il, i, st, s) V 

(3i'). CancellingAction(il, a) A PropagateCancelUp(il, i, st, s) 

In the foregoing, the predicate CancellingAction (i, a) holds when the action a is a cancella- 0 
tion action on i, ViZ3. 

CancellingAction(i, a) =- a=canc-bas(i) 

When a completing action occurs on an instance i', we try to propagate completion up, as 
before in Figure 6.11. When a cancellation action occurs, we first see whether we need to prop- 

agate cancellation up. The definition of PropagateCancelUp/4 is as follows. The operation of 
PropagateCancelUp/4 is depicted in Figure 6.16. 

PropagateCancelUp(i', i, st, s) =- 

-(3p). Child(p, i', s) A PropagateCancelDownInc(i', i, st, s) V 

(3p). Child(p. il, s) A 

(GType(p, s)=GId-SEC A PropagateCancelUp(p, i, st, s) V 

-GType(p, s)=GId-SEC A (PropagateCancelDownInc(il, i, st, s) V PropagateCompleteUp(il, i, st, s)) 

Here, if there is no parent recorded (by Child/3) for i 1, then iI must be the root instance. In 

this case, we simply propagate cancellation down through the whole instance tree. On the other 
hand, if there is a parent p, recorded for i 1, then the following applies. If p is an instance of a 
SeqCancel type, we propagate cancellation up through p. If not, we propagate cancellation down 

through the sub-tree rooted at i 1, and propagate completion up from i 

Cancellation is propagated downwards using PropagateCancelDownInc/4, which has the fol- 
C. 

lowin- definition: 
0 
PropagateCancelDownInc (i i, st, s) =- st=Cancelled A State (i, s) =Running A 

(il=i V Descendant(il, i, s)). 

6.2.4 Choice Types 

The choice types, Choice, Def aultChoice and MultiChoice are accommodated as follows. The 

characterisation of these types is made simpler if we wrap (guard instance, continuation instance) 

'In Appendix B, we augment the definitions of both CompletingAction and CancellingAction. 
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Choice 

xX SeqCancels 

Xp 
Guards attempting to propagate 

Xp ... x ... x coninuations cancellation upwards 

'P 
x 

xx 

XP 
xx 

x 

AP Ix 

... x 

PrcpagateCancelUp(i', i, st, s) 
-(2pý. Childýp: i:: S: A PropagateCancelDoýmInc(il, i, st, s) 

ý3p Child pis- OType(p, s)=GId EXC A 
(J'l lRemGuardsCald(p. 1',. ) A Prcpag3teCancelUp(pj, st, s) v 
-AllFem. -, uardsCald(p, i', S) A PrcpagateCancelDownIr. c(il, i, st, s)) 

10 
instance being completed x 

x 0 instance being cancelled ... 
XP 0 possible instance being 

cancelled xxx 

instance already completed 
0 instance already cancelled xx 

@ instance in Initial state xx 

instance in Running state 

Figure 6.17: Depiction of Cancelling Guard/Cont inuation Instance in Choice rl)ýpe I 
0 C, 

In the top figure, a guard or continuation instance is being cancelled (xP), which 000 
causes cancellation to be propagated to its SeqCancel parent container. In this case, 

all other child (guard, continuation) pairs have been cancelled. 0 

As shown in the middle figure, cancellation is propagated upwards tlirouo,, h the Choice 

type and attempted upwards thereafter. When propagation eventually stops, cancel- 

lation will be propagated back down through the Choice instance, as shown in the 

bottom figure, ensuring that instances which do not lie on the path along which 000 
cancellation was propagated upwards also get cancelled. 
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Choice b 
instance being completed 

x 0 
instance being cancelled 

XP 

X SeqCamels 
0 

possible instance being 

cancelled 

xp instance already completed 
x Guwds 

x ... ... \0/ instance already cancelled 

PAP 40X 
Continuaýcns 

instance in Initial state 

instance in Running state 

x0x 

xx 

10... 

x 

PropagateCancelUip(il, i, st, s) 
, (3p). Chi1d(p, i', S) A PrcpagateCancelDoýInC(i', i, St, S) v 

Op). Child(p, i', ý) A- Uype(p, s)-Gld 
- 

XC A 
(AUR-GuardsCald(p, P, S) A Propa'3 ateCancelUp(p, i, st, s) v 
, A11RýGUardsCa1d(P, P, *) A PrcpagateCancelDoýInc(i', i, st, s)) 

Figure 6.18: Depiction of Cancelling, Guard/Continuation Instance in Choice Type 11 

In the top figure, a guard or continuation instance is being cancelled (xP), which 000 

causes cancellation to be propagated to its SeqCancel parent container. In this case, 

not all of the other child (guard, continuation) pairs have been cancelled. 

As shown in the bottom figure, just cancellation is propagated through the originating C, 
(guard, continuation) pair. 
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Choice 

SeqCa-els 

Guards 

Con6nuaýons 0 

0 

n4 

ExecuteNextChild U i'st's) 

(3-p). Child (. p, p, s) ý ((; Typ. (9P. P,. )-Grd ZxC ý GTyp. (gp, p, s)-GId_VEF) A 
(3b). Child(qp, b, s) A -p=b A PropagateCancelD-Inc(b, l, st, s) 

1. 
'10 instance being completed 

0 instance being cancelled 
XP 0 

possible instance being 
cancelled 

instance already completed 

instance already cancelled 
@ instance in Initial state 
@ instance in Running state 

Figure 6.19: Depiction of Completing Guard in Choice rlý, pe 00 

A running guard completing in a Choice type causes its pertaining continuation 

instance to be set running and cancellation of all other (guard, continuation) pairs to 

occur. 
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pairs in a SeqCancel container. Then, if a guard instance fails, its pertaining continuation instance 

is cancelled without tile need for additional semantic machinery. 
To facilitate the characterisation of Choice and Def aultChoice, Ave make the following augmen- 00 

tations to the definitions of PropagateCancelUp/4 and ExecuteNextChild/4 predicates. MultiChoice 

types are accommodated with no additional dispensation required. 
The revised definition of PropagateCancelUp/4 is as follows. 

PropagateCancelUp(il, i, st, s) -= 
-(3p). Child(p, il, s) A PropagateCancelDownInc(il, i, st, s) V 

(3p). Child(p, il, s) A 

(GType(p, s)=GId-SEC A PropagateCancelUp(p, i, st, s) V 

GType(p, s)=GId-EXC A 

(AllRemGuardsCald(p, i', s) A PropagateCancelUp(p, i, st, s) V 

-AllRemGuardsCald(p, il, s) A PropagateCancelDownInc(i', i, st, s)) V 

GType(p, s)=GId-DEF A 

(Default(i', s) A AllRemGuardsCald(p, il, s) A PropagateCancelUp(p, i, st, s) V 

-Default(il, s) A AllRemGuardsCald(p, il, s) A (3d). Default(d, s) A Child(p, d, s) A 

(State (d, s) =Initial A PropagateRunningDownInc(d, i, st, s) V 

-State (d, s) =Initial A Propagate CancelUp (p, i, st, s) )V 

-AllRemGuardsCald(p, il, s) A PropagateCancelDownInc(i', i, st, s)) V 

-GType(p, s)=GId-SEC A -GType(p, s)=GId_EXC A -GType(p, s)=GId_DEF A 

(PropagateCancelDownInc(il, i, st, s) V PropagateCompleteUp(il, i, st, s)) 

For Choice (GId-EXC) types, with cancellation being propagated from a guard or continua- 
tion instance, if all remaining guards have been cancelled, we continue to propagate cancellation 

upwards. If it is not the case that all remaining guards have been cancelled, we just propagate 

cancellation through the (guard, continuation instance sub-tree from which cancellation is be- 

ing propagated, to ensure that the whole sub-tree is cancelled. The operation of Choice types, 

regarding cancellation of a guard or continuation instance, is depicted in Figures 6.17 and 6.18. 

The definition of AllRemGuardsCald/3 is as follows. We simply check that all children of p, 
bar i and the default branch (applicable in the case of Def aultChoice), are cancelled. 

AllRemGuardsCald(p, i, s) ý- (Vb). Child(p, b, s) A -i=b A -Default(b, s) D State (b, s) =Cancelled 

Instances of the fluent Def ault/2 are asserted to the BAT when default continuation instances 

of Def aultChoice types are added to the CNVS, and persist thereafter. Specifically, whenever the 

parameterf in add-act ivity/7 is set to DEFAULT, t lie fluent instance Default (i do (a, s) ), where 
i is the identifier of the instance being added, will be asserted to the BAT. 

Continuing with the description of PropagateCancelUp/4, for Def aultChoice (GId-DEF) types, 

if it is the default continuation instance (as determined by Def ault/2) from which cancellation is 

being propagated, and all guard instances have been cancelled, we continue to propagate cancella- 
tion upwards. 

However, if cancellation is being propagated from a guard or (other) continuation instance, 

and all remaining guards have been cancelled, the following applies. If tile default instance is 
ý00 
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in the Initial state, we set it running; but, otherwise, Ave propagate cancellation through the 

Def aultChoice instance (as a whole) as the default cannot be executed. 
Alternatively, if some branches of the DefaultChoice instance are yet to be cancelled, we 

just propagate cancellation through the whole (guard, continuation instance) sub-tree from which 

cancellation is being propagated. 
We do not show the operation of Def aultChoice graphically, in order to save space. 
For all other Liesbet types, (for now) Ave propagate cancellation through the sub-tree from 

which cancellation is being propagated, and then propagate completion upwards. 
One aspect of propagating completion upwards is to attempt to advance an instance (other than 

completing it) through ExecuteNextChild/4 which has had complet ion/cancellat ion propagated 

to one of its children. We are able to advance an instance, in this event, if it has any of its other 

children left in a not finished state. Propagation of completion stops when we are able to advance 

an instance in this way. However, if the only action we can take is to complete an instance, on 

account of all of its children being finished, Ave continue to propagate completion upwards. 
We need to modify ExecuteNextChild/4 for the occasion when a guard instance in a Choice 

or Def aultChoice is completed. When this happens, we need to cancel any guard instances which 

are still running. The augmented definition of ExecuteNextChild/4 is as follows. The operation 

of Choice types, regarding completion of a guard instance, is depicted in Figure 6.19. 
r, 000 

ExecuteNextChild(il, i, st, s) -- (3p, i"). Child(p, il, s) A 

(PropagateRunningDownInc(ill, i, st, s) A 

(GType(p, s)=GId-SEQ V GType(p, s)=GId-SEC) A NextInitialChild(p, ill, s)) V 

(3gp). Child(gp, p, s) A (GType(gp, s)=GId-EXC V GType(gp, s)=GId-DEF) A 

(3b). Child (gp, b, s) A -p=b A PropagateCancelDownInc(b, i, st, s)) 

6.2.5 Dynamic Adding of Activities by Multi/MultiSeq types 

For Multi/MultiSeq types, it is interesting to note how we effect the dynamic addition of new 
instances of ExecAct types (see Section 3.1.15) to the CNVS. Note that, as was done for choice types, 

the translator wraps (join condition, execution activity) pairs of all Multi* types in a containing 
SeqCancel type, which makes for a simpler cliaracterisation. 

We need templates for (join condition, execution activity) pairs, which can be instantiated 

whenever it is appropriate to add an instance of one of these pairs to the CNAIS. The templates are 

specified as instances of the ActivityTemplate/9 fluent. Instances of this fluent are asserted to 

the initial BAT (i. e. for situation SO) and persist by inertia. There is a successor state axiom (ssa) 

for ActivityTemplate/9 which effects the inertia. 

The statically-extant instances of a Liesbet model are represented in the initial BXr as in- 

stances of the Activity/8 fluent. Instances of the Activity/8 fluent may also be dynamically 

asserted to the BAT whenever the join condition of a Multi/MultiSeq instance completes. To 

reflect this, there is an augmentation to the definition of the ssa for Activity/8, as follows. 
0 

Activity(p, i, c, g, sc, f, j, do(a, s)) -ý 
(3p', gp). CompletingMultiJoin(a, p', gp, s) A (3c'). CType(pl, s)=cl 
(3p", il, jl). ActivityTemplate(cl, p", il, c, g, sc, f, jl, s) A' 
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(3n). GetNextInstNo(n, s) A AssignActIds(i, il, j, j', p, p'l, gp, n) V 

-a: -add-activity(p, i, c, g. sc, f, j) A Activity(p, i, c, g, sc, f, j, s) 

According to this axiom, whenever a join condition in a Multi/MultiSeq is completing 0n 
(CompletingMultiJoin/4), the following occurs. We create a fresh copy of tile (join condi- 0 
tion, execution activity) pair of the Multi/MultiSeq, contained within a SeqCancel instance 

having type cl, plus descendants, by creating an instance of Activity/8 for each instance of 
ActivityTemplate/9 whose first parameter is cI that exists within the BAT (for the current sit- 

nation). For each such instance, the identifiers pII (parent), iI (instance) and jI are relative 
identifiers. Their absolute values are determined according to AssignActIds/8. 0 

The definition of CompletingMultiJoin/4 is as follows. It holds when the action a serves to 

complete gu, which is a join condition, running in s, in a Multi/MultiSeq instance, gp; where p 
is the SeqCancel container of the join condition instance. 

CompletingMultiJoin(a, p, gp, s) -= 
(3gu, c) Child (p, gu, s) A Child(gp, p, s) A 

(GType(gp, s)=GId-MUL V GType(p, s)=GId-MS) A Guard(Su, c, s) A State (gu, s) =Running A 

(3st'). StateCha. nge(gu, a, stl, s) A st'=Completed 

The functional fluent CType/2 records the customised type identifier of an activity instance, 
which is the parameter c in the action add-activity/7. The predicate GetNextInstNo/2 gets the 
next "free" activity instance identification number, viz. 

GetNextInstsNo(n, s) a (3c', nl). CType(nl, s)=c' A n=n'+l A 

-(3c", n"). (CType(nll, s)=cl' A nl'>n') 

The predicate AssignActIds/8 converts relative instance numbers into absolute ones. 

AssignActIds(i, il, j, jl, p, p', Sp, n) =- i=i'+n A j=j'+n A 

(p'=O A p=gp V -p'=O A p=p'+n) 

The SitCaic-based characterisation of Liesbet for the remaining constructs is presented in 
Appendix Section B. 1. 

6.3 Translation of Liesbet Models to SitCalc-based Char- 

acterisation 

As we did for the CCS-based semantic characterisations of Liesbet, we provide a definition of a 
conceived translation function, A4sjtc,, j, j-ý, for Liesbet models, in order to fix the definition of 
the SitCaicLbased characterisation of Liesbet. 

Tile result of translating a Liesbet model using. A4SjjC,, j, j-ý is to assert a set of ground atoms 
to the BXF, which pertain to instances of fluents that hold in the initial situation, So. There are 
some other side-effects which are described in Appendix Section B. 2. 

We assume that a Liesbet model has been pre-processed in order to replace the use of defined 
types by in situ definitions, see Section 3.1. We also assume that, in doing so, the name specified 
in the definition of a customised activity type is copied to the ctype qualifier that exists when the 
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ýC] (2.5, EXEC. NGNE): Activity( 1.4,3. G I 

Act IvI ty (0.2.4, GI LSEQ. NONEE. EXEC.!; G'; E, SO) 

Assert (Act ivity(2.5.5. Gld-EAS,!; 0'; E. EXEC. 110NE, SO)); Activity(2.5.5. Gld 

Afý. W. l' . 
Dj IMNE): Act 1vI ty (2.45. G. G Id-EAS, EXEC. 

(2.6. NONE. NOND: 
ZZ 

Assert (Act ivity(2.6.6. GId-EAS, 1. *O'; E. EXEC, NONE. SO)); 

Illustration of the operation of MSjtc, ýj,: 
j-j on the Liesbet model that we have 

used for illustrative purposes throughout this thesis, viz. Par(Seq(A, B) , Seq(C, D) C, 
Msjtc,,,, ý-] starts by processing the Par and works inwards in a depth-first, preorder 
manner. As MSjtC,, j, j-ý processes the model, it will assert ground atoms to the Bxr, 

which is shown on the rialit of the fiaure. 0 t, 

Figure 6.20: Operation of Msjtc,,, &ý on Par(Seq(A, B) , Seq(C, D)) 

type is used in situ. 
In the following, we prescribe how the use of activity types within a (pre-processed) Liesbet 0 

model is to be inapped to instances of the Activity/8 fluent to be asserted for the initial sit- 

nation, So. Note that GType(g) indicates the generic type name for a macro identifier g, so 0 
GType (GId-BAS) =Act, GType (GId-PAR) =Par etc. So GType (GId-PAR) (A, B, C) is Par (A, B, C) where 
A, B, C are the child types of the Par custoinised type. 

The body of a definition is a number of steps that must be carried out as part of the translation 

process for the particular activity type. The instruction Assert (S) asserts S to the BAT. When 

applying MSjtC,, j, j-j, the parent instance p, an id for the instance being translated i, the nuilti- 

purpose flag f, and possible join condition instance j are passed as arguments. The translation 

process is initiated by passing (0,0, NONE, NONE) as the initial arguments to Msitc. 1, 
The global function genTypeId(c), given a type name will generate a (natural number) iden- 00C, 
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tifier for the type - if it has already been used elsewhere, genTypeId/I returns the same id as 

previously. Otherwise it allocates a new (unused) id for the type name. The argument-free ver- 

sion, genTypeId/0, will simply generate a new type identifier, starting from 1. genInstld/O 

returns a new (natural number) instance id, subsequent to the last. 

In thissection, wepresent tliedefinitionofMsjtc,, jj-j forAct, Seq, SeqCancel, UnorderedSeq 

and Par types, making a distinction between isolated and non-isolated scopes. The definition of 
Msjtc,, j&] for the remaining Liesbet types is left to Appendix Section B. 2. 

The multi-purpose flag f for a child instance is set, according to f val/2, to EXEC if the parent 
is a Par instance, or if the parent is a Seq or SeqCancel instance and the child is the parent's 
first. Otherwise, the flag is set to NONE. The instance id, i, for an instance (which is passed in the 

arguments to Msitcal, J-1) is generated when translating the parent instance. C, 00 

9 Not isolated 

Msitc. lýIGType(g)(Chl,..., Chn)(ctype(ctype))I(p, i, f, j) 

Assert(Activity(p, i, c, g, NONE, f, j, SO)) 

where c=genTypeId(ctype) 

MSjtc. jýEChIj U, il, fval(l, g) NONE); ... ; Msitcýj, [Chn] (i, in, fval (xi, g) NONE); 

where il=genInstIdO, ..., in=genInstIdo, and 

fval(m, g) = EXEC if g=GId-PAR or (g=Gld-SEQ or g=GId-SEC) and m=1; 

= NONE, otherwise. 

e Isolated 

MsitcatclIsolated(GType(g)(Chl...., Chn)(ctype(ctype)))I(p, i, f, j) 

Assert(Activity(p, i, c, g, ISCOPE, f, j, SO)) 

MSitCatc[Chll U, il, fval (1, g) NONE); ... I MsitcalcEChn] U, in, f val (n, g) NONE); 

The operation of AAsjjc,, jj-j is illustrated in Figure 6.20. The definition of A4sjtc,, j, j-] for 
0 

the remaining constructs of Liesbet is presented in Appendix Section B. 2. 0 

6.4 Completion Result 

In Section 5.2, ive presented a result concerning the completion of arbitrarily constructed Liesbetl 

models, characterised with CCS-based semantics. We proceed to do the same here for the SitCalc- 
based characterisation 4. 

Result 

A Liesbet model (constructed accordin. - to the syntactical constraints defined by the 

ineta-model) is guaranteed to complete in a finite number of steps (that is, all instances 0 
report completion, or cancellation), with a finite situation tree, under the assumptions 

that: 

4Note that the following result statement is different to that presented in the Section 5.2 for the CCS-based char- 
acterisation, because we include synchronisation types in the SitCalc-based characterisation of Liesbet presented 
here. 
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9 All synchronisation activity instances (i. e. Go and Stop instances) eventually 

complete, or cancel. 

e All join conditions used in Multi/MultiSeq types eventually fail (go to Cancelled). 0 

These assumptions are necessary because it is possible for queries within synchronisa- 
tion types never to be satisfied, possibly meaning that the pertaining synchronisation 00 
would never report completion or cancellation. A forever blocked synchronisation type 

instance is the only source of model-deadlock in Liesbet models. It is also possible 
that a join condition in a Multi/MuitiSeq will always be satisfied. This represents the 

only source of model livelock in Liesbet models. 

Proof. We restrict ourselves to the primitive Liesbet constructs contained within the set Liesbetprimi 

defined in Section 3.4. As all other Liesbet constructs, as we shall show in the result subsequent 

to this one (see Section 6.5), may be considered to be abbreviations of Liesbet specifications using 
just primitive constructs, the following completion result for Liesbetprim will necessarily hold for 

Liesbetabbrev- 

We work inductively from the base case of a Liesbetpri model consisting of one activity 
instance. By definition, such an instance must be of a childless generic type, viz. a basic activity, 

Go, Stop or CancelActivity. 

o Base cases: 
In the case of a basic activity instance, the BXr that the translator outputs would be the 
followin. g, in respect of atoms. 

Activity(O, 0, CId_A, GId_BAS, NONE, NONE, NONE, SO) 

Accord in-, tothe axiom for executable situations (see Section 6.1 and the action precondition 
axioms (described in Section 6.2.2), the only executable next situation would be one where we 
add activity 0 to the CNNIS, using add-activity/7. There is, thus, a single following situation, 00t, 
which we shall call S1, viz: S, =do (add-activity (0,0, CId-A, GId-BAS, NONE, NONE, NONE), SO), 

which results from the occurrence of the action instance named in the preceding do term. 
The fluent state (i. e. instances of fluents which hold) in S, will be: 

Sj: 

GType(O, SO = GId-BAS 

CType(O, SO = CId-A 

State(O, SO = Running 

There are two executable situations that may follow Sj: one resulting from tile completion 

of the single activity instance (0), by virtue of comp-bas/1, and the other resulting from 
00 

cancelling the instance, by virtue of canc-bas/l. 0 
Having completed (resp. cancelled) the instance, the fluent state will be the following, where 00 

S2 (resp. S3) is the situation do(comp-bas (0) 
, Sj) (resp. do(canc-bas (0) , Sj)). 

S, 
- 

(resp. S3): 
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GType(O, S2) = GId-BAS (resp. GType(O, S3) = GId-BAS) 

CType(O, S2) = CId-A (resp. CType(O, S3) = CId-A) 

State(O, S2) = Completed (resp. State(O, S3) = Cancelled) 

For a model consisting of a single basic instance, a model of the corresponding SitCalc basic 

action theory will be a tree of executable situations of size four: So -* S, --ý {S2, S31, where, 
S, necessarily follows from So, and either S2 or S3 may follow SI. For both enactment paths 
contained within the situation tree, the model completes, i. e. the single instance finishes in 

a completed or cancelled state. For the other bases case types, the argument (for completion 
in the context of single-instance Liesbet models) is identical, except that the instance will 
get completed/cancelled using complete, cancel/l. C, 

9 Induction step: 

We now proceed by taking each child-bearing generic activity type from Liesbetprim in turn 0ý0 
and show that their introduction into a model preserves the completion result that we are 

seeking to prove. 

Note that: 

1) We sliall show that tile presence of a child-bearing structured instance in the model serves 0 
only to eventually propagate execution down to its children, and once all of its children 0 
have reached a finished state to propagate completion back up. These apart, it will have 

0 
no other effect on workflow state. Accordingly, no child-bearing instance is ever a source 00 
of deadlock, or livelock (under the assumptions presented in the result premise, given 0 

above). 
Thus, each enactment step of a child-bearing instance, and each enactment step of a child- 
less instance (see the base cases), moves the instance (and model) closer to completion. 

2) There can only be a finite number of instances that are ever created. This is, fundallien- 
tally, a consequence of the second assumption, regarding satisfaction of Multi/MultiSeq 
join conditions, presented in the result premise. 

Because of 1) and 2), tile completion of a model must take place in a finite number of steps. 

Moreover, for any one instance, there is only a finite number of actions that can involve the 
instance, in any given situation. All of the action schemas except complete/3 and cancel/3 0 
have the property that only one instance of each will be executable for any particular activity 
instance. For complete/3 and cancel/3, as any model has only a finite number of instances, 

there is only a finite number of possible ways of populating the di and 1 parameters of 
these actions. Further, most instances of actions will have deterministic effects - the only 
possibility for non-deterministic effects admitted in the SitCalc characterisation of Liesbet 
is for UnorderedSeq, where the next child to be executed is non-deterministicallY chosen 
(see Appendix Section B. 1.3). But even in this case, there is only a finite number of "next 

possibilities", i. e. the number of yet-to-be-run children of the UnorderedSeq instance. Given 

the finite number of instances in a model, branching (from any situation) must itself be finite. 
Thus, given the finite length of paths and finite branching, there can only be a finite number 0 C, ID 
of enactment paths and situations - the situation tree (i. e. state space) must be finite. 
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By the induction hypothesis (as part of what Ave are demonstrating here), each instance must 

eventually be set running. Once running: 6 C, 

-A Par instance will propagate execution to all of its children (as determined by SetRunning/5 0 
and Executes/3, used by PropagateRunningDownInc/4, see Figure 6.11, which query 
the value of the multi-purpose flag f being set to EXEC); and, once all of its child instances 

00 
have finished, will itself complete and propagate completion upwards (PropagateCompleteUp/4). 

C, 

-A SeqCancel instance will propagate execution to its first child instance (according to 
flag f being set to EXEC, for this instance). Once the given child instance has completed, 
it will execute its second child instance (Exe cut eNextChild/4), and so on. Once all of its 

child instances have finished, it will itself complete and propagate completion upwards. 
If a child instance is cancelled, the SeqCancel instance will get cancelled and cancellation 
(at first, and completion thereafter) will be propagated upwards (StateChange/4,6.2.3). 

-A Multi instance will propagate execution to its first (and only) child instance (accord- 

ing to flag f being set to EXEC). The child will be a SeqCancel instance (see Section 6.3) 

containing a join condition and execution activity instance. The join condition is also set 

running as part of the propagation (according to f =EXEC). If the join condition completes 

successfully, the execution activity instance (being contained within a SeqCancel with 
the join condition) is executed. At the same time a fresh join condition, execution activ- 
ity pair (plus all descendants) is added to the CWS, contained within a new SeqCancel 

instance (Activity/8 ssa, B. 1.6), whereon the new join condition is set running (ac- 

cordin- to fla- f beina set to EXEC). Many more join condition, execution activity pairs 0 C3 0 
may be created in this way. Eventually (see second assumption of result premise), a join 

condition instance will get cancelled. This will cause its containing SeqCancel instance 60 
to pt cancelled. When all execution activity instances have finished, completion of the 0 
Multi instance occurs and completion is propagated upwards. 

This argument assumes that the propagation behaviour prescribed therein is actually realised 
by the foundational axioms, presented in Figure 6.12. In considering the possible models of 00 
these axioms, it is self-evident that their behaviour is precisely that prescribed. 

Note also that an instance may be cancelled, by virtue of a CancelActivity instance, or 
because of dead-path elimination (see Section 3.1). In these cases, the instance hierarchy 

rooted at the given instance is cancelled (PropagateCancelDownInc/4), and thus completion 

of this sub-tree trivially occurs. On the sub-tree being cancelled, cancellation (at first, and C, 
completion thereafter) is propagated upwards. 

0 

6.5 Model Equivalence Result 

In this section, we present a result concerning, the equivalence of Liesbet models expressed using 0 C, 
tile SitCalc-based characterisation presented in the foreg ing part of this chapter and (the same) CIO , 
models expressed using the described SitCalc-based characterisation for the set of primitive con- 

structs, Liesbetprirn7 together with the use of tile constructs from Liesbetabbrev replaced by their 
definitions (in terms of primitive constructs), as presented in Section 3.4. 
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Note that we label the semantics presented in the foregoing part of this chapter, the elaborated 

characterisation; and the semantics which use the abbreviations for constructs in Liesbetabbrev as 

part of their definition, the abbreviated characterisation. 
To proceed, we need to make some modifications to the SitCalc characterisation of Liesbet 

presented in this chapter. The single driver for all of these modifications is to remove certain 

aspects of tile atomicity in propagating side-effects that are prescribed by the intended semantics 
for Liesbet, presented in Section 3.2. 

An example of the necessary modifications for Seq is as follows. We need to remove the facility 

for propagative execution of the next child in Seq. Instead, we incorporate an explicit execute/1 

action, into our SitCalc semantics for Liesbet, that operates at the same level of priority as 

complete, cancel/i actions, according to an additional action precondition axiom (omitted here) 

for the action. 
Doina this means that other model actions (pertaining to completion and cancellation actions 

may get interleaved between propagating completion upwards (as a result of the finishing of an 
instance) and executing the/sonie next child instance in the Seq instance (once propagation reaches 

such an instance). In the regular, i. e. elaborated, SitCalc characterisation for Liesbet presented 
in the foregoing part of this chapter, this interleaving cannot occur. Consequently, keeping the 

original behaviour would mean that the abbreviated characterisation of Seq would not preserve 

model equivalence with respect to its elaborated counterpart. 
For instance, in the original characterisation of Seq, its first instance finishing would necessarily 

cause its second instance to be executed as an implicit side-effect (see ExecuteNextChild/4, in 

Section 6.2.2). In this case, there is no opportunity for activities (namely, synchronisation type 

instances) in the rest of the model to see the momentary intermediate state between the first 

instance finishin-, and the second instance executing. That is, as far as the rest of the model is 

concerned, the two state changes are atomic. However, when this behaviour is modified, in the way 

proposed, any number of intermediate model actions may occur, making the intermediate state 
"visible" to the rest of the model. This latter state-of-affairs corresponds to the behaviour of the 

abbreviated characterisation for Seq. 

The definition of ExecuteNextChild/4 is cut down to the following. 

ExecuteNextChild(il, i, st, s) = (3p, i"). Child(p, i', s) A GType(p, s)=GId-SEC A 

NextInitialChild(p, ill, s) A PropagateR, lylningDownInc(i IIi. st s) 

We also augment StateChange/4 to account for the new execute/1 action, viz. 0 

StateChange(i, a, st, s) -- 

(3i, ). a=execute(il) A PropagateRilriningDownInc(i', i, st, s) 

For brevity, ive omit a presentation of the necessary modifications for the remaining constructs 

in Liesbetabbrev- We consider the description for Seq to be sufficient, for the purposes of this 

thesis, as this is the only construct for which ive give our proof of model equivalence. We restrict 

our proof to this one construct for reasons of space. Information regarding the other necessary 0 
modifications for the remaining constructs, and proof of model equivalence with respect to these, 

0 
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may be obtained from the author on request. 

Result 

The two sets of SitCaic-based semantics for Liesbet, viz. those 

presented in the foregoing part of this chapter, and those 

derived using a combination of the SitCalc-based characterisation (described in C, 
the foregoing) for Liesbet and the set of abbreviations for constructs in 0 primi 

Liesbetabbrev, presented in Section 3.4, 

lead to characterisations of models which are model equivalent. 
For model equivalence, a similar definition to that presented in Section 5.1.5 is proposed, 

whereby two Liesbet models are model equivalent iff 

e Any progression of one of the models, through the advancement of structured 
instances, where tile model is progressed to a state where no structured instance 

call be further advanced, is matched by some similar progression in the other C, 
model (i. e. structured instances are advanced as far as possible), such that tile set 

of basic instances being offered for completion, or cancellation, is identical; and 
the two models resulting from a completion on the same basic instance in both 

(proggressed) models, or a cancellation, are themselves model equivalent. 
When any progression of one of the models, through the advancement of struc- 0 C, 
tured instances leads to a state where no further progression can be made at all, 
the model reports successful completion; and this is matched by some, similar 

progression in the other model. 0 

In the following proof, we need to show is that the external impact that an instance of a 

particular construct has, when present in a Liesbet model, is the same between charact erisat ions. 
Notably, the characterisation of basic activity instances is the same between charact erisat ions, as 
basic activities belong to Liesbetp, j,,,. Given (as will be shown) that the external impact of all 

other activity types will be the same between ch aract erisat ions, it will necessarily be the case 
that the behaviour, as the model evolves, of basic ins tances in the model, which is the key to 
determining the model equivalence result, will be the sarne. Moreover, completion (as an externally 

visible artefact) will necessarily be identically reported. 
It is appropriate to elaborate what we mean by external impact; and, to do so, we define the 

following notions: action trees, action classes, action windows and action sets. An action tree, for 

a construct, is the tree of action occurrences that: (a) are externally generated, and may affect the 

evolution of the construct, (b) are internally generated, and may affect the evolution of the rest of 
the model, and (c) all other internally generated actions. These are the action classes that may 
concern a construct. In assessing external impact, we are interested solely in classes (a) and (b). 

Notably, there is an orthogonal classification for actions, viz. explicit and implicit actions. Some 

actions in an action tree may refer to implicit side-effects of other actions, and do not actually 

occur explicitly (i. e. as actions that move the theory from one situation to another). For example, 
there may occur in action to complete an instance. This is an explicit action occurrence, but 
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Window 

execute U I 

execute 
2 

finish B 3 

execute A or 4 

finish A 5 

execute C 6 

finish C 7 

complete U 
(plus propagate 
completion up) 

Key 

0 Class(a) - extenul actions of interest 

. --* CLvs (b) - inteml actions of interest externally 

------P. CLLs (c) - internal actions of no intereNt wernaDy 

Delintits action wind w 

.............. Unrcprc. wntLd part of action tree 

Figure 6.21: Action 'IYee for Elaborated Characterisation of UnorderedSeq. 

may have a number of implicit side-effects (which may be conceptualised as implicit actions), e. g,, 

propagating completion upwards. 
Actions in action trees are grouped into action windows. Action sets map onto action windows, 

and there may be many sets that correspond to a single window. The action sets defined for a 

window represent a disjunction of action occurrences that may occur within the action window. 
The first action in an action set occurs as a result of the explicit execution of a domain theory 

action, which may belong to class (a) or class (b). The remaining actions within an action set 

must be implicit or class (c) actions. Two action sets match iff they have identical class (a) and 

class (b) actions, irrespective of their explicit or implicit nature. 
In Figure 6.21, we show the action tree for the elaborated version of UnorderedSeq. Each 

action window is shown by a horizontal dividing line, and the evolution of the type occurs from 

top-to-bottom. Class (a) actions - external actions of interest - are shown by thin solid arrows. 
Class (b) actions - internal actions of external interest - are shown by thick solid arrows. And 

class (c) actions - internal actions of no external interest - are shown by dotted arrows. (There 

are no class (c) actions for this construct. ) 

Here, the action windows consist of a single action, apart from the seventh window which 

consists of two. The second and fourth windows of the tree contain three and two action sets, 

respectively. For these windows, just one of the action sets may be carried out. In the seventh 

window of the tree, an explicit (external) action occurs, which pertains to the last child finishing. 

As a side-effect, an implicit (internally-generated) occurrence to complete the UnorderedSeq in- 

stance occurs. This has external visibility, and its occurrence may cause further completions to be 

propagated up the Liesbet activit tree. C, y 
Two action trees are defined to have the same external impact. iff an action set defined by the 
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immediate action window of one action tree inatches a set present in the immediate action window 
of the other tree, and the pair of action trees that remain after carrying out the actions in the 

corresponding action sets also have the same external impact. 

Proof. 
The (elaborated and abbreviated) cliaracterisat ions of constructs from Liesbetprim are the 

same, by definition. For constructs in Liesbetabbrevi we prove the result for just one, Seq. Proofs 
for the remaining constructs follow in a similar way. The definition of Seq as an abbreviation is 

shown below (from Section 3.4). 

S= Seq(A, B, C) 

S Par(A, B1, Cl) 

B' SeqCancel(Go(Finished_act(A in S)), B) 

C' SeqCancel(Go(Finished-act(B in S)), C) 

We can prove equivalence for this three-argunient Seq without loss of generality. That is, 

tile proof for Seq types of different arity trivially follow. Moreover, the nature of Seqs children 
is iii-imaterial. We argue the case for identical external impact on the basis of the operational 

semantics of the elaborated and abbreviated characterisat ions, i. e. on the basis of the respective 

action trees for Seq. 

On tile left of the figure, we show the evolution of Seq for the elaborated cliaracterisation; 

and, oil the right, we show it for the abbreviated characterisation. As can be seen, there is a 

single action set in each action window, for each characterisation. We discuss each window in turn, 

showing that their respective action sets match. 
(1) When the Seq instance is set running, only the first instance A, according to the elaborated 

characterisation, is set running. This is determined by the value of the flaff f being set to 

EXEC. In this characterisation, this is tile only externally visible event that occurs, as a result 

of tile Seq being executed. In the abbreviated characterisation, all three child instances of 
the Par are set running, according to f being EXEC, but only the first (A) is common to tile 

elaborated characterisation. B, and C' should be considered to be type names which are not 

used in specifying Liesbet models. They are used solely here for the definition of the Seq 

as all abbreviation. As such, they do not have any external visibility, and the fact that their 

instances too are set runnin- has no impact externally (i. e. in the rest of the i-nodel). So, the 

oni externally visible effect of the Par being executed is, in the abbreviated characterisation y it, 
also, the instance of A being set running. 

(2) A finishing is matched in each characterisation. 
(3) In the elaborated characterisation, the execute action (oil B) will occur, in the next action 

window. In the abbreviated characterisation, tile Go type (which is not visible to the rest of 
tile model, and thus changes to its state have no external impact) will complete (because its 

GoQuery is now satisfied). When this occurs, the SeqCancel (immediately) executes B. The 

onI action of interest, as indicated in the figure, is also the execution of B. y 
(4) Again, actions of interest match. 
(5) As action window (3). 
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execute S execute S 

execute A execute A execute B', C', BJoin, CJoin 
",, 

finish A 
[fiWish 

A 

execute B complete BJoin 

finish B xecute B 

execute C finish B 

finish 13' finish C 

complete S complete CJoin 
(plus propagate 
completion up) execute C 

Elaborated Characterisation finish C 

finish C' 

complete S j 

Key (plus propagate 
0. CLm (a) - external actions of intcrcýt 

----* CLLss(b)-intcuul actions ofinter"t wet-nally 

------j. CLLs (c) - inter-nal actiow ofno intemm exterrLdly BJoin = Go(Finished-act(A in S)) 

- Dclimits action %indow 
CJoin = Go(Finished-act(B in S)) 

..... . ........ Uwpw. wntLd pan of action tree 
Abbreviated Characterisation 

Fi. -ure 6.22: Identical External Impact of Seq ch ara c terisat ions. 



6.6. Concluding Remarks 153 

(6) When C finishes, each characterisation (with respect to actions of interest) propaptes comple- 
tion up. 

6.6 Concluding Remarks 

In this chapter, we have presented a SitCalc-based characterisation of the Liesbet meta-model. 
An unequivocal advantage of using SitCalc for this purpose is that certain as ects of the intended 00p 
semantics for Liesbet are captured quite straightforwardly such as: arb it rari ly- complex synchro- 

nisation conditions, priority of structured instances over basic instances, and atomic propagation of 

side-effects through the activity instance hierarchy (see Section 3.2 for more information regarding 
the intended semantics). 

Equally, a clear disadvantage is that, while the initial foundational axioms for workflow pre- 
sented in Figure 6.12 are arguably clear enough, the augmented foundational axioms for generic 000 

activity types such as tile choice types (e. g. Choice 0n 0) and merge types (e. -. Multimerge, presented 
in Appendix Section B. 1.4) are rather impenetrable. In contrast, the CCS/PCCS-based charac- 
terisations presented in Chapter Five are arguably a lot clearer in their meaning. As pointed out 
there, however, there is an apparent dichotomy between the clarity that comes from compositional, 
programming-like metaphors for characterising behaviour and the ability to model atomic arbitrary 

side-effects. It very much appears that, for the characterisation of Liesbet, the strengths of the 
logic-based approach (i. e. SitCalc 

0 0) are the weaknesses of the process al ebra- (i. e. CCS/PCCS) 

based and vice versa. 
We have presented the definition of a translator function, Msitc"IJ-], for Liesbet models 

which yields SitCalc basic action theories. We have also presented two results. The first relates to 
the guaranteed completion of Liesbet models in the context of assumptions relating to the absence 
of deadlock and livelock in a Liesbet model. The second demonstrates that the characterisations, 

presented in Section 3.4, of Liesbet constructs as abbreviations, in the set Liesbetabbrev, are 
sound. They are shown to be so in that a particular Liesbet model cliaracterised using a com- 
bination of the SitCalc semantics, described in this chapter, for Liesbetpri, and the set of 
abbreviations for constructs in Liesbetabbre,, presented in Section 3.4, will necessarily be model 

equivalent to the same model characterised just with the SitCalc-based semantics presented here. 
This is all important result as it allows us to propose a core set of primitives for workflow. Being 

able to propose such a set enables us to articulate the true nature of workflow, and its fundamental 

representational requirements. 
In the next chapter, we present our approach to verification of Liesbet workflows. Verification 

is all important tool to provide in a workflow modelling framework, as it is integral to the operation 

of the business-that the definition of workflow models is sound. 



Chapter 7 

Verification of Liesbet Workflows 

In this chapter, we provide details regarding the verification approach for Liesbet models that 

we have implemented in our work. We are able to prove both soundness and arbitrary temporal 

constraints, written in a language such as CTL*. We present a number of ways in which the 

complexity of verification may be ameliorated. Having presented these, we specifý, the algorithm 

that we use to perform verification and give an interesting characterisation of the complexity of 

our verification approach. Verification is an important tool to provide in a workflow modelling 
framework, as it is integral to the operation of businesses that the definition of workflow models is 

sound. 
Note that our verification approach does not limit the specification of constraints to a temporal 

logic. In fact, constraints may be specified in any language for which a progression function (see 

Section 10.4) can be defined. To keep matters simple, however, we shall use the phrase "'temporal 

constraints" in this and other chapters. 

7.1 Soundness of Liesbet Models 

Regarding the verification of Liesbet models, we are fundamentally concerned with the notion 00 
of model soundness, which is a property of the control perspective. Van der Aalst and colleagues C, 
have defined this property [120,128]. We now present a definition of soundness, which is based 

on theirs, but adapted for our needs. A -. vorkflow model is sound (at the control perspective) iff it 

satisfies the following conditions: 

e Option to complete - It should always be possible to coniplete a workflow instance 

" Proper completion -A workflow instance should not signal completion while there is still 

work in progress 

" No dead activities - For every activity instance that may be created in the enactment of 

a -, vorkflow model, there must exist at least one enactment path where the instance is run. 
This property ensures that every activity instance plays a meaningful role in the workflow 

model. 

The first property, option to complete, stipulates that the workflow model should not be subject 

to locking along any of its enactment paths. We consider the possibility of two types of locking 
000 
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- deadlock and livelock. The completion result from Section 6.4 states that the only source of 
deadlock in a Sit Cal c-characterised Liesbet model can be from instances of synchronisation 
types which never declare a result, i. e. go to Completed, or Cancelled. Also stated there is that 

the only source of livelock in a SitCalc-characterised Liesbet model can be from Multi/MultiSeq 

instances which forever spawn instances of their ExecAct types on account of their respective join 

conditions being forever satisfied. Note that our verification approach is such that we do not test 
for the eventuality of fivelock. 

According to the SitCalc-based semantics for Liesbet, a -, vorkflow instance is said to have 

completed, once the root instance has reached a finished state. As this may only occur once all of the 

root's descendant instances have themselves reached a finished state (by virtue of completion being 

propagated upwards, or cancellation being propagated downwards), a completed model necessarily 00 ID 
entails a properly completed model. 

As shown in Section 6.4, in the absence of any sources of locking,, completion is guaranteed, 
i. e. completion is guaranteed iff there is an absence of locking. Thus, verifying Liesbet model 0 C, 0 
soundness comes down to verifying an absence of model deadlock and an absence of dead activity 0 
instances, with the qualification that we do not test for the possibility of livelock. 

7.2 Verification Runs and Options for Verification 

If we are concerned solely with the verification of workflow soundness (as described in Section 7.1), 

and are not concerned with the verification of models against temporal constraints (as described 0 

in Section 7.3), we may split the verification of a Liesbet model into a number of velification 

runs, according to isolated scopes. Doing so may significantly improve the efficiency of verification 

- we do not need to consider the interleavinc, of enactment of instances between runs. We, thus, 

perform a partial-order reduction (POR) [38,59] on the verification state space. 
The process of splitting a Liesbet model into separate verification runs proceeds as follows. 

Starting from the root instance, we traverse the tree, in a deptli-first fashion. Whenever we 

encounter an instance, which is an isolated scope, we replace it by an instance of the Empty type, 

and save the replaced instance as a distinct, new verification run. Eventually, the original model 

will constitute a single scope, with no "internal" isolated scopes. This will constitute the first 

verification run. For the "saved" instances, we take each in turn, and repeat the process. These 

become further verification runs. Once, we have no more saved instances to process, we stop - 
having, generated a number of verification runs. These are then individually checked for workflow 

soundness. 
Note that when splitting a Liesbet model into separate verification runs, instances of 

Multi/MultiSeq types are handled in a particular way, in order to ensure decidability of verifica- 
tion. Whenever an instance of a Multi/MultiSeq type is encountered (by the splitting process), we 

replace it by an instance of Empty. Then, we split its ExecAct type off into a separate verification 

run. This has the effect of the ExecAct type being an isolated scope. In doing this, we ignore the 
behaviour of join conditions in Multi/MultiSeq types, meaning that if there is an inherent source 

of livelock within such a condition, it will not be detected. This is the price to pay for decidability 

of verification. 
On a practical note, this is not as restrictive as it may sound. For verification purposes, an 
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author could temporarily replace the use of a non-limited type by a limited multiple-instance (i. e. 
MultiLimit*) type, in order to assess the behaviour of the model. We do not place any prescrip- 
tions on the processing of limited types, for verification, meaning that their ExecAct instances 

are verified in the same run as ancestor instances of the containing MultiLimit* instance. If the 

type is susceptible to livelock, then this approach, assuming verification tractability, would detect 

it (given a large enough it - the limit on ExecAct instances). 

In order to demonstrate workflow soundness, we need to show an absence of deadlock and dead 

activity instances. We may safely verify isolated scopes separately, as the visibility horizons of 
instances of synchronisation types - which are the only source of model deadlock - may not cross 
isolated scope boundaries. 

'Moreover, dead activity instances are those which are always cancelled - and thus never run 

- as a result of dead-path elimination (DPE), or explicit cancellation (by a CancelActivity in- 

stance). Firstly, the visibility horizon of a CancelActivity instance is not allowed to cross isolated 

scope boundaries. Thus, there is no need to be concerned with the effects of cancellation within 

an isolated scope where a CancelActivity instance existing outside the scope is initiating the 

cancellation. Secondly, for either DPE- or CancelActivity-initiated cancellation, if the effects of 
the cancellation (i. e. cancellation being propagated downwards) cross an isolated scope boundary, 

then there will be at least one instance in the parent model (which contains the scope) that will 
be affected. If cancellation of a particular sub-tree (crossing a scope boundary) occurs in all en- 

actment paths (i. e. instances in the sub-tree are dead instances), this behaviour will be identified 

even when verifying the parent model separately from the isolated scope. Thus, the check for dead 

instances may safely be made in a number of runs, according to isolated scope boundaries. 

We can help to improve the efficiency of verification some more, by performing further splits 
based on a similar notion to that of splitting on the basis of isolated scopes - viz. we separate 
those instances within a model, pertaining to an already-derived run, which fall within the visibility 
horizon of some other instance, from those instances which do not. We identify this as a second 

stage to the splitting process, already described for isolated scopes. C, C, 
We identify the reference instances, which are used in determining the visibility horizons of 0 

synchronisation activities (i. e. instances of Go or Stop types), CancelActivity instances, and 

synchronisation rules. 

0 For synchronisation activities, when a query within a Go or Stop instance specifies a reference 
type, the instance to which the reference type resolves is counted as the reference instance 

for the query. 

If a query does not specify a reference type, and, instead, makes use of a global visibility 
horizon, then we ascertain the least senior instance that is a common ancestor (i. e. lowest 

common ancestor) of the querying instance and all instances of the customised type name, 
being queried. This common ancestor instance is counted as the reference instance for the 

query. 

If a query does not inake use of any visibility horizon (as would be the case for the query 
True, for instance), the reference instance for the query is taken to be the Go or Stop instance 

itself. 

For any synchronisation activity, we collect to. ether all of tile reference instances for queries 
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used within the activity, discounting those which are descendants of others. If Nve are left 

with a single reference instance, then this becomes the reference instance for the activity. If 

there is more than one, the least senior common ancestor instance of the remaining reference ZD 
instances is used as the reference instance for the activity. 

ror CancelActivity instances that make use of a reference type, the instance to which the 

reference type resolves is counted as the reference instance for the CancelActivity instance. 

For CancelActivity instances that do not specify a reference type, and, instead, make use of 

a global visibility horizon, Nve ascertain the least senior instance that is a common ancestor of 
the CancelActivity instance and all instances, of the customised type name, being cancelled 
by the CancelActivity instance. This common ancestor instance is counted as the reference 
instance for the CancelActivity instance. 

For synchronisation rules, we consider the root instance of any sub-tree that may be affected 
by a synchronisation rule (i. e. an instance of RType) as a source instance. We consider any 
instances that are in the visibility horizons of the CondQuery or GoQuery, of the rule, to be 

the target instances of the source instance. For any source instance, the least senior instance 

, et instances is said to be that is a common ancestor of the source instance and all of its targ 

a reference instance for the rule. 

For any model, corresponding to an already-defined run, we identify all of the reference instances 

for synchronisation activities, CancelActivity instances and synchronisation rules, discounting 

those which are descendants of others. Tile run is then split into further runs at these reference 
instances. The model that is left is guaranteed to be sound with respect to deadlock-freedom, 

ineaning that it just needs to be checked for (an absence of) dead instances. The runs that are 

split off are checked for deadlock-freedom and dead instances. 

Moreover, as long as a model which has been determined to be sound with respect to deadlocký 

freedom does not use any choice, merge, or multiple-instance activity types (which are potential 

sources of cancellation in a model) then it is necessarily sound with respect to an absence of dead 

instances also. 
The model Par(Seq(A, B), Seq(B, W is an example of one that is necessarily sound. There 

are no reference instances that call be identified usin- the criteria for synchronisation activities, 

CancelActivity instances, and synchronisation rules. Thus, the model is necessarily sound with 

respect to deadlock- freed om. Moreover, it does not use any choice, merge, or mult iple- instance 

activity types, which means that it is necessarily sound with respect to an absence of dead instances. 

Note that, with regard to dead instance checking for a limited multiple-instance type, we 

consider that at least one instance of its ExecAct type should be run, along some enactment 

path of the containing Liesbet model. For unlimited multiple-instance types, we make no such 

prescription. 
If we are concerned with tile verification of a Liesbet model against a temporal constraint - 

see Section 7.3, then we must verify tile model as a whole, with one exception. The exception is 

that we enforce the separation of ExecAct types for non-limited niultiple-instance activity types 

(Multi/MultiSeq) into distinct verification runs, to ensure decidability. Constraint checking is 

applied to the individual verification runs separately. Given this convention, a workflow model 

author needs to ensure that the constraints that are checked make sense. 
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There are a number of verification options that are supported, relating to assumptions that 

can be made about the workflow engine that will, ultimately, enact a workflow model. These 

options are distinguished on the basis of what (structured, or basic) instances may be considered 
for progression next, in enacting a model. 

Primarily, we are concerned with the verification of Liesbet models, which start life, and are 

enacted, as such. However, in our work, we also support the verification of WS-BPEL 1871 models, 

which are translated to Liesbet, for the purposes of verification. Our verification approach is also 

potentially applicable to other workflow languages, assurning the existence of appropriate mappings 
to Liesbet. We have needed to take account of the likely enactment policies of these engines, in 

providing these verification options. C, 
In brief, we support the following verification options: 0 

" No priori t isat ion/priorit isat ion in enactment of structured instances over basic instances 

" Non-determinisin removal, in that at any point during tile enactment of a model, there may 
be several instances that can be progressed. Either, we remove this non-determinism by 

0 
saying that whenever there is such a choice, the instance with tile lowest instance number 0 

will be progressed; or we say that any one of them may be progressed next, and thus the 00 
engine will make a non-deterministic choice between them. In the latter case, we should 

verify the effects of all possible choices. 

Just allow basic instance to complete versus allowing them to complete, or be cancelled. 0 

In total, there are eight verification options from these possibilities alone. The implementation 
0 

allows for alternative verification options to be implemented, if necessary. 

7.3 Verification of Temporal Logic Constraints 

In our work, we use the Computation Ree Logic, CTL*, for the description of constraints over the 

enactment of workflow models. CTL* formulas describe properties of computation trees -a SitCalc 

situation tree being an example of such a tree. A (possibly infinite) transition system, described 

by a CCS agent, may also be represented as a computation tree. 

The logic CTL* subsumes the temporal logics LTL and CTL. Linear Temporal Logic (LTL) is 

useful for reasoning over properties of individual paths, which must hold true of all paths. For 

example, in LTL, we can say: if "ý" holds true at a state in the path, then "q" must hold true 

at some state (Fp--+Fq). There is no way of expressing such a property in CTL. CTL is useful for 

reasoning over properties of several (i. e. all or some) paths leaving a state. For example, in CTL, 

we can say: if "p" holds true at some point along all enactment paths from the current state, then 

'*'q" must hold true at some point along some enactment paths from the current state (AFp-)EFq). 

There is no way of expressing this property in LTL. 

In this section, we will be relating the verification of CTL* constraints to our SitCalc-based 

characterisation of Liesbet. In doing so, we have to be rather careful about using the terms states 

and situations. In most cases, when the terni state is used, this may be read as situation. However, 

these terms are not synonymous. Two states are the same iff their fluent state is the same. Two 

situations are the same iff their action histories are the same. The occasion when this distinction 

matters is when two distinct situations have identical fluent state. This is what we call a matched 
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state, as the fluent states pertaining to these situations match. That is, a situation, in a situation 
tree (pert aining, to a model of a SitCalc domain theory), is a matched state iff there is some other 

situation in the tree with the same fluent state. 
The language of Propositional CTL* is described by the following definitions (in Backus Naur 

Form - BNF, see [90]). We divide CTL* formulas into two classes, those which are evaluated in 

states, and those which are evaluated along paths. 0 

e State formulas, where 0 is any path formula 

0 :: =TIp1 (-0) 1 (01 V 02) 1E [01 

* Path formulas, where 0 is any state formula 

0:: ý01 (-0) 1 (01 V 02) 1 (01 U02) I XO 

We make use of a number of abbreviations in our presentation of CTL*. We use the term 

primitive symbols for those symbols that we have just used for the definition of state and path 
formulas. The following abbreviations all make use of just primitive symbols on the right-hand 

sides of their definitions: 

o State formulas: 

1 =- -T 
01 A 02 ý- ' ("01 V '02) 

-A [01 =- -E [-01 

* Path formulas: 

- 01 A 02 - (-Ol V '02) 

- OIR02 '('01U-O'-)) 

- FO TUO 

- GO -(TU-0) 

For state formulas: 

"E- somE paths, or there Exist paths - requires that along some patlis from the current state 
the property holds 

"A- All paths - requires that along all patlis from the current state the property holds 

For path formulas: 

1D X- neXt - requires that a property holds in the second state (#1 if numbering from zero) 

of the path 

"F- eventually, or in the Future - requires that a property will hold at soine state on tile path 

"G- Globally - requires that a property will hold at all states oil the path 

"U- Until - requires that the first property holds on the path up to (but not including) C, 
the state where the second property holds. It also requires that tile second property will 

eventually hold, on the path. 
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R- Release - is the logical dual of U and requires that the second property holds up to and 0 
including the first state where the first property holds. Notably, the first property is not 0 
required to hold eventually. 

The semantics of formulas that can be generated using the primitive symbols are as follows. 

Semantics for tile other symbols follow from their definitions as abbreviations. 

9 M, sT 

" M, SP if f ... see below ... 

" M, S -0 if f M, S Vý- 0 

" M7 S 01 V 02 iff M, s [-- 01 or M, S [-- 02 

" A4, s 1--E [01 if f there is a path -r. from (and including) s such that A4, TF ý= 0 

" M, 7r. if fs is tile first state of 7, and M, s 

0 M, 7r [-- -0 iff M, 71 K0 

-Mý 71 01 V 02 if f Mi 71 k 01 or M, 71- ý= 02 

MiT" OlUO2 if f there exists ak>0 such that M, 7r. 
k [--02 

andfor all O<j <k 
M, rij 01, where 7, ' denotes the suffix of path 7r starting at state i 

M, T- XO if f M, 71 1 ý= 0 

In order to verify the satisfaction of constraints against Liesbet models, we use a progres- 
sion algorithm, as described in the next section. This is essentially an on-the-fly model checking 
approach, and is similar in nature to automata-based approaches to model checking. In using 
a progression al-Orithm, we expose propositions that need to be satisfied in various states. ror 

atomic propositions (replacing p in the CTL* syntax definition we allow the use of atomic query 
formulas without reference types (so-called simple queries), from Section 3.1.4. 

P :: = Completed-act(a) Completed-all(a) 
Cancelled-act(a) Cancelled-all(a) 
Finished-act(a) Finished-all(a) 
Running-act(a) Running-all(a) 
Initial-act(a) Initial-all(a) 

When ap proposition needs to be evaluated in a given state, we do so according to the following 

SitCalc-based characterisation. We show the appropriate evaluations of Completed queries. The 

evaluations of the remaining simple queries follow naturally. 0 

M, s Completed-act (c) if f Gi, c') . (CType (i, s) =c 'A IsType (c', c) A State (i, S) =Completed) 

M, s Completed-all(c) iff (Vi, c'). [CType(i, s)=c' A IsType(c', c) D State (i, s) =Completed] 
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s is current situation, starts at So 

TC is initialised with CTL* constraint to verify 

M Make a "running list" comprising all activity instances present in the model. This list is 

non-backtrackable. 
(II) LOOP 
(1) (i) If s is a matched state (determined on the previous iteration, see step (4) - for first 

iteration, it will not be a matched state), then we re-use the same state identifier id 

used for the previous situation sharing the same fluent state. If, in progressing TC for 

id, we are able to establish a result for TC in s based on new or past results for id, then 

we propagate this result up and stop progression. 00 
(ii) If s is not a matched state, we progress TC in s, and stop progression if we are able to 

establish a result for TC in s, having propagated the result up. 
(2) If a result is established for TC in s, then after propagation, do the following based on the 

result for TC established against SO: 

(i) FALSE: REPORT FAILED VERIFICATION, and STOP 
(ii) TRUE: there is no need to continue with verification of TC, as we have established its 

validity; but we continue verification for soundness unless s is a matched state, in which 

case we backtrack to last choice point 
(iii) UNDEFINED: We continue verification unless s is a matched state, in which case we 

backtrack to last choice point 
(3) Remove from the "running list" any instances which are in a Running state 
(4) Select a next action, a, to do in s, according to the action pre-condition axioms. If the 

action results in a new situation s' which state-wise we have visited before, then this is a 

matched state (which we deal with appropriately on the next iteration of the loop). If no 

action is possible, and the workflow instance is not in a completed state then REPORT FAILED 

VERIFICATION and STOP else backtrack to last choice point. 
(III) If the "running list" has instances left on it, then these are dead instances, so REPORT 0 
FAILED VERIFICATION. Otherwise REPORT SUCCESSFUL VERIFICATION. 

Figure 7.1: Verification Algorithm for Liesbet 0o 

7.4 Algorithm for Verification of Liesbet Models 

As stated previously, in Section 7.2, the verification of a workflow model is split into a number of 

verification runs. Whether we wish to verify a model against temporal constraints and/or verify 

model soundness, the algorithin is largely the same. The granularity of the runs, when verifying 0 4: 1 C, 
temporal constraints will be (typically) much larger than that when verifying model soundness. To 0 

verify model soundness, we may either use the same runs generated for the constraint verification, 

or we may use a set of runs which has been generated specifically for the purpose. This is provided 

as a verification option, as sometimes it will be more efficient to verify a separate set of finer-grained 

runs to check for model soundness, even if we are also verifying temporal constraints. C, 
In Figure 7.1, we present the run-based algoritlim for verification of model soundness and 

any presented temporal logic constraints. If a violation of model soundness (deadlock or dead 
0 
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instances), or a violation of extant constraints, is identified, the verification run reports failure. 

For constraint verification, we progress constraints from one state to the next accordino to a 

progression function, prog/3, which is defined in Section 10.4. 

7.5 Verification Complexity 

Tile verification problem is inherently exponential in nature in terms of the worst-case size of 
the minimal activity instance state space that must be explored (see Section 5.7, for information 

concerning what is meant by "minimal state spacel'). This can be seen easily in considering the 

simple workflow model Par(A,,..., A,, ), where Al,..., A, are basic instances. If we consider just 

basic instances being able to complete, then the size of the instance state space will be 2'+1. This 

may be computed simply by considering an n-bit binary number, with zero (say) indicating "not 

Completed", and one indicating Completed. We do not need to distinguish Initial from Running 

as execution, according to the SitCalc-based semantics, occurs as an implicit side-effect. The 

exception to this is that we count the state where all instances are in the Initial state, hence we 

add one to the complexity expression. The possible values of an n-bit binary number are 2'. As 

such, the total complexity is 2n+1. For basic instances being able to complete, or get cancelled, 
the complexity may be determined, similarly, as an n-bit ternary number, viz. 3n+1. 

In assessing verification complexity, the largest exponent is limited to the number of instances of 

childless types in a model; and thus the complexity of verification is 0(in') (or big-oh Inn), where 

n is the number of childless instances, and m is either two or three, depending on whether we 
have a model where childless instances may get cancelled as well complete. Models whose childless 
instances are all basic activity instances are the only candidates for which such a distinction may 

exist. For these, we may consider either that basic instances may just complete (in which case 

rn is two), or that they may also get cancelled (in which case in is three). For all other models, 0 
some of the childless instances will have the possibility of being cancelled, and as such m is three. 

Child-bearing instances do not have any exponential impact on verification complexity, as their 

progression occurs as implicit side-effects of the progression of childless instances. 

The mix of activity types in a model means that, although models will generally demonstrate 

some exponential characteristics in their verification complexity, the factors involved should often 
be considerably less than the number of childless instances involved in the model. For instance, a 
Seq of Pars will have p+1 complexity, where p is the sum of tile individual Par complexities. The 

exponents involved in the complexity cliaracterisation of such a niodel fragment will be bounded 

by the highest number of descendant childless instances of any of tile Par instances. Moreover, 

descendant instances of the Par instances may further limit verification complexity. 
For instance, one of tile Par instances may contain two Seqs, which each have three basic 

instances as children. Again, considering it as an n-bit binary number, where n this time is six, 

corresponding to the number of basic instances, we have a bounded complexity of 2', which is 64. 

However, this may be reduced by (4+2)x2' because instances of the Seqs have to execute in a 

particular order. So, even though tile Par prescribes in exponential factor which is determined 

by the total number of basic instances which it has as descendants, we are able to subtract a 

significant number (of impossible states), viz. 48, because of the criteria concerning tile order in 

which completion of these instances may occur. Of course, if the initial exponent is too high then 
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any possible subtractions may lose their siOnificance. 
In any case, it is noteworthy that any POR-based improvements which can be made, such 

as removing model fragments for which soundness is guaranteed (see Section 7.2), will have a 
significant effect, in removing childless instances from (worst-case) exponents, in all but the simplest 00 
of models. 

7.6 Concluding Remarks 

In this chapter, we have presented our approach to design-time verification of properties of Liesbet 

models. We have described what it means for Liesbet models to be sound, and have elucidated 

various optimisations with respect to verification efficiency. We have also discussed the verification 

of Liesbet models against arbitrary constraints written in the temporal logic CTL*; and have 

presented an al-orithm which effects verification of both soundness and such arbitrary constraints. 
We have concluded with a brief discussion of the complexity of the verification task, in terms of 
the state space that is explored. 

In the next chapter, we shift focus somewhat by moving to a presentation of our work concerning n C, 
the modelling of flexible workflow. We consider this to be of equal importance as our previous C, 
work. For instance, being able to support collaborative workflows like traditional -. vorkflows are 0 
typically of high value to a business. 
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Flexible Workflow Modelling 

In preceding chapters, we have considered the modelling of traditional workflow. A particularly 

si-nificant characteristic of traditional workflow is their brittle nature in the face of exceptional 0 
behaviour. Furthermore, they are not well suited to the definition of collaborative workflow, where 

agents should have the facility to decide collectively how a prescribed task or process should be 

realised. In light of these issues, there is a need to consider the modelling of flexible -, vorkflows. 
Moreover, it is clear that more can be done to address this issue, and, in this chapter, -%ve provide 

a contribution to its resolution. 
We start with a description of flexible workflow modelling, including the presentation of a review 0 C, 

of related works in the field. Then, we introduce our approach to flexible workflow modelling, which 

may be neatly summarised as Flexible Work-flow = Abstract Model + Policies for Refinement. In 

this context, we identify a correspondence between refining an abstract workflow (specified for 

flexible enactment) into a concrete one, and the operation of an Hierarchical Task Network (HTN)- 

based planner, which refines abstract task networks into concrete ones. We present a brief overview 

of HTN-based planning, followed by the description of an HTN-based planner, called Theodore, which 

we have implemented. Theodore constitutes an additional contribution of our work. Finally, we 

present a description of how we have used Theodore for the modelling, verification and planning 
for enactment of flexible workflow models. 

8.1 Flexible Workflow Modelling 

In the introduction to this thesis (see Section 1.1), we mentioned how measures of flexibility might 
be introduced into workflow models so that they are better able to handle exceptional behaviour. 

If tile handling of exceptional behaviour is supported at all - in most commercial Workflow 
0 

Management Systems (WRI ISs) it is not [25] - it addresses the issue of exceptional behaviour which 0 
may be consideied as erroneous, that is, exceptions as errors. Su port for handling such behaviour, p 
in academic contributions, has focussed on the use of Event Condition Action (ECA)-rules, or some 

similar artefact. In the context of workflow modelling;, these will specify some combination of event C, 
occurrence, and condition on workflow state, which if satisfied causes the action specified in the 

rule to be effected. Tile action will serve to recover tile workflow from its erroneous state so that 

execution may continue. The action may specify additional tasks that need to be carried out, for 

example. 

164 
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Support for handling this kind of exceptional behaviour is essential in workflow modelling, and 
ECA-rules represent an effective means of such support. However, what we are concerned with in 

this chapter is another sort of exceptional behaviour, which is largely orthogonal, albeit in some 00 
circumstances it may provide a better, or more appropriate, alternative than considering certain 
behaviour to be erroneous. We would label this other sort of exceptional behaviour as exceptions 

as alternatives. 

A workflow author may have in mind a preferred or default realisation of a -, vorkflow model. 
However, lie or she may choose to make other alternatives available, which will also have the 

effect of realising the desired outcome. This notion enables greater flexibility in the enactment of ?D Z' 

workflow models, where models may be enacted differently according to current business priorities 

and objectives, which are codified as operational policies. These policies may reflect higher-level 

business objectivesi, or may be sourced from the need to meet Service Level Objectives, captured 
in customer Service Level Agreements [68]. 

Depending on the domain context, allowing the as alternatives sort of flexibility within workflow 

models may not even be considered as accommodating exceptional behaviour. That is, the emphasis 

may lie more heavily with the alternative aspect rather than the exception aspect. That said, the 
distinction between exceptions as errors and exceptions as alternatives is a useful one to make, as 
Iong as this caveat is kept in mind. Support for both sorts of exceptional behaviour is essential in 

workflow modelling. In this thesis, our interest lies solely with the as alternatives aspect, as this 
is where we are primarily motivated. 

The flexibility that comes from support for exceptions as alternatives is essential, as workflow, 

with its roots in capturing nianufacturing processes, is often too rigid and brittle an artefact C, C3 C3 
for capturing the operation of business processes [96]. In traditional workflow modelling, we are 

concerned with a representation of the control flow perspective, where every possible enactment 

path through the model needs to be explicitly enumerated. Although flexibility can be captured 
by traditional approaches, the requirement to enumerate all ways of enacting a model quickly 
becomes laborious and impracticable. As a result, traditional workflow approaches almost always 
have no or little inherent flexibility, and are typically brittle to exceptional behaviour, with no 

room for flexible adaptation according to operational policies, as a result. In this sense, traditional 0 
modelling, approaches may be seen as expressing what should be done. In contrast, flexible workflow 00 
modelling may be seen as expressing: what could be done. 

The notion of flexibility is fundamentally addressed by putting measures in place which can 

capture flexibility witbout tile need for explicit enumeration. Our support for flexible workflow 

modelling may be captured by the slogan: Flexible Work-flow = Abstract Model + Policies for 

Refinernent. That is, we recommend the definition of a somewhat abstract workflow model, which 
is refined into a concrete instance by the use of a number of operational policies. 

Operational policies are typically coded as business rules [101]. Business rules are espoused as 

'An example of such a policy may be one relating to maximising customer satisfaction (in insurance claims 
handling). For small insurance claims, we may seek to constrain the processing time for a claim to be no more than 

5 days, at the possible expense of additional cost to the business. Normally for such insurance claims, damage to a 

motor vehicle would be fully investigated by an inspector. If, however, it is not possible for an inspector to assess 
the car in time to meet the turn-around time requirement, then it may be better, if the claim is small, to forgo the 
inspection in order to meet the objective of maximising customer satisfaction, even if it lays the company bare to 
the possibility that it will be defrauded. 
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a means of supporting agility within enterprises to react to, and proactively plan for, changes in 0 ?D0 
market conditions. Rules are promoted as separating the know from the flow [1011, i. e. they allow 
the knowledge that an enterprise has about itself to be externalised in a declarative form from 

workflows and procedural code. The idea is that the business logic captured by rules is easier to 

comprehend, change, and maintain by the individuals who have primary interest in their definition, 

namely business managers and analysts, rather than requiring the services of developers to effect 0 it, 
the desired changes to the business lo-ic. V, 0 

Thus, our notion of flexibility would appear to fit in well with what is current practice in provid- 
ing automation within the enter rise. A problem with current solutions is that rules and workflow 0p 
enuines are distinct artefacts which are inte-rated in an ad hoc fashion. A unified approach for the 00 
modelling of rules to constrain the enactment of workflow is thus lacking. This chapter addresses C, 0 
this point. 

Another aspect of flexible workflow modelling is support for the modelling of collaborative 

workflows (introduced in Section 1.1). In collaborative workflows, agents decide collectively the 

way in which to enact a workflow. As will be described, many processes enacted within a business 

context will be of this nature; thus a means of modelling such workflows is also of importance. 

We now describe a number of approaches in the literature which have primarily considered the 

as alternatives aspect of flexible workflow modelling. We will return to these works at the end of 
the chapter, in order to place our contribution into context. 

8.1.1 Case Handling Systems CHSs 

Case Handling Systems (CHSs) [127,16,96] have emerged, in recent years, with the expressed aim 

of offering what current Workflow Management Systems (NNIRMSs) lack: visibility of the entire case 
(i. e. process instance), and, of primary interest here, flexibility. Notably, in many enterprises, the 

practical application of NNIMISs has been limited to the support of simple and well-defined business 

processes [96,16]. According to [16], this limitation is caused mainly by AVRT ISs being founded on 

a manufacturing metaphor, where a NVENIS effects a production line, rigidly routing work items to 

various agents in turn. 

This approach is the diametrical opposite of everyday practice in many business scenarios, 

where flexibility in how a work case is processed is key. In CHSs, the logistical state of a particular 

work case (including its completion) is determined by the state of data objects, and not by routing 0 C, 
(i. e. control flow) [1271. Workers have authority to complete data objects at various times, and 
have role-based autborisations assigned to them to view particular items of data associated with a 

case. The so-called context tunnelling, inherent in WRI ISs, where the visibility that a role has on 
case data is determined by which work items it is currently working on, is thus removed by CHSs. 0 
Context tunnelling is a key inflexibility issue for NWINISs. 

Data-drivýn business process enactment represents a shift in focus from the approach taken in 

traditional workflow modelling and enactment. CHSs define just the limits of what can be done, 

and thus follow the could rather than should tagline referred to above. However, as [127] points 

out it is not always desirable to lose the rigid control imposed by production workflows. Offering 

greater flexibility can tend to make the workflow specification less clear (depending on how it is 

expressed). Moreover, there are scenarios for which it is conceivable that a mixture of rigid control 

over some parts of a workflow specification, but with some measure of flexibility regarding others, 
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would be appropriate. As [16] describes, "flexibility is an essential condition .... This does not 
take away from the fact, however, that parts of the process can, and even should, be regarded as an 
actual production process. In this context we speak of production workflow. This also needs to be 

adequately supported. " Providing a way of specifying such a mixture of production workflow and 
flexibility is a principal aspect of our work, as described in this chapter. It is also fundamentally 

facilitated in Case Handling Systems. 
0 

8.1.2 CrossFlow 

CrossFlow [551 was a European project aimed at facilitating support for cross-organisational work- 0 
flows in dynamic virtual enterprises (DVEs). Virtual enterprises aga gregate skills and core com- 
petencies (packaged as services), from multiple organisations, to create composite services. Their 
dynamism stems from tile fact that they may be composed spontaneously, and may be torn down 

with minimal impact. Tile lifespan of a DVE can thus be rather short. Enactment of composite 
services in Crossflow is realised by dynamically linking the ANIRI ISs of the participating organisa- 
tions. Ali aspect of the work was the requirement to support the definition of flexible workflows 
whose enactment could be tailored to maximise Quality-of-Service (QoS) metrics. To this end, 
Crossflow defined a workflow meta-model consisting of the usual workflow constructs such as OR- 

join, OR-split, AND-join, AND-split, as well as additional constructs, known as flexible elements, 
that allow the provision of enactment alternatives, viz, [55]: 

Alternative activities allowing the specification of different activities, of which exactl one 0y 
may be chosen. For instance, a model may provide time-expensive high-quality options as 
well as quick low-cost options. 

Non-vital activities allowing activities to be omitted in enactment. For instance, in extreme 
situations, it may be beneficial to sacrifice an instance of such an activity in favour of other 
higher priority goals. 0 

Optional execution order allowing the specification of a preferred ordering of activities that 00 
can be overridden. Reordering inay prove to be beneficial if other -Oats of higher priority are 
then achieved. 

8.1.3 Collaboration Management Infrastructure (CMI) 

The Collaboration Management Infrastructure (CMI) [1071 was developed to manage collaborative 

worliflows in both traditional and virtual enterprises. [511 describes an application of CMI in the 

context of Crisis Mitigation. Crisis Mitigation constitutes a challenging application for workflow 
technology. Its unpredictability forbids predefining a concrete crisis mitigation strategy and re- 

quires dynamic reaction of people involved in the mitigation. The authors argue that processes 
for Crisis Mitigation must empower coordinators and experts to deal with unexpected situations 
by permitting coordination flexibility and dynamic change, while providing enough structure to 

prevent chaotic response and increase mitigation effectiveness. It argues that this combination of 
structure and flexibility cannot be provided by current -, vorkflow- like technologies. Coordinators 

"determine the need of new activities and organisation structures, and delegate existing and new 00 
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activities to process part icipa nt s", and, experts "perform specialised crisis mitigation activities and 
have the skills to decide the exact type or specialisation of these activities". 

For flexible process definition, CMI provides: 

a Activity Placeholders allowing for activities whose concrete types are left open at design-time. 

Coordinators and experts resolve the concretisation of placeliolders using Resolution Rules, 
0 

which provide policies for how they may be resolved. 

e Repeated Optional Dependencies - While a milestone has been reached in the control flow, 

and has not yet expired, an activity may be repeated a number of times, which is not pre- 
determined by the control flow specification. 

8.1.4 Wainer and Colleagues 

Wainer [131] puts forward the argument that processes in workflow-like applications should be 

represented in a logic language which allows for a unified representation of processes, constraints 

and policies. He argues that it is widely accepted that office procedures are much more creative and 

mutable than can be accommodated by traditional workflow applications; and, in dealing with real 

work cases, office workers creatively subvert the standard processes to get the job done. He asserts 
that there is a growing recognition that workflow applications should admit flexible and adaptable 

specifications, and should be able to cope effectively with wide-ranging exceptional behaviour. 

However, as noted, a principal concern for enterprises is that flexibility in process enactment is 

controlled so that organisational rules are not violated, and business objectives are achieved. 
In [131], a workflow model is specified as a theory in a linear modal logic. Constraints and 

policies are added as further axioms. Exceptional behaviour is accommodated, as much as possible, 
by the notion that the (minimal) models of the theory specify what could, rather than should, be 

done. In this sense, the WRIUS should be seen as more of a querying mechanism, where agents may 

query what they can do next. This is very similar to what we provide in (the implementation of) 

our flexible workflow modelling approach. The relation that is captured between the work case, 

and the model, is one of consistency rather than instantiation. Wainer also introduces the notion 

of soft constraints, where constraints may be prioritised in importance, and overridden if needed in 

the event of obtaining exceptions. The work also describes how it may be determined that a case, 
thus far, complies with a workflow model, as well as ho w it may be determined whether a case can 
be migrated to an alternative model. In the latter case, this would mean that the original case 

also, thus far, complies with the new model. A point made by Wainer, and of key importance, is 

that it is unclear whether such a logic-based representation would be an efficient one in practice. 
In [132], Wainer and colleagues describe Ilicupi - another flexible workflow system, based on 

overridable constraints. The flexibility is achieved through the definition of constraints on the 

execution of activities, which are pre- and post-conditions on the execution of other activities. 
There is no explicit control flow specified for a model. The authors propose a framework which 
includes a workflow server which effects the approach, and an access control model representing 

users having authority to execute activities and authority to override the constraints specified by 

activities. The framework is also able to help users decide which activity to choose to execute 
through what-if scenarios. Essentially, this approach facilitates the specification of what could 
be done by a domain expert, rather than what should be done, as is the case with traditional, 
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production Nvorkflow. 

8.1.5 Organisational Modelling 

It is worthwhile briefly mentioning the classification of workflow from yet another perspective, 

namely, the organisational perspective. Most of today's WfNISs focus on the process definition 

and oversimplify the organisational perspective [67]. Our conceptualisation of the organisational 

perspective is concerned with the following aspects. 

" Management of Agents. 

" Access Control to Enterprise Data. 

" Operational Policies. 

We proceed to describe tile first two of these. We have already alluded to the use of operational 

policies in this chapter, and will not elaborate this further here. 

8.1.6 Management of Agents 

Specifying meta-models for the management of agents is given short shrift in most INTIMSs. There 00 ta 0 
has been some work to address this point, such as that presented in [141,19,20]. A NNTAIS 

should provide a capability to specify a dynamic and fine-grained model of agents that unifies the 

specification of role and authority structures. 
A role structure is a partial ordering on roles within an organisation, where privileges propagate 

down the ordering. (More specific roles exist lower down the ordering. ) For example, c-programmer 
is a more specific role than programmer, and should assume all of the privileges of programmer. An 

authority structure is a partial ordering specifying the organisational structuring of the enterprise 
to which the workflow pertains. The CEO of an enterprise has more authority (in the context 

of the enterprise) than any of the middle-managers, for example. Task assignment to agents, for 

instance, may be done on the basis of what positions agents occupy in both role and authority 

structures. 
Role and authority structures should be dynamic and fine-grained; the relations that are de- 

scribed in a structure may change over time, and they may have temporal qualifications associated 

with them or may have exceptions. 

8.1.7 Access Control to Enterprise Data 

Tile management of (persistent) enterprise data, from tile perspective of INTIMSs, has had little 

attention in the literature. Whereas there have been a number of research efforts that have ad- 
dressed the issue of task assi-nment (by means of access control models), such as [19,20], there 0 
has been little research relating to the control of access to enterprise data from workflow models 
[138]. 

In traditional WfNlSs, the data that is required for the execution of an activity is specified 
by the workflow designer. That apart, there is no, or little, flexibility in what call be accessed. 
In effect, therefore, there is no separation made between work distribution and authorisation. An 

agent is only authorised, in the processing of all activity, to see data that the author of tile workflow ID 0 
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deems to pertain to that activity. However, the author of the workflow is unlikely to have the same 
level of expertise as a domain expert. Moreover, it is hard to prescribe at workflow build-time 

the exact data that will be required to process an activity of a case. The inability of an agent to 

view any data other than that which is prescribed at build-time is called context tunnelling (see 

Section 8.1.1). 

A solution to context tunnelling is to detach authorisation from distribution by means of an 
independent, separate access control model. Such a model would be used to determine accesses to 

enterprise data from applications that are wholly unrelated to workflow enactment, as well as from 

applications that are. It would safeguard access to enterprise data according to enterprise-wide 

access strateaies or constraints (such as those related to security). In the context of workflow 

enactment, such a model would possibly be augmented by additional or substitutive constraints 
to data access. This au-mentation ma occur for -. vorkflow enactment generally, or for specific 0yC, 
ivorkflow models, or instances thereoL 

8.2 Flexible Workflow Modelling using Theodore 

Our approach to flexible workflow modelling may be neatly surmylarised as Flexible Work-flow 
?D 

Abstract Model + Policies for Refinement. It is in this context, that we identify a correspon- 
dence between the refinement of an abstract workflow (through the use of policies) into a concrete 0 
workflow (to be enacted), and the refinement of abstract task networks into concrete ones (using 

similarly-conceived rules) in Hierarchical Task Network (HTN)-based Planning [85]. 
0 

Mindamentally, our mechanism for facilitating the refinement of abstract workflow tasks ac- 0 
cording to policies is to make use of an HTN-based planner to guide the refinement process so that 0 
a concrete workflow is generated which conforms with: 

e Tile business objectives of the enterprise, as represented in the decomposition rules specified 
in an HTN-based domain description (or planning problem) 

9 Subjective criteria that may be applied by the agents involved in the refinement process, 

such as in the context of collaborative workflows where a number of agents would agree on 00 
how an abstract Nvorkflow should be refined. 

In explicating our approach to flexible workflow modelling, we start with an overview of HTN- 00 
based plannin., and then continue with a description of our approach to HTN-based planning. 

8.2.1 Hierarchical Task Network (HTN)-based Planning 

The distinauishin- features of a Hierarchical Task Network (HTN)-based planner over traditional 
(operator-based) approaches to planning [52] is what it plans for, and how it plans for it. A 

(purely) operator-based planner will work (regressively, progressively, or by a combination of the 

two) to find a (partially or totally) ordered set of actions that takes the world from an initial state 

specification to a goal state. The operation of such a planner is a search through a space of states, 

or space of partial plans. In contrast, HTN planners search through a space of deconip os it ions, or 

refinements, of an initial task network. Note that we use the terms refinement and decomposition 

Synonymously. 
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Task networks are much richer in structure than classical planning attainment goals [40). In 
0 t' 

classical planning, any ordered set of actions, which, when applied in the initial state lead to a 0 
goal state, constitutes a plan. There is little control over which actions may be used in the plan, 

without going to an extremely fine-level of granularity in modelling the domain. On the other 00 
hand, HTN planning affords full control over the actions in a plan. Only those actions which are 
derived from the applications of operators to tasks, which themselves have been derived through 

successive refinements of the initial task network, may appear in the plan. This expressivity, 

afforded to HTN-planning domains, can be very useful in many planning applications. In fact, any 

sort of planning application where there is a notion of procedure for achieving a goal is likely to 
00 

be a strong candidate for HTN planning. As there are typically procedures that underlie a domain, 
00 

characterised by HTN planning, this sort of planning is sometimes called template-based planning C, 00 
to reflect the notion that plans follow a template corresponding to a procedure. 

A good example of all HTN-based planner is SHOP2 [85,10]. It is different from most other 

HTN-based planners in its use of ordered task decomposition (OTD). In planning by ordered-task 
decomposition, actions are added to the plan in the order that they will be executed. This means 

that the current state is known at each step of the planning process. This allows for greater 0 
expressive power in the planning system, such as the ability to use foreign agents, or oracles, because 

we are able to reason about what is true when applying an operator rather than constrairling what 
has to be true (as in non-OTD HTN-based planning). 

Ali HTN planning problem specifies a number of methods and operators, which are collectively 
known as domain constructs. An HTN task is a planning artefact that is meant to be decomposed by 

the application of these constructs. A method specifies sufficient conditions for the enactment of a 

task network to constitute the enactment of a non-primitive task. An operator specifies sufficient 

conditions for the enactment of an action to constitute the enactment of a primitive task. 

Actions are physical artefacts that are meant to be performed by tile plan enactor, and are not 

meant to be decomposed. An HTN task network is without loss of generality a partially-ordered set 

of >0 (non-primitive or primitive) tasks and >0 actions. An HTN planning task is concerned with 
decomposing an initial network of tasks and actions, and terminates successfully when a network Z' 
of actions is reached. 

Alethods and operators may specify preconditions for their applicability. HTN planning assumes 

the use of a knowledge base, appropriately initialised, as well as a suitable language for querying 

and updating the knowledge base. Operators may also specify effects (i. e. updates) to be made to 

the knowledge base, as a consequence of the conceived execution of an action. 
As a simple example, consider the Liesbet model that we have used for illustration throughout 

this thesis: Par(Seq(A, B) Seq(C, D)). In this form, the model would be fully-decomposed. We 

could alternatively cast this workflow as an HTN planning problem. The initial task network would 
be the non-primitive task P, say. Then, we would have three methods, viz. 

9 P: true: Par (SI, S2) - decomposes P into a network, i. e. Liesbet model, consisting of a 0 
Par as root, with two tasks, S1 and S2, as its children. The precondition for application of 
the method is empty (or true), which is trivially satisfied. 

* Sl: true: Seq(A' B' )- decomposes S1 into a network consisting of a Seq as root, with two 0 

tasks, A' and B ', as its children. 
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S2: true: Seq(C' D I) - decomposes S2 into a network consistin. - of a Seq as root, with two 

tasks, C, and D', as its children. 

We would also have four operators, viz. 

e A: true . true: A- decomposes task A' into the action A, where tile applicability is 

deteri-nined by a precondition (here, true - the first of them), and the effects of executing 
A are determined by an effects statement (here, also true, which signifies no updates to be 

made to the underlying knowledge base). 

eBI: true -. true: B- decomposes task BI into the action B. 

*CI. - true : true: C- decomposes task CI into the action C. 

* D': true : true: D- decomposes task DI into the action D. 

Finally, there are four actions, which are physical activities that can be performed by the plan 

enactor. These are: A, B, C and D. 
An HTN planner, starting with the task P, would select an appropriate method or o erator to de- 

0p 
compose it. There is only one such method, and the result of decomposition would be: Par (S1, S2). 
The planner would then select one of S1, or S2, to decompose next. Let us arbitrarily pick S1. Al- 

ternatively, -%ve may employ some heuristic that guides the selection. The resulting network is then: 

Par(Seq(A 1, B'), S2). Note that whenever a method has been immediately previously applied, we 

need to select the next decomposition frorn the network specified by this method, and not from 

the entire task network being planned over. This ensures that when preconditions are evaluated 
in methods, they hold when the first action resulting (eventually) from the method decomposi- 

tion - there may a number of further decompositions in between - is executed, thus maintaining 

soundness. In the example, we next need to choose a decomposition from Seq(Al B'). In effecting 
OTD, we respect the partial-ordering imposed by the task network, i. e. Liesbet constructs. As 

such, there is only one possible decomposition, which is to use the apposite operator to decompose 

A 1. The decomposition of A' is A resulting in the network: Par (Seq (A ,BI), S2), and current plan: 
(A). This is the first operator application. Whenever these occur, they get inserted into the plan, 

generated as a result of the planning exercise. HTN plans, at least traditionally, are sequential 

artefacts 
Whenever a task gets decomposed (by an operator) to some action, as well as being relabelled 

with the action name, the task is marked as being completed, so that dependent tasks in the network 0 
get enabled (if otherwise appropriate). In the example, we mark A as being completed so that the to 0 
sequence, S1, may be progressed, making its next (leaf) task, B1, available for decomposition. 

00 
As the previously applied domain construct was not a method, we are at liberty to select the 

next decomposition from the entire network, in its current form: Par (Seq (A, BI), S2). Let's say 
that we next select S2 for decomposition (by method), followed by C, (by operator). The resulting 
task network is: Par(Seq(A, BI ) Seq(C, D')), and plan: [A, C1. Finally, let's say we choose to 
decompose B1, followed by D1. Planning stops when there are no more tasks to decompose - the 
leaves of the final network: Par(Seq(A, B) Seq(C, D)) are all actions. The final plan is: [A, C, 

B, D1, which represents one possible way of enacting the given network. If the heuristic that we 

apply in selection is based on some objective function, then it may be that the plan is optimal 

according to this function. 
C, 
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8.2.2 The Theodore HTN-based Planner 

We have chosen to implement our own planner rather than using an off-the-shelf planner, such as 
SHOP, as we wanted to make use of a number of features which are not available in any other 
OTD HTN-based planner. An example is the notion of a complex operator (which is described 

below), which greatly improves planning efficiency, and is particularly well suited to planning for 

Web Services Composition (WSC). 

Our planning approach contains a range of other novel features that are useful in a number 

of domains. They are not described in this thesis. Details may be obtained from the author on 

request. 
We are interested in a highly modularised approach to planning. While this approach is still 

formative in our work, we have been keen to get a better understanding of the issues involved 

in realising such an approach. One way of improving our understanding is the development of 

simple and quick prototypes that fit the modular mould. The first iteration of such an approach 
is embodied in the Theodore HTN-based Planner. 

Features of the planner (non-exhaustively) include the following. 

e As well as specifying operators and methods for a domain, complex operators may also be 
C, 

specified. Complex operators offer a combination of operator- and method-based decomposi- 

tion. They decompose a non-primitive task into a network of actions. The use of a complex 

operator thus side-steps the need to refine a task by a number of method applications, fol- 

lowed by a number of operator applications. 

In the previous example of finding a plan for the network P, resulting in the network n0 
Par(Seq(A, B) Seq(C, D), instead of having separate methods and operators for decomposing 

0 CI 
the sequences, for instance, we could have used complex operators. That is, we could recast 
the planning problem as using one method, with two complex operators, say: 00 

- Method: P: true: Par(SI, S2). 

- Complex Operator: SI: true: true: Seq(A, B) - decomposes SI into a network con- 

sisting of actions A and B, in sequence, according to precondition: true (the first one) 00 
and effects: true. 

- Complex Operator: S2: true: true: Seq(C, D) - decomposes S2 into a network con- 

sisting of actions C and D, in sequence. 

When we decompose a task with a complex operator, the network of actions specified by 

the construct is inserted, in its entirety, into the plan. This means that the planner for 

this planning problem hasjust two possible plans: [Seq(A, B) , Seq(C, D)l and (Seq(C, D) , 
Seq(A, B)I. 

Not only does this provision have the potential to improve planning efficiency significantly, 0 43 
it also enables a plan to have an aspect of concurrency in it. OTD HTN-based planners, like 

SHOP, produce sequential plans. We have identified complex operators to be particularly 

useful in improving the efficiency of planning for Web Services Composition (ANISC) [86,133]; 
00 

where, using them, we may plan at the level of the service, rather than at the level of the C, 
service operation. 
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Figure 8.1: Theodore Planning Framework. 

a Theodore supports the specification of t emporally- extended constraints that plans should 

satisfy. These are constraints whose satisfaction is determined over successive states of en- 

actment of a model. Typically, such constraints would be expressed using a temporal logic, 
00 

such as CTL* (61,381, although other constraint languages could be supported. Theodore 42,0 0 
uses a progression algorithm for constraint verification, which fits with the use of OTD-based 

planning. 

In our work, we use Liesbet for the representation of task networks, although, generally, a 
fully-blown workflow language is not usuall supported (for reasons of planning decidability) by 

ý0yC, 
HTN planners. In fact, our planning approach is sufficiently flexible, in principle, to incorporate 

arbitrary task network representation approaches. We place the burden of guaranteeing decidability 

on the planning-problein author, in order to obtain a greater flexibility, and additional expressive 

power, from using a workflow language. To counter the weight of responsibility that this places on 

a domain author, we may, in time, look at putting measures in place which relieve this burden, at 
least somewhat. However, we currently feel that the extra flexibility that is gained is worth the 

pain. 

The architecture of the Theodore planner is shown in Figure 8.1. It consists of the following 

modules. As can be seen, even this very simple planner is highly modularised, allowing for any of 00 
the individual engines to be replaced, or sometimes ornitted. 0 

Temporal Constraint Checking Engine - responsible for verifying the integrity of plans against 
temporal constraints. 

Service Selection Engine - responsible for selecting the next method, complex operator, or 

operator to apply while executing the planning procedure. 
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Knowledge Base - responsible for maintaining the current state of the planning domain, as 

well as a history of previous states along the current path from the initial state. 0 

Liesbet Workflow Engine - responsible for maintaining the current task network. 

9 HTN-based planning engine - responsible for effecting HTN-based planning. C, 00 

Formalisation of Theodore 

We now formalise the description of Theodore, from the perspective of the HTN-based planning 0 
engine. In this simplified description, we assume that operators (and complex operators) have 
deterministic effects. 

We will also present another example as we go along. The example is of robots rl and r2, 

moving two containers cl and c2, between two locations 11 and 12. In the example, we have an 0 
initial task network consisting of a single task: transf er-two- containers (c 1, c2,11,12). We 

00 
have a number of actions available: move (_x, 

_1a, _1b) 
(for moving a robot _r 

from location 
-1a. to 

location 
-1b), load(-c, -r) 

(for loading a container -c onto a robot _r), and unload(-c, -r) 
(for 

0 
unloading a container _c 

from a robot _r). 
Underscored-prefixed names indicate construct variables, 

or parameters. We assume the use of a STRIPS- fl. 02) like knowledge base, which consists of a 

number of ground atoms. Further ground atoms may be inserted, and some removed, as planning C, 00 
takes place. 

Definition 1. A Theodore Task t is a pair: (tn, TP) where: 

" tn is a name associated with the task. 

" TP is art ordered list of the parameters associated with the task, some of which may be 

C, grounded. Those that are not are existentially quantified. 

A non-primitive task is one that may only be decomposed by a method or a complex operator. 
A primitive task may only be decomposed by an operator. 

Definition 2. A Theodore Action a is a pair: (an, AP) where: 

* an is a name associated with the action. 

e AP is an ordered list of the parameters associated with tile action, all of which must be 

grounded. 

Definition 3. A TheodoreTask Network n is a triple: (T, A, : 5-ruA) where: 

eT is a set of tasks. 

eA is a set of actions. 

S ! 5TUA is a part ial-orderin, over TUA. 

Definition 4. A Theodore Problem Domain tpd is a triple: (M, C, 0), where: 

*M is a set of Alethods. 

*C is a set of Complex Operators. 
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e0 is a set of Operators. 

Definition 5. A Domain Construct, dc, is a base type for methods, complex operators and oper- 

ators, and is a 5-tuple: (cn, tn, TP, p, CP) where: 

" cn is a name identiý, ing the domain construct. 0 

" tn is the name of the task to which the domain construct is applicable. 

" TP is an ordered list of the parameters associated with the task named tn in the construct. 

tn and TP, together, are known as the head of the construct. 0 

p is a pre-condition for the application of the domain construct (expressed in the language 

of the Knowledge Base, which is a module in the Theodore planner). 

* CP is an ordered list of the parameters used in tile construct, excluding those named in TP. 

Definition 6. A Alethod zn is a pair: (dc, mn), where de is a domain construct, and mn a network 
of tasks and actions, to be inserted into the current task network as a result of decomposition. 

A method decomposes a non-primitive task into a network consisting of primitive and non- 

primitive tasks and actions. Note that we are able to distinguish between non-primitive and 

primitive tasks on the basis that tasks fall into two disjoint sets, namely, those that may be 

decomposed by operators and those that may be decomposed by methods and complex operators. 
We determine that a task is primitive (resp. non-primitive) by the existence of an operator (resp. 

method or complex operator) that decomposes it. 

In our example of moving containers, Ave have a rnethod which decomposes the initial task: 

transf er-two-containers (cl, c2,11,12), viz. 

Method: en: transfer two containers 
tn: transfer-two-containers 
TP 

-ca, -cb, -la, -lb 
p container(-ca)Acontainer(-cb)Alocation(-la)Alocation(-lb) 
CP 

7nn Par (trans f er-one -container (-c a, -la, -1b) , transfer-one-container(-cb, -la, -lb)) 

The method decomposes the task, transf er-two-containers, into a parallel composition of 
two tasks of transferring one container. There are a nuinber of other methods, as follows. 

Method: cn: transfer one container 
tn: transfer-one-container 
TP 

-c, -la, -lb 
p robot (-r) 

CP 
-r 

rnn Seq (load I (_c, 
_r) move-robot (_r, 

-la, -1b) unload I (_c, 
_r)) 

This method prescribes how we may decompose the task: transf er-one-container (-c, 
_r, -la, -1b) 

into a sequence of tasks: load (_c, 
_r), move-robot (_r, 

-la, -1b) and unload (_c, 
_x), where _r 

is 

bound in evaluating the precondition. 0 
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Method: cn: 
til: 
TP 

p 
CP 

mn 

niove _r 
froin 

-la to -lb 
move-robot 

-r, -la, -lb 
at (_r, 

-1 a) 

move I (_r, 
-1 a, -1b) 

This prescribes how we may decompose the task: move-robot(-r, -la, -lb) 
into a (primitive) 

task: move(r, la, lb). 

Method: cn: inove _r 
froin Ja to -1b, when _r is already at -1b 

tn: move-robot 
TP -r, -la, -lb 
p at (_r, -1b) 
CP 

7nn 

This method handles the possibility that we transfer both containers in the same execution of 

move, meaning that we need to trivially consume one instance of move-robot in the evolving task 00 
network. This would happen if we loaded both containers onto the same robot, prior to moving it. 

C, 

Definition 7. An Operator o is a triple: (dc, e, a), where dc is a domain construct, e is an effects 

statement, and a is the action associated with the operator. 

An operator decomposes a primitive task into a single action. In our example, we offer three 0 
operators for decomposing the primitive tasks: move', load I and unload,, as follows. 

0 

OPerator: c7l: 
tn: 

TP 

p 

e 

a 
CP 

load container 
load' 

-C, -r 
-on(-c, -r)Aat(-r, -l)Aat(-c, 1) 

on(-c, -r)A-at(-c, 
load(-c, -r) 
1 

Operator: cir move robot 
tn: move I 

TP _r, -1a, _1b 
P true We already check at(-r, -la) in method decomposition 

e -at (_r, 
-1a) Aat (_r, 

-1b) 
a move (_r, 

-1a, -1b) 
CP 
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Operator: cn: 
t7l: 

TP 

P 

e 

a 
CP 

unload container 

unload' 

-C, -r 
on (-c, 

-r) Aat (-r, 

-on(-c, -r)Aat(-c, 
unload(-c, -r) 
I 

Definition 8. A Complex Operator co is a pair: (o, con), where o is an operator, and con a 

network of actions, to be inserted into the current task network as a result of decomposition. 

A complex operator decomposes a non-primitive task into a network consisting solely of actions. 
In our example of moving containers, we could offer an alternative construct, namely, a complex 

operator, to effect a complete decomposition of transf er-one-container in one step, as follows. 

For complex operators, the action a and the network of actions con are necessarily identical in 

definition. As a consequence, we usually just specify con when defining a complex operator, while 

omitting a specification of a. 0 

Complex cn: transfer just one container 
Operator: tn: transfer-one-container 

TP 
_c, -la, -lb 

P robot (_r) A-on (_c, 
_r) Aat (_r, 

-1a) Aat (_c, 
-1a) 

e at (_r, 
-1b) Aat (_c, 

-1b) 
CP 

_r 
coil Seq(load (_c, 

_r) , move (_r, 
-la, -1b) , unload (_c, 

_r)) 

Definition 9. A Theodore Planning Problem tpp is a triple: (tpd, n, kb) where: 0 

e tpd is a Theodore Planning Domain. 

it is the initial task lietwork, such as transf er-two -containers (cl, c2,11,12), for which 

we wish to find a plan. Tile network consists of a number of primitive and non-primitive 
tasks and actions, constrained by some partial ordering. 

kb is the initial knowledge base state, maintained by the Knowledge Base engine. 000 
In the example, the knowledge base kb, used for the planning problem, is initialised to assert 

the following atoms. 

location(11) location(12) 

robot(rl) robot(r2) 

container(cl) container(c2) 

at(cl, 11) at(c2,11) at(rl, ll) at(r2,11) 

Theodore Ordered-Decomposition by Method 

A network n may be decomposed into a network n', by using a method to refine a non-primitive task 0 
in n, relative to a knowledge base kb and initial task it, according to the relation: ? net (n, kb, it, t, n'), 00 
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n' represents a method-realised decomposition, according to met (n, kb, it, t, n) given n, t, kb 

and it, if and only if- 
(mi) t is a task in n which has no immediate predecessors which have not been decomposed, 

i. e. there are no tasks in the network that must be completed prior to t, according to the 

partial-ordering specified by n. 
(mii) t is it, or a descendant thereof, i. e. t is contained with the task network resulting from 

the decomposition of it. 
(miii) m is a method in M whose task name tn matches that of t. 
(miv) The task parameters associated with t and those specified by TP for m unify with a most 

general unifier p. Unification is possible if the two lists of task parameters are of the same 
length, and values in the respective positions unify. 

(mv) The precondition pli in m holds, with substitution v, according to kb. 0 
(mvi) The decomposition n' is formed by attaching mnpv, in m, as the only child of t in n. 

Fiaure 8.2: Criteria for Method-Realised Decomposition. C, 

which specifies possible method-realised decompositions of n, on task t, given it and kb. In defining 
ID 0 

inet (and op and coop, whose definitions are presented later), we assume the context of a particular 

Theodore planning problem, and its associated domain constructs: M, 0 and C. 

When applying any sort of decomposition (method, operator, complex operator) if a method C, 
has previously been applied with no intervening operator or complex operator, we need to ensure 0 
that the task t (for which the decomposition step is to be applied) is a descendant of the task t' 

decomposed by the previous method application. By descendant, we mean contained within the 

task network that resulted from the decomposition of t'. We have alluded to this before. This 

satisfies a requirement in HTN planning that whenever a method is applied in decomposition, its 

pre-condition is satisfied just prior to the first execution of one of its (decomposed) actions. In 

order to safeguard this, we require that whenever we start a fresh round of method application 

- meaning an application of a method following an operator, or complex operator - on a task it, 

say, subsequent applications of methods, complex operators and operators (until we have applied 

a complex operator, or operator) will be on tasks which are descendants of it. 

In Figure 8.2, we present the criteria for niethod-realised decomposition. 
0 

Referring to our example of moving containers, the initial task network for the lanning problem 00P0 
is: transf er-two-containers (cl, c2,11,12). The only applicable method for decomposin, this 

task (t) is the one with the construct name (cn) "transfer two containers", viz. 

Method: cn: transfer two containers 
tn: transfer-two-containers 

TP 
-ca, -cb, -la, -lb 

p container(-ca)Acontainer(-cb)Alocation(-la)Alocation(-lb) 

CP 

inn Par(transfer-one-container(-ca, -la, -lb), transfer-one-container(-cb, -la, -lb» 

Method cit is applicable on account of its task name tn matching t. In attempting; the decompo- 
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transfer-two-containers(cl, c2,11,12) 

I 
by "transfer two contalners"method 

Par 
Plan 

transfer-one-container(cl, 11,12) transfer-one-container(c2,11,12) 

Figure 8.3: First Decomposition Step for transf er-two-containers Task. 

sition, we try to unify the task parameters (TP), that is, we attempt a member-wise unification of 
the lists: [c 1, c2,11,1b] and [-ca, 

_cb, -1a, -1b], where parameters prefixed with an underscore, 

-, are variables and unify with any constant, or other variable. The mgu y is 1-ca=cl, 
-cb=c2, 

_1a=11, -lb=12). 
The precondition is appropriately formed by substitution of its (free) variables, 

according to y: container (c 1) Acontainer (c2) Alocat ion (11) Alocat ion (12). This holds ac- 

cording to the initial state of the kb, presented above, where v is the empty substitution. The de- 

composition of trans f er-two- containers (c 1, c2,11,12) is thus: Par (transf er-one-container (cl 11,12) , 
transfer-one-container(c2,11,12)), attached as a (single) child to the task: 

traLnsfer-two-containers(cl, c2,11,12). Fýom now on, we omit, from the description of an 

evolving task network, tasks to which a decomposition has already been attached. In Figure 8.3, 

we present a graphical account of this decomposition. 

Theodore Ordered-Decomposition by Complex Operator 

A network n may be decomposed into a network n', by using a complex operator to refine a non- 

primitive task t in n, according to tile relation: coop (n, kb, it, t, n', e', a'), which specifies possible 

complex operator-realised decomposi t ions of n, given it and kb. 

In contrast to met, coop (and op, see later) takes two additional parameters, namely: e', the ap- 

plicable effects statement, appropriately substituted, and, a', the action, appropriately substituted, 

pertaining to the application of tile complex operator. 

In Figure 8.4, we present the criteria for complex operator-realised decomposition. 

In our example, tile current task network consisting of: Par (transf er-one-container (cl, 11,12) 

transf er-one-container (c2,11,12)) may be decomposed completely by just two further decom- 

positions. That is, we may decompose both of the transf er-one-container tasks by applying 0 
a complex operator to effect their decomposition. The complex operator is "transfer just one 

container", and its definition is as follows. 
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The triple (n', e', a) represents a complex operator-realised decomposition, according to 

coop (n, kb, it, t, n, e', a') given it, t, kb and it, if and only if: 

(coi) As (mi): t is a task in n which has no immediate predecessors which have not been 

decomposed. 

(coii) As (mii): t is it, or a descendant thereof. 
(coiii) co is a complex operator in C whose task name tn matches that of t. 

(coiv) As (miv): The task parameters associated with t and those specified by TP for co uniýy 

with a most general unifier it. 
(cov) As (mv): The precondition py in co holds, with substitution v, according to kb. C, 

(covi) As (mvi): Tile decomposition n' is formed by attaching conpv, in co, as the only child of 0 
t in it. All activities within conjiv are marked as being completed, as is the task t in n'. 

(covii) The effects statement e' is epv, where e is the effects statement specified in co. 
(coviii) The action a' is aliv, where a is the action specified in co. 

Fi-ure 8.4: Criteria for Complex Operator-Realised Decomposition. 
0 

Complex cn: transfer just one container 
Operator: tn: transfer-one-container 

TP 
-c, -la, -lb 

p robot (-r) A-on(-c, -r)Aat 
(-r, 

-la) Aat (-c, 
-la) 

c at (-r, Ab) Aat (-c, 
-1b) 

CP 
-r 

con Seq (load (-c, 
-r) move (-r, -la, -lb) unload (-c, 

-r) 

This domain construct is applicable on account of its task name tn matching the name of 
the task to be decomposed, in each case. For the first task, in attempting a unification of task 

0 
I-c=cl, Ja=11, -lb=12}. 

The precondition holds, according to the parameters, the man y is 

current (still initial) kb, with possible substitutions: I-x=r1j and (-r=r2j. If we pick the first of 
these, the effects statement is grounded to: at (ri, 12)Aat (cl, 12), meaning that the updated kb 

(regarding at) will be: at(rl, 12), at(r2,11), at(cl, 12), at(c2,11). The networkof actions: 00 
Seq(load(cl, rl) move (rl, 11,12) unload(ci, ri)) is inserted, as is, into the (currently empty) 

plan. 

We can then apply another decomposition, using the same construct, to the second transf er-one-container 
task. In attempting a unification of task parameters, the mgu it is I-c=c2, 

-la=ll, -lb=12). 
The preconditi on holds, according to the (new) kb, with single possible substitution: I-r=r2}- 

The effects statement is -rounded to: at(r2, l2)Aat(c2, l2), meaning that tlie updated kb (rc- 

garding at) will be: at(rl, 12), at(r2,12), at(cl, 12), at(c2,12). The network of actions: 
Seq(load(c2, r2) move(r2,11,12) unload(c2, r2)) is inserted, as is, into the plan. Planning 

is now successfully completed as there are no more tasks left to decompose, with the final plan: 
[Seq(load(cl, rl) move (rl, 11,12) unload(cl, rl)) , Seq(load (c2, r2) move (r2,11,12) unload (c2, r2)) 

as can be seen in Fiaure 8.5. 
0 
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transfer-two-containers(cl, c2,11,12) 
1 

by "transfer two contalners"method 

Par 
Plan 

'elý 
transfer-one-container(cl, 11,12) transfer-one-container(c2,11,12) 

by two applications of 'transferjust one container" I 

complexoperator 

Par 
Plan = (Seq(load(cl, rl), move(rl, 11,12), unload(cl, ri)), 

Seq 
Seq(load(c2, r2), move(r2,11,12), unload(c2, r2))] 

A-- 
Seq 

load(cl, r1) move(rl, 11,12) unload(cl, ri) 

load(c2, r2) move(r2,11,12) unload(c2, r2) 

Fiaure 8.5: Further Decomposition Steps for transf er-two-containers Task. 
0 

Theodore Ordered-Decomposition by Operator 

A network n may be decomposed into a network n, by using an operator to refine a primitive task 0 
t in n, according to the relation: op(n, kb, it, t, W, e', a), which specifies possible operator-realised 
decompositions of n, given it and kb. 

0 
In Figure 8.6, we present the criteria for complex operator-realised decomposition. 

In our example, the task network after effecting decomposition on the initial task network, us- 
ing the method for trans f er-two- containers, is: Par (transf er-one-container (cl, 11,12) 

transfer-one-container(c2,11,12)). If we use the method "transfer one container" to de- 

compose the first of these tasks, a possible resulting task network is: Par(Seq(load' (cl, rl) , 
move-robot(rl, 11,12), unload' (cl, ri)) , transfer-one-container(c2,11,12)). Atthisstage 

of decomposition, we must decompose load' next. load' is a primitive task, as it has an operator 

relating to its decomposition, viz. 0 

Operator: CII: load container 
tn: load' 

TP -C, -x 
p -on(-c, -r)Aat(-r, -l)Aat(-c, 
e on(-c, -r)A-at(-c, 

1) 

a load(-c, -r) 
CP I 

This domain construct is applicable on account of its task name tn matcIfing the name of the 

task to be decomposed. In attempting. a unification of task parameters, the inglu p is I-c=cl, 

_r=r1j. 
Tile grounded precondition, -on(c1, r1)Aat(rI, 11)Aat(c1,11), bolds, according to t1le 00 
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The triple (n', e, a) represents all operator-realised decomposition, according to 

op(n, kb, it, t, n', e', a') given n, kb and it, if and only if- 
(0i) As (mi): t is a task in n which has no immediate predecessors which have not been 

decomposed. 

(oii) As (mii): t is it, or a descendant thereof. 
(oiii) o is an operator in 0 whose task name tn matches that of t. 
(oiv) As (miv): The task parameters associated with t and those specified by TP for o unify 

with a most -eneral unifier p. 0 
(OV) As (mv): The precondition pit in o holds, with substitution v, according to kb. 

0 
(ovi) The decomposition n' is formed by applying the substitution 'Uv to t in n and changing C, C, 0 

the classification of t from a task to the action a' (see (oviii)), and marking it as being 

completed. 
(ovii) As (cov): The effects statement e' is eliv, where e is the effects statement specified in o. 
(oviii) As (covi): The action a' is aliv, where a is the action specified in o. 

Fi, gure 8.6: Criteria for Operator-Realised Decomposition. 

current (still initial) kb. The effects statement is grounded to: on(cl, rOAýat(cl, 11). The 

action load(cl, rl) is inserted, as is, into the (currently empty) plan, as shown in Figure 8.7. 

If we next select the (remaining) transf er- one -container (c2,11,12) task for decomposition 

by the "transfer one container" method, where we are able to choose the same robot, ri, as used for 

the first of these tasks, and follow that by decomposing load' (c2, rl), as above, then the resulting 

plan will be: [load(cl, ri), load(c2, ri)], and resulting task network: Par(Seq(load(cl, rl), 

move-robot(rl, 11,12), unload' (cl, rl)) , Seq(load(c2, rl), move-robot(rl, 11,12), unload' (c2, rl)). 
If we then move the robot, by using the method "move 

_r 
from 

-la. 
to 

-lb, 
" to decompose the 

first move-robot(rl, 11,12) task, and use the operator "move robot" to decompose the result- 
ing move (rl, 11,12) task, the resulting plan is: Cload(cl, rl), load(c2, rl), move(rl, 11,12)] 

and network: Par (Seq(load(cl, rl), move(rl, 11,12), unload' (cl, rl)), Seq(load(c2, rl), 

move-robot(rl, 11,12), unload' (c2, rl)), as shown in Figure 8.8. 

At this point, we may, for instance, unload the first container cl by decomposing unload' (cl, rl) 

tothe action unload (c 1, rl), resulting in current plan: [load(cl, rl), load(c2, rl), move(rl, 11,12), 

unload (c 1, ri) I and task network: Par (Seq(load (cl, rl) , move(rl, 11,12), unload(cl, rl)), 

Seq(load(c2, rl), move-robot(rl, 11,12), unload' (c2, ri)). Then, all we can do is deconi- 

pose the task move-robot(rl, 11,12). But, as the robot is already at 12, we can only use the 

method 'move 
_r 

from 
-la 

to 
-lb, when _x 

is already at _lb1 
to decompose the task into a empty 

network. The consequence of effecting this decomposition is to remove the task from the current 

network, viz: Par(Seq(load(cl, rl), move(rl, 11,12), unload(cl, rl)), Seq(load(c2, rl), 

unload' (c2, rl)). Finally, we may decompose the final unload(c2, rl) task, resulting in a final 

plan: Eload(cl, rl), load(c2, rl), move(rl, 11,12), unload(cl, rl), unload(c2, rl)l and 

task network: Par(Seq(load(cl, rl), move(rl, 11,12), unload(cl, rl)), Seq(load(c2, rl), 

unload(c2, rl)). 

Definition 10. Theodore Plans and Solutions 
A plan -r. for a Theodore Planning Problem is a sequence of actions, with bindings, resulting 000 



184 Chapter 8. Flexible Work-flow Alodellin., - 

transfer-two-containers(cl, c2,11,12) 

I 
by 'transfer two containers"mothod 

Par 
Plan 

"el-ý 
transfer-one-container(cl, 11,12) transfer-one-container(c2,11,12) 

I by "transfer one contalner"method 

Par 

Seq Ae-ý 

Plan 

transfer-one-container(c2,11,12) 

load'(cl, rl) move-robot(rl, 11,12) unfoad'(cl, rl) 

I by "load container" operator 

Par Plan = [load(cl, rl)] 

Seq 
transfer-one-container(c2,11,12) 

load(cl, rl) move-robot(ri, 11,12) unload'(cl, r1) 

by'transter one container"method followed by I 

"load container"operator 

Pa 
Plan = [load(cl, rl), load(c2, rl)] 

S 

eq 

load(cl, rl) move-robot(rl, 11,12) unfoad'(cl, rl) 

load(c2, rl) move-robot(rl, 11,12) unload'(c2, rl) 

Fi-ure 8.7: Alternative Decomposition Steps for transf er-two-containers Task (I). 
0 

from the application of operators and complex operators (as now elaborated). 
In the following, the function net(tpp) (resp. kb(tpp)) extracts the network n (resp. the 

knowled-e base kb) from tpp. The relation all-actionsIl holds for those networks (the single 00 
argument) which do not contain any tasks to be decomposed, just actions. 

Solutions relate plans to problems; i. e. a plan 7-1 solves planning problem tpp whenever sol (tpp, 

-r, ) holds, which is defined thus. 

sot Upp, i-. ) if f Gj E N, it, t) . soIj (net Upp) . kb Upp) . it, t, 70 
This says that 7r is a solution to tpp iff there is aj in N, and some initial task it, such that 
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Seq 
Plan = [load(cl, rl), load(c2, rl)] 

load(cl, rl) niove-robot(rl, 11,12) unfoad'(cl, rl) I 

load(c2, rl) move-robot(rl, 11,12) unload'(c2, rl) 

byapplications of "move-rfrom-la to-lb"methodand I 

"move robot"operator 
Par_ 

Seq 
Plan= [load(cl, rl), load(c2, rl), move(rl, 11,12)] 

load(cl, ri) move(rl, 11,12) unload'(cl, rl) 

load(c2, r1) move-robot(rl, 11,12) unloaflc2, r1) 

I by 'unload container"operator 

Plan = [load(cl, rl), load(c2, rl), move(rl, 11,12), 
Seq unload(cl, rl)] 

A--. " ý; eq 

load(cl, rl) move(rl, 11,12) unfoad(cl, r1) 

Ioad(c2, ri) move-robot(rl, 11,12) unfoad'(c2, rl) 

by applications of 'move 
_r 

from ja to 
-lb when _r 

is 
already at -1b" method and "unfoad"opera tor 

Par- 

Seq eý 
Plan = [load(cl, rl), load(c2, rl), move(rl, 11,12), 

unload(cl, rl), unload(c2, rl)] 

q 
load(cl, rl) move(rl, 11,12) unload(cl, rl) 

load(c2, rl) unload(c2, rl) 

Figure 8.8: Alternative Decomposition Steps for transf er-two-containers Task (II). 
0 

7-, is generated after j decompositions, starting with task t. The definition of solj is presented in 

Figure 8.9. 
C' 

Theodore Planning Algorithm 

In Figure 8.10, we present the planning algorithin used b the Theodore engine. We assume that C, 0y0 
some mechanism is provided, by a Service Selection Engine (see previously), for selecting domain 
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solo(n, kb, it, t, 7r) iff 7r=[] A all-actions(n) 

solj (it, kb, it, t, 70 iff 

Gn', t') . met (n, kb, it, t, n') A solj- i (n', kb, it, t', 70 V 

(3n', e', a'). (coop(n, kb, it, t, itl, e', a') V op(n, kb, it, t, n', e', a)) A 

(3kb', it', t', 7r'). solj(n', kb', it', t', 7r') A kb'=apply(kb, e') A 7r=[a'17r'l 

Figure 8.9: Definition of solj (n, kb, it, t, n 

constructs and tasks to decompose first. A requirement of such an engine is that it will (tbrough 

backtracking) eventually cover all possible permutations of construct and task selection. It simply 

effects a preference service on constructs and tasks - selecting preferred ones first. As it does 

eventually return all possible selections, it does not affect the completeness result presented below. 

Any selection made using a Service Selection Engine is indicated, in the presentation below, by 

annotating the word 'Select' with asterisks, thus: '*Select*'. We also assume that the kb attached 
to Theodore is sound, as well as being practicably decidable in its inference procedures. 

Theodore Planning Soundness and Completeness 

'ro show soundness and completeness of the planning algorithm, we show that soI(tpp, 7, ) iff 0 C, 
SOITIIEO(tPPP71-), where SOITHEOUPPOTO holds when the plan 7r is generated by the Theodore 

planning al-orithm for planning problem tpp- SOITHEO UPP, 70 holds iff there is aj in N, such CI 00 
that 7, is generated by Theodore, in j steps, given tpp. That is, 0 

301TIlEO(tpp, 7r) iff (3jEN, t). SOlTHEO, (net(tpp), kb(tpp), t, 70 

We define the relation SOITHEO, (n, kb, t, r. ) to bold iff-. 

o For j=O, n is a fully-decomposed network, and r. is the empty plan, [1, where kb and t may 

each be any arbitrary value. 

9 For j >0, t is the task being decomposed, and SOITHEO, -, 
(n', kb', P, 7, ') holds, where n' 

is the result of the decomposition performed in step j (which precedes step j-1), according 

to kb, t' is the task decomposed in step j-1, and: 

- if it is a complex operator/operator decomposition then t' may be chosen irrespective 

of the choice of t, kb' represents the modification of kb to account for the effects of 
the decomposition, and r, ' is the tail of 7,, whose head is the action prescribed by the 

complex operator/operator; 

- if it is a method decomposition then t' must be a descendant of t for j >1 and kb=kb' 

and 7, =7-,. 

The definition of this relation can be seen to characterise the behaviour of the Theodore plan- 
ning algorithm, except with regard to how the relation is built tip. The difference steins from the Cl C, 0 
need to characterise the solutions to a planning problem (which the relation soIj defines) from the 
bottoin-up (that is, starting with a ful ly-decorn posed network, and then "folding. ' decompositions 00 
into the network) versus describing a planning algorithm which works top-down (that is, start- C, 0 it, 
ing with a part ially-decomposed network, and decomposing it until a full -decomposed network 00y 
is reached). In order to show soundness and completeness of the planning al-orithm, Ave need to 00 
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procedure find-p1an(n, kb, tpd) 

it: = null 

ýT: = 0 

LOOP 

*Select* an eligible task t in n. An eligible task is one with no predecessors which are yet to be 

decomposed, and which is a descendant of it if it is not null. 
If no eligible task then: 

e If tasks still exist in n, then backtrack to last choice point as partial plan is not valid. 

If further backtracking is not possible then MIL PLANNING. 

* If no tasks exist, then return -, -r as plan. 

If t is a primitive task then 

*Select* an *appropriate* operator o in tpd (i. e. whose parameterised. task name unifies with that 

of t, and whose pre-condition is satisfied, (see step (ov), above)). 
If a selection is not possible then backtrack... (to last choice point) 

" Mark task t as an action (a, from step (oviii)) in n, and set it to be completed 

" Apply the effects of the operator (e', from step (ovii)) to kb yielding a new kb 

" Concatenate the action of the operator (a, from step (oviii)) to the end of 7r yielding a new 7r 

" Reset it to null 

Else (t is not primitive) 

* *Select* an *appropriate* complex operator, or method, in tpd. 

If a selection is not possible then backtrack... 

If a complex operator co is selected then 

- Attach the (customised - by substitution, see step (covi)) network conliv, in co, as a child of 
t in n. 

- Apply the effects of the complex operator (e, from step (covii)) to kb yielding a new kb 

- Concatenate the action of the complex operator (a', from step (coviii)) to the end of 7r yielding 

a new 7r 

- Reset it to null 

Else If a method m is selected then 

- Attach the (customised - by substitution, see step (mvi)) network innpv, in nz, as a child of 
t in n. 

- Set it to be t 

Figure 8.10: Theodore Planning AlgOritlim. t, it, C, 

characterise the algorithin (in defining the SOITHEO, relation) in a similar bottom-up fashion, in 0n 
order that we may be able to argue a correspondence between the two relations, C5 SOITHEO, and 

solj. 

For soundness, we need to show that if SOITIIEOi (it, kb, t, 7, ) holds, with 7, generated in j 

steps, then solj (n, kb, it, t, r, ) holds, for some it. For completeness, we show that if solj (n, 
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kb, it, t, 7-, ) holds for some it, then SOITHEOj (n, kb, t, 70 holds. 

For both results, the base step (j=O) is straightforward: SOITHEO, (n, kb, t, 0) trivially 
implies solo (n, kb, it, t, [I ), for any it, for a fully-deconiposed network n; and, similarly, 

solo (n, kb, it, t, 0) trivially implies SOITHEOo (n, kb, t, [I ), for any it. 
For the induction step (j=k+l), the induction hypothesis gives us that: SOITHEOk (n', kb, 

V, 7") implies SOlk (n', kb', it', V, 7, '), for some it'; and, similarly, SOlk (n', kb', it', t, 7, ') 

implies SOITHEOk (n', kb, P, 7-, '), for some it'. 

The Theodore algorithm, in step j (the first iteration), constructs kb' from kb, n' from n and 

r, ' from r in the same Nvay that the relation solj prescribes: 

e For operator application: n' is obtained from it by marking t as an action (as specified in 

Fi-ure 8.10), kb' is obtained from kb by applying the (customised) effects e' of o, and, 7, -' is C, 0 
the tail of 7, with a' as its head. These constructions mirror those prescribed in Figure 8.6, ?D 
and in the definition of solj, presented in Figure 8.9. 

0 

e For complex-operator application, the same applies, except that tile network is derived as 

specified in Figure 8.10, by attaching tile task network specified by co, appropriately cus- 00 
tomised by substitution, as a child to t, which is mirrored in the definition of soIj. 

a For method-realised decomposition, the same applies again, except that kb is not modified. 

Moreover, pre-condition evaluation, for the applicability of constructs, is handled the same in 
both the Theodore planning algorithm, and in the definitions of 7net, coop and op (in Figures 8.2, 
8.4 and 8.6), which are used as a basis for the definition of soIj. 

Tile only complication that arises in proving both soundness and completeness results comes 
down to the role of the parameter it. We construct the proofs for soundness and completeness on 
the basis of what role this parameter plays in the definitions Of SOITHEO, and soIj. 

Theorem 1. Soundness: S01THEO, (n, kb, t, 7r) implies soIj (n, kb, it, t, 7r), for some it. 

Proof. 

" For Method Decomposition: ROM SOMW, kb, it', t', ri), for step k, we may trivially 
derive soIj W, kb, it, t, -r. ) according to the definition of so1j, where it' (for step k) is 
bound to t (the task decomposed in step j). 

" Complex Operator/Operator: Follows similarly, except that kb and 7, differ between steps, 
and the value of it' is arbitrary. 

0 

Theorem 2. Completeness: soIj (n, kb, it, t, 70 implies S01THEO, (n, kb, t, 7, ) for some it. 

Proof. 

a For Alethod decomposition: 

- For the simple case where j=1, from the base step, solo W, kb, it', V, [I ) implies 

SOITIIEOo (n', kb, P, [1) trivially holds for any it'. As j =1, for niethod deconiposi- 

tion, -r, =[I. From 801THEO, (n', kb, V, (I), the propositions SOITHE01 (n, kb, t, 
[1) and SOITHEOI (n, kb, t, -0 trivially obtain. 
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- ror cases where j>1, we observe that for step k, SOlk W, kb, it', V, 7, ) implies 

SOITHEO, (n, kb, V, 7-. ), by the induction hypothesis, for some it, where t' is the 

task decomposed in step k. According. to the definition of solj, it' must be the task t 

decomposed in step j. Thus, the task P, decomposed in step k, must be a descendant of t. 

If SOITHEOk W, kb, t', -,, ), then SOITHEO, W, kb, t, 70 holds as t' is a descendant 

of t, as established. 

Complex Operator/Operator: SOITHEO, (n, kb, t, i-, ) trivially follows from SOITHEo, (n', 

kb', V, 

0 

8.3 Verification of and Planning over Flexible Workflow Mod- 

els with Theodore 

We specify flexible workflow models Ls Theodore planning problems. That is, we start with an 

abstract workflow and refine it into a concrete one using a number of decomposition relations 2 

(i. e., methods, operators and complex operators), specified in the problem description. 

The Theodore HTN-based planner may be used in two capacities for this purpose. The principal 
distinction between these capacities stems from the issue of whether the set of decomposition 

relations is fixed for the enactment lifetime of the pertaining model, or whether the set may be 

dynamically switched. That is, we make a distinction between fixed and vaHable flexible models, 

respectively. 
An example of the context in which the set of decomposition relations may cliaDge in the course 0 

of enactment is the changing of operational policies used in an enterprise, which may be reflected 00 
(in part) by the set of available decomposition relations, as business objectives of the enterprise 

change. 
For fixed models, we use the Theodore planner to verify that their definition (as a Theodore 

problem) is sound. A Theodore fixed flexible workflow model is defined to be sound iff every partial 
decomposition of a workflow leads to a full decomposition. This is called the VeHfication c7iteTion. 
If not, it will be possible for the workflow to reach a deadlocked state, where it is not possible 
to perform further decomposition based on the available decomposition relations. If a workflow 

inodel, specified as a Theodore planning problem, passes this criterion then it is guaranteed that 
its execution will complete properly. 

The normal operation of Theodore, for example in the context of planning for Web Services 

Composition (111SC), is to search for a plan which effects the composition (and optionally satisfies 

some temporal constraints). When using Theodore for verification of flexible workflow models, we 
thus need to be a lot more thorough by checking all possible decompositions. 

During verification, we may also check that certain constraints, expressed in some language 

or logic, are satisfied. This capability makes use of the approach that was presented in Chapter 

Seven. As documented there, we may use any lan. guap for which progression semantics can be 

specified. In our work, we have chosen the temporal logic CTL* for describing constraints. 

21n the following text, the term decomposition relation is preferred over domain construct as a matter of taste. 
They should be treated as synonyms. 
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As an example, consider tile task of verifying the simple planning problem (presented earlier) 

which results in the workflow: Par(Seq(A, B) Seq(C, D)). The output of verifying the flexible 

workflow, specified as a Theodore planning problem, using the Theodore engine is presented in 

Fiaure 8.11. As can be seen, verification succeeds with the input problem (model plus rules) 
declared as being sound. The temporal constraint that is checked confirms workflow soundness 

- we test the CTL* proposition: AF Completed-act(Pi), which expresses that tile initial task 

network completes in every possible enactment path. 

In Figure 8.11, every '. ' after the word 'Planning' indicates where the planner has tried an 00 
alternative path in verification, and each V indicates a constraint checking step. In the verification 0 
output, each action is prefixed by an action history. If an action is the first in a plan, it will be 

prefixed by a single number which indicates all index for the action in the collection of actions 

possible at this stage of the plan. In this output, there are two first actions, either A (the Oth 

action, in the collection of first actions, as indicated by 0: A), or C (the ist action, in the collection 

of first actions, as indicated by 1: C). For 0: A, there are two possible plan continuations 0: 0: C and 
0: 1: B, the Oth and 1st actions, respectively, in the collection of actions that may follow 0: A. Tile 

first of these may be extended by 0: 0: 0: B or 0: 0: 1: D, and so oil. END OF PATH is a delimiter, and 
indicates that another plan has been found. As each partial plan must lead to a full plan, each 

prefixed action, output by the planner, must extend the previous one (unless it follows an END OF 

PATH delimiter), and the output must end with an END OF PATH delimiter. 

We also draw the reader's attention to the 'Transf erPro erty' examples that we give in P 
Sections 9.4.5,11.2.2 and 11.2.3, which further explicate our flexible modelling approach. 

For variable flexible models, we need to work within the confines of the current set of decom- 

position relations whilst remaining aware that this set may be subject to change at any time. 

In this context, Theodore may be used to attempt to find a plan to effect an abstract workflow 
(which may have already been partly enacted) using the current set of decomposition relations. A 

domain controller or expert may be on hand to guide this planning procedure, so that the plan 

meets their subjective constraints. In this sense, the planner behaves as a "what may I do next" 

query-interpreter. Such a person may also perform "what-if" simulation, in order to understand 

what actions are available to them, and what tile consequences of these actions are. Moreover, 

planning may be interleaved with enactment, so that enactment results may feed back into the 

planning process. Enactment will only fail if we are unable to complete the workflow given the 

current set of relations. In this scenario, the planner would look at alternative sets of decompo- 

sition relations, notwithstanding that they may be less favourable at that particular time. Tile 

idea of variable models is to allow a -reater level of flexibility in modelling at the cost of statically 

ensurina workflow soundness. 0 
For fixed flexible models, we also support the notions of a "what may I do next" query- 

interpreter and "what-if" simulation. 

A key aspect of our approach to flexible workflow modelling, through both fixed and variable 

models, is its support for collaborative workflows. Ali example of the application of this kind of 

workflow (for crisis mitigation) has already been described in Section 8.1.3. In the enactment 

of collaborative workflows, parties decide on the best way to achieve the goals (prescribed by an 

abstract workflow specification), constrained only by the availability of decomposition relations for 

tasks in the workflow. 
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Simple workflow domain 

Initialising planner... 

Pinnning. cccc. cc. ccc. cccc. cc. ccc. 

Workflow/Contract is SOUND with no constraint violations. 

Planning details ... 
Time taken: 0(h), O(m), I(s), 750(ms) 

O: A 

O: O: C 

O: O: O: B 

O: O: O: O: D 

END OF PATH 

0: 0: 1: D 

0: 0: 1: 0: B 

END OF PATH 

O: I: B 

0: 1: 0: C 

0: 1: 0: 0: D 

END OF PATH 

1: C 

1: 0: A 

1: 0: 0: D 

1: 0: 0: 0: B 

END OF PATH 

1: 0: 1: B 

1: 0: 1: 0: D 

END OF PATH 

1: 1: D 

1: 1: 0: A 

1: 1: 0: 0: B 

END OF PATH 

Figure 8.11: Output from Verifying a Theodore Planning Problem 000 
whose initial task network decomposes to the simple workflow niodel: 
Par(Seq(A, B), Seq(B, C)). 
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In our work, roles may be assigned to decomposition relations and tasks. When a decomposition 
0 

relation refines a task, the role associated with the relation must be compatible with that described 

for the task, according to some model of roles. We briefly described role modelling in Section 8.1.6. 00 
We shall not elaborate any further here, for reasons of brevity. 

8.4 Concluding Remarks 

It is instructive to consider how our approach to flexible workflow modelling compares with the 

other similar approaches that we reviewed at the start of this chapter. 

e In CrossFlow [55] some limited flexibility is allowed in an otherwise rigid process. The notion 0 
of a workflow containing multiple possible enactments to be constrained by organisational 00 
policies does exist. However, the nature of flexibility is limited in that the workflow is fully 

specified, and as a consequence the notion of collaborative workflows, which are completed 
through collaboration of the participating agents, is not supported. 

In fact, the nature of the flexibility is (arguably) more in keeping with that supported by 

Synchronisation Rules (see Section 3.3) in our work, for which we consider slogan Flexible 

Work-flow = Concrete Model + Policies for Constraint to be an appropriate synopsis. 

In Wainer [131], anything that is compatible with a set of (temporal logic) domain axioms 

may be done. The notion of an explicit abstract workflow to provide at least some structure 

is absent. Such a workflow is typically beneficial as it can greatly aid the efficiency of 

verification. In Wainer and colleagues [132], any activity may be executed as long as its pre- 

and post- conditions regarding the execution of other acts are observed. There is a partial 

ordering implied by these pre-conditions, but no explicit workflow. Moreover, the actions 

are fully refined, meaning that there is an absence of control over which combinations of 0 
actions are allowable (as we have if we model tasks hierarchically), unless we encode these 

combinations implicitly within the activity dependencies. However, this would be quite 
impracticable for all but the simplest of domains. 

Both our work and the works of Whiner and colleagues support the notions of "what may 0 
I do next? *' querying (as opposed to "what should I do next" in traditional workflow) and 0 
"what-if simulation". 

0 In Case Handling (CH) [127,16,961, model flexibility exists in how data objects may be 

completed, according to a constraining workflow. This is the diametric opposite to our 

notion of flexibility, where flexibility exists primarily in the control flow. In CH, a workflow 
is considered complete when its data is completed, not its tasks. In some contexts, control 
is the best driver, sometimes data. An example of the former is in collaborative workflows, 

an example of the latter is in form handling, where agent/s are required to complete forms 
00 

to process a custorner request. 

In the Collaboration Managernent Infrastructure (CMI) [51,107], resolution rules are applied 0 
by domain experts to activity placeholders, which are quite similar to our use of decom- 

position relations to refine tasks. It is notable, however, that CMI provides no verification 
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support. We provide verification of workflow soundness for fixed models, and verification of 

arbitrary temporal constraints. 

A key theme in our work in flexible workflow modelling is the notion that we combine structure 
with flexibility. That is, we start with an abstract workflow model which provides some initial 

structure. Furthermore, there is structure inherent within the policies for refinement, i. e., the 
decomposition relations - methods, operators and complex operators, in terms of them prescrib- 
ing networks of actions which are acceptable refinements of tasks being decomposed. Moreover, 

complex operators prescribe structure from the bottoin-up, in specifying complete refinements of 
tasks. 

All of these dispensations, with respect to structuring, help reduce the complexity of 
There is a trade-off here between flexibility in workflow specification, and complexity of verification. 
When we allow -reater flexibility, the complexity will soar; but, as we allow less freedom, the 
complexity will drop. In the extreme of the latter case, we will have fully prescribed workflow 
models whose verification complexity will be that of Liesbet models. 

In summary, we have proposed all approach to flexible workflow modelling, which is desirable 
to counter the si-nificant issue of brittleness in traditional models of workflow. In doing so, we 00 
have been able to accommodate collaborative workflows, which are an important kind of workflow 
(as described in Section 1.1) where agents decide collectively how a workflow instance should be 

realised. 
Our approach is based on the identification of a correspondence between what we seek to 

achieve in flexible workflow modelling, as epitomised by tile slogan: Flexible Work-flow = Abstract 
Model + Policies for Refinement, and the operation of an HTN-based planner. In identifying such 
a correspondence, we are able to propose a novel approach using HTN-based planning for the 
description, verification and planned enactment of flexible workflow models. 

Tile expressivity of the planning language for describing domains is limited only be the expres- 
sivity of the knowledge base underwriting the problem description, together with the expressivity 00 43 
of the language used in pre-conditions and effects axioms, and the expressivity of the workflow C, 0 
language (such as Liesbet) that is used for the specification of abstract workflows. As our planner C, 0 
is modular, all of these provisions can easily be changed, and, thus, in principle, our approach CD 
does not limit workflow authors in what they would seek to express. This is a double-edged sword, 
however, with respect to decidability of all authored problem, and, as a consequence, some care 
must be take during the process of describing problems to ensure that decidability is maintained. 60 
This is perhaps a less than ideal consequence of making our planner wholly flexible. As already 
stated, we may at some time look at some constraints oil what is allowed to be expressed, as other 
planners such as SHOP [85] do. We are minded, however, to prioritise flexibility at the possible 
detriment of usability for the time being. 

Verification of fixed flexible workflow models, under the assumption that their planning domains 

are decidable, for soundness and for the satisfaction of arbitrary temporal constraints, is also a 
particularly desirable aspect and novel in the context of flexible workflow modelling. 

At this point, all obvious question is how might we apply tile work that we have done oil 
both traditional and flexible workflow modelling in other contexts. A natural application is that 41 
of contract modelling, where contracts are often cast as protocols (i. e., -, vorkflows) of behaviour 0 
between two or more parties. In the next chapter, we explore theapplication of workflow modelling 0 
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to the modelling of contracts. C, 



Chapter 9 

Institutional Modelling for the 

Modelling of Contracts 

We have been motivated to consider how the work presented in previous chapters may be reused 
in other contexts. This is an important issue in itself, as part of the utility of research comes 
from considering how it may be applied in different contexts. For our work, a somewhat evident 0 
application is that of contract modelling, where contracts are often cast as protocols (i. e., workflows) 

of behaviour between two or more parties. We have been motivated to look at the issue of contract 

modelling for its own sake as well, as this remains a somewhat formative research field in which 
there is ample scope to make a worthwhile contribution. 

An aspect of contract inodelling that is quite clear from existing research contributions is 

that approaches typically admit just a protocol-like view of contracts, or one where a contract is 

considered to be an agaregation of propositions capturing various concepts, such as obligation and 

permission. We believe that a hybrid approach, based on the. two, is particularly useful for contract 

modelling. 
In order to consider how our work on the modelling of -, vorkflow may be reused, it is instructive 

to consider workflow from new perspectives, other than just control, data and organisational ones, 
for example. One additional perspective that we have identified is, what we call, an institutional 

perspective. It is possible that there are other perspectives, but we have considered just this 

additional one for now. 
Considering workflow from an institutional perspective entails identifying institutional concepts 

in Avorkflow. This is particularly desirable as these have a strong overlap with concepts in the field 
C, 

of normative modelling. In turn, normative modelling is a good fit for the modelling; of contracts. 0 C, ID C, 
We use the term 'normative modellin-' to mean the modelling of communities, societies, and 00 

other kinds of -collectives based on the identification of positions pertaining to noms that may 
hold between agents which operate or exist therein. 

We start this chapter with an overview of institutional modelling. We then describe how we 

may consider workflow from an institutional perspective, to which we give the name Institutional 
0 

Work-flow Modelling (INVINI). Following that, we give an overview of normative modelling (NNI), 
00 C1 

and then proceed with a description of our approach to contract modelling (CINI), which is based 
0 

on both INVNI and NNI. We consider that INVIM provides an invaluable foundational basis for NINI, 

195 
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and as a consequence CINI. 

9.1 Institutional Modelling for Workflow 

We present details of an institutional perspective of workflow, that we have identified, and elaborate 
how our approaches to traditional and flexible workflow modelling may be viewed from this per- t, 
spective. We use the term Institutional Work-flow. Alodelling (INVINI) for tile modelling of workflow 
from all institutional perspective. 

In the following section, we give an overview of Institutional Modelling, and then proceed with 
a description of INVNI. 

9.1.1 The Essence of Institutional Modelling 

The essence of institutional modellina is that certain worldly facts, or actions, only manifest their 0 
stated significance according to an institutional context. That is, it is according to the context 000 
of a particular institution that these facts come into being. Searle makes a distinction between 

institutional and brute facts, to convey this point. 
From [109]: 

Institutional facts are so called because they require human institutions for their exis- 
tence. In order that this piece of paper should be a five dollar bill, for example, there has 

to be the human institution of money. Brute facts [such as the sun being ninety-three 

million miles from the earth] require no human institutions for their existence. 

In order to explicate an institutional sense, Searle makes a distinction between two different 
kinds of rules, viz. regulative and constitutive. The former kind are concerned with regulating 
antecedently-existing forms of behaviour. For example, the rule "drive on the ri., lit-hand side of 
the road" regulates driving, but driving can exist prior to the existence of that rule [109]. Searle C, 00 
continues in [108]: "[slome rules on the other hand do not merely regulate but create or define C5 
new forms of beliavio[ulr. *' These are the so-called constitutive rules, which prescribe what forms 

of behaviour, or facts, are constituted by the occurrence, or existence, of other forms of behaviour, 

or facts. 
From [109]: 

[Tjl1e rules of chess do not regulate an antecedently[-]existino, activity. It is not the case 
that there were a lot of people pushing bits of wood around on boards, and in order 
to prevent them from bumping into each other all the time and creating traffic jains, 

we had to regulate the activity. Rather, the rules of chess create the very possibility 

of playing chess. The rules are constitutive of chess in the sense that playing chess is 

constituted in part by acting in accord with the rules. If you don't follow at least a large 

subset of the rules, you are not playing chess. The [constitutive] rules come in systems, 

and the rules individually, or sometimes the system collectively, characteristically have 

the form: 'X counts as Y' or 'X counts as Y in context [institution] C'. Thus, such and 

such counts as a checkmate, such and such a move counts as a legal pawn move, and 

so on. 
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Searle concludes that institutional facts exist only within systems of constitutive rules. "The 

systems of rules create the possibility of facts of this type, and specific instances of institutional 

facts such as the fact that I won at chess ... are created by the application of specific rules, rules 
for checkmate ..., 

for exampid' [109]. 

It would appear that Goldman's rules for conventional generation carry a. similar sense to 
Searle's constitutive rules. Fýom [54], "[c]onventional generation is characterized by the existence 

of rules, conventions, or social practices in virtue of which an act A' can be ascribed to an agent 
S, given his performance of another act, A. " 

It would appear sensible to make a distinction between brute and institutional actions, as much 

as between facts. It may be superficial to do so, given that the performance of action may be seen 
to establish a fact regarding its performance; but it is particularly useful in our work to maintain 
this distinction in its own right. 

9.1.2 Institutional Workflow Modelling (IWM) 

Principally, we assert that the ubiquitous hierarchy of a -, vorkflow model necessarily entails the 

manifestation of constitutive rules. That is, in a sequence, Seq(A, B), carrying out actions A and B C, 
counts as carrying out the sequence. This is more than inere classification, which may, for example, 

prescribe subsumption, or so-called isa hierarchies, for classes of brute, or institutional, actions. 
For instance, filling out a form may count as processing a customer's application (constitutive); 

00 
and, at the same time, may be a clerical task (in a classificative sense, i. e. filling out a form is a C, 
clerical task). 

Furthermore, (typically) in -, vorkflow, the performance of tasks, i. e. basic activities, may only 

occur subject to all agent being permitted to do so, as exemplified in [19,20], for instance. The 
C, 

fact that all agent A is permitted to carry out a task T may be considered to be an instance of a r, 
regulative rule, according to Searle's distinction. 0 C, 

In defining what we mean by Institutional Work-flow Modelling (INNINI), the two concepts of 0 
counts as and permission play a significant role. In the workflow context, counts as is (appro- 0 

priately) transitive; viz. if performance of A counts as performance of B, and performance of B 

counts as performance of C, then performance of A counts as performance of C. In a workflow 

model, the basic activities would correspond to brute tasks, or actions, whereas the performance of 

a number of these may count as tile performance of one'or more institutional actions. Aggregating, 

the performance of these institutional actions, in turn, may count as the performance of yet further 

distinct institutional actions. Ultimately, however, tile performance of all institutional action at 

any level in the portrayed action hierarchy can be traced down to the performance of a number of 
brute actions, which exist at the leaves of the hierarchy. 

Relating the INNINI concepts of counts as and permission to our work on flexible workflow 

modelling, we note the following correspondences: 

An HTN Method may be seen as an embodiment of counts as. That is, their purpose is 

strongly similar to the purpose of counts as. Counts as 11jay be considered to prescribe 
how institutional actions may be decomposed into some partial ordering of one or more 
institutional and brute actions. This notion is mirrored by HTN methods whose purpose is to 

decompose non-primitive HTN tasks into some partial ordering of one or more non-primitive 

and primitive tasks. 
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a An HTN Operator may be seen as an embodiment of permission. Permission may be con- 
sidered to prescribe apnts who are permitted to carry out brute actions. This notion is 0 
mirrored by HTN operators whose purpose is to prescribe how primitive tasks may be refined 
into actual actions to be carried out by (specific) agents. 

e An HTN Complex Operator may be seen as an embodiment of both counts as and permission 
relations, as it serves to effect multiple method- and operator-based decompositions. 

We define Institutional Workflow Modelling to be the sum of our Theodore-based approach 

to flexible workflow modelling and the presented correspondences of counts as and permission 

relations to workflow artefacts, on the one hand, and HTN-based planning constructs (i. e., methods, 

operators and complex operators), on the other. 
As we have described, in institutional modelling, generally, notions and artefacts are given 

meanin- according to a context, i. e. according to a pertaining institution. For INNINI, the institution 

would be the particular instance of the workflow being enacted. Alore specifically, the institution is 

characterised by the extant decomposition relations defined in the instance. That is to say, "action 

a counts as action 0 according to the context of the -. vorkflow instance" really means '*action a 0 
counts as action 6 according to the set of decomposition reIations MUCU G". C, 

If we were to allow the aggregation of workflow instances (according to some assumed mecha- CIO C, 0 
nism), the institution pertaining to the aggregated workflow instance would be the new workflow 0 int, C, 
instance, with its set of decomposition relations formed by the union of the sets of decomposi- 

tion relations of the instances being a,,, cr gregated. 
It may be of some advantage, at some future 

time, to make some modifications to this view of institution. For instance, Ave may modify how 

decomposition relations from workflow instances should be combined. For example, there may be 

a partial ordering that is prescribed on institutions, so that one of a number of otherwise identical 0 
decomposition relations which only differ in the strength of their pre-conditions ma remain in the C, y 

new model, and so on. 
We now consider in greater detail the question of which institutional relations may be considered C, 

to obtain in various Theodore-based flexible model artefacts. 

0 Basic Activities: When a basic activity becomes enabled, i. e. set to Running in Liesbet 

terminolog , then two scenarios obtain. If the activity is marked, in HTN terms, as a task-, 1'y 
then it is intended that it be further decomposed. That is to say, there should exist a suitable 

method (i. e. counts as), operator (i. e. permission), or complex operator (which corresponds 
to an aggregation of a number of instances of both counts as and permission relations) in 00 t, 
order that a decomposition may be effected. Thus, a workflow model may be, in itself, an 

abstract artefact, in the sense that it is meant to be refined further by means of a set of 

constitutive and regulative rules. C, 
An example which we discuss later (in work related to contract modelling, which uses INVINI 

as a foundational basis) is that of TransferProperty. This is a Liesbet basic activity, 

and also a non-primitive HTN task, in tile initial task network/workflow model of tile given 

planning problem. It is meant to be decomposed by an application of an appropriate method. 0 
In the example, there is the following method: 0 

Method: Seq(MultiSeq(3) (Pay), TransferTitle) counts as TransferProperty. 
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(Pay on vendee, Transf erTitle on vendor) 

This method (as a constitutive rule) indicates that three occurrences of a Pay action in 

sequence counts as effecting, the institutional action Transf erProperty. In this example, Pay 
itself is an institutional action which, as an HTN task, would be further decomposed. There is 

a brute action SendCheque whose performance counts as effecting Pay. In the example, this 
is specified as a complex operator. Alternatively, there could be a method which says that 
SendCheque I counts as Pay. The Liesbet basic activity SendCheque I would be a primitive 
HTN task, indicating that it is a brute action. An operator (as a regulative rule) would then 
be applied to determine a role for carrying out the brute action. Finall the Liesbet basic C, Y, 
activity SendCheque would be an HTN action. It is not possible to further decompose such a 
basic activity; and its existence in a task network necessarily implies the specification of a 
role to carry it out. 

Note that there is also the possibility of a hierarchy of brute actions. The containers example 

elucidates this possibility nicely. The transf er-two-containers Liesbet basic activity is 

a non-primitive HTN task. It is meant to be further decomposed by methods and operators. 
In this example, a network of load, move and unload brute actions effect the action of trans- 

ferring two containers. It is noteworthy that the transfer of two containers is itself a brute 

action, in the sense that Searle describes (108,109]. That is, the transfer of two containers 
is an antecedently-existent artefact that does not need the context of an institution to be 

brou-lit into being. For brute action hierarchies, the notion of counts as is absent. Counts 

as relations (and constitutive rules) are solely concerned with specifying how institutional 

actions may be effected. 

HTN methods and complex operators (in our Theodore-based framework) may be used to ex- 

press both constitutive rules and brute action hierarchies. In this sense, the relation between 

methods and (our embodiment of) constitutive rules is a subsumptive one. In our work, 
however, our principal concern is that of using, Theodore to model counts as relations; and 0 
thus of using methods and complex operators as an embodiment of constitutive rules. 

e Structured Activities: The root of a structured activity may or may not represent an institu- 
tional action, as exemplified in the Liesbet activities Transf erProperty and 
transf er-two-containers, respectively, which ive have just described. For a structured 
activity (pre-defined in an INVINI-model) representing an institutional action, each of its chil- 
dren contribute to the exercising of the counts as relation associated with the activity. 0 
Strictly speaking, we consider the performance of the last brute action to count as exercising C, 0 
the counts as relation, the other brute actions that need to take place to exercise the counts 

as relatidn are seen as achieving a pre-requisite state for exercising tile relation. 0 C, 

Notably, as each child of a structured activity may itself be child-bearing, there may be a 0 
number of further counts as relations obtaining, associated with their performance, given 
that they too are institutional actions. 

Sub-workflows: We can use complex operators to specify pre-defined pieces of workflow 
logic. These sub-work-flows specify arbitrarily-complex networks of actions. The use of these 
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constructs greatly simplifies the verification task, as they specify a single pre-condition for 

their applicability, and a single effects statement. 0 
Complex operators used to decompose tasks corresponding to institutional actions correspond 
to an aggregation of a number of counts as and permission relations. Further, the enactment 

of the task network specified by the complex operator counts as fulfilling the task that it C, 
decomposes. The leaves of the task network specified by a complex operator are Liesbet 

activities which are necessarily HTN actions (with roles assigned to them), meaning that there 0 t, 
is no further decomposition of the network that need take place. 

9.2 Using IWM as a Foundation for Normative Modelling 

Having explicated an institutional sense for workflow modelling we now consider how it may be 0 ý7 
useful as a foundational basis for normative modelling, and latterly contract modelling. We start 00 
this section with an overview of the field of normative modelling, and thereafter proceed with a 0 
descri tion of how we have reused INVAl for the modelling of contracts. p ?D 

We use the term 'normative modellin-' to mean the modelling of communities, societies, and 
other kinds of collectives based on the identification of positions pertaining to norms that may hold 
between agents which operate or exist therein. Tile sense in which we use the term is not limited to a 
computer science context. Normative modelling, in the sense just expressed, has been extensively 
studied, for instance in works oil legal and societal theory and analytical philosophy [100]. In 

contrast, applications of normative modelling in computer science remain largely formative (for 

instance, in the modelling of contracts for automated reasoning over them) with many questions 
and issues still to be answered. 

9.2.1 Normative Modelling 

Normative Modelling is concerned with the modelling of normative concepts, or norms. Rom [5], 

a norm may be defined as: "a principle of right action binding upon the members of a group and 
serving to guide, control, or regulate proper and acceptable behaviour". In our work, we consider 0 el 0 
the notion of a normative relation to be useful. We define a normative relation to be a template 
for a relationship pertaining to a norm. The 'template' aspect refers to the notion that such a 
relation may be parameterised, i. e. it may have arguments. The template would specify the types 

of these arguments. An example of a normative relation might be a two-argument obligation, 
where instances of this relation obtain according to specific role-action pairs; or a three-argument 

obligation, where instances obtain according to specific role-action-dead line triples. 
A principal context in which Normative Modelling is considered is the domain of legal reasoning 00 01 

where the normative concepts are legal ones. This is clearly of interest in the context of contract 0 
modelling, as a language of contracts would typically include many legal concepts. It should be ID 00 
noted, however, that the scope of normative modelling extends beyond that of domain of legal 

0 
reasoning. 

In what follows, we attempt to give just a flavour of some contributions that have been made 
within the field of legal analysis and reasoning. Wesley Newcomb Holifeld (1879-1918) is one of the 

most acknowledged authors in this field. Holifeld found the language used in judicial opinions and 0 C, ID 
legal writings to be loose - for instance, concerning such fundamental terms such as rights, duties 0000 
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and privileges. There was a tendency, Holifeld believed, to conflate terms which stemmed from a 0 
confusion regarding the meaning of legal concepts. This "principle of linguistic contamination" as 
Holifeld called it resulted in a oversimplification of complex legal problems [23]. Rom [58]: 

One of the greatest hindrances to the clear understanding, the incisive statement, and 0 C, 
the true solution of legal problems frequently arises from the express or tacit assump- 
t ions t hat all le-, al relations ma be reduced to 'rights'and 'duties', and that these latter 0yC, 
categories are therefore adequate for the purpose of analysing even the most complex 
legal interests ... Even if the difficulty related merely to inadequacy and ambiguity of 00 
terminology, its seriousness would nevertheless be worthy of definite recognition and 0 
persistent effort toward improvement; for in any closed reasoned problem, whether le- 

gal or non Cr -legal, chameleon-hued words are a peril both to clear thought and to lucid 

expression. 

Ross [100] observes that: 

Holifeld focussed oil tile relationships that law creates between actors - legal or jural 

relations. His analysis purports to tackle much of the confusion and ambiguity con- 
tained within bald claims like 'I have a right to do X'. Such claims call be interrocated: 00 
'What sort of legal relationship do you claim to have, and with whom do you claim to 
have iff. 

Brady [23] notes that: 

He ... demonstrates in detail how the distinctions [that lie sets out] can be used in 

solving actual legal problems. ... Holifeld was after clarity, not for its own sake, but C5 
for the definite solution of legal problems. 

Hohfeldian analysis may be compared with analytical methods of social theory, where the world 
is conceived as being composed of social relationships, which "points to a theoretical environment 
for Holifeldian analysis that is of potentially greater explanatory power than analytical jurispru- 
dence taken in isolation" [100]. Indeed, as Brady asserts: "an understanding of his distinctions of 

normative concepts is an essential starting point for anyone interested in the area of rights, legal or 

moral" [231. As Jones and Sergot observe, in [63], the concept of power (for instance, as described 

by Holifeld) should be considered in a wider context than just law. 

Hohfeld, in his work [58], defines eight legal concepts, as presented in Figure 9.1. These are legal 
(i. e. jural), or more generally normative, relations that may hold between a party and a co-party. 
The concepts are organised into two sets. Each relation, which holds for a party, has a correlate, 

which is the same relation when viewed from the perspective of the co-party. Each relation also has 

an opposite, which conveys the opposite meaning. Ross notes that "[tJo understand the Holifeldian 

jural relation is to understand how the mechanics of jural correlativity and jural opposition (as 

Holifeld describes these) interact and coexist within the matrix of legal relationships"' [100]. 

We start the discussion of Holifeld's concepts with those depicted on the left of the figure, 

the right-set. Holifeld's tight (stricto sensul) (or claim) and duty (or obligation) are correlates. 
They are different ways of viewing the same normative relation concerning a particular subject 00 

'In the strict sense - in contrast the generally imprecise, and broad, (mis-)use of the term. 
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right duty power liability 
(claim) (obligation) (competence) 
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Opposites *------, -Correlates 

Fi..,, ure 9.1: Holifeld's Jural Relations. 

matter [23]. Elaborating, if X has a right against Y with respect to subject matter S, then Y is 
0 41 0 

duty-bound to X in respect of S. The relations no-right and privilege are also correlates. 
The relations duty and privilege are opposites, or contradictories. If X has a duty to Y with 

respect to S, then X does not have a privilege to be delinquent with respect to S. Similarly, if X 

is privileged to Y to be delinquent with respect to S, then X is under no duty to Y with respect to 

S. It is worth reinforcing that, according to Holifeld, privilege and right refer to two very distinct 

normative concepts. Where X has a privilege, lie is free from the claiiii of another; where X has 

a right, lie has a claim against another [23]. 

The l8th Century philosopher Bentham, as presented in [71], uses the term "right to a service7' 
for a concept similar, in definition, to right stricto sensu. This terminolog may be an insightful 

Oy 0 
way of considering Holifeld's concept -a party has a right to expect a service to be performed by 

the co-party. Bentham also uses the term liberty to convey a notion similar to that of Holifeld's 

privilege, viz. "you have a right to perform whatever you are not under obligation to abstain from 

the performance of". Note that lie uses the term right, here, not stricto sensu (i. e. not as a right 
to a service). Bentham further distinguishes two types of liberty: naked liberty to do action a- 

where others have the freedom to (attempt to) prevent a, and vested liberty - where others have 

an obligation not to prevent a. Holifeld's privilege would appear to be closer to Bentham's naked 
liberty. As may be seen, Bentham uses the concept of obligation in a more primitive sense than 

liberty, defining liberty in terms of it. He provides a novel explanation of the concept of obligation, 

- imposed by a legislator whenever a law of type command or prohibition is imposed: -is being 

41. .. and or a prohibition, [concernin- the . where the provision of the law is a comm, 0 
performance of an act], it creates an offence: if a command, it is the non-performance 

of the act that is the offence: if a prohibition, the performance ... Moreover the law, in 

constituting an act an offence, is said to impose thereby an obligation on the persons 0 CI 
in question not to perform it. " 

Rom [33], we note that HolifeId's right-set may be expressed, according to the following logical 
00C, 0 

equivalences. Note that S, a is a relation, called an action modality in [921, which expresses that 

'p brings about a', where a may be some action, or state-of-affairs. Each normative relation is 
0 

expressed using a three-argument predicate; where the first argument is the bearer of the relation, 000 
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the second argument is the co-party, and the third argument is the action that is to be brought 
C' 0 Cl 

about, expressed using the action modality syntax. 0 

right (pi P2 06P2a) duty (P2, PI , -6p2CO 

right (pi P2, Ep, a) -no-right(pj, P21'FP2a) 

privilege (p, 
, P2, -45p, a) no-right(P2, PIISIýa) 

privilege (p, P2, -, 5pi CO -duty(pj, P2, Epja) 

This formulation of Holifeld's right-set explicates the different senses of correlate and opposition C, 
between the various relations. Whereas right and duty are simple correlates of each other, no-right 00 
and privilege introduce a negation into tile action modality. Similarly, whereas right and no-right 0 C, 00 
are simple negations of each other, duty and privilege introduce a negation into the action modalit y 

as well. 
The normative relations in flolifeld's power-set explicate means by which the sum of legal 

0 
relations that hold between parties may be changed. This is an important distinction with respect 
to the right-set. Ross [100] identifies three situations of change that may be brought about through 000 C3 
exercising a power: 

the alteration, by virtue of the power, of the incidence, scope, application or effect of existing C, 
legal rights or legal powers. 000 

the annulment, by virtue of the power, of existing legal rights or powers. C, C, 0 

the creation, by virtue of the power, of entirely new legal rights or powers. 00 

As was done for the right-set, Holifeld pairs off relations into correlates, and opposites. When 

X has a power against Y to chan-C a legal relation concerning subject matter S, then Y is under 

a liability (as correlate) to X with respect to S. An absence of power is captured by the relation 
disability, whose correlate is immunity. If X is disabled against Y with respect to S, then Y is 

immune from X with respect to S. 

Having a liability, as noted by Brady [23], is not always disadvantageous. To be liable is to 
be subject to the possibility that one's legal relations with respect to a co-party may be changed, 

at the behest of the co-party. The change may be beneficial just as it may be detrimental. For 

instance, the owner of land may abandon (through a vested power) their legal entitlement to the 
land. The particular correlate of this power may be a liability on a party to have powers and 

privileges created; whereby the party may acquire the deeds of the land. Often, a liability will 

amount to the creation of a duties on the party, but it may equally pertain to the creation of 

relations which are of benefit to the party. 
Ross [1001 notes that: 

[LIegal power can ride a double-decker bus through any existing, settled legal arrange- 

ments or legal state. It can thus be said of legal powers that they have the potential to 00 
modify the whole gainut of legal states and entire range of legal relationships obtaining eý 0000 
at any given time in relation to a particular person or class of persons and specific 

subject matter. 

He continues: 
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[N]o legally recognised change of any significance can occur unless the power is exercised. C, 0 Zý 0 
The exercise of the power is what induces a change in the legal situation of persons ... Z, 0 
An unexercised legal power is merely a potential legal competence but it is of limited 0 C, 
legal significance in so far as it remains unexercised. 41 C, 

The principal contribution of Jones and Sergot in [63] is to have proposed counts as as capturing 
the meaning of the Holifeldian notion of power. That is to say, a power is defined by virtue of how 

it may be exercised, as expressed by a counts as relation or, in the language of Searle [108,109), by 

a constitutive rule. Moreover, they do not consider power to be an exclusively legal phenomenon 

usin- the term institutionalised power in order to emphasise as much. They assert that power "is 

a standard feature of any norm-governed organisation where selected agents are assigned specific 

roles (in which they are empowered to conduct the business of that organisation). " 

It is the modelling of norm-governed organisations to which tile notion of normative modelling 
(NNI) pertains. We propose our work on institutional modelling with respect to counts as, and 
permission, as a foundational component of NNI, where the modelling of contracts (i. e. instantiation 

in a legal context) is one possible application of NNI. 

The work of Jones and Sergot reinforces the clear separation between privilege and power made 
by Holifeld. As described in [63], Holifeld explicitly distinguishes between (i) legal power, (ii) the 

practical possibility to carry out the acts necessary for the exercise of the legal power and (iii) the 

privilege to carry out those acts. Jones and Sergot go on to cite an example proposed by Makinson 

which further exemplifies this distinction. Makinson [72] asks us to: 

... consider the case of a priest of a certain religion who does not have permission, 

according to the instructions issued by the ecclesiastical authorities, to marry two 

people, only one of whom is of that religion, unless they both promise to bring up the 

children in that religion. He may nevertheless have the power to marry tile couple even 
in the absence of such a promise, in the sense that if lie goes ahead and performs the 

ceremony, it still counts as a valid act of marriage under the rules of tile same church 
even though the priest may be subject to reprimand or more severe penalty for having 

performed it. 

As Jones and Sergot note, "[tlliis is clearly a case in which the priest is empowered to marry 
the couple, but not permitted to do so 273 

- 
In the modelling of contracts, normative concepts such as obligation, power and privilege prove 

to be useful. It is instructive to consider how INNINI may be used to provide a basis for modelling 
such normative concepts. We address this point in the following section. C, 

9.3 Contract Modelling 

In Section 9.4, we describe how we have reused concepts identified for Institutional Workflow 

Modellinng (INVINI) in the modelling of contracts. Before doing so, in this section, we give an C, 0 C, 0 
overview of related work in the field of contract modelling. We firstly describe work that we have 

'Indeed, they go on to note a report about "clandestine religious services conducted by former Roman Catholic 

priests who had left the priesthood to marry", but who still "retain their sacramental powers but are forbidden to 
exercise them". 
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carried out on a non-INNIM based approach to contract modelling. We then review other related 
research contributions. 

Note that our non-INVIM based approach to contract modelling was realised as part of work C, 
contributing to this thesis, although for simplicity we choose not to enumerate it as a contribution 00 
in the introduction (see Section 1.2). 

9.3.1 A Non-IWM Based Approach to Contract Modelling 

In [42,43,41], we consider the modelling of contracts, so that we ma monitor their performance 0y 
at run-time. We ground our work by considering the modelling of Service Level Agreements [68] 

for Utility Computing (UC) [6]. 

UC offers all opportunity to corporate businesses to inaximise the efficiency and efficacy of their 

IT service provision (both in-house and to customers). It allows them to out-source large areas of 
their IT service provision to UC-data centres, which will agree to provide computational resources, 

packaged as services to them. SLAs are essential for forinalising the objectives of a UC service, 

and to manage expectations [68). 

Tile levels of service that are agreed between a UC service-provider and customer are mail- 
dated by Quality-of-Service (QoS) guarantees, written as Service-Level Guarantees (SLGs) within 
Service-Level Agreements (SLAs). Ali example SLG might be: 

0 

" Service Availability should be greater or equal to 99%, weekdays 9a. ni. -5p. m. 

" Service Availability should be greater or equal to 95%, at all other times. C, 

" Availability metric is measured over each calendar month; penalty for SLG violation: refund 

customer their monthly fee. 

In [42,43,41), we define the state of a contract, at a particular time, to be the aggregation 00 ý 
of instances of normative relations that hold between contract parties, plus the values of contract 

variables, at that time. A contract variable is a piece of numerical state whose value can change ,z0 
over the deployment lifetime of its containing contract. Its use will be normative in that it will 
have been agreed upon when the contract is formed. In this sense, a contract variable may also be 

0 
considered to be a special kind of normative relation. 

There are at least two functional aspects to the run-tinie performance monitoring of contracts: 
(i) 'Racking the effect of events (pertinent to a contract) on contract state - the contractual (or, 

normative) relations that hold between contract parties - and informing interested parties of past, 

present and (possible) future contract states; and, (ii) Assessing the current state of the contract, 
in terms of its utility (that is, worth), and other nietrics related to business intelligence [1]. The 

work that we have done is primarily concerned with the first of these, which is known as automated 

contract (state) tracking to distinguish it. 0 el 
Notably, approaches to automated tracking of contract state, thus far, call be largely charac- 

terised in one of two ways [14]: (i) As general-purpose contract reasoning frameworks that (mainly) 

have not been applied in actual, deployed systems; or (ii) In the case of SLAs, as being fairly lini- 

ited in capability. The work presented here is considered to be distinguished from such approaches 
in that: (i) It has been developed in the context of a 'real-world' deployment scenario (namely, 

SLAs for UC), while being generalised so to be applicable to other domains; and (ii) It represents 00 



206 Chapter 9. InstitutionalModelling for the Modelling of Contracts 

an advance (over many approaches) in what can be realised regarding automated state tracking 
for contracts. 

We develop a general approach to the tracking of state based on a version of the Event Calculus t5 0 
(EC), originally presented in [99]. Simply put, EC allows the expression of domain axioms which 
characterise how propositional properties of a domain (fluents in the Al terminology) change C, 
according to the occurrence of domain events. Various forms of reasoning can be undertaken 
using such a set of domain axioms, such as planning (a sequence of actions that will take the 
domain from an initial state to a goal state), prediction (where given an initial domain state, and a 
sequence of domain events, an event narrative, Ave seek a resulting domain state), and postdiction 
(where given a current domain state, and a set of a domain events, we seek an initial domain 

state) [112]. In this terminolog , state tracking is a special case of prediction, except that we Oy 41 
shall also want to have access to all intermediate states as well as the initial and final ones. The 
Event Calculus is presented in a logic programming framework, and is usually implemented using 
a logic programming language such as Prolog or using techniques from deductive databases. In 
this work, for deployment in a business context, we have constructed a Java implementation of an 
EC reasoning component, called the Event Calculus State Racking Architecture (ECSTA). 

There have been many diverse research contributions that have utilised the Event Calculus 
(EC) for the purpose of reasoning over the effects of events on a logic theory. Some that are closely 
related to this work are now presented. In [15], Artikis describes the representation in EC of 'open' 

niulti-agent systems viewed as societies of computational agents, including variations on a number 
of collaborative work protocols, among others. This work also explicitly employs the concepts 
of obligation, permission, and institutional power, and includes the specification of sanctions and 
penalties in the case of violations. It is also worth noting that Artikis and colleagues have also 
employed other action languages from Al as an alternative to the use of EC, and specifically the 

action language CIC+ [531. CIC+ provides a high-level notation for defining laws specifying the 0ý000 
effects of actions on domain fluents, and ways of characterising domain phenomena, such as the 

common sense law of inertia. It also has an explicit semantics in terms of labelled transition 

systems. Being able to describe contracts as transition systems is extremely useful for proving 

properties (using model checking) about the contracts. Also of note is an extended form of CIC+, 

called (CIC+)++ [110], which is specifically defined for the representation of norms and institutional 

concepts. These extensions provide a treatment and formal semantics for institutionalised power, 
that is, counts as relations between actions, and for the specification of permitted (or acceptable, 

or legal) states of a transition system and its permitted 0 C, 
(or acceptable or legal) transitions and 

histories. 

In [12], Bandara and colleagues develop methods for performing analysis and refinement of Z3 C, 
policy specifications, employing an EC-based representation of both policy and system behaviour 

0 
specifications. The resulting formalism is used in conjunction with abductive reasoning techniques 

to perform a priori analysis of policy specifications. In [1041, Sadighi and colleagues develop an 00 
EC-based framework for issuing privileges to agents in a community, through declaration and 0000 

revocation authority certificates. A distinction is made between the time a certificate is issued, 

or revoked, and the time for which the associated privilege is created, or discharged, enabling 
certificates to have prospective and retrospective effects. 
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Example Contract 

We base the development of the approach described in [42,43,41] on the representation of a 

number of UC agreements. We use the following mail service agreement in order to -round our 

work. 

The Service Provider (SP) will provide a mail service to the Service Customer (SC), which 
includes a mailbox with a quota of s GBytes. SC will be charged a fixed monthly fee of s* co 
for the service. 

op In the case that the mail service is unavailable, SP will pay p for every whole t minutes that 

it is unavailable. SP is obliged to pay any penalties to SC within a month of their accrual. 

* Whenever u>s, where u is the mailbox utilisation in GBytes, SP will charge SC c, for each 
GByte over s, calculated dailY. 

9 All billing of SC occurs monthly, and SC is given a month thereafter to pay. If SC fails to 

pay within the given time, SP may terminate the mailbox service without notice. 

In our work, a contract model is defined from a global perspective, as opposed to being all 

aggregation of a pair (in the case of two contract parties) of end-point perspectives. Live represen- 
tations of a contract model may be replicated by contract monitoring engines belonging to each 

of the contract parties, and/or may be maintained by a single contract enforcement authority. In 

either case, in the following, we shall talk about events being routed to and from the environment. 
Events from the environment are known as exogerious events. Contract parties may perform actions 

which are observed by the contract model (however this is realised in a monitoring/enforcement 

context). Such actions are (the only source of) exogenous events. In response to these events, the 

contract model may push output events to interested parties in the environment. In the case of 
the centralised enforcer, the contract model will notify all contract parties of the event. In the case 

of local monitoring agents, sorne protocol is assumed such that all parties agree on output events 

as they are generated. 
For the purpose of tracking the normative state of contracts, we are concerned with identifying 

events described in the contract that may have an effect on contract state. These may be exogenous 

events, as just defined, or events that are generated in ternally such as the expiration of a tinier 

prescribed in the contract. Once identified, we need to express in our representation the effects on 

contract state of these events. 
For example, the contract excerpt: "All billing of SC occurs monthly" indicates a monthly 

billing event. One effect of such an event is that SC receives an invoice for service. But this is 

not an effect on contract state, per se. We sliall say that another effect of this event - this time, 

on the contrad state - is to instantiate an instance of a normative relation, namely all obligation 
bearing on SC to pay SP for service within a month. 

Another example is: "If SC fails to pay within the given time, SP may terminate the mailbox 

service without notice". This statement talks about another event, which occurs when the specified 
time period expires before SC fulfils its obligation (to pay for service) on time. We sliall say that 

an effect of this event is to instantiate an instance of another normative relation, namely (vested) 

power of SP to terminate the mailbox service. 
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A Brief Introduction to the Event Calculus 

nom the perspective of what needs to be represented for contract state tracking, we need some way 

of representing the effects of events on contract state. For this, we use the Event Calculus (EC). 

In the following, we present a rather informal description of EC, and its use for the representation 

of contracts. The interested reader is referred to [99,1111 for a formal presentation. 
We say that a contract in the Event Calculus is a conjunction of- 

eA finite set of initially statements, which prescribe instances of normative relations that 

initially hold (i. e., are true). 

A finite set of initiates (resp. terminates) statements, which prescribe instances of nor- 

inative relations which start (resp. cease) holdin. - on an event occurrence. 

*A finite set of happens statements, which record the occurrence of events as an event 
narrative. 

There are also a collection of foundational axionis which xve leave out of this presentation for 

reasons of brevity. 

Our embodiment of EC also admits timer statements, for generating timer events which may C, 0 
be one-off or recurrent. One can view timer statements simply as a mechanism for inserting 

happens events into the event narrative. 

Representation of Example Contract 

We now give an informal presentation of the mail service agreement, represented using our EC- 000 
based approach. 

9 For tile contract fragment: Whenever u>s, where u is the mailbox utilisation in GBytes, SP 0 
will charge SC cl for each GByte over s, calculated daily, it is assumed that an external event 
daily-charge -event 

is entered into the event narrative daily providing, the daily char(ge that 

the customer has incurred, where this charge will be zero if the value of u has not gone above 

s for that day. The daily charge is accumulated in a contract variable vDailyCharge. 

In the EC-based represent at ion, there is an initially statement, which indicates the initial 

value of vDailyCharge, viz. 

initially vDailyCharge=o. 

There is also a statement that says that when a dai ly-charge -event occurs, tile value of the 

event's Charge parameter, corresponding to the charge for the day, is added to the current 0 
value of. vDailyCharge to give tile new value of this variable. 

event daily-charge-event (Charge) initiates vDailyCharge=V if vDailyCharge=V1 and l, '=I, 'l+Charge 

9 The contract excerpt: All billing of SC occurs monthly is accommodated by a timer called 
billing-timer: 

timer billing-timer monthly. 
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This has the effect of inserting events, represented as instances of the happens relation, into 

the event narrative. 

The contract excerpt: SC will be charged a fixed monthly fee of s*cO forthe service is accom- 

modated as follows. In response to the monthly billing-timer event, we create an instance 

of an obligation normative relation, which bears on SC to pay for service, viz. 

event bill ing-t imer initiates o (PayForServi ce (Charge), SC, X, I month) if vDailyCharge=V1 

and Chargc=l, 'l+sco and new-id(X) 

where new-id(X) allocates a unique identifier that has not been previously used (for recordin. - 
instances of normative relations). 

The Charge parameter is assigned the value obtained by summing the current (accumulated) 
0 C, 

daily charge, given by the contract variable vDailyCharge, with the value (currently) assigned C, 00 
to the contract parameter sco. PayForService is the name of an action that needs to be 

carried out by SC, which is given as the second parameter of the obligation relation. There 
00 

is also a time-limit of 1 month associated with the fulfilment of the obligation instance. 

The contract excerpt: "In the case that tile mail service is unavailable, SP will pay p for every 

whole t minutes that it is unavailable7' is, in fact, part of a Service-Level Guarantee (SLG), 

namely, the SLC pertaining to the provision of the mail service. Specifically, it describes 
0 

what course of action is normative in the case that the SLG is violated by SP. 

We assume that some monitoring agent tells us when the SLG has been violated, that is 

that the mail service is unavailable. This agent will generate an event, SLGLviolated say, 0 
to this effect; and will generate an event, SLG-restored say, when the mail service has been 

restored. 

We define a tinier for the SLG, thus: 

timer SLG1-timer t minutes. 

Also relation o(RestoreService, SP) is defined as an obligation that bears on SP to 

restore tile service. This contract excerpt would then be represented as follows: 

- event SLG1-violated initiates SLG1-timer 

- event SLG1-violated initiates o(RestoreService, SP) 

- event SLG1-restored terminates SLG1-timer 

- event SLG1-restored terminates o(RestoreService, SP) 

- event SLG1-timer initiates vPenalty=V if vPenalty=Vl and V=Vl+p 

Event Calculus State Tracking Architecture (ECSTA) and Contract Visualiser 

We have implemented, in Java, a reasoner for EC-based contracts, called the Event Calculus State 
Racking Architecture (ECSTA), supporting: instantiation of contracts written in EC, assertion of 0 
event narratives including speculative narratives which can be unrolled, and querying of contract 
state. As well as the ECSTA reasoner, a tool called Contract Visualiser has been implemented 
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Contract Environment. 
Notifications E. G. Enterprise Infrastructure, 

Such as: Service Monitoring, 
Queries, Billing Components, 
Simulation Requests, Workflow Engines ... Contract Template Registration, 
Contract Instantiation, 
Contract Parameter Assertion, 
Event Narrative Assertion, 
Clause and User Rule Assertion, 
Shared Variable Configuration 

Figure 9.2: Relationship between ECSTA and Contract Visualiser 

which allows for the deployment management of contracts. The relationship between ECSTA and 
Contract Visualiser is depicted in Figure 9.2. 

In the following narrative, we present the evolution of a scenario pertaining to the mail service 
agreement as it would be captured within Visualiser. As screenshots may be hard to read, we 
present tile scenario in the form of tables which capture the same information as would be presented 
by Visuahser. For illustration, an actual screenshot for the final stage of the scenario is shown in 
Figure 9.3. 

In stage 1 of the scenario - see Table 9.1 - we see that the state of the mail service agreement 
contract instance is "OK" to begin with. 0 

Occurrence Date/Time 

STATE: OK Fri 3 Sep 2004 22-15-03 

Table 9.1: Scenario Unfolds: Stage 1 

In sta-e 2- see Table 9.2 - Nve see that a "Service Violation" event occurs causing the state 0 C, 
of the contract instance to change to "Service Violation" and an obligation to be initiated bearing 

on the provider to restore the service. 

Occurrence Date/Tiýmýe 

STATE: Service Violation Mon 13 Sep 2004 22-15-03 

INPUT EVENT: SERVICE VIOLATION with (id: slgl) Mon 13 Sep 2004 22-15-03 

OUTPUT EVENT: OBLIGATION with (id: 

actions: resolve breech with (id: 

oO. bearer: provider, 

slgl), deadline: not specified) I 

Mon 13 Sep 2004 22-15-03 

Table 9.2: Scenario Unfolds: Stage 2 

In stage 3- see Table 9.3 - Nve see that a "Service Restoration" event occurs causing the state 00 
of contract in§tance to return to "OK". Also the obligation bearing oil the provider to restore the 

service is fulfilled. 
In stage 4- see Table 9.4 - we see that two obligations are initiated (by timers that are 

specified in the contract instance representation and maintained by the reasoner) stipulating that: 0 
SP (a. k. a. "provider") must refund $25 to SC (a. k. a. "Mike Consulting") for poor service (before 

0 
end of business day) and SC must pay $50 for service to SP (witbin I month). This causes the 

contract instance to move into state: "Provider Payment Outstanding" + "Customer Payment 
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I Occurrence I Date/Time I 

STATE: OK Mon 13 Sep 2004 22-45-03 

INPUT EVENT: SERVICE RESTORATION with (id: slgl) Mon 13 Sep 2004 22-45-03 

INPUT EVENT: OBLIGATION with (id: 00, status: fulfilled) Mon 13 Sep 2004 22-45-03 

Table 9.3: Scenario Unfolds: Stage 3 C, 

Outstanding". 

Occurrence I Date/Time 

STATE. Provider Payment Outstanding, Customer Payment Outstanding Tue 14 Sep 2004 22-15-03 

OUTPUT EVENT: OBLIGATION with (id: ol, bearer: provider, 

actions: refund money with (amount: 25.00), deadline: end bus. day) 

Tue 14 Sep 2004 22-15-03 

OUTPUT EVENT: 

actions: pay 

OBLIGATION with (id: o2, bearer; Mike Consulting, 

for service with (amount: 50.00), deadline: I month) 

Tue 14 Sep 2004 22-15-03 

Table 9.4: Scenario Unfolds: Stage 4 0 
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In stage 5- see Table 9.5 - we see that an input event saying that SP has fulfilled its obligation 
to refund $25 to the service customer occurs causing: the state of tile contract instance moves 
from "Provider Payment Outstanding" + "Customer Payment Outstanding" to just "Customer 
Payment Outstanding*'. The fulfilment of the obligation bearing oil SP occurs just 10 minutes 
after it was initiated and within tile business day as stipulated - the manifestation of the fulfilment 

may be that the billing system sent the customer a cbeque, or organised a fund transfer. 0 
I Occurrence I Date/Time I 

STATE: Customer Payment Outstanding Tue 14 Sep 2004 22-25-13 

INPUT EVENT: OBLIGATION with (id: ol, status: fulfilled) Tue 14 Sep 2004 22-25-13 

Table 9.5: Scenario Unfolds: Stage 5 0 

In staue 6- see Table 9.6 - Nve see that the 1 month timer for the oblioation bearin- on the service 000 
customer to pay for service has expired: this moves the contract instance into a "Terminable" state 

- SP is empowered to terminate the contract instance. 

Occurrence Date/Time 

STATE: Terminable Thu 14 Oct 2004 22-15-03 

INPUT EVENT; OBLIGATION with (id: o2, status: timeout) Thu 14 Oct 2004 22-15-03 

Table 9.6: Scenario Unfolds: Stage 6 
0 

In stage 7- see Figure 9.3 and Table 9.7 - ive see that, in keeping with SP being empowered 
to terminate the service, they do so; the contract instance moves into a "Terminated" state. 

It is worth notim, that when SP becomes empowered to terminate the agreement, there is 
0 el 

no mechanism within the contract for specifying how this may occur. This is where the notion 

of counts as, as used in our IWNI-based approach, comes into play. That is, a contract party 
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ýý 
I -, 01 

-? 
Ij 

Saturday 16 October 2004 1 S-1 9-32 Help 
Slatel-fistory Contract #4, Customer Mike Consulting, Template: Mail Service, Name For Mike Marwell 

Occurrence CAPI-finne 
STATE OK Friday 3 September 2004 22 15 3 
STATE: Service Violation Monday 13 September 2004 22.1 &3 
INPUT EVENT SERVICE VIOLATION with (to sIgI) Monday 113 September 2004 22-15-3 
OUTPUT EVENT. OBLIGATION with (id oO, bearer provider, actions. resolve breech with (4 sitill). deadline. not specified) Monday 13 September 2004 22-15-3 
ý', TAT[ 1, mo, ý. yýi ýjlnh, 41ý 
INPUT EVENT SERVICE RESTORATION with (d sigl) Mond av 13 SePternber J004 22-45-3 
INPUT EVENT. OBLIGATION with (id. oD, status: fulfilled) Monday 13 September 2004 22-45-3 
STATE Provider Payment Outstanding. Customer Parymerill Outstanding Tuesday 14 September 2004 22-15 3 
OUTPUT EVENT: OBLIGATION with (id: ol, bearer: provider, actions refund moneywith (amount 25.00), deadline: end bus. day) Tuesday 14 September 2004 22-15-3 
OUTPUTEVENT. OBLIGATION with (id o2, bearer: Mike Consulting, actions. payfor serwice with (amount 50 00), deadline. 1 month) Tuesday 14 September 2004 22-15.3 
STATE. Customer Payment Outstanding Tuesday 14 September 2004 22-25-3 
INPUT EVENT ORL)6ATION wth (id ol, stahiý tuffillpri) 14 04 ,- )', ý 
STATE: Terminable Thursday 14 October 2004 22-15-3 
INPUT EVENT. OBLIGATION with (icL o2, status: Umeouo Thursday 14 October 2004 22-15-3 
STATE Terminated Friday 15 October 2004 22-15-3 
INPUT EVENT TERMINATE AGREEMENT Friday 15 October 2004 22-15-3 

Figure 9.3: Final Stage of Mail Service Scenario. 

Occurrence Date/Tim 

ý 
STATE: Terminat. d Fri 15 Oct 2004 22-15-03 

INPUT I PUT EVENT: TERMINATE AGREEMENT Fri 15 Oct 2004 22-15-03 

'Fable 9.7: Scenario Unfolds: Stage 7 

may ascertain how they may fulfil obligations through the query- interpreter available in our IWNI- 
based framework. This mechanism decomposes the fulfilment of obligations using extant counts as 
relations (which in our work on contract modelling may be considered as an embodiment for the 
normative relation power). 

Finally, we provide functionality which handles the management of contract instances, such as: 

Discovery of registered, and registration/deactivation /reactivation/ annulment of, contract 
templates. 

e Discovery of instantiated, and instant iation /reactivation /deactivation /annulment of, con- 
tract instances. 

o Add it ion /annulment/ activation/ deactivation of contract clauses 

9 Changing of contract parameters. 

e Assertion of contract events. 

9 Contract querying. 

9 Registration for/deactivate/ reactivate notification of contract events. 

e Registration for/deactivate/reactivate notification of contract clause application. C, 
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9.3.2 Other Related Work 
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There has been a good deal of research concerning the representation of contracts for monitoring 
their performance. In [81,88] Nlilosevic and colleagues identify the scope for automated man- 

agement of e-contracts, including contract drafting, negotiation and monitoring; and describe the 
design and implementation of a contract monitoring facility, for cross-organisational contract man- 

a-enient. In [341, Daskalopulu discusses the use of Petri-nets for contract state tracking, and 

assessing contract performance. Her approach is best suited for contracts which can naturall be 
C, y 

expressed as protocols, or workflows. One particular desirability of using Petri-nets is that they 

naturally facilitate analysis. In the context of contract representation, an example would be to 

show that a contract will always terminate in a favourable state for one, or more, contract par- 
ties. It is possible, however, to carry out analysis of this nature using our non-INVNI-/IWNI-based 

approach to contract modelling. 
Molina, -Jiminez and colleagues [82,115] consider a frainework by which contracts may be repre- 

sented in machine form; and how they may be monitored and enforced at run-time. They advocate 
the use of Finite State Machines (FSMs) for the representation of contracts, which, specifically, cap- 
ture obligations and rights' that may obtain between parties. 

Their interest primarily concerns the use of contracts in a business and cross- organisational 

context. They make the reasonable assumption that business processes (unless atomic) can be de- 

composed into sub-processes, which are of lower complexity. The interaction that then takes place 
between business partners, pertaining to such sub-processes, (often) may be regulated by separate 

sub-contracts. In their approach, each sub-contract would prescribe the rights and obligations that 

may come into existence before, during and after the execution of the sub-process. An example 

given is a number of sub-contracts which, when aggrepted by a parent contract, pertain to the 00 C3 
provision of food-related items to a consumer - one sub-contract relating to the provision of tinned 
items, another to the provision of fresh items, and so on. 

In discussing the requirements for a formal representation, the authors observe, in [821, that 

a fundamental requirement is the capability of validating correctness requirements. In [115], they 

present a list of what they consider to be common requirements, such as correct commencement 

and termination, absence of locking, and other properties relating to the soundness of contracts. 
In [821, the authors define a right to be: "an action that a signing entity [may] do if it wishes". 

This notion corresponds most closely to a Holifeldian privilege. It does not correspond to a Holifel- 0 

than right, stticto sensu. An obligation is defined, in [82], in terms of what is usually considered to 
be a synonym, namely, duty: "an obligation [is] 

... a duty that an entity is expected to perform". 
The sense of this is apparently that of Holifeldian obligation. 

A contract is represented as a pair of FSMs, one for each contracting party, that interact 

with each other [82]. A contract is, thus, represented as a pair of local views. For any state of a 

particular local view's FSM, there will be a number of events (which may be either locally generated, 

or generated by the foreign FSM) whose occurrence may change the state of the given FSM. A criven 
FSM state will, thus, be a source to a number of output arcs, some of which pertain to (currently 

active) "rights" that the particular party may exercise, as well as obligations that the party may 00 
fulfil. Exercising a "right", or obligation, at one side of the contract may, or may not, have an 0 C, 0 

effect at the other side. 
3NOt stricto sensu. 



214 Chapter 9. Institutional Modelling for the Modelling of Contracts 

The approach documented in [82,115] advocates the use of underlying middleware to enforce 
the rights and obligations that bear on contract parties, as tracked in each FSM. The model checker 
SPIN [59] is used, on FSM representations coded in SPIN's input language Promela, in order to 0 C5 
verify arbitrary LTL-expressed [61,38] constraints. SPIN may also be used to detect deadlock and 
livelock. 

Some other research contributions which have considered the modelling of contracts are as 
follows. In [22], Grosof and colleagues have sought to address the representation of business rules 
for e-commerce contracts. For this purpose, they have developed the SWEET (Semantic WEb 

Enabling Technology) toolkit, which enables communication of, and inference with, e-business 

rules written in Rule, %IL [9]. In contrast to our approach, Grosof and colleagues are not concerned 

with maintaining live representations of contracts for state tracking purposes. A facility for tracking 

contract state is (ostensibly) lacking in their work. Rather, they seek to represent contracts for 

the purpose of communicating contract rules. 
Some similar work is that presented by Pasclike, in [89]. Also based on RuleNIL, Paschke de- 

scribes the language RBLSA, meant for the rule-based representation of Service Level Agreements. 

There is a significant overla between the work of Pasclike and that of Grosof, described above, 0p 
such as the facility for specifying procedural attachments (predicates that are implemented by an 
external procedure, such as a Java method), and rule priorities. Unlike Grosof, however, Pasclike's 

work does support the tracking of live contract state, through the use of EC-like rules, as well as 
explicating deontic concepts such as obligation and permission as distinct ontological constructs. 

Finally, [75,931 consider the modelling of the normative state that obtains between provider 

and consumer when an agreement for web service provision is agreed, or signed. Notable in both 

of these works is their rather primitive consideration of the normative relations that may obtain 
between parties. For instance, they do not pay any attention to the modelling of meta-level 

normative concepts, such as Holifeldian power. 

9.4 An Approach to Contract Modelling Based on Institu- 

tional Workflow Modelling 

We now present how we have reused work that we have done on Institutional Workflow Modelling 

as a basis for the modellin- of contracts. A key benefit of usin- INVAI as a basis for normative 

and contract modelling is that we are able to establish emphatically the association of powers and 

privileges with the fulfilinent of obligations. That is, in our non-INNINI based work, obligations, 

powers and privileges may be asserted to hold, but we never put in place a means of decomposing 

the fulfilment of obligations using powers and privileges, because we did not define a mechanism 
for doin- so. INVINI -ives us that mechanism. 

In our INVINI-based contract modelling (CINI) work, we consider that a contract may generally 
be defined as a collection of protocol fragments, together with rules specifying how, and when, these 
fragments obtain, as well as rules for specifying how auxiliary (instances of) normative relations 
(specified within the contract) may be created or annulled, according to event occurrences. We 

consider contract variables, as described in our non-INVAI based approach, to be a special kind 

of normative relation, albeit their purpose may be simply to record state that is needed for the 

correct operation of the contract, but is of no or little interest to the contract parties themselves. 
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An example may be a simple counter. These rules may be considered to be instances of Hohfeldian 

powers. Rom this description, we may also consider the rules to be akin to Event Condition Action 

(ECA) rules. 
For our purposes, we view a protocol fragment as a partial ordering of tasks that need to be 

Z' 0 
realised by contract parties. In our work on CINI, not using INVINI, we model protocol fragments in a 00 
rather awkward way. That is, we specify a number of ECA-like rules which control the creation and 

annulment of various normative relations, such as obligations, powers and privileges. In contrast, 
in our INVAI-based work, we model protocol fragments in a contract as INN'NI-based (i. e. HTN-based 

Liesbet) workflows, consisting of tasks and actions. Using a task network-based (i. e. workflow) 0 
Ian-ua-e is more natural for expressing protocols, given that protocols resemble task networks. 000C, 

9.4.1 Legal Relations in a Theodore-based 1WM Protocol ftagment 

The legal relations that may be considered to exist in a Theodore-based INNINI protocol fragment 

may be viewed from two directions, from legal to IWNI concepts and from IWNI to legal concepts. 00 
It is worth noting that the point of casting our work on flexible and traditional workflow modelling 
in an institutional sense is to establish the link between legal concepts such as power, say, and 
those explicated in our approach to workflow modelling, such as the method artefact in HTN-based 

planning. Power and method are related through the institutional concept of counts as, which 
Jones and Sergot [63] propose as an apposite means of characterising the exercising of legal power. 

We map legal to IWINI concepts as follows. C, 

9 We map Holifeldian Power (i. e. exercising thereof) to counts as, and thus methods (and 

complex operators) 

e We map Ifolifeldian Privilege to permission, and thus operators (and complex operators) 

e We map Hohfeldian Obligation to basic/leaf activities in protocol fragments 
(D r, 

Note that, in this part of our work, we assume brute actions to be atomic (i. e. we do not admit 
the notion of brute action hierarchies, as previously described in Section 9.1.2), although this may 

not always be appropriate. This assumption simplifies the following discussion. 

When considering the mapping in the other direction, the fundamental point of interest is leaf 

activities. As stated, these are considered to be obligations (when the activity is enabled, i. e. is 

Running). These are obligations either to do an institutional or brute action, which is determined 

by whether the activity is a non-primitive or primitive task, respectively. 
As in INVNI, the following applies in CNI. 

" Primitive tasks (i. e. obligations to carry out brute actions) demand the presence of operators 
(i. e. privileges) so that agents may be identified to carry out these actions. 

" Non-primitive tasks (i. e. obligations to carry out institutional actions) demand the presence 0 
of inethods (i. e. powers) to facilitate their refinement into networks of primitive and non- 

primitive tasks (i. e. brute and institutional actions, respectively), where these tasks are to 
be further refined using extant operators (i. e. privileges) and methods (i. e. powers). 

" An HTN action represents a brute action which comes with an automatic privilege, assigned 
to a particular role. 
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9 Complex operators combine the application of methods (i. e. powers) and operators (i. e. 

privileges). 

Note that the absence of a power (resp. privilege) to perform an institutional (resp. brute) 

action is determined by the absence of a method or complex operator (resp. operator, or containing 

complex operator), to carry out the action. The absence of any such a decomposition relation does 

not automatically imply the presence of some disability (resp. prohibition) relation, however. It is 

possible to model such a closed policy [411, if desired, using an auxiliary theory. 0 
The entity which controls the availability of decomposition relations (i. e. methods, complex 

operators and operators), and thus controls empowerment and assigning of privileges is the contract 0 C, 0 
inodel. We describe this entity in some detail in tile following presentation. C, 

Note that ive consider that obligations to perform brute actions bear on particular roles. In 

contrast, obligations to perform institutional actions may bear on particular roles, but may also 0 
be described as being anonymous where the intent is that further decompositions of tile pertaining 00 
HTN task prescribe specific roles. Similarly, methods, operators and complex operators may be 

role-specific, or anonymous. We consider that anonymous normative relations and decomposition 

relations bear on the institution that is the contract itself. 

9.4.2 Event Handling Logic 

The specification of a contract in our INVINI-based framework comprises a contract model, along C, 
with a number of INVINI-specified protocol fragments. The contract model essentially specifies 0 
the effects of contract-related events (both exogenous and internally-generated) on contract state, 0 C, 
creatin- and annulling protocol fragments in response to these events, as well as creating and 
annulling instances of normative relations. 

The underlying event handling logic, in our contract modelling framework, is an evolution of Z' C' 0 
that used in our non-INVAI based work. It is still based on the Event Calculus. The framework 

stores both exo-enous events and events from INVINI-based protocol fragments 
0 00 

(such as chan-es in 

the state of activities) in an event narrative, which is a similar artefact to that described previously. 
Rules within a contract model dictate the effects of these events. As well as causing the state of 
(instances of) normative relations recorded in the kb to change, these events may cause the assertion 0 
of state signifying that instances of particular workflow fragments should be created or annulled. 
The contract model may also determine that certain events should be pushed to subscribers in the 

environment, in response to events in the event narrative. 

As an example, the contract model may contain the rule: 

event E initiates create(TerminateService) 

where TerminateService is the name of a workflow fragment. According to this rule, an instance 

of the create (TerminateService) relation should be asserted to kb in response to the occurrence 

of E. There is a correspondin. - annul relation, which indicates the annulling of workflow fragments. 
100 

The assertion of create and annul instances are transparent to the INXIM engine, which will act 

on them accordingly. 0 
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9.4.3 Verification of Contract Fragments 

For verification, we make a distinction between fixed and variable contract models. A necessary 

condition for a model to be fixed is that the set of decomposition relations, described therein, is 

fixed. This is a condition that carries over from our work on flexible workflow modelling. Another 0 
necessary condition is that a power may not be exercised in the absence of an obligation that 

prescribes the institutional action to which the power applies. 
As our approach to contract modelling is based oil our work on flexible workflow modelling, we C' 0 

reuse a lot of the components implemented in the verification and enactment engine for Theodore 0 
flexible workflows. For fixed contract models, a contract author or contract party (in enactment) 

may make use of the IAVNI-based verification facilities for soundness (i. e. completion along all C, 
enactment paths) and arbitrary properties expressed in a constraint language, such as a temporal 
logic like CTL*. 

Note that properties are not verified for a contract as a whole, rather, just for individual 

protocol fragments, i. e. ANINI-based workflows. As a result, there is a notion of independent sub- 

contracts that is imposed, where each IWNI fragment is such a sub-contract. This is not necessarily 

as restrictive as it may sound. As described in the work of Nlolina-Jiminez [82,115], it is often 
the case that contracts will naturally be composed of independent sub-contracts. The notion of 

contract soundness carries over from the notion of soundness defined for INNINI models. A contract 
is sound iff each protocol fragment defined therein is sound, according to tile INVINI-based criteria 
for soundness. Our verification approach also ensures that the presence of an obligation always 
entails the presence of sufficient powers and/or privileges so that the obligation can be fulfilled. 

Often, sub-contracts will specify fully-prescribed protocols of behaviour that should take place 
between contract parties. Complex operators are ideal candidates for such protocols. An example of 

such a protocol might be a buyer-seller protocol for buying goods and having them delivered. This 

could be expressed as the sub-workflow Seq(Pay, Deliver), with pre-specified decompositions of 
Pay and Deliver into finer structured and basic activities. These activities will represent further 

power and privilege relations, respectively, which hold by prescription of the complex operator. 
Note also that, for both fixed and variable models, a contract party may perform "what-if" 

simulation and "what may I do next*" querying. 

9.4.4 Derivation of Obligation Rilfilment 

One aspect of our MINI-based approach to contract modelling is the mechanism it affords for 

decomposing the fulfilment of obligations using powers and permissions. Such a facility in contract 

modelling and enactment frameworks is typically overlooked, although some such as Molina and 

colleagues [82,115] do make provision for reconciling privileges with obligation fulfilment. That is, 

their work doe-s not consider the distinction between institutional and brute actions in contracts, 
but they do consider that the presence of an obligation must entail the presence of a privilege 
(which they call a right). 

Note that our verification framework always ensures that an active obligation entails the avail- 

ability of appropriate powers and privileges to fulfil it. That is, 0 =* {R, P), where R abbreviates 

power and P abbreviates privilege. 

an active Moreover, powers may be used by a contract enactor independently of there being 
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obligation prescribing the (institutional) action associated with the power. We consider this to be 
00 

a wholly appropriate notion. (Note that we disallow this dispensation for fixed models, for reasons 

of decidability in verification). Arguably, for every active R, there should be active P relations (and 

possibly further R relations) that enable the exercising of the power. That is, R =t- {R, P1. This 

is a moot point, philosophically. Our verification approach does not check it, although it could be 
0 

made to do so. 
In contrast, we would not consider it appropriate to check for the presence of active R relations 

for any active P relations so that, in some sense, every P relation would have some meaning 
institutionally. Rather, we consider it to be appropriate that agents are permitted to carry out 
brute actions which are not necessitated to have an institutional effect. 

9.4.5 Transf erProperty -A Simple Example Pertaining to the M-ansfer 

of Property 

We now present a simple example of our INNINI-based approach to contract modelling. We consider 
two versions of a contract and, for each, a single protocol fragment with no auxiliary normative 00 
relations suffices for its represent ation. The example is based on an excerpt from [23], where Brady 

seeks to exemplify the distinction between power and right. Brady writes: 

[I]t is a mistake to think, as some have done, of a power as a lesser or limited right. 
In some cases, it is more advantageous to have a power rather than a right. As an 
example, take the position of a vendee in regard to a conditional sales contract of 
personal property. Suppose that all but the last instalment has been paid. When 
the last instalment becomes due what is the vendee's le-al interest in re-ard to the 

property? There is a significant difference in analysing his interest as a power to have 
title to the property passed as opposed to a right to have title passed. If the vendee 
only has a right to ownership of the property, the vendor is under a duty to confer title. 
Thus the vendor could return the previous instalments, renege on the contract, and the 

vendee would have to sue the vendor for breach of duty in order to get the title. On 

the other hand if the vendee has the power, by paying the last instalment, to acquire 
title, the vendor can do nothing to prevent the title from passing. In this example, the 

power to acquire title by paying the last instalment is a much more advantageous legal 00 C5 
relation than having only the right to have title passed. C, C, 

For this example, we can represent both scenarios using the same Theodore-based planning 
domain. The purpose of the contract in either scenario is to transfer ownership of the title for 

the given property. Let's call the initial task in the planning domain Transf erProperty. There 

is a power involved in both scenarios relating to this task, otherwise, the transfer would not be 

effected. But what counts as realising this legal change? 
In the case that the vendee lacks power to acquire the contract, it is the vendor who has 

power to dispense it. Let's say that three instalinents need to be made (by the vendee) for the 

vendor to be under a duty to transfer the title. The plarming domain (in this case) might contain a 

method which decomposes the task Transf erProperty into the network: Seq(MultiSeq(3) (Pay) , 
Transf erTitle). This network counts as the vendor transferring (the title) of the property. 
Instances of the Pay task are obligations bearing on the vendee to pay. Each Pay instance would 00 
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be decomposed according to one or more domain constructs. These could be methods/complex 0 
operators such as SendCheque counts as Pay, or EFT counts as Pay, say. The task Transf erTitle 
is an obligation bearing on the vendor to transfer the title and would be decomposed by a number 00 
of domain constructs. 

The Theodore domain for this scenario mi-ht thus be constructed as follows. We call this 0 
contract, the no power contract5, for convenience. 

o Initial task: Transf erProperty. 

* Method: Seq(MultiSeq(3) (Pay), TransferTitle) counts as Trans f erProperty. 

(Pay on vendee, Transf erTitle on vendor) 

e Complex Operator: SendCheque counts as Pay. 

(Pay on vendee, SendCheque on vendee) 

* Complex Operator: EFT counts as Pay. 

(Pay on vendee, EFT on vendee) 

a Complex Operator: SendSignedTransf er counts as Transf erTitle. 

(SendSignedTransf er on vendor, Transf erTitle on vendor) 

In tile scenario that tile vendee is empowered to acquire the title to the property, the Theodore 

domain might be constructed as follows. Note that there is no actual action required of the vendor. 
As soon as the vendee has made the three payments, (the title to) the property is transferred. We 

call this contract, tile power contract, for convenience. 

e Initial task: Transf erProperty. 

* Method: MultiSeq(3) (Pay) counts as Transf erProperty. 

(Pay on vendee) 

e Complex Operator: SendCheque counts as Pay. 

(Pay on vendee, SendCheque on vendee) 

* Complex Operator: EFT counts as Pay. 

(Pay on vendee, EFT on vendee) 

In Sections 11.2.2 and 11.2.3, we show examples of verifying the soundness of these contracts 0 
using the Theodore verification, planning and enactment engine. For instance, we show that in 

C, 00 
the first contract, completion of the MultiSeq, containing three occurrences of the Pay activity, is 

0 
not enou-Ii to effect transfer of the property, whereas for the second contract it is. 

0 

'In the following, MultiSeq(3) (Pay) effects three instances of the Pay activity, in sequence. 
'Le. no power on the vendee. 
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9.4.6 Further Comments Regarding Example of Mail Service Agreement 

In our previous representation of the example mail service agreement, presented in Section 9.3.1, 

we proposed PayForService as the name of an action that needs to be carried out by SC. In an 
MM-based representation of this agreement, we could characterise the action PayForService as 
follows. 

Firstly, we would model it as a workflow fragment corresponding to a Theodore model/planning 

problem. The model would specify just this task as its initial task, and, when enabled (i. e. set 

Running in Liesbet-speak), would correspond to an obligation obtaining on SC to pay for service. 
We consider that the task would be an institutional action, meaning that there would exist powers 
(as methods and complex operators) and privileges (as operators, and contained within complex 

operators), specified as part of tile Theodore model, bearing on SC, so that SC may fulfil the 

given obligation. 
Also consider the contract excerpt: If SCfails to pay within the given time, SP may terminate 

the mailbox service without notice. The term may here implies a power on tile part of SP to 

terminate the agreement. We could model this power as a decomposition relation (i. e. method) 
that becomes available for use (i. e. is enabled) once SC has failed to pay. 

This is not all obligation on the part of SP; indeed, SP may elect not to exercise it. As already 
described, we allow contract enactors to apply powers - they may query their existence through 

a "what may I do next? " query- interpreter - in the absence of a task within the contract model 
that prescribes an associated obligation to which the power would apply. 

Within the contract model, there may exist tile definition of a method: 

Method: Seq(MultiSeq(3)(SendWarnings), TerminateService) counts as TerminateAgreement. 

TerminateAgreement on SP. 

When such a method becomes enabled (i. e. is available for use), within the enactment of a 
contract model, SP (as specified in the definition of the method) may terminate the agreement, 
but not before sending three warningrs to SC first. Thus, to exercise this power, SP must further 

0 
decompose and enact the workflow Oven on the left-hand side of the method. 

9.5 Concluding Remarks 

We have shown in this chapter how the work that we have carried out concerning the modelling 

of traditional and flexible workflow may be reused, by explicatinc, an institutional perspective for 

workflow. In defining the notion of Institutional lVork-flow Modelling (INNINI), we identify the 

institutional concepts of counts as and permission, and the related classification of actions into 

institutional and brute classes of action, to be pertinent to the cliaracterisation of workflow. These 

concepts are also pertinent in normative and contract modelling (NCNI), and our experience shows 
INNINI to be useful as a foundational basis for NCM. 

Thus, it is through INNI'M that we link artefacts inherent in workflow to normative concepts 

used in contracts, and propose a means of reusin, our work on workflow. We define 11VAI to 

be the sum of our Theodore-based approach to flexible workflow modelling and the presented 

correspondences of counts as and permission relations to workflow artefacts, on the one hand, and 
HTN-based planning, constructs (i. e., methods, operators and complex operators), on the other. 
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When INVINI is applied in the modelling of contracts, counts as provides a means of modelling 00 

power, and permission provides a means of modelling privilege (in the terminolog of Holifeld). 00 Cly 
Jones and Sergot [63] identify the correspondence between counts as and power, in respect of 

counts as relations prescribing ways in which powers may be exercised. The question of how powers 

should be exercised is arguably the most important aspect of this normative concept. Obligation 

is modelled by leaf activities within INVINI model fragments, which may pertain to institutional 

or brute actions that demand the presence of powers and privileges (as methods and operators, 0 
respectively) to refine them. 

A particularly interesting aspect of our approach to contract modelling is it relates the fulfilment 00 

of obligations directly to the existence of powers and privileges, in providing a mechanism by which 

contract enactors may query and plan obligation fulfilment using these relations. The distinction 
00 

between institutional and brute actions in the modelling of contracts, and thus the distinction 
0 

between power and privilege, is often overlooked in the modelling of contracts (see, for example, 
[82,1151). 

For verification, we make a distinction between fixed and variable contract models. A necessary 

condition for a model to be fixed is that tile set of decomposition relations, described therein, is 

fixed. This is a condition that carries over from our work on flexible workflow modelling. Another 

necessary condition is that a power may not be exercised in tile absence of an obligation that 

prescribes the institutional action to which the power applies. 

For fixed contract models, a contract author or contract party (in enactment) may make use of 
the INVINI-based verification facilities for soundness (i. e. completion along all enactment paths) and 

arbitrary properties expressed in a constraint language, such as a temporal logic like CTL*. For both 

fixed and variable models, the frainework enables a contract party to plan obligation, fragment 

and contract fulfilments according to subjective constraints and to perform what-if simulation. 0 
In neither of our (non-INNIM and INNIM-based) approaches on contract modelling, do we include 

any built-in support for specifying a theory of normative concepts and their inter-relationships, 

other than that which is a by-product of Institutional Workflow Modelling, which gives a means 
by which the fulfilinent of obligations may be specified and derived. For INVAI-based models, we 

verify that the existence of an obligation entails tile existence of sufficient powers and permissions 
for their fulfilment. 

The utility of an INNINI-based approach to contract modelling is evident from both examples 

given in the chapter, namely, the Transf erProperty and mail service agreement examples. We 

propose a hybrid approach to contract modelling, where a contract is modelled as a number of 
INVINI-based workflow fragments along with a set of auxiliary normative relations. Other research 
contributions focus oil one or the other, whereas we argue that a hybrid approach such as ours 
is a more natural way of viewing and modelling contracts. Although we have not particularly 
emphasised the role of auxiliary normative relations in the discussion in this thesis, it is clear 
that some means of supporting the modelling of additional normative concepts such as prohibition, 
entitlement [92], and others, would be of utility. As part of accommodating tile definition and 
representation of auxiliary normative relations, we could extend our framework to account for 
theories of normative concepts that may be identified as being desirable. 

0 
fl, future work, we need to give our approach to contract modelling a comprehensive road-test 

, -igaillSt a number of different sorts of contracts in order to identify any weaknesses in our modelling 0 C'I 
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verification and planning approach. However, we feel that our INNINI-based approach is a significant 
improvement over our previous work on contract modelling in directly supporting the modelling 00C, 
of protocol-like artefacts in contracts. In the next chapter, we give an overview of how we have 

0 
implemented the authoring, verification and enactment frameworks for Liesbet and Theodore. 



Chapter 10 

Implementation 

In the following chapter, we present a concise overview of what we have implemented in the course 

of our work. As van der Aalst and colleagues argue [1231 "any proposed language should be 
0000 

supported by at least a running prototype in addition to a formal definition". We are of the same 

opinion, and thus considered it essential to provide such a framework. 

We start with a brief presentation of the Eclipse Modelling Framework which provides persis- 
tence functionality, and follow that with an overview of the structure of our implementation. Then, 

we go through each of the components in our framework, in turn: the Liesbet verification and 

enactment engine, the CTL* constraint cliecking encrine, and the Theodore verification, planning 0 ID C, 
and enactment engine. 

10.1 Eclipse Development Platform and Eclipse Modelling 

Framework 

We have used the Eclipse Development Platfor7n (EDP) [31 to facilitate a Java-based implemen- 

tation of verification and enactment engines for Liesbet and Theodore. It is an Integrated De- 

velopment, Environment (IDE), which provides a number of useful features, including support for 
C, 

test writing. 

The Eclipse Modelling Framework (ENIF) [41 is a modelling and code generation facility, which C, 0 
comes as part of the EDP. Tile key features of ENIF that motivated its use are: its support 
for UNII-like class and relationship modelling, its code-generation capability and its support for 

C, 0 
persistence. We have used the facility within ENIF for the definition of class models to define 

a number of nieta-models for Liesbet and Theodore. Rom these class models, ENIF is able 

to generate a collection of Java-based APIs (Application Programming Interfaces) which may be 
000 

used to traverse instances of these models stored in memory. The persistence support within ENIF 

makes it possible to save models which have been created using the generated APIs, and load them 00 
back in for traversal using tile APIs. It thus provides a model-specific way of loading and storing C, 00 
data to/from file, in a way that is hidden from the programmer. ETNIF also provides (extensible) 

0 
support for the graphical authoring of instances of class models. 0 

223 
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10.2 Structure of Lie sbet /Theodore Framework 

The structure of the Liesbet/Theodore verification, planning and enactment framework is modular C, 
in nature. The following modules exist in the complete framework. 0 

Liesbet NVorkflow Verification and Enactment Engine. 
0 

s Theodore HTN-based Planner. 

e CTL* Temporal Constraint Engine. 

Service Selection Engine. C, 

o Knowledge Base. C, 

Most of these modules have a class model associated with them for describin- confi-uration 0 13 
instances of the -iven modules. For example, the Liesbet module has a class model for describ- 

in- Liesbet models, the Theodore module has a class model for describing Theodore planning 

problems and the CTL* module has a class model for specifying CTL* formulas. 

Tile Theodore class model, shown in Figure 10.1, is the core class model in the framework, 

inherited by all other class models. It serves two purposes. Firstly, it enables the specification 

of Theodore planning domains; and thus specifies a number of interfaces that (typically) need to 

be implemented, such as: Workflow (for the specification of the task network -e. g., Liesbet- 

based - used in planning), ConstraintChecker (for the progression-based constraint engine), 
ServiceSelector (for the service selection engine, responsible for prioritising the use of HTN 

domain constructs) and KnowledgeBase (for the particular knowledge base instance, primed with 
its initial state). Secondly, it serves as a repository for these interfaces, in the event that planning 
is not used. For instance, we can run a Liesbet verification instance, without the use of Theodore 

per se; but some aspects of the problem will be described using classes that are a part of tile 

Theodore class model, such as Workflow. 

We now describe tile implementation of each of these modules in detail, starting with the 

Liesbet verification and enactment en-ine. 0 

10.3 Liesbet Workflow Verification and Enactment Engine 

The class model for the Liesbet NVorkflow Engine is presented in Figure 10.1. The LiesbetWorkf low 

class extends the Workflow class, defined in Theodore's class model. This means that it inherits 

the capability of specifying a collection of ConstraintChecker engines. LiesbetWorkf low speci- 

fies the root *activity (Activity) of the workflow model and specifies a set of AbstractActionType 

(i. e. ISA) hierarchies, collects together all of the activity and query definitions in the workflow 

model, and facilitates the specification of a number of synchronisation rules pertaining to the 

model. Activity is a base class to many other Liesbet activity-related classes. It captures the 

join and transition condition types of an activity type, whether the type is isolated or not, and 

the customised type name, or ctype, of an activity. As can be seen, there are a number of other 

classes, which are largely self-describing. 
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Figure 10.1: Theodore (let't) and Liesbet Class Models. 
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For verification, a Liesbet model is loaded into a number of AfySQL database tables. Our 

SitCaic-based characterisation for Liesbet naturally lends itself to a relational database imple- 

mentation. The relational and functional fluents, which are updated according to the successor- 
state axioms (presented in Section 6.2), are implemented directly as a number of database tables. 
The queries on workflow state that are used within synchronisation activity types, and also the 

activity (and optional reference) types used within CancelActivity* types, are also stored in a 
database table. 

The bodies of successor-state axioms are specified in first-order logic in a way that has a direct 

correspondence to the domain relational calculus [31]. SQL queries are a sugared-syntax for an 
extended version of the tuple relational calculus. The two calculi are very similar in nature - just 
the domains of quantification are different. This means that there is an eas mapping between the y C, 
bodies of ssas and the appropriate SQL queries that need to be used in our implementation. This 

makes the implementation of the SitCalc semantics straightforward. 0 
For example, the definition of AllDescSiblingsFinished/3, presented in Figure 6.11 of Sec- 

tion 6.2.2, can be written (equivalently) thus: 

AllDescSiblingsFinished(il, i, s) =- Descendant (i, i ', s) A 

-(3d). [-d=il A Descendant (i, d, s) A -Descendant (d, i 1, s) A -Descendant (i l, d, s) A 

-State (d, s) =Completed A -State (d, s) =Cancelled] 

Here, we are seekin., to identify the ancestors of iI which should be completed, in the next 
situation to s. In the implementation, we use the following SQL query for the same purpose - to 
find the ancestors of inst that should be completed. Note that it has the same construction, save 
for differences in syntax, to the presented definition AllDescSiblingsFinished/3. 

SELECT D. ANC FROM DESCENDANT D WHERE D. INST="+inst+" AND "+ 

"NOT EXISTS (SELECT * FROM DESCENDANT D1 , STATE ST WHERE "+ 

"DI. ANC=D. ANC AND DI. INST! =D. INST AND DI. INST=ST. INST AND 

"NOT EXISTS (SELECT * FROM DESCENDANT D2 WHERE Dl. INST=D2. ANC AND D2. INST=D. INST) AND 

"NOT EXISTS (SELECT * FROM DESCENDANT D2 WHERE Dl. INST=D2. INST AND D2. ANC=D. INST) AND 

"ST. STAI="+LiesbetInstance. g-STA-CAN+" AND ST. STA! ="+LiesbetInstance. g-STA-COM+ 

11 
) .1 

When loading a model for verification, the implementation will check for cycles that may have 

been defined in the workflow model. Cycles are not allowed in the definition of Liesbet models. 
For instance, X=Seq(X, Y) contains a cycle. We check for this by verifying that an instance of an 

activity being added, to the internal model representation, does not have the same ctype name as 

an ancestor of the instance. The loading process also divides a model into a number of verification 

runs, as described in Section 7.2. As an alternative to the verification functionality offered by 

Liesbet's verification engine, the engine can instead output verification runs as CCS/PCCS agents, 
for verification using CWB-NC. This feature has aided our work in respect of the investigation into 

the utility of CCS/PCCS for providing semantics, and verification support, to Liesbet. 

In performing verification, we maintain a number of state tables - one for each number of 

activity instances in an evolving model. If the number of instances in a model stays the same 
throughout its enactn-ient, which will be the case if the model does not make use of non-limited 

multiple activity instance types, a single state table will be used. 0 
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Each row of a state table pertains to a single state of tile workflow model being verified. Each 
field corresponds to the state of an individual instance in the model. The state is represented by a 
numerical value (e. g. 0 for Ready, 1 for Running, and so oil). When we come to evaluate whether a 
new situation (according to the verification al-orithm, presented in Section 7.4) is a matched state 
(i. e. a situation whose activity instance state is the same as that of a situation which has been 

previously visited in the verification process), we simply check whether there is a row in the table 
that has the same values for each of the activity instance fields. 

The algorithm that has been implemented for verification is that presented in Section 7.4. A 

verification run can be configured with one or more constraint checker instances. For tile time 
being, the only constraint checker that the framework supports is one for CTL*-based constraint 
checking. Many examples of the verification of Liesbet models, including runs which perform 
CTL* checking, are presented in the next chapter (11). 

The framework call also be instantiated for tile enactment of Liesbet workflow models. For 

this purpose, once a model is loaded, the engine waits for events from the environment and/or offers 
to the environment the possibility of completing, or cancelling, one of a number of basic instances. 
As events (such as those pertaining to the completion of basic instances) from the environment are 
received, the internal representation of the model is progressed, as dictated by the SitCaic-based 

semantics. 

10.4 CTL* Constraint Checking Engine 

The class model for the CTL* constraint checking engine is shown in Figure 10.2. It is used 000 
for specifying CTL* constraint formulas. We can check CTL* formulas against Liesbet workflow 0 C, 
models, or against workflows which have been generated by the Theodore planner, i. e. against 000 
LiesbetWorkf low models, or TheodoreProblem specifications, respectively. 

The CTLSConstraintChecker class extends the ConstraintChecker class, defined in Theodore's 

class model. When a LiesbetWorkf low, or a TheodoreProblem, instance is loaded into memory, an 
instance of the CTLSConstraintChecker (implement ation) class will be created for every constraint 
specified in its constraint -checkers field. The CTLSConstraintChecker class contains the defl- 

nition of a number of CTL* propositions which are used. in the definition of the root -propos it ion 

constraint. It is this constraint that is checked against the LiesbetWorkf low, or in the context of C, 
the TheodoreProblem. 

In verification, CTL* constraints are progressed through workflow states. In tile implementation, 

we use tile following (AIySQL) database tables for maintaining the state of progressed versions of 
the original constraint: 

e CTLS-PROP- idx INT, code INT, nt INT, propl INT, prop2 INT 

This table maintains the propositions that make up the composite temporal constraint, to 

be verified. idx is a table index, code captures the type of proposition (some paths, or, next, 

etc. ), nt determines whether the proposition is tinder negation, propl and prop2 are indices 

of sub-propositions. 

e CTLS-EVAL-REC - idx INT, prop INT, res INT, st-idx INT 
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'Fhis table maintains the progression of the composite temporal constraint for various states 

of enactment. idx is a table index. prop is the pertaining proposition in CTLS-PROP. res 
captures the current result of the proposition (e. g. TRUE. FALSE. UNDEF. ... 

), st-idx captures 
the state to which the proposition pertains. 

e CTLS-EVAL-CHILD - pidx INT, idx INT, st-idx INT 

This table maintains the parent, child relationship between progressed formulas; where idx t, 
is the index within CTLS-EVAL-REC of the formula representing the progression of the formula 
(given by pidx in CTLS-EVAL-REC) to the current state (st-idx). 

As part of the initialisation of the verification process. we translate a given CTL* constraint 
into one which uses only the primitive symbols that we have decided for CTL*. as described in 

Section 7.3. That is to say, we replace any abbreviations with their respective expansions: and 

repeatedly do so until the formula no longer uses any abbreviations. The formula. after this 

processing, should only make use of: -, v, T. 11. E, X and U. 

'We allow I as it is trivially supported in the implementation. 
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A CTL* constraint may be conceptualised as a tree of the atomic propositions, as leaves, which 

are recursively combined using logical symbols, to form the inner-nodes of the tree. In pre- 

processing a CTL* constraint, we start at the root of this tree and work out to the leaves. At 

any inner-node within the tree, we process the formula at that node according to the logic symbol 
being used to combine the children of the node, or if it is a leaf, according to the nature of the 

atomic proposition. 
We load the translated CTL* constraint into the CTLS-PROP table, starting at the root node of 

the conceptualised proposition tree. A node (leaf, or internal) may specify a proposition which has 

already been loaded into CTLS-PROP, as part of pre-processing another node. In this circumstance, 
the same CTLS-PROP entry will be used, and further processing along the branch of the proposition 00 
tree stopped. 

In pre-processing a node, we strip off leading negations. For every negation, we tog le whether 0000 09 
the proposition is under negation or not. We maintain a record in memory of the indices of 

records, in CTLS-PROP, corresponding to propositions both not under, and under, negation. For the 

proposition that is exposed after stripping off leading negations, we check the memory records for 
0 ?DC, 

whether the proposition has been previously loaded (given whether it is not under/under negation). 
If it has already been processed, we return tile index of tile pertaining record in CTLS-PROP to the 

logic processing the parent node. If it has not already been processed, we insert a new record into 
0 

CTLS-PROP, as now described. Having processed the proposition, we update the memory record 0 
for the proposition, by assigning the index (of the new table record) to the appropriate "not 

0 ?D 
under/under negation" field. We distinguish the processing of a proposition on the basis of its 

type. 

" Atornic query formula - The new record contains: a code stipulating that it is an atomic 0 
query formula, whether it is not under/under negation (as nt), the particular query formula 

0 
used (as propi), e. g. Completed-act, and the customised activity type name of interest to 

the query (as prop2). 

The atomic queries that are supported for Liesbet verificatio n are those presented in Sec- 

tion 7.3. These are queries on activity state, with the general forms: State-act and 0 
State-all; where State is one of Completed, Cancelled, Finished, Running, or Initial. 
Queries making use of reference types are not allowed. 

In the context of planning with Theodore, we also support arbitrary querying against current 000 
knowledge base state, within the limits of bounded quantification [17]. 

0 

" Some paths (E4)) (resp. Next, XP) - We process the proposition 4), which will yield an index 

into CTLS-PROP for the proposition. The new record, then, has a code stipulating that it is a 
44some paths" (resp. "next") proposition, whether it is not under/under negation (nt), and 
the index of the child proposition 43 (propl)- 

" Or (4,1 V ... V 43, J - We process the propositions P1 
... 

4),,, which will yield indices into 

CTLS-PROP for the propositions. The new record, then, has a code stipulating that it is an 0 
"or" proposition, and whether it is not under/under negation (nt). We then also create a C, 
number of supplementary records to record the child indices. These have their code fields 

set to reflect their association with in "or" proposition, with nt set to FALSE, propl set to 

the index of the parent "or"' record, and prop2 set to one of the child indices. 
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prog(s, (D, T) = -prog(s, 4)) 

prog(s, (P, -L) = prog(s, 4)) 

prog(s, -L) =I 

prog(s, T) =T 

prog(s, o) = eval(p, s) 

prog(s, E(D) = prog(s, fl 

prog(s, X4)) = next(s, 4)) 

prog(s, ýDj V ... V4D, ) = prog(s, ýPI)V ... Vprog(s, (Dl) 

prog(s, 'DIU4'2) = if final(s) then prog(s, (P2) 

else prog(s, (D2) V prog(s, ýDj) A next(S, (PIUýDD 

where final (s) determines whether s corresponds to a state where all activity instances in the workflow 

model have finished, next (s, T) stipulates that the proposition 4) should be progressed through any 
subsequent state to s and eval evaluates p, being an atomic query formula, against the current state s. 

'Fable 10.1: Definition of prog/3 and prog/2, for Progression of CTL* Propositions Through States. 00 

Until (4)lU4)2) - We process the propositions (Di and 'D2, which will yield indices into 

CTLS-PROP for the propositions. The new record, then, has a code stipulating that it is 

an "until" proposition, whether it is not under/under neogation (nt), and the indices of the 

child propositions (DI (propi), and 42 (prop2). 

An exception to this processing is if tile child proposition that is processed is simply T (or J-) 

prefixed with zero or more negations. In this case, we strip off the negations, toggling tile truth 00 0ý1 C, 
value. We then use special index codes, which are taken to mean TRUE, or FALSE, in the parent 
table record being inserted. 

We also check that the temporal constraint being checked is a state formula, and not a path 
formula, which is a necessary constraint as we wish to verify CTL* state formulas against the initial 

state of Liesbet models. 
When carrying out the verification process, we use the function prog/3, as defined in 'rable 10.1, 

to progress constraints from the last state. If the current state is the initial state of the workflow 
model, we create a new entry in CTLS-EVAL-REC for tile initial temporal constraint. We then apply 
prog/3, which will have tile side-effect of creating further entries in CTLS-EVAL-REC, with their 
dependencies reflected in CTLS-EVAL-CHILD. Note that, if we come across a proposition that has 

already been progressed in the current state, we do not progress this particular instance of the 

proposition any further, but we do update CTLS-EVAL-CHILD to reflect that a further parent index 
is to be related to any evaluation result for the (already progressed) proposition. Also, if tile said 
proposition has already had a result assigned to it, this result is propagated upwards, as described 
in subsequent paragraphs. 

The function prog/3 is used during the verification procedure, where the last argument indicates 

whether the second argument, 4), is under negation. If it is (indicated by T), then prog/3 negates 
the progression of 4), determined by prog/2. 

In applying prog/2, when we reach: 
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1, or T, we propagate the result u the proposition tree, as explained below. 
0P 

An application of eval, tile proposition will be an atomic query formula. We evaluate tile 
formula and propagate the result up the proposition tree. 

e An application of next, the proposition needs to be evaluated against the next state so xve 0 
stop progression (along this branch of the proposition tree) for the current state. 0 41 

For states other than the initial state, we apply prog on the propositions that were under an 

application of the function next in progressing the previous state. 
In progressing a proposition, in a state, whenever we evaluate all atomic query formula, or 

reach a simple truth value (T, or -Q, we need to propagate the result back up the proposition 
tree, according to the reverse of the progression function prog/2, taking into account whether 

propositions are under negation, or not. To get the index of a parent in CTLS-EVAL-REC, in order 
to record a result for it, we inspect the record for the child index in CTLS-EVAL-CHILD. 

When we backtrack, according to the verification algorithm described in Section 7.4, we may 

come across matched states, where the instance state (or, domain state of interest) in the current 
situation is identical to that of a previous situation that we have already visited. In this case, 

any propositions that are to be progressed (in the current situation), or that are elicited throu., 11 
further progression, and which have already reported a result for the particular state, previously, C, 
may simply have that result propacrated upwards. 0 

When T (resp. 
-L) 

is propagated to the initial state, we are able to declare a result for tile 

constraint checking, i. e. that the constraint is satisfied (resp. violated). 0 
Also note that when we have finished traversing all of tile paths which lead out of a state, which 0 

has a "some paths" proposition associated with it, if the proposition is yet to record a result, then 

this means that its contained proposition has not been satisfied. In this case, we need to record a 

result of FALSE against this proposition, and propagate results upwards, accordingly. 00 

10.5 Theodore Verification, Planning and Enactment En- 

gine 
The class model that we have defined for Theodore is presented in Figure 10.1. It is largely self- 
describing and corresponds closely to the formalisation of the Theodore HTN planner, described 

in Section 8.2.2. 

A Theodore planning problem is described as an instance of TheodoreProblem, which de- 

fines the initial task network of the problem (Workflow), knowledge base (KnowledgeBase), con- 

straint checkers (Constraint Checkers) and the planning domain (TheodoreDomain). A plan- 

ning domain consists of a number of domain constructs, namely instances of operator (including 

ComplexOperator) and Method. The common base class for constructs is The odoreDomainConstruct, 

which defines a precondition (KBQuery) on the use of the construct, and parameters used in 

the construct. Method additionally specifies a Workflow, to which a task may be decomposed. 
An Operator instance may specify a number of effects (Results). A ComplexOperator extends 
Operator, and also defines a workflow. 

The planning algorithm repeatedly seeks to apply constructs until it finds a plan which effects 
the initial task network (or, in the case of verification, until it has identified that all partial 
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decompositions successfully complete). A ServiceSelector instance determines which constructs 

-ire preferred, at a particular point in the decomposition process. The Theodore engine also 

provides an enactment mechanism, where a plan may be enacted and what-if simulation may be 

performed. What-if simulation allows a domain controller or expert (see Section 8.1.3) to try out 

particular decompositions, in order to see what plans are available to complete a given a workflow. 
In doing this, they help to guide the planning process. 00 

10.6 Service Selection Engine 

An instance of ServiceSelector must be specified for a Theodore planning problem. Its purpose 
is to control how domain constructs are applied in planning, determinin. - a preference order over 
their application. The default class (BasicServiceSelector), implemented for the Theodore 
framework, simply applies constructs in the order they are specified in a TheodoreDomain. This 
behaviour may be changed by implementing a different ServiceSelector. 00 

10.7 Knowledge Base 

An instance of KnowledgeBase effects the knowledge base associated with a Theodore planning 
problem, if extant. It is responsible for evaluating the preconditions of domain constructs given 
parameter bindings, returning any new bindings, and for applying the effects of using constructs 
(specifically, operators and complex operators). It must also be capable of being backtracked. 

When a Theodore problem is specified not to use an explicit knowledge base, then domain 

state -just pertaining to the enablement of domain constructs- is maintained within the Theodore 

planning implementation itself. Finally, the default implementation for the KnowledgeBase is SQI, 
based, which means that precondition and effects clauses must be specified in SQL, by default. 

The Liesbet verification and enactment engine does not make use of a separate KnowledgeBase 

component, in its operation. Instead it necessarily makes use of a AlySQL database, as described 
in Section 10.3. 

In the next chapter, we present some examples of using our implemented frameworks for the 0 
verification of Liesbet (i. e. traditional) and Theodore (i. e. flexible) workflow models. 
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Examples of Verification 

In this chapter, we show some examples of verification of Liesbet and Theodore-based workflow 

and contract models. We show screen dumps of some of the authored models and of tile output 
from the pertaining verification engine. We start with some Liesbet examples, and then present 00 
some Theodore-based examples. 

11.1 Liesbet Examples 

11.1.1 A Simple Workflow 

We start with asimple Liesbet model (that we have used throughout this thesis), viz. Par(Seq(A, B), Seq(C, D)). 

This may also be written in an elaborated form, as follows. 

Par(Sl, S2) 

SI=Seq(A, B) 

S2=Seq(C, D) 

A screenshot of this model as authored (using the Eclipse Modelling Framework. (ENIF), see 
Section 10.1) is shown in Figure 11.1. 

The model is trivially sound according to the criteria specified in Section 7.2. If we disable 

the por verification option (which will cause the verification engine to check workflow fragments 
for soundness even if they are necessarily sound), we see that the model has ten distinct states 
(which agrees with the diagnosis presented in Section 6.2.1). As can be seen, from Figure 11.2, 

the verification en-ine finds the workflow sound. Note that a dot '. ' appears after the output 
"Verifying m6del run" for every progressive verification step. Later on, when we present ex- 
aniples which include the verification of constraints, a small V will appear for every progressive 
constraint checking step. 

If we enable the por option, we see (in Figure 11.3) that the model is trivially passed as being 
0 

sound, with no explicit verification (as indicated by a single state). The number of "por'd acts" 0 
indicates how many activity instances in the model were "ignored" - in this case, all of them are C, 
ianored. 0 

233 
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Figure I I. I: Par(Seq(A, B) Seq(C, D)) as Atithore(I in ENIF. 

Simple liesbet workflow 

Parsing model ... 
Setting up verification 

Verifying model run ............ 
Filing report ... 
Checking for deadlock ... 
Checking for dead instances ... 

Time taken: 0(h), O(m)IO(s), 410(ms) 

Liesbet run 0 success (no locking, no dead insts, no violated constraints) with 
stored states: 10, matched states: 4, por'd acts: 0. 

Figure 11.2: Par(Seq(A, B) Seq(C, D)) Verified Using Liesbet Verification Engine. 
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Simple liesbet workflow, with por 
Parsing model ... 
Setting up verification... 

Filing report ... 
Checking for deadlock... 

Checking for dead instances ... 

Time taken: 0(h), O(m), O(s), 100(ms) 

Liesbet run 0 success (no locking, no dead insts, no violated constraints) with 

stored states: 1, matched states: 0, por'd acts: 7. 

Figure 11.3: Par(Seq(A, B), Seq(C, D)) Verified Using Liesbet Verification Engine, with por En- C, oo 
abled. 

Simple liesbet workflow, with sync rule, plus constraint check... 
Parsing model ... 
Setting up verification... 
Verifying model run cc. c. c. c. c. c. c. c. c. c. 
Filing report ... 
Checking for deadlock... 

Checking for dead instances ... 

Time taken: 0(h), O(m), O(s), 490(ms) 

Liesbet run 0 success (no locking, no dead insts, no violated constraints) with 

stored states: 10, matched states: 2, porld acts: 0. 

Figure 11.4: Par(Seq(A, B) Seq(C, D)) Verified Against a Given Constraint, with Synchronisation 
0 t, 

Rule. 
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Simple liesbet workflow, with no sync rule, plus constraint check 
Parsing model ... 
Setting up verification... 
Verifying model run cc. c. c. c. c. 
Filing report... 
Failed Temporal Constraint... 

Time taken: 0(h), O(m), O(s), 380(ms) 

Liesbet run 0 FAILED with violated constraints with... 

stored states: 7, matched states: 0, porld acts: 0. 

Failing State... 

Instance: 0, State: 1, Cid: P1 

Instance: 1, State: 1, Cid: S1 

Instance: 2, State: 2, Cid: A 

Instance: 3, State: 1, Cid: B 

Instance: 4, State: 1, Cid: S2 

Instance: 5, State: 1, Cid: C 

Instance: 6, State: 0, Cid: D 

Figure 11.5: Par(Seq(A, B) Seq(C, D)) Verified Against a Given Constraint, Without Synchroni- C, 
sation Rule. 

11-1.2 Synchronisation Rules and Constraints 

We augment the previous example with a synchronisation rule, viz. SyncRule (S2, Completed-act (A) 
, CI 

Completed-act(SM. This stipulates (for the previously presented workflow model) that as soon 

as the (only) instance of A is in the Completed state, descendants of S2 (namely, the instances of C 

and D), and S2 itself, may not advance until the sequence S1 (containing A and B) has completed. 0 
In Figure 11.4, we show the verification output for the model Par (Seq(A, B) , Seq(C, D)), an, -, - 

mented with the said synchronisation rule. Note the reduction in the number of matched states. In 

this verification run, we also verify the constraint: AG (Completed-act (A) --+ Completed-act (C) 

V Completed-act(SO V AX-Completed-act(C)). This constraint says that in all states it must 
be the case that, if A has been completed, then C has completed, S1 has completed, or in all next 

states from the state of interest C should not have completed. This constraint captures the require- 

inent that, once A is completed, execution of S1 takes precedence over completion of C. (We could 

verify that it takes precedence over execution of S2, and its descendants; but this constraint suffices 
for this example). Because of the presence of the synchronisation rule, this constraint should not 
be violated, as can be seen from the verification output, presented in Figure 11.4. 

0 

If we remove the synchronisation rule from the model, we should see that the constraint is 

violated. When a constraint violation occurs, we dump the instance state for the preceding state, 0 
from which -. ve are progressing constraints. In the output shown, in Figure 11.5, A has already 000 
completed and the failure comes about in completing C, while S1 has not completed. 0 
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DE 

join(Go(Completed_act(B in P2))) 

Figure 11.6: A Liesbet Model with Isolated Scope, and Potential for POR in Verification. 

Parsing model ... 
Setting up verification ... 
Verifying model run .... 
Filing report ... 
Checking for deadlock ... 
Checking for dead instances ... 

Time taken: 0(h), O(m), O(s), 300(ms) 

Liesbet run 0 success (no locking, no dead insts, no violated constraints) with 

stored states: 6, matched states: 0, porld acts: 4. 

Setting up verification... 

Filing report ... 
Checking for deadlock... 

Checking for dead instances ... 

Time taken: 0(h), O(m), O(s), 190(ms) 

Liesbet run I success (no locking, no dead insts, no violated constraints) with 

stored states: 1, matched states: 0, por'd acts: 3. 

Figure 11.7: Output from Verifying the Model Presented in Figure 11.6, Using Liesbet Verification 
0000 

En, gine, with por Enabled. 
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Dead activity instances model 
Parsing model ... 
Setting up verification ... 
Verifying model run ...... 
Filing report ... 
Checking for deadlock ... 
Checking for dead instances ... 

Time taken: 0(h), O(m), O(s), 280(ms) 

Liesbet run 0 FAILED with dead activity instances detected with 

stored states: 8, matched states: 0, porld acts: 0. 

Dead Instances Report Details 

Instance: 8, CId: C 

Figure 11.8: Output from Verifying a Model with a Dead Activity Instance. 

11.1.3 Simple POR Example 

In this example, we show the verification output for a model which has an isolated scope and 

which demonstrates the possibility of having further POR applied in its verification. From Figure 

11.6, we see that P4 is an isolated scope. The verification of this activity type should occur as 

a separate run. We also note that the activity type C has a join condition on activity B having 

completed, where this condition is qualified with a reference type rooted at P2 (see Section 3.1.3, 

for information about reference types). The remainder of the workflow model (save for P4) may 
be ignored, in verification, as it is necessarily sound. 

Referring to Figure 11.7, we see for run 0 that there are six stored states corresponding to 

the evolution of P2, and four "por'd acts" corresponding to the rest of the model (save for P4 

which is ignored. The whole sub-tree rooted at P4 is necessarily sound, according to the criteria 
described in Section 7.2. Consequently, as the output from run 1 shows, the verification engine 
trivially passes it as being sound - the single state is the initial state of the model, which is always 

stored irrespective of whether POR is applicable. Notably, the number of "por'd" acts is three, 

corresponding to P4 and its two children. 0 

11.1.4 Dead Activity Instances 

In Appendix Section A. 4, we present a model which has an activity which can never be executed 

-a dead activity instance. The model is: 

Par(Choice(Empty, A, Empty, B), C) 

C= Act(join(Go(Finished-act(A) Finished-act(B), 

Completed-act(A) Completed-act(B)))) 

In the model, only activity A OR activity B may be executed. However, for the join condition 

on C to succeed, both instances must be executed and reach a Completed state. Thus, activity C 
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Deadlock check. Should exhibit deadlock. 

Parsing model... 
Setting up verification... 
Verifying model run 
Filing report ... 
Checking for deadlock... 

Time taken: 0(h), O(m), O(s), 350(ms) 

Liesbet run 0 FAILED with deadlock detected with... 

stored states: 4, matched states: 0, por'd acts: 0. 

Instance: 0, State: 1, Cid: P1 

Instance: 1, State: 1, Cid: S1 

Instance: 2, State: 2, Cid: A 

Instance: 3, State: 1, Cid: JOIN-SEC-B 

Instance: 4, State: 1, Cid: BJoin 

Instance: 5, State: 0, Cid: B 

Instance: 6, State: 0, Cid: C 

Instance: 7, State: 1, Cid: S2 

Instance: 8, State: 2, Cid: D 

Instance: 9, State: 1, Cid: JOIN-SEC-E 

Instance: 10, State: 1, Cid: EJoin 

Instance: 11, State: 0, Cid: E 

Instance: 12, State: 0, Cid: F 

** ***** ** * ***** ** *** ** 

Deadlock check. Should NOT exhibit deadlock. 

Parsing model ... 
Setting up verification ... 
Verifying model run .................. 
Filing report ... 
Checking for deadlock ... 
Checking for dead instances ... 

Time taken: 0(h), O(m), O(s), 58O(ms) 

Liesbet run 0 success (no locking, no dead insts, no violated constraints) with 

stored states: 15, matched states: 5, por'd acts: 0. 

Figure 11.9: Output from Verifying a Model with a Source of Deadlock, and a Variant with the 

Deadlock Removed. 
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Travel agent example... 
Parsing model ... 
Setting up verification ... 
Verifying model run ............................................................ 

................................................................................ 

................................................................................ 

................................................................................ 

........................................................................ 
Filing report ... 
Checking for deadlock ... 
Checking for dead instances... 

Time taken: 0(h), O(m), 42(s), 540(ms) 

Liesbet run 0 success (no locking, no dead insts, no violated constraints) with 

stored states: 286, matched states: 88, por'd acts: 0. 

Figure 11.10: Output from Verifying a Liesbet Representation of the 3rd Travel Agent Example 
000 

from Section 4.5. 

will never (under any enactment path) be executed. It is an example of a dead activity instance. 
In Figure 11.8, we see that the Liesbet verification engine identifies this structural flaw. 

11.1.5 Deadlock 

In Appendix Section A. 4, ive present two models, one having a source of deadlock and a variant 

which is free from deadlock, viz. 

Pa, r(Seq(A, B, C), Seq(D, E, F) 

B= Act(join(Go(Completed-act(E»» 

E= Act(join(Co(Completed-act(B»» 

Par(Seq(A, B, C), Seq(D, E, F) 

B= Act(join(Go(Completed-act(E»» 

The Liesbet verification engine detects the deadlock appropriately, as shown in Figure 11.9. 

11.1.6 Travel Agent Example, with Cancellation 

In Section 4.5, we present a Travel Agent example (#3), which we repeat here. 

PayDecision = Stop( 

(Cancelled-act(Flight) Completed-act(BookFlightDecision)) + 

(Cancelled-act(Hotel) Completed_act(BookHotelDecision)) + 

(Cancelled-act(Car) I Completed-act(BookCarDecision)) + 
(Cancelled-act(Flight) I Cancelled-act(Hotel) I Cancelled-act(Car)), 
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(Completed-act(Flight) + Cancelled-act(BookFlightDecision)) 

(Completed-act(Hotel) + Cancelled_act(BookHotelDecision)) 

(Completed-act(Car) + Cancelled-act(BookCarDecision)) 

PayCancelChoice = DefaultChoice(PayDecision, Pay; Exit) 

Book = MultiChoice(BookFlightDecision, Flight; 

BookHotelDecision, Hotel; 

BookCarDecision, Car) 

Par(Seq(Register, Book), PayCancelChoice) 

In Figure 11.10, we show the output from verifying this model for soundness, where Ave allow 
basic activities (specifically, Flight, Hotel and Book) to also be cancelled (as well as complete). 
All other Liesbet examples, presented in this section, have been verified on the basis that basic 

instances may only complete. 
The verification output shows a number of matched states. Identifying matched states greatly 00 

increases the efficiency of verification. However, it is necessary to ensure that identification of these 

states is implemented in an efficient way, because, as the state space grows, it could represent a 

sianificant, bottleneck. We have succeeded in realising an efficient implementation, as documented 
?D0 

in Section 10.3. We identify a matched state by means of a single query on a database table, which 

represents the limit of how efficient this identification could be. 

11.2 Theodore Examples 

11.2.1 A Simple Workflow 

We now turn to verification of workflow and contract models using Theodore. We start with a 

simple example, which is a flexible workflow model, described as an initial task, P, together with 0 
a number of methods (or, "count as" rules) and operators for how the task may be decomposed. 

We have previously described this example in Section 8.2.1. 

Our TheodoreProblem defines a TheodoreDomain having three methods, viz. 0 

" P: true: Par(SI, S2) - decomposes P into a Par containing two tasks S1 and S2. 

" SI: true: Seq(A' BI) - decomposes S1 into a Seq containing two tasks A' and B1. 

" S2: true: Seq(C' DI) - decomposes S2 into a Seq containing two tasks C' and DI. 0 

The domaiii also defines four operators, viz. 

" A': true true: A- decomposes task A' into the action A. 

" B': true true: B- decomposes task BI into the action B. 

"CI: true true: C- decomposes task C, into the action C. 

"D1: true true: D- decomposes task DI into the action D. 
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Simple workflow domain 

Initialising planner... 
Planning. cccc. cc. ccc. cccc. cc. ccc. 
Workflow/Contract is SOUND with no constraint violations. 
Planning details ... 
Time taken: 0(h), O(m), l(s), 750(ms) 

O: A 

O: O: C 

0: 0: 0: B 

0: 0: 0: 0: D 

END OF PATH 

0: 0: 1: D 

0: 0; 1: 0: B 

END OF PATH 

0: 1: B 

0: 1: 0. C 

0: 1: 0: 0: D 

END OF PATH 

I: C 

1: 0: A 

1: 0: 0: D 

1: 0: 0: 0: B 

END OF PATH 

1: 0: 1: B 

1: 0: 1: 0: D 

END OF PATH 

1: 1: D 

1: 1: 0-A 

1: 1: 0: 0: B 

END OF PATH 

Figure 11.11: Output from Verifying a Theodore Representation whose Initial Task Network De- 
0 e, 

composes to'the Simple Workflow Model: Par(Seq(A, B), Seq(B, C)). 
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The domain constructs that are present mean that eventually the model Par (Seq(A, B) , Seq(C, D)) 

will result from all possible decompositions. 

Tile Theodore planner, used as a verification tool, identifies all possible enactments of the initial 

task; and, for soundness, establishes that all partial decompositions are further decomposable into 

models which represent complete enactments of the initial task (as described in Section 8.3). In 

Figure 11.11, we see that there are six possible ways of enacting the initial task network, which is 

the appropriate result, and that the workflow, as described, is sound. The temporal constraint that 
is checked confirms the soundness result - we test the CTL* proposition: AF Completed-act (PI), 

which asserts that the initial task network completes in every possible enactment path. 
In Figure 11.11, every '. ' after the word 'Planning' indicates where the planner has tried an 

alternative path in verification, and each V indicates a constraint checking step. In the verification 

output, each action is prefixed by all action history. If an action is the first in a plan, it will be 

prefixed by a single number which indicates an index for the action in the collection of actions 

possible at this stage of the plan. In this output, there are two first actions, either A (the Oth 

action, in the collection of first actions, as indicated by 0: A), or C (the 1st action, in the collection 

of first actions, as indicated by 1: C). For 0: A, there are two possible plan continuations 0: 0: C and 
0: 1: B, tile Otb and 1st actions, respectively, in the collection of actions that may follow 0: A. The 

first of these may be extended by 0: 0: 0: B or 0: 0: 1: D, and so on. END OF PATH is a delimiter, and 
indicates that another plan has been found. As each partial plan must lead to a full plan, each 

prefixed action, output by the planner, must extend the previous one (unless it follows all END OF 

PATH delimiter), and the output must end with an END OF PATH delimiter. 

11.2.2 Transf erProperty Contract with Power (on Vendee) 

In this subsection, we present output from performing verification on a Theodore model correspond- 
in., to the example presented in Section 9.4.5, where a contract between two parties is described. 

The contract consists of a power held by a vendee, such that on paying three instahnents, they 

acquire the title to a property. This is prescribed by a method which stipulates how this power 

may be exercised. The contract also specifies a number of other rules, i. e. methods and (complex) 

operators, which prescribe how payments may be made. 
Rom Section 9.4.5, the contract might look as follows. 

" Initial task: Transf erProperty. 

" Method: MultiSeq(3) (Pay) counts as TransferProperty. 

(Pay on vendee) 

9 Coinplex Operator: SendCheque counts as Pay. 

(Pay on vendee, SendCheque on vendee) 

* Complex Operator: EFT counts as Pay. 

(Pay on vendee, EFT on vendee) 

The authoring of this contract as a Theodore planning problem is shown in Figure 11.12. 00C, 
We use Theodore to verify that all partial decompositions may be completed, and also to verify 
the constraint: AG (Completed-act (Payments) - Complete d-act (Trans f erProperty) ). This 
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Figure 11.12: Theodore Representation of the Trans ferProperty Contract. Containing the Power 

oil the Vvildef.. 

Figure 11.13: AG (Completed-act(Payments) - Completed-act(TransferProperty». a� ý\u- 
thored in EMF 
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Power Contract with particular constraint checking... 
Initialising planner... 
Planning. ccc. c. cc. c. ccc. c. cc. c. 
Workflow/Contract is SOUND with no constraint violations. 
Planning details ... 
Time taken: 0(h), O(m), O(s), 470(ms) 

O: SendCheque 

O: O: SendCheque 

0: 0: 0: SendCheque 

END OF PATH 

0: 0: 1: EFT 

END OF PATH 

0: 1: EFT 

0: 1: 0: SendCheque 

END OF PATH 

0: 1: 1: EFT 

END OF PATH 

1: EFT 

I: O: SendCheque 

1: 0: 0: SendCheque 

END OF PATH 

1: 0: 1: EFT 

END OF PATH 

1: 1: EFT 

1: 1: 0: SendCheque 

END OF PATH 

1: 1: 1: EFT 

END OF PATH 

Figure 11.14: Output from Verifying the Theodore Representation of the Transf erProperty 
Contract, Containing the Power on the Vendee. 
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No Power Contract. No constraint checking... 
Initialising planner... 
Planning ......... 
Workflow/Contract is SOUND. 

Planning details ... 
Time taken: 0(h), O(m), O(s), 540(ms) 

O: SendCheque 

O: O: SendCheque 

0: 0: 0: SendCheque 

0: 0: 0: 0: SendSignedTransfer 

END OF PATH 

0: 0: 1: EFT 

0: 0: 1: 0: SendSignedTransfer 

END OF PATH 

0: 1: EFT 

0: 1: 0: SendCheque 

0: 1: 0: 0: SendSignedTransfer 

END OF PATH 

0: 1: 1: EFT 

0: 1: 1: 0: SendSignedTransfer 

END OF PATH 

1: EFT 

1: 0: SendCheque 

1: 0: 0: SendCheque 

1: 0: 0: 0: SendSignedTransfer 

END OF PATH 

1: 0: 1: EFT 

1: 0: 1: 0: SendSignedTransfer 

END OF PATH 

1: 1: EFT 

1: 1: 0: SendCheque 

1: 1: 0: 0: SendSignedTransfer 

END OF PATH 

1: 1: 1: EFT 

1: 1: 1: 0: SendSignedTransfer 

END OF PATH 

Figure 11.15: Output from Verifying the Theodore Representation of the TransferProperty 
Contract, NOT Containing the Power on the Vendee. 

0 
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No Power Contract with particular constraint checking 

Initialising planner... 
Planning. ccc 

Constraint check failed. Dumping last record. 

Instance: 0, State: 1, Cid: TransferProperty 

Instance: 1, State: 1, Cid: TransferProperty Seq 

Instance: 2, State: 1, Cid: Payments 

Instance: 3, State: 1, Cid: MLS-SEQ_Payments 

Instance: 4, State: 2, Cid: Pay 

Instance: 5, State: 2, Cid: Pay 

Instance: 6, State: 1, Cid: Pay 

Instance: 7, State: 0, Cid: TransferTitle 

Figure 11.16: Output from Verifying the Theodore Representation of the Transf erProperty Con- it, 0 
tract, NOT Containing the Power on the Vendee (ii) 

This time, Nve check the constraint that as soon as Payments has been completed, this counts 
as Transf erProperty completing. 

says that the moment the Payments MultiSeq activity has completed, the transfer of property is 

effected. The autboring of this constraint is shown in Figure 11.13. The output from Theodore is 

shown in Figure 11.14, where we see that the contract is sound with respect to completion along 

all possible enactment patlis and no constraint violations. 
In the output from Theodore, Ave note the different ways in which payments may be made 

(either sending a cheque, or by EFT). 
C3 

11.2.3 Transf erProperty Contract with No Power (on Vendee) 

Finally, we show output from the verification of the variant contract which no power on the vendee. 
Instead, the power to transfer the property lies with the vendor. The contract, from Section 9.4.5, 

is represent in Theodore, thus. 

e Initial task: Transf erProperty. 

e Method: Seq(MultiSeq(3) (Pay), TransferTitle) counts as Trans f erProperty. 

(Pay on vendee, Transf erTitle on vendor) 

e Complex Operator: SendCheque counts as Pay. 

(Pay on vendee, SendCheque on vendee) 

* Complex Operator: EFT counts as Pay. 

(Pay on vendee, EFT on vendee) 

* Complex Operator: SendSignedTransf er counts as Transf erTitle. 

(SendSignedTransf er on vendor, Transf erTitle on vendor) 
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The output from not performing any constraint checking, as shown in Figure 11.15, is that the 000 
contract is sound. Notably, as shown in Figure 11.16, if ive include checking for the same constraint C, 0 
as before (namely, that as soon as Payments has been completed, this counts as Transf erProperty 

completing), the verification tool reports the expected violation of this constraint. 

In the next chapter, we present some conclusions for this thesis. 



Chapter 12 

Conclusions and Future Work 

In the introduction to this thesis (Section 1.2), we enumerated the aims of this work to be concerned 
with addressin- the issues of- 0 

" Providin- a formal -roundin- of workflow. 00n 

"A more flexible approach to workflow. 

" How workflow concepts might apply in the modelling of contracts, and looking at the mod- 00 C> 
elling of contracts generally. 

We also listed ten contributions of this work that we consider to have gone a significant way to 

meeting these aims. 
1) We address the issue of providing a formal grounding for traditional workflow. We define a 

meta-model called Liesbet as a point of reference for our formalisation of workflow. 
2) We have provided an authoring, verification and enactment framework for workflow based on 

our formalisation. 

3) We have identified a reduced set of workflow patterns, using which (we show) all others may 
be represented. 

4) We have demonstrated a number of important results using our formal cha ra ct erisat ions of 
traditional workflow. 

5) We have proposed a characterisation of workflow to be: Flexible lVork-flow = Abstract Model 

+ Policies for Refinement, in order that we might support a more flexible view of workflow, 
including support for collaborative work-flows. 

6) We have implemented our own planner, Theodore, which in itself is a useful contribution as it 

provides many novel features. 

7) We have provided an authorinU 0, verification and planned enactment framework for flexible 

workflow. 
8) We have proposed a new perspective of workflow, namely an institutional perspective. We call 

our institutional account of workflow Institutional lVork-flow Modelling (IMI). 

9) By drawing out institutional concepts inherent in workflow, we have been able to propose how 

workflow may be used in the modelling of contracts. 
10) We have provided an INVINI-based framework for contract authoring, verification and (planned) 

enactment. 

249 
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We structure the following discussion around the presented three aims, while providing some 0 ?D 
further insight regarding the ten contributions as pertinent to do so. 

12.1 Formal Grounding of (M-aditional) Workflow, through 

Liesbet 

This section primarily concerns Contribution #1. That is, the formalisation of workflow in order 
to address the lack of robust semantics that is typical of many workflow languages [121]. 

12.1.1 Approach 

In defining the Liesbet meta-model, we have sought to understand the true nature of workflow, 

and thus the fundamental concepts that need to be represented with Liesbet. In the overview 

of constructs, presented in Section 3.1, and through the additional constraints imposed on the 
intended semantics, presented in Section 3.2, we have defined a clear and succinct point of reference 
for any formal characterisation at the computational view. 

In Section 3.5, we document how Liesbet, at the information view, supports all of the YAWL 
[125,126,123] workflow patterns. The representational requirements for Liesbet were primarily 

sourced from the need to be able to represent the YAWL patterns [125,126,123,64], as well as the 

control flow perspective of the Web Service Composition (NNISC) language, WS-BPEL. In Section 3.6, 

we briefly present details of a mapping of (the control flow perspective) of WS-BPEL to Liesbet. 
We have defined functions which map Liesbet models to their characterisations at the com- 

putational view. For any of these mapping functions, it is the definition of the mapping function, 

as well as the semantics of the corresponding formalism, that define the particular characterisa- 
tion. For instance, our SitCalc characterisation of Liesbet is the sum of the mapping function 

Msitc. 1ri-I and the semantics of SitCa1c, as defined in [98]. 

12.1.2 A Minimal View of Workflow 

Through the definition of Liesbet, we are able to propose a minimal view of work-flow which may 
be used to understand what is fundamentally required from any computational view formalism 

used to characterise Liesbet. Our definition of a minimal view is composed of the definition of 

a reduced (or primitive) set of patterns (Contribution #3), with which we show that all others 
may be represented (as described below), as well as a number of Semantic artefacts for workflow 
that need to be observed. The two together constitute the intended semantics for Liesbet, and our 

view on a minimal semantics for workflow generally (according to the representational requirements 

set out for capturing YAWL and WS-BPEL 

Elaborating, we consider a minimal view of workflow to be a collection of activities (operating 

in parallel threads) with states, thus defining a transition system, whose transitions are constrained 
by: 

a Synchronisation conditions on the states of activities. 

a Progression of certain (i. e. structured) instances over others (i. e. basic instances)- 
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a Atomic propagation of all side-effects of compIetion/cancellation and execution through ac- C, r, 
tivity hierarchy. 

e Some other phenomena, namely: 

- Join conditions for activities (i. e. support for SeqCancel). 

- Unlimited multiple-instance activities (i. e. Multi)- 

- Activities effecting cancellation of others (i. e. CancelActivity). 

We have been able to show that all other representational requirements for workflow reduce 
to this minimal view, through our proposal of a primitive set of workflow patterns. We show this 0 
reduction to be sound in Section 6.5. Rom this minimal view, we are able to conclude that: 

9 NNorkflow is little more than: Parallel Composition + Arbitrary Synchronisation. 

9 The expressivity of workflow rests primarily with the choice/suitability of tile synchronisation 
language. 

C, n 

Note that our minimal view of workflow does place some bias as to suitability of any cornpu- 
tational view formalism that we rniaht choose to characterise Liesbet. However, this is exactly 0 
the point - we have wanted to identify a minimal set of concepts that we feel characterise the true 

nature of workflow, and this bias is a legitimate by-product of this process. 

12.1.3 Comparison of Formalisms for Characterising Liesbet 

In our work, we have principally used three formal tools for characterising the intended semantics 

of Liesbet. These are: 

" Milner's Calculus of Communicating Systems (CCS) [78,801. 
0 

" Cleaveland et al's Prioritised CCS (PCCS) [30,29], which we shall call PCCS for convenience. 

Situation Calculus (SitCalc) [76,77,98], based on First-Order Logic (FOL). 
0 

We discuss the utility of these various formalisms for characterising Liesbet in the next few 
0 

sub-sections. 

12.1.4 CCS/PCCS-based Charact erisat ions 

We selected CCSIPCCS as appropriate formalisms to investigate for two reasons: 
1) There has been quite a lot of talk within the BPNI community as to whether Petri nets or CCS/7r- 

calculus is better suited for the characterisation of workflow, and specifically the YAWL patterns 
[1221. While we do not seek to compare these two formalisms at length, by characterising YAWL 

with CCS we are able to provide a contribution to this debate from one perspective. Note that 

we do present some points regarding their respective suitability at the end of Chapter Five. 
2) The operational semantics of CCS/PCCS (in terms of facilitating compositional specifications 

of behaviour) should lend themselves quite well to the representation of workflow, and this is a 
point we seek to investigate. C, 
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In this thesis, we have presented a comprehensive formalisation of the Liesbet nieta-model usin., 
PCCS. The formalisation represents a contribution to the Business Process Management commu- 

nity. We argue that it trivially follows from this that a full CCS characterisation of the Liesbet 

meta-model is possible. The principal motivation for using PCCS over CCS was lower verifica- 
tion complexity, as well as it being a particularly amenable language, through its in-built support 
for the specification of priorities, for capturing that the priority of internal workflow activity (i. e. 

gression of basic instances). progression of structure instances) over external activity (i. e. pro., 
There is an interesting dichotorny at play in our PCCS-based characterisation of Liesbet. We 

could make the verification complexity of PCCS-characterised Liesbet models even better by using 
further priority levels to achieve an even better partial-order reduction (POR) on the state space. 
However, these are not strictly necessary to capture the intended semantics of Liesbet, which is 

sufficiently captured without their use, and they would greatly obscure the clarity of the PCCS- 

based characterisation of Liesbet. For instance, in the characterisation of synclironisation types, 

presented in Appendix Section A. 3, we use many handshaking actions. These could be mutually- 
differently prioritised to effect better POR, but, the order in which they occur is not important for 

the characterisation to be sound. In fact, we could remove some of the use of priorities in the current 

characterisation, and still have a sound characterisation. Again, the handshaking actions occur at a 
distinct level of priority from all other actions. We could soundly remove this dispensation, which 

arguably 'would make for better clarity in specification but at the cost of increased verification 

complexity. 
Notably, even when we opt for maximising POR in order to reduce verification complexity 

as much as we can, the performance of verification under CWB-NC is still painfully slow for all 
but the simplest PCCS-characterised examples. An example is that of the 'Ravel Agent model, 

presented in Section 4.5, which took several hours to return a result for checking whether the model 

completes along all enactment paths. The principal reason for this is the inability of the CCS-based 

characterisat ions to capture the intended semantics for Liesbet practicably, as explicated by our 

minimal view of workflow. 

Weaknesses 

Our PCCS-based characterisation of Liesbet exposes the real weaknesses of using process algebra, 00 
such as CCS/PCCS, for the representation of workflow. Formalisms such as these suffer on at least 
two principal counts: 

0 It is not possible to arrive at the intended semantics for Liesbet without a lot of abstraction. 

It is only through abstraction that we may count more than one transition occurring at a time 

to be atomic, which is a, key requirement of the intended semantics (in propagating effects 00 
of completing/cancelling childless instances up the tree, for instance). Although CCS/PCCS 

0n0 
has a n6tion of abstraction in distinguishing internal (-r) transitions from external ones, it is 

0 
not possible to instruct CWB-NC to take account of this difference in constructing the state 0 
space of models. The lack of such a capability is hardly surprising: a CCS/PCCS model is 

0 
fundamentally characterised by all of its transition types, and the distinction between external 

and internal transition types is purely cosmetic. As such, to perform model checkinOl on a 0 
CCS/PCCS, as CWB-NC does, it would always be necessary to construct the state space for a 

model accounting for all transition types, at least initially. It is the construction of the entire 0 
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space that kills CWB-NC when used for verification of PCCS-characterised Liesbet models. 

41 The efficiency (and clarity) of performing queries as part of progressing synchronisation types 
is not good. In order to carry out a single atomic query, there is no limit to the number of 
instances that may be need to be queried as to their state. All of these individual queries 
themselves require several transitions. The state space for querying alone quickly explodes. 
Again, this is behaviour that needs to be captured as atomic, together with the consequences 

of completing/cancelling synchronisation instances being atomically propagated. 

It is worth noting, purely subjectively, that the specification of semantics for the generic type 

agents is quite clear and succinct, using CCS/PCCS. It is evidently appealing to be able to express 
the semantics using the prograrnmin-like, compositional constructs of CCS/PCCS. 

The down-side of using such a language is that we would want its operational s emantics to admit 
the notion that multiple transitions may occur atomically, as we have stated. We would imagine 

that this would be quite difficult to achieve in a process algebra such as CCS/PCCS. Thus, we have 

some clarity (especially when compared with the Situation Calculus characterisation, presented in 

Chapter Six) at the cost of atomicity, which is another apparent dichotomy. 

CCS/PCCS and Petri nets 

Interestingly, it is quite evident that Petri nets would not fare any better in characterising Liesbet 

than our CCS-based characterisat ions do. The principal reason lies in our making the recording 

of the state of activities explicit. Because of this, Petri nets would handle the characterisation of 
Liesbet in largely the same way in having tracker, generic type, and scheduler agents. Moreover, 

the same shortcomings in tile expression and evaluation of synchronisation conditions would exist. 
It is also notable that none of the problems asserted (in Section 2.3.2) for Petri net-based char- 

acterisations of the YAWL patterns would exist in a Petri net-based characterisation of Liesbet. 
These problems were concerned with: tracking multiple-instances, advanced synchronisation, and 

cancellation. This is because we resolve these issues at the information view (i. e. in defining 

Liesbet) prior to any characterisation using Petri nets/CCS/PCCS. This is a point that is dis- 

cussed further below. 

The need for abstraction described in the discussion of the weaknesses of using CCS/PCCS 

does highlight an important argument that we seek to inake in this thesis, viz. 00 

General-purpose languages for the description and modelling of process dynamics (such 

as Petri-nets and CCS) are, necessarily by their nature, too low-level for tbe description 

of workflow. In modelling workflow, we are able to make a number of prescriptions, 

reprdinar the way in which processes must evolve, as embodied by the definition of 

a minimal view of workflow here. As such, we are able to describe workflow using 

artefacts that are much more coarsely-grained than those offered by these general- 

purpose languages. 
00 

Consequently, when looking to characterise workflow, at the computational view, such languages 
000 

are not ideal choices, as already described. Rather, we need a language in which we are able to 00 
capture the espoused minimal view of workflow cleanly. In some regards, as we discuss below, 

SitCaic is better suited for this purpose, but it is not without its shortcomings either. 
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CCS/PCCS versus 7. --calculus 

It is notable that both [37] and [941 suggest the use of the i-i-calculus for the modelling of the 

YAWL patterns, the latter making particular use of a primary aspect of 7-. -calculus: mobility - where 

communication channels may be passed between agents. Both our work, and that of [117], show 
that the use of mobility is not essential when modelling the YAWL patterns. In fact, it is bard to 

see many applications, in the context of workflow modelling, where it is necessary, or particularly 
desirable. One exception is in the modelling of sessions, see for example [601, where dedicated 

C, 
communication channels are passed between agents. 

12.1.5 SitCalc-based Characterisation 

A motivation for investigating the use of the Situation Calculus was that, as a logic-based formal- 

ism, it is quite different to a process algebra-based approach for characterising the behaviour of 00 
dynamic systems. Moreover, we felt that certain aspects in which CCS/PCCS may be deficient 

may be better addressed using the Situation Calculus, and vice-versa, making the investigation of 000 
using the Situation Calculus to characterise Liesbet complementary to the investigation of using 00 
CCS/PCCS. 

Strengths 

An unequivocal advantage of using SitCalc for the characterisation of Liesbet is that cer- 
tain aspects of the intended semantics for Liesbet are captured quite straightforwardly, such 

as: arbitrarily-complex synchronisation conditions, priority of structured instances over basic in- 

stances, and atomic propagation of side-effects throuali the activity instance hierarchy (see Sec- 

tion 3.2 for more information regarding the intended semantics). Atomic propagation of effects 
is particularly important when it comes to verification, as it greatly reduces the complexity of 

verification (in terms of the state space generated). In our CCS/PCCS-based clia ract erisa t ions of 
Liesbet, we fail to capture this notion in the absence of abstraction, and as a result verification 

complexity soars. 
The specification of semantics for synchronisation conditions (both as queries in Go and Stop 

types - see Section 3.1.4, and in synchronisation rules - see Section 3.3) is naturally accommodated 
by logic-based formalisms, such as SitCaic, where Ave can straightforwardly access current workflow 

state. That is, Ave can write the conditions as fluent-based assertions that must currently hold, as 
described in Section 6.3. Token-based formalisms (such as Petri nets), or process-based formalisms 

(such as CCS/PCCS), appear to be less suitable for the purpose of capturing synchronisations 

conditions, because of the need to consume many tokens, or make many transitions, in order to 

ascertain the result of a query. As well as being inefficient from a verification perspective, it also 
tends to be undesirably verbose. This does not mean to say that it is not possible to represent 

such conditions using these other formalisms, as Ave have demonstrated in Appendix Section A. 3, 

for PCCS. 

A Weakness 

A weakness of using SitCalc (albeit subjective) is that, while the initial foundational axioms I 
for ivorkflow presented in Figure 6.12 are arguably clear enough, the augmented foundational 
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ge types (e., -. axioms for -eneric activity types such as the choice types (e. cr. Choice 0 00) and mer 
Multimerge, presented in Appendix Section B. 1.4) are rather impenetrable. In contrast, the 

CCS/PCCS-based characterisat ions presented in Chapter Five are arguably a lot clearer in their 

meaning. As pointed out there, however, there is an apparent dichotomy between the clarity 
that comes from programming-like metaphors for characterising behaviour, on tile one hand, and 
the ability to model atomic arbitrary side-effects, on the other. It very much appears that, for 

the characterisation of Liesbet, the strengths of the logic-based approach (i. e. SitCa1c) are the 

weaknesses of the process algebra- (i. e. CCS/PCCS) based and vice versa. 

12.1.6 Shoe-liorning 

We do not consider it to be appropriate, as all alternative approach to ours, to shoe-horn specifi- 

cations of workflow artefacts directly into some general-purpose formal language (as people have 
C, ID 

done, for example, when considering the application of Petri nets to workflow - see WF-nets in 

Section 2.3.2). The problem with a shoe-horning approach is when it recommends the underlying 
formalism in its entirety for, in this context, tile specification of workflow. This is often inappro- 

priate because it allows the use of the underlying language in an unconstrained way. It is useful to 

consider the applicability of general-purpose formalisms (such as CCS and Petri nets), given the 

tool-support and the wealth of results that exist for them, but to do so in the absence of defining 

an abstract model of what needs to be modelled, and using such a model to constrain the use of 
the underlying formalism, would appear to be folly. In our view, the approach should be top-down, 

rather than bottom-up. 

An example of this point can be found in an issue described in the YAWL (Yet Another Workflow 

Language) work [1251, and further investigated in [140], concerning the use of OR-joins in the a000 
context of arbitrary cycles. OR-joins are meant to synchronise (possibly) multiple threads of 

enactment. Arbitrary cycles are unstructured cycles in that they may contain arbitrary entry and 

exit points. In the Petri net-like, token-based, characterisation of YAWL, it is not clear when an OR- 

join should be considered to be satisfied, i. e. when it has received al I pertinent input tokens. The 

issue is exacerbated by the use of arbitrary cycles because, according to the token-based semantics, 
the question of how tokens will be recycled has a non-trivial answer. 

We would consider that issues such as when to synchronise an OR-join should be answered at the 

information view, without consideration of any particular computational view tool or formalism. 

This issue manifests itself in YAWL because of the chosen computational view formalism dictating 

the ontological commitments of workflow artefacts, rather than cleanly defining these separately, 

and then only using the computational formalism to describe their meaning. In YAWL, workflow 

artefacts are shoe-horned into the machinery of the underlying computational formalism, rather 
than defining them cleanly, in a suitably abstract way. In doing this, there is no mechanism 
(i. e. the information view) constraining the use of the underlying computational formalism, which 
leads to the creation of a representational problem for workflow which need not exist. In our 
information view model for workflow, Liesbet, synchronisation occurs when queries on workflow 

state are satisfied. Query satisfaction is easily computable according to its informal semantics, 

and this remains tile case when forinalising the semantics of Liesbet, at the computational view, 

using CCS/PCCS, SitCaic, or, indeed, Petri nets. The problem concerning synchronisation (for 

OR-joins) does not arise. 



256 Cljat)ter 12. ConcIusions and Fbture Work 

A similar issue obtains with respect to the cancellation of activities, which constitutes YAWL 

patterns #19 (Cancel Activity) and #20 (Cancel Case). These patterns cause problems when 

modelled using Petri nets, if cancellation is modelled as the withdrawal of tokens. This is because 

it is not possible to anticipate, generally speaking, how many tokens to remove from appropriate 

places within a Petri net in order to effect a cancellation. This led the authors of [125] to introduce 

special "vacuum-cleaner"' -like artefacts, as part of a transition-systern based semantics for workflow, 
to model these YAWL patterns. 

12.1.7 An Appropriate Expressivity for Workflow 

In considering the definition of a workflow language, it is clearly important to decide an appropriate 0 C, in 
expressivity for the language. By this, we do not mean whether the language is Tbring-complete, 00 it, 0n 
i. e. whether it has the computational power of a Universal Turing Machine [114]. A language 

0n0 
may be 'J. 'uring-complete, but it does not mean that it is suitable for writing workflow models in a 00 
succinct and clear way. Moreover, there are definite benefits, in defining special-purpose languages, 

for them not to be Turing-complete, such as for decidability reasons. Rather, suitability, in the 

sense conveyed, is the key. It is important at both information and computational views. 
Ultimately, an appropriate expressivity at the information view meta-model is going to depend 

largely on the set of patterns that we seek to capture, i. e. the YAWL patterns. Whenever the set 

of patterns and thus the representational requirements for workflow grows, we would need to take 

account of the additional requirements within the information view meta-model, Liesbet. As it 

currently stands, Liesbet supports all of the patterns that are prescribed by the representational 

requirements. 
There is another source of uncertainty regarding the expressivity of Liesbet, which lies in the 

expressivity of the language for expressing synchronisation conditions. It is unclear whether the 
language used for synchronisation conditions is sufficient for capturing all conceivable workflow- 0 C, 0 
based scenarios. 

In fact, the language is rather simple: a synchronisation constraint is made up of queHes on state 
that need to be satisfied, where any particular atomic query has an associated tfisibility hwizon. 

The key feature of the language is flow the visibility horizon of a query is specified; and this would 
be a principal issue when deciding whether the language is sufficiently expressive. Currently, a 

visibility horizon, in the absence of the use of isolated scopes, may be either unconstrained, or 

constrained according to the use of reference types. We have devised a means of constraining 
the visibility horizon of a query oil tile basis that querying instances will be principally interested 

in the state of instances that share a common, local ancestor instance - hence, the use of plain 

reference types. Sometimes, we are interested in satisfying queries (for instance, when used withill 

niultiple-instance activity types) in a distinct way - hence the use of distinct reference types. The 

use of isolated scopes further constrains a query's visibility horizon. 

A key difference in our work, to that of [37,94,117], reviewed in Section 2.3.2, lies in the 

capability for arbitrary synchronisation on workflow state. These other approaches only support 

very primitive querying against workflow state, in order to facilitate the Milestone (#18) YAWL 00 
workflow pattern. In our approach, a model author call, in both synchronising the performance of Cl 

activity instances and in cancelling activity instances, gain a fine level of control over how activity C, C, 
instances are synchronised or what instances are cancelled. 
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One advantage of the use of an information view meta-model to fix the representational re- 

quirements is that it is possible to consider the most desirable way of expressing artefacts without 

concern for any particular computational view formalism that inay be used to characterise the 

semantics of workflow. We would argue that our synchronisation language is particularly succinct 00 in 
and intuitive, even when the synchronisation condition that needs to be expressed is quite complex. 
This is a function of being able straightforwardly to combine complex queries on workflow state. 
In contrast, when using CCS and Petri nets it is far from straightforward to do so. An example 

of this was presented at the end of Chapter Four, where the third travel agency scenario is in fact 

quite complex to characterise using Petri net-based networks. 0 

12.1.8 Bespoke Formalism 

It mi. lit prove beneficial to define a bespoke formalism for Liesbet to capture its semantics more 
directly. We would make the following comments in this regard. We could either: 

Directly characterise the information view, in which case we might attempt the definition 
0 

of a (structured) operational semantics applied to Liesbet compositions. It is by no means 

clear how attractive such a characterisation would be, for instance, in terms of its clarity and 

understandability. 

OR 

Define a Ian-uage which raises the level of abstraction closer to that of the intended semantics C, 0 
of Liesbet, but does not provide a semantics directly to Liesbet. That is, the language C, C, 
could support some notions of the intended semantics as first-class artefacts, such as the 

notion of hierarchy. 

The idea would be that the mapping from the meta-model to the intermediate language, and C, 0 C, 
the semantics of the intermediate language itself, are clear and easy-to-understand. Thus, the 00 
sum of the semantic cliaracterisations is expressed in a natural way, avoiding the weaknesses 
that have been highlighted in both SitCaic and CCS/PCCS characterisations. 

In light of the (apparent) dichotomy expressed regarding the characterisation of generic- 0n0 
activity types using pro grainnii ng- like constructs and the need to support atornicity, it is 

00 
less than clear how successful an attempt at a bespoke formalism in this way would be. 

12.1.9 Results Demonstrated for Characterisations of Liesbet 

We have presented two principal results in this work (Contribution #4), viz. 
1) For our CCS and SitCaic-based characterisations, we have proved that completion of Liesbet 

models is guaranteed (in the context of assumptions relating to the absence of deadlock and 
livelock in a Liesbet model). 

2) For SitCaic models, we show that the characterisat ions, presented in Section 3.4, of Liesbet 

constructs as abbreviations, in the set Liesbetabbrer, are sound. 
These are particularly useful results; the latter confirms our minimal view of workflow to be 

correct. 
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12.1.10 Authoring, Verification and Enactment Framework for Tradi- 

tional Workflow 

We have implemented an authoring, verification and enactment framework for Liesbet models 
(Contribution #2). Regarding authoring, we have a simple GUI for describing models, as shown 
in Chapter Ten. For enactment, our Liesbet engine provides a Java-based API in order that 

the workflow engine can be integrated with other application logic. Our main interest in these 

conclusions is in discussing verification. 
For our CCS/PCCS-based characterisat ions, we have used the Concurrency Workbench for the 

New Century (CWB-NC) [111, as a direct route to verification. However, we have found verification 

of CCS/PCCS-characterised Liesbet models using CWB-NC to be punitively inefficient, given the 

wastefulness in terms of states and transitions of the CCS-based characterisations, as described in 
Section 5.7. 

We have sought to make verification under CWB-NC practicable by ensuring that the CCS/PCCS 

chara ct erisat ions are as efficient as possible in their semantic characterisation of Liesbet. Unfor- 

tunately, both charact erisa t ions do still lead to inflated state spaces. This is due to the lack of 

atomicity in effecting propagation of side-effects, as described previously, and also the inefficiency of 
evaluating artefacts such as synchronisation conditions, when these are represented in CCS/PCCS. 

Tile simple example: Par(Seq(A, B) Seq(C, D)), presented in Section 5.1.3, when characterised 

using CCS, had a state space of 833 states under CWB-NC. A significant improvement is made in 

the PCCS characterisation of the same model. It generates 53 states under CWB-NC. It is notable 
that the state space, as described in Section 6.2.1 according to the SitCalc-based semantics, for 

this particular model is 10 states. 
An advantageous aspect of CWB-NC is that we have been able to use it to provide quick validation 

of our CCS-based characterisat ions of Liesbet. A similar approach could be undertaken in using 
a logic programming language like Prolog to quickly validate our SitCalc-based characterisation 00 C5 0 
of Liesbet. 

Our principal framework for verification of Liesbet models is implemented in Java and runs 

considerably more efficiently in verification than CWB-NC on the examples that Ave have presented 
because it operates according to the intended semantics for Liesbet - described above, which 
has the consequence of minimising the verification state space. It has been implemented against 
the SitCaic-based characterisation of Liesbet, but, as it is realised using Java, it is not a direct 

implementation of the SitCaic axioms for Liesbet, which would be the case if were to express 
them in Prolog, for example. 

However, as noted in Chapter Tell, use of SitCalc provides a natural path to implementation 

using a relational database. The database query language SQL is a sugar-syntax for the relational 

calculus, which means SitCalc successor-state axioms easily map to SQL queries. We decided 

against the- use of Prolog for reasons of efficiency. Not only would Prolog be quite inefficient, 

relational databases are contrastingly very efficient at manipulating database tables and returning 

results from the queries captured on the right-hand side of SitCalc successor state axioms. 
Our verification approach for Liesbet is capable of verifying workflow soundness as well as 

checking Liesbet models against constraints expressed in the temporal logic CTL*. In principle, 

any constraint language whose semantics can be characterised by a progress? . on function, such as 
that presented in Chapter Ten, would be suitable. Tile verification engine divides the verification 
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pan: invalid end state (at depth 17) 
pan: wrote test3. xml. prm. trail 
(Spin Version 4.2.5 -- 2 April 2005) 

Warning: Search not completed 
+ Compression 

Full statespace search for: 
never claim - (none specified) 
assertion violations + 
cycle checks - (disabled by -DSAFETY) 
invalid end states + 

State-vector 100 byte, depth reached 18, errors: 1 
5 states, stored 
0 states, matched 
5 transitions (= stored+matched) 

14 atomic steps 
hash conflicts: 0 (resolved) 

... truncated 

Figure 12.1: SPIN Output for Example Liesbet Model. 

--p- Marks join condition 
A has join condition of D completing 
C has join condition of B completing 
A deadlock will occur... 

Figure 12.2: GraplAcal Representation of Example Liesbet Model. 

of Liesbet models into a number of runs, whilst maintaining verification soundness. This has the 

effect of reducing the complexity of verification further still. 
It is worth mentioning that we have experimented with the SPIN [59] model checker for the 

verification of Liesbet models. We have represented the semantics of Liesbet in Promela (the 

input language for SPIN) and found it to be punitively inefficient, as was the case with verifying 
CCS-based models with CWB-NC. This is because of the inability of Promela to capture the intended 

semantics of Liesbet in an efficient way. The principal problem, which is common to our experience 
of using CWB-NC with CCS/PCCS, is the inability to prescribe arbitrary side-effects of actions as 
being atomic. 

It is possible to use SPIN as a model-cliecking wrapper for models written in tile imperative 

programming language C. We have also implemented a verification approach for Liesbet based 

on this approach. This is particularly desirable because it means that we call capture minimal 

models, while using the biably-optimised implementation of SPIN to drive the verification process. 0 C, 
In Figure 12.1, we present all excerpt from the output of SPIN when detecting the deadlock 

in the Liesbet model presented (graphically) in Figure 12.2. The deadlock is identified by the 

verification run reaching in "invalid end state" -a state which is not one that pertains to proper 

completion of the Liesbet model, but, in being all "end state", is one that cannot be progressed. 
Tile model has the following Easy Syntax definition. 

Par(Seq(A, B) Seq(C, D)) 

A=Act(join(Go(Completed-act(D)))) 
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C=Act(join(Go(Completed-act(B)))) 

12.1.11 Synchronisation Rules -A First Attempt at Flexibility 

We have taken our first step towards greater flexibility in workflow models through the proposal of C, 0 
Synchronisation Rules, which may be used to provide a notion of flexibility that may be captured 

as: Flexible lVork-flow = Concrete Model + Policies for Constraint. We have described how such 

rules may be useful. For instance, we are able to capture the behaviour of Liesbet's PriPar 

construct usina, such a rule. 0 

12.1.12 Strengths and Weaknesses 

We consider the use of an information view nieta-model to constrain the scope of the semantics of 
the underlying computational view formalism not only to be essential but also to be a real strength 00 
of our work compared with other contributions, such as [125]. The entailment (from Liesbet) of 

a minimal view of workflow is also si-nificant in allowin- us to understand the fundamentals of 00 
workflow for representation at the computational view. 

The question of the adequacy or sufficiency (in expressiveness) of the synchronisation language 

remains open, and can only be effectively addressed through a comprehensive study of typical 

workilow scenarios. Another'weakness of our work is that neither CCS/PCCS- nor SitCaic-based 

characterisations are wholly suitable for the characterisation of Liesbet. It is unclear, however, 

whether a bespoke formalism -%vould necessarily improve matters. The apparent dichotomy between 

clarity and atomicity would need some significant thought to address. 00 

12.2 A Flexible Approach To Workflow, through Theodore 

This section primarily concerns Contribution #5. We have proposed an approach to flexible 

workflow modelling, which is desirable to counter the significant issue of brittleness in traditional 

models of workflow. In doing so, we have been able to accommodate collaborative workflows, which 0 
are an important kind of workflow (as described in Section 1.1) where agents decide collectively 
how a workflow instance should be realised. 

12.2.1 Correspondence to HTN-based Planning 

Our approach to flexible workflow modelling is based on the identification of a corres ondence 0p 
between what we seek to achieve in flexible workflow modelling, as epitomised by the slogan: 
Flexible Work-flow = Abstract Model + Policies for Refinement, i. e. refining an abstract workflow, 
specified for flexible enactment, into a concrete one, and the operation of an HTN-based planner, 
which refines abstract task networks into concrete ones. In identifying such a correspondence, we 
are able to propose a novel approach using HTN-based planning for the description, verification and 
planned enactment of flexible -, vorkflow models. 

We have implemented our own HTN-based planner, called Theodore (Contribution #6). We 
implemented our own planner rather than using an off-the-shelf planner such as SHOP [85], as we 
wanted features (such as complex operator-like artefacts) not available in any other planner. 
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12.2.2 Providing Structure with Flexibility 

A key theme in our work in flexible workflow modelling is the notion that we combine structure 
with flexibility. That is, we start with an abstract workflow model which provides some initial 

structure. Furthermore, there is structure inherent within the policies for refinement, i. e., the 
decomposition relations - methods, operators and complex operators, in that they prescribe net- 
works of actions which are acceptable refinements of tasks being decomposed. 'Moreover, complex 
operators prescribe structure from the bottom-up, in specifying complete refinements of tasks. 

All of these dispensations, with respect to structuring, help reduce the complexity of verification. 
There is a trade-off here between flexibility in workflow specification, and complexity of verification. 
When we allow greater flexibility, the complexity will soar; but, as we allow less freedom, the 

complexity will drop. In the extreme of the latter case, we will have fully prescribed workflow 
models whose verification complexity will be that of Liesbet models. 

12.2.3 Expressivity 

The expressivity of the planning language for describing domains is limited by the expressivity of 0 C, 6 
the knowledge base underwriting the problem description, together with the expressivity of the C, 0 C, 
language used in pre-conditions and effects axioms, and the expressivity of the workflow language n C, 00 
(such as Liesbet) that is used for the specification of abstract workflows. As our planner is 

modular, all of these provisions can easily be changed, and, thus, in principle, our approach does 

not limit workflow authors in what they would seek to express. 
This is a double-edged sword, however, with respect to decidability of an authored problem, 

and, as a consequence, some care must be take during the process of describing problems to ensure 
that decidability is maintained. This is perhaps a less than ideal consequence of making our 
planner wholly flexible. As already stated, we may at some time look at some constraints on what 
is allowed to be expressed, as other planners such as SHOP [85] do. We are minded, however, to 

prioritise flexibility at the possible detriment of usability for the time being. 

12.2.4 Meaning Assignable to a Theodore Flexible Workflow Model 

The meaning that may be assigned to a workflow model expressed with Theodore is simply the set 

of full decompositions that may result from planning over the initial abstract workflow usin. -, the 
decomposition relations specified in the Theodore model. The meaningr of a Theodore model may 
in this sense be considered as being. mutiplicious. This is in contrast to Liesbet models, which 
may be considered to be singular in meaning - that is, for any Liesbet model, its meaning is the C, 0n 
single network specified thereiii. 0 

12.2.5 Authoring, Verification and Planned Enactment Framework for 
Flexible Workflow 

We liave implemented an autborin. " verification and eDactinent framework for flexible (i. e. Theodore) 

workflow models (Contribution #7). As before, regarding authoring, we have a simple GUI for 

describing models, as shown in Chapter Ten. 
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In our approach to flexible workflow modelling, we make a distinction between fixed and variable 
models. Fixed (resp. variable) models are those for which the set of decomposition relations for HTN 
tasks is (resp. is not) fixed. For fixed models, we define a notion of soundness which is embodied as 
the verification cHterion. This criterion prescribes that every partial decomposition of a Theodore 

model leads to a full decomposition. 
The terms verification and enactment amount to: (i) verification and flexible enactment for 

fixed models, and (ii) planned, flexible enactment for variable models. For fixed models, it is 

also imperative that their planning domains be practicably decidable. Under the assumption that 
this is the case for a particular model, verification of fixed flexible workflow models for soundness 
and for the satisfaction of arbitrary temporal constraints is a particularly desirable aspect of our 
framework and novel in the context of flexible workflow modelling. 

For variable models, the options are based around finding a plan to realise the (possibly partially 
enacted) abstract workflow. Here, we may perform "what may I do next? " querying, as well as 
"what-if" simulation. These facilities are also available for fixed models. In performing planning 
a domain expert is able to make choices of which decomposition steps to take based on his or her 

sub ective constraints, as well as doing on-line planning which mixes planning with enactment. i0 1ý 0 

12.2.6 Strengths and Weaknesses 

The strengths of our approach to flexible workflow modelling are as follows: 

" The capability for expressing structure in the definition of a workflow from the bottom-up as C, 
well as the tork-down provides additional power to domain authors in controlling the degree 

00 
of flexibility in a model. This bottom-up structuring is provided by complex operators, which 

are a novel aspect of ourwork. 

" As described at the end of Chapter Eight, our approach compares favourably in terms of 
the modelling capability, and verification and planned enactment facilities against other ap- 

proaches to flexible workflow modelling. No other approach that Ave have been able to identify 

in the literature provides the range of support that we do. We also naturally capture the 

notion of collaborative workflows in our approach. 

Similar to the weakness identified for the synchronisation language for Liesbet, the only weak- 00 
ness that we currently identify in our work on flexible workflow modelling is that we are not sure 0 
whether our approach is powerful enough to cover the range of possible scenarios that might obtain. 0 ?D0 
We are only going to be able to gain insight into resolving this matter through a comprehensive 0000C, 0 
study of typical ivorkflow scenarios. 

12.3 Workflow as a Basis for Contract Modelling, through 

Institutional Modelling 

This section primarily concerns Contribution #8. We have been motivated to consider how 

our work on workflow modellin- mi-ht be reused in other contexts. We consider this to be an 00 
important issue in itself, as part of the utility of research comes from considering how it may be 

C, 
applied in different contexts. An immediately-apparent context was that of contract modelling, 
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where contracts are often cast as protocols (i. e., workflows) of behaviour between two or more 

parties. We have been motivated to look at the issue of contract modelling for its own sake as 
well, as this remains a somewhat formative research field in which there is ample scope to make a 
worthwhile contribution. 

12.3.1 Institutional Workflow Modelling (IWM) as a Foundational Basis 
for Normative and Contract Modelling 

In order to explicate how our previous work may be reused, we have identified a new perspective for 

workflow, namely an institutional perspective (Contribution #9). We define Institutional Work- 

flow Modelling as an embodiment of an institutional perspective for workflow. In INVINI, 

we identify the institutional concepts of counts as and permission, and the related classification 

of actions into institutional and brute classes of action, to be pertinent to the characterisation of 

Nvorkflow. 
These concepts are also pertinent in normative and contract modelling (NCINI), and our ex- 0 

perience shows INNIM to be useful as a foundational basis for NCNI. The utility of INVINI, in this 

regard, is evident from both examples given Chapter Nine, namely, the Transf erProperty and 

mail service agreement examples. 0 
We define INNITNI to be the sum of our Theodore-based approach to flexible workflow modelling 

and the presented correspondences of counts as and permission relations to workflow artefacts, on 
the one hand, and HTN-based planning constructs (i. e., methods, operators and complex operators), 

on the other. 
When INVINI is applied in the modelling of contracts, counts as provides a means of modelling 

power, and permission provides a means of modelling privilege (in the terminology of Holifeld). 

Jones and Ser-ot [63] identify the correspondence between counts as and power, in respect of 

counts as relations prescribing ways in which powers may be exercised. Obligation is modelled by 

leaf activities within IWNI model fragments, which may pertain to institutional or brute actions 
that demand the presence of powers and privileges (as methods and operators, respectively) to 

refine them. 

12.3.2 Mechanism for Relating Obligation Fulfilment to Extant Power 

and Privilege 

A particularly interesting aspect of our approach to contract modelling is that it relates the ful- 

filment of obligations directly to the existence of powers and privileges, in providing a mechanism 000 
by which contract enactors may query and plan obligation fulfilment using these relations. The 00 
distinction between institutional and brute actions in the modelling of contracts, and thus the C, 
distinction between power and privilege, is often overlooked in the modelling of contracts (see, for 

example, [82,1151). 

12.3.3 Authoring, Verification and Planned Enactment Framework for 

Contracts 

We have implemented an authoring, verification and enactment framework for IWAI-based con- 
tracts (Contribution #10), which builds on our INVINI framework. 
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We make a distinction between fixed and vaHable contract models. A necessary condition for 

a model to be fixed is that the set of decomposition relations, described therein, is fixed. This 
is a condition that carries over from our work on flexible workflow modelling. Another necessary 
condition is that a power may not be exercised in the absence of an obligation that prescribes the 
institutional action to which the power applies. 

As our approach to contract modelling is based on our work on flexible workflow modelling, we 
reuse a lot of the components implemented in the verification and enactment engine for Theodore 
flexible workflows. For fixed contract models, a contract author or contract party (in enactment) 
may make use of the INVINI-based verification facilities for soundness and arbitrary constraints. For 
both fixed and variable models, a party may perform "what-if" simulation and "what may I do 

next" querying. 

12.3.4 Strengths and Weaknesses 

The strengths of our approach to contract modelling may be enumerated (non-exhaustively) as 
follows. 

" The use of workflow artefacts to model contracts in a hybrid approach with auxiliary norma- 
tive relations is at least uncommon if not novel. It is a strength because it provides a natural 0 
means of modelling protocol fragments inherent in contracts. 6 C, 

" Accounting for the normative concept of power in contracts, which (as stated) is often over- 0 
looked in approaches to contract modelling. Not only do we model it, but we also provide a 0 
mechanism by which a contract author/party can simulate and reason over the fulfilment of 
obliuations using powers 0 ?D0 (as well as privileges). 
Power is very important contract modelling both in itself but also to give structure to a 
contract model. Without it, contracts would be specified at the level of brute actions instead 
of institutional and brute actions, serving to remove the possibility of specilying abstraction 
hierarchies in contracts. 

Again the weaknesses of our work lie in the breath and depth of coverage that we have been 00 
able to give to different scenarios in which contracts may be used. In future work, we need to 

give our approach to contract modelling a comprehensive road-test against a number of different 
sorts of contracts in order to identify any weaknesses in our modelling, verification and planned 
enactment approach. It is not until we do so that we can be certain that it is a sufficient approach 
to contract modelling. However, it is certainly clear from comparable works that have been carried 
out by the research community that it is a significant and useful contribution. C, 

12.4 Future Work 

We intend to continue working on our flexible/INVNI-based approach for -, vorkflow modelling, veri- 
fication and planned enactment. One key area in which we intend to apply our work is template- 
based planning for Web Service Composition [86,1331. Our planner Theodore provides some nice 0 
features that would be useful in this domain. For example, the complex operator artefact would 
be useful in representing complete service orcliestrations enabling us to plan over services rather 00 
than service operations, thus speeding up planning. 
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We shall also look at how we may practically integrate the use of other planners and tools 

into our Theodore-based planning framework. For example, in HTN-based planning, the ability 
to perform hybrid planning is frequently desirable where HTN-based planning is combined with 

operator-based planning (the latter "filling in the gaps" when the former has no applicable de- 

composition relation, for example). Another example tool that we would seek to integrate is a 

scheduler so that we may combine the planning of compositions with the scheduling of their enact- 

ment. This would make an important contribution to the area of Business-Driven ITAlanagement 
[11, for example, where an important issue is effective Change Management (ChNI). In ChNI, there 
is a need to plan and schedule changes to underlying IT infrastructure in ways which serve to best 

meet current business objectives, codified as business rules. We also need to look at a number of 
issues relatin-r to what the notion of institution means in the context of workflows and contracts. 
We shall also continue to evolve our IWNI-based approach to contract modelling including the 

maturing of tool-support. 
We intend to continue to evaluate the suitability of our workflow language Liesbet for the 

specification of the control flow perspective of workflow, particularly tile language for the ex- 

pression of synchronisation queries. We shall continue to make adjustments to Liesbet and its 

SitCalc/1701, based characterisation, as this our preferred characterisation given that it more 0 
naturally captures the intended semantics of Liesbet. We are also in the process of developing 

0 
another model of orchestration. It augments Liesbet with the notion that activities may have 

arbitrarily complex lifecycles, providing for a more natural and intuitive way of authoring certain 

notions of orchestration. 
Furthermore, we will mature the implementation of our verification and enactment encrine for 

Liesbet and Theodore. In looking at all of these things, it will be necessary to identify a stock of 
representative use-cases which can be used to ground and contextualise the work. 
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Appendix A 

PCCS Characterisation - 
Additional Information 

In this appendix, ive present the rest of our PCCS-based characterisation of Liesbet. 

A. 1 Cancellation of Basic Instances 

According to the description of Liesbet, presented in Section 3.1.2, basic activity instances may 
be cancelled, as well as being cornpleted. Dispensation for this is easily introduced into our PCCS- 
based characterisation of Liesbet. All that is required is a modification to the definition of 
BasiCSb agents, to also allow for cancellation of basic instances. We present the following PCCS- 
based definition of BasiCSb, for tile case where b is 3. We simply offer the choice of cancelling an 
instance, as well as offering the choice of completing it. 00 

proc Basics3 = 

compl: 20. Basics3 + cancl: 20. Basics3 + 

comp2: 20. Basics3 + canc2: 20. Basics3 + 

comp3: 20. Basics3 + canc3.20. Basics3 

A. 2 SeqCancel 

The characterisation of SeqCancel is tricky because we need to ensure that, when a child instance of 
such a type is cancelled, tile parent SeqCancel instance is also cancelled. Tile most straightforward 
way of doing this is to have a distinct set of tracker aggents for children of SeqCancel types, viz. 
InitiaiStateSC' and RunningStateSCI. The definition of InitialftateSCn is tile same as 
InitialStaten, except that it evolves to RunningStateSCI, instead of RunningStaten. Tile 

crucial difference lies in the definition of RunningStateSCI, where the line relating to accepting 
synchronisations oil canc is changed, thus. 

proc RunningStateSCn = 

canc: 3. lpcanc: 5. CancelledState + canc: 10. lpcanc: 5. CancelledState 

278 
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Here, instead of effecting a synchronisation on prec (which would effect a precompletion step in 0 
the parent instance), we cancel the parent instance. The generic type agent for SeqCancel is the 00 
same as that for Seq; in fact, the translator just outputs Seq for SeqCancel types. Examples of the 

translation of SeqCancel types are given in the listings contained within Appendix Section A. 4. ID 0 

A. 3 Synchronisation Types 

We present support for synchronisation types, for now, with the caveat that just monotonic query- 
ing (see Section 5.1.1) is allowed, with no support for distinct queries. We relax this restriction 
later. It is useful to present two separate cases, as the one presented here is simpler to understand 

and may be sufficient. 
The characterisation of synchronisation activity types is a non-trivial task. This is because 

any state-querying channels belonging to (tracker agents of) activity instances within the visibility 00C, C3 
horizons of queries within a synchronisation activity instance may (potentially) be used in these 

queries. Thus, we must build custom agents, effecting the logic of synchronisation instances, where 000 
the apposite channels are made available to the mapped queries. This is carried out in an additional 
translation step, which we shall call Step 3. 

For use in Step 1 of the translation process, is defined as follows for synchronisation 
types. These types are: Stop(StopQuery, GoQuery), Stop (StopQuery), Go(StopQuery, GoQuery) 

and Go(GoQuery). 

a MpccqiStop(StopQuery, GoQuery)](st-chsi ý, ppreci, pcaldi)= 

InitialState 0 CSC, 
, 

ppreci /pprec 
s 

pcald, /pcald I 

STOP (QTEStopQuery] (st-chsi -0, QTEGoQuery] (st-chsi -)) [SCil 

e A4p,,, [Stop (StopQuery)l (st-chsi -, ppreci, pcaldi)= 

InitiaLlState 0 (SC, 
, 

pprec, /pprýý 
, 

pcald, /peald I 

STOP (QT[Stopqueryl (st-chsi --+)) [SCil 

9 MpýýýEGo(StopQuery, GoQuery)](st-chsi ý, ppreci, pcaldi)= 

InitialState 0 (SC,, ppreci /pprýý 
, 

pcaldi /pcald 

GO(QT[StopQueryl(st-chsi -), Q7-[GoQueryl(st-chsi »[SCil 

o Mp,., jGo(GoQuery)j(st-chsj ý, ppreci, pcaldi)= 

InitialStateO[, 5e,, pprecl/ 
pp, ýc , 

pcald, /pcald I 

GO (QTIGoQueryl (st-chsi --+)) [SCil 

The auxiliary functions, STOP and GO, take one or two arguments, which are the translated 0 
queries. Note that when they are used, as part of Step 1 of the translation process, the arguments 

are placeholders. These placeholders are filled in as part of Step 3 of the translation process. The 

purpose of STOP and GO is to construct the custornised agent effecting the logic of the translated 0n0 
synchronisation type, and are defined as follows. 
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" STOP(qtStopQuery, qtGoQuery)= 
(qtStopQuery (done. /done] I dones: 4.11ose: 5. nil I qtGoQuery [done, /done] I doneg: 4.1win: 6. nil 

I 

lose: 5.1canc: 10. nil + win: 6.1comp: 10. ni1)\fdoneg, dones, win, losel[> Ifind: 4. nil 

" STOP(qtStopQuery)= 

(qtStopQuery (done, /done] I dones: 4.1canc: 10. ni1)\jdones}(> 'find: 4. nil 

" GO(qtStopQuery, qtGoQuery)= 

(qtGoQuery [done, /done] I doneg: 4.1win: 5. nil I qtStopQuery [done. /d... dones: 4.11ose: 6. nil 

I 

win: 5.1comp: 10. nil + 1ose: 6. 'canc: 10. ni1)\fdoneg, dones, win, losel[> Ifind: 4. nil 

" GO(qtGoQuery)= 

(qtGoquery Con, g /do.. 31 doneg-4. 'camp: 10. ni1)\{donegj(> 'find-4. nil 

Step 3 of tile translation process is concerned with filling in the queries, qtStopQuery and 0 
qtGoQuery, in the customised agents that we have built with STOPIGO in Step 1 of the translation 0 
process. The translation function, QTJ-J, is responsible for translating these queries. Its definition 

0 
inakes use of four relations that are constructed during Step 1 of the translation process. These 

relations are as follows. 

" CotdInScope - gives the Completed state querying channels which are in a particular visi- 
bility horizon of a querying instance. 0 

" CaldInScope - gives the Cancelled channels 

" FindInScope - crives the Finished channels 0 

" NInitInScope - gives the Not Initial channels 0 

The arguments of CotdInScope are: 

" cotds - the Completed state querying channel of the querying instance (the source instance 

" cotdt - the Completed channel of the target instance, which would be in some visibility 
horizon of the source instance. 

" rtype - the reference customised activity type (see Section 3.1.3). This is the type of a 

common ancestor instance of the source and target instances. 

" ctype - the custoinised activity type of the target instance. 

The presented relations are updated as we move through the workflow model, translating 0 in 
nodes with Mp ... 1-1, as part of Step 1. Tile semantics of these relations exactly matches those 

of the InScope relation, presented in Appendix Section B. 1.1. The prescription for updating 0 
CotdInScope is as follows. Note that Mp,, j-j also records the activity types and parent/ances- 
tor/descendant information of instances, as they are translated. 

a If we are adding an instance with Completed channel cotdi (which is passed into QTE-1 

with all of the instance's state channels), and parent Completed channel cotdp, then we may 

assert CotdInScope (cotdi, cotdt, rtype, ctype) IF 
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- There is an instance with Completed channel cotdt within the visibility horizon of the 

parent instance such that CotdInScope (cotdp, cotdt, rtype, ctype) is already asserted 
OR 

- The parent instance itself is of customised activity type rtype and cotdt is a descendant 

of cotdp, where cotdt is of customised activity type ctype. 

9 If Nve are adding an instance with Completed channel cotdi, custornised activity type ctype, 

and parent Completed channel cotdp, then Nve may assert CotdInScope (cotds, cotdi, rtype, ctype) 
IF CotdInScope (cotds, cotdp, rtype, ctype 9 is already asserted, for soine ctype 1. 

The first of the two alternatives for asserting a new instance of the CotdInScope relation extend 
the visibility horizon of the parent down to the newly added instance. The second alternative adds 
the newly added instance to the visibility horizons of all instances that already exist. Note that 
if the scope of the instance being added is isolated then there will not exist any instances of the 

CotdInScope relation for that instance. More information concerning the treatment of isolated 

scopes is presented, for the SitCaic-based characterisation, in Appendix Section B. 1.1. 
Identical definitions exist for the other three relations, CaldInScope, FindInScope, and 

NInitInScope, based on cald, f ind and ninit channel types, respectively. 
Tile definition of QTJ-J, which acts on the queries of Liesbet synchronisation types, is now 

presented. It is inductively defined, as queries may be composite. Note, F-CE1ci,. 
--, C. ) 

f (C) is the 

summation f (cl)+... +f (c,, ), 11CE{Ci, 
--., c. j 

f (c) is the prefix sequence f (cl). j (c,, ). Regarding 

atomic queries, ive present definitions for the Completed state only. In these definitions, we make 

use of the channel cotdi, which is the Completed state querying channel for the querying instance. 

It is passed into QTJ-] along with all of the state channels for the instance. The definitions of 
QTE-1 for queries relating to other states easily follow. 

" QT[True](st-chsi 

Idone: 4. nil 

" QTJFalsej(st-chsj 

nil 

" QT[Completed-act(O)I(st-chsi 

Eccc Ic: 5. ldone: 4. nil 

where, for 0 being qtype, 

C=I cotdt I 3rtype. CotdInScope(cotdi, cotdt, rtype. qtype) 

and for 0 being qtype IN rtype 

C=I cotdt I CotdInScope(cotdi, cotdt, rtype, qtype) 

" QT[Completed-all(O)I(st-chsi 

(ficec Ic: 5). Idone: 4. nil 

where, for 0 being qtype, 

C=f cotdt I 3rtype. CotdInScope(cotdi, cotdt, rtype, qtype) 

and for 0 being qtype IN rtype 

C=I cotdt I CotdInScope(cotdi, cotdt, rtype, qtype) 

" QTEQI I ... IQ,, I(st-chsi ý) = 
(QT[Ql](st-chsi .) 

rone, /do. 
Q 

II QT[Qýl(st-chsi .) 
tdone , /done i 
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donel: 4. 'ý'Pý". donel: 4. ldone: 4. nil)\{donel} 

o QTEQi +. . . +Q. l (st-chsi --*) = 
(Q-Tiqli(st-ch. 5i _. 

) [done, /done ]I. I QTEQýJ(st-chsj ý)[ 
done 1 /done j 

donel: 4. ldone: 4. nil)\{donel} 

A. 4 Model Checking Example 

We now present examples of model checking a LiesbeU model for the two key properties related 
to soundness for Liesbet models, described in Section 7.1, viz. absence of dead activity instances, 

and an absence of deadlock. For Liesbet2, an absence of deadlock 
Ouarantees completion alon, 

all enactment paths. We start with an example showing model checking for an absence of dead 

instances. 

A. 4.1 Dead Activity Instance Detection 

Consider the following Liesbet2 model. 0 

Par(Choice(Empty, A, Empty, B), C) 
C= Act Qoin(Go(Finished-act (A) I Finished-act(B), 

Completed-act(A) I Completed-act(BM) 

In this model, activity C is never executed, as its join condition will always fail. As such, it 
counts as a dead instance. This is because either activity A or activity B will be executed by the 
Choice but not both, where the requirement for C to run is that instances of both A and B have 

previously completed successfully. 
In order to detect the occurrence of dead activity instances, we add an output on an unrestricted 

channel, dead, in the definitions of InitialStat, n a, gents. The output occurs once the model has 
finished (as indicated by a synchronisation on f ind-O), if the instance went straight from an 
Initial state to a Cancelled state. The appropriate definition of InitialStateO would be as 
follows. 

proc InitialStateO = 
spcald: 5. (Ifind_0: 10. ldead: 10. nil I CancelledState) + 

canc: 3. lpprec: 5. (Ifind-0: 10. ldead: 10. nil CancelledState) + 

canc: 10. lpprec: 5. (Ifind_0: 10. ldead: 10. nil CancelledState) + 

exec: 3. RunningStateO 

In this approach, we may only test a single instance at a time as to whether it is a dead instance. 
0 

This is not, typically, much of a disadvantaP, as it is often clear which instances are likely to be 

susceptible to being dead instances. 

We test the model against a proposition which is a slight modification to the cotd proposition 0 C, 
used in Section 5.6.1. Instead of testin- for the root instance finishin- alom, all enactment paths, 000 

we test for the occurrence of a transition on dead, appropriately relabelled, along all enactment 

paths. 
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In the following example, we wish to check whether the instance C is a dead instance; as such, we 0 
relabel its dead channel (to something like deadc), and check for its occurrence along, all enactment 
paths. 

prop deadc = 

min X= <->tt A [-'deadc: 10]X 

The model translated by Mp,,,, J-l yields the following PCCS source, where we omit the 0 
definitions of certain tracker and generic agent types for brevity. 00 

** ** ****** * ** ** *** ** ** ******** * 

PCCS Verification Run 

#0 

Generated from: file: samples/LiesbetDeadInsts. liesbet 

On: Fri Jul 14 12: 31: 18 BST 2006 

proc InitialStateO = 
lpcald: 5. (Ifind-0: 10. ldead: 10. nil I CancelledState) + 

canc: 3. lpprec: 5. (Ifind_0: 10. ldead: 10. nil CancelledState) + 

canc: 10. Ipprec: 5. (1 find-0: 10. 'dead: 10. nil CancelledState) + 

exec: 3. RunningStateO 

appropriate tracker and generic type agents 

proc WorkflowO 

***Instance: O: Pl 

InitialState2[runn_O/runn, cald-0/cald, cotd-0/cotd, 
find_O/find, nread-0/nread, comp-0/comp, canc-0/canc, exec-0/exec, 

prec-0/prec, cald-0/pcald) I 

Par2[runn-0/runn, cald-0/cald, cotd-0/cotd, 
find-0/find, nread-0/nread, comp-0/comp, canc-0/canc, exec-0/exec, 

exec-1/execl, exec-6/exec2l I 

***Instance: l: CH 

Initialftate4frunn_l/runn, cald-1/cald, cotd_l/cotd, 
find-1/find, nread-1/nread, comp-1/comp, canc-1/canc, exec-1/exec, 

prec-1/prec, prec-0/pprec, cald-0/pcald] I 

Choi ce2 frunn- l/runn, cald-1/cald, cotd_l/cotd, 

find-1/find, nread-1/nread, comp-1/comp, canc-1/canc, exec-1/exec, 

exec-2/execgl, exec-3/execcl, canc-3/canccl, canc_2/cancgl, cotd-2/cotdgl, cald-2/caldgl, 

exec-4/execg2, exec-5/execc2, canc-5/cancc2, canc-4/cancg2, cotd-4/cotdg2, cald_4/caldg2) 

***Instance: 2: Eml 

InitialStateOCrunn-2/riinn, cald-2/cald, cotd-2/cotd, 
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find-2/find, nread_2/nread, comp-2/comp, canc-2/canc, exec-2/exec, 
prec-1/pprec, cald-1/pcald) I 

Empty[runn-2/runn, cald-2/cald, cotd-2/cotd, 
find-2/find, nread-2/nread, comp-2/comp, canc-2/canc, exec-2/exec) 

***Instance: 3: A 

InitialStateO[runn_3/runn, cald-3/cald, cotd-3/cotd, 
find-3/find, nread-3/nread, comp-3/comp, canc-3/canc, exec-3/exec, 

prec-1/pprec, cald_l/pcald, deada/deadl I 

***Instance: 4: Em2 

InitialStateO[runn-4/runn, cald-4/cald, cotd-4/cotd, 
find-4/find, nread-4/nread, comp-4/comp, canc-4/canc, exec-4/exec, 

prec-1/pprec, cald-1/pcald] I 

Empty[riinn-4/runn, cald-4/cald, cotd_4/cotd, 
find-4/find, nread_4/nread, comp-4/comp, canc-4/canc, exec-4/execl I 

***Instance: 5: B 

InitialStateO[runn-5/runn, cald-5/cald, cotd-5/cotd, 
find-5/find, nread-5/nread, comp-5/comp, canc-5/canc, exec-5/exec, 

prec-1/pprec, cald-1/pcald, deadb/deadl I 

***Instance: 6: JOIN-SEC-C 

InitialState2(runn-6/runn, cald-6/cald, cotd-6/cotd, 
find-6/find, nread_6/nread, comp_6/comp, canc-6/canc, exec-6/exec, 

prec-6/prec, prec-0/pprec, cald-0/pcald) I 

Seq[runn-6/runn, cald_6/cald, cotd_6/cotd, 
find-6/find, nread_6/nread, comp-6/comp, canc-6/canc, exec-6/exec, 

exec-7/exec2, find_7/find2, exec-8/execil I 

***Instance: 7: CJoin 

InitialStateSCO[runn-4/runn, cald-4/cald, cotd-4/cotd, 
find-4/find, nread-4/nread, comp-4/comp, canc-4/canc, exec_4/exec, 

prec-1/pprec, cald-1/pcald, canc-6/pcancl I 

***GoQuery 

(Icotd-5: 5. 'donel: 4. nil I 'cotd_3: 5. ldonel: 4. nil I donel: 4. donel: 4. ldoneO: 4. nil)\Idonel} 
doneO: 4. lwin: 5. nil)\IdoneO} 

***Stopquery 
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('find-5: 5. 'done3: 4. nil I Ifind_3: 5. ldone3: 4. nil I done3: 4. done3: 4. ldone2: 4. nil)\Idone3) 
done2: 4. 'lose: 6. nil)\jdone2j 

***Go: GoQuery takes priority 
lose: 6. lcanc-2: 10. nil +win: 5. lcomp-2: 10. nil 

)\{win, lose} (> 'find-2: 5. nil 
)I 

***Instance: 8: C 

InitialStateSCO[riinn-8/riinn, cald-8/cald, cotd-8/cotd, 

find-8/find, nread-8/nread, comp-8/comp, canc_B/canc, exec_8/exec, 

prec-6/pprec, cald-6/pcald, canc-6/pcanc, deadc/deadl I 

Basics3Ccomp-3/compl, comp-5/comp2, comp-8/comp3l I 

'exec-0: 3. pprec: 5. nil I 'find-0: 10. lrfind: 10. nil 

runn-0, cald-0, cotd-0, find-0, nread-0, comp-0, canc_O, exec-0, prec-0, 

runn-1, cald-1, cotd-1, find-1, nread-1, comp-1, canc-1, exec-1, prec-1, 

runn-2, cald-2, cotd-2, find-2, nread-2, comp-2, canc-2, exec-2, prec-2, 

runn_3, cald_3, cotd_3, find-3, nread-3, comp-3, canc_3, exec-3, prec-3, 

runn-4, cald-4, cotd_4, find_4, nread_4, comp_4, canc_4, exec-4, prec-4, 

runn-5, cald-5, cotd-5, find-5, nread-5, comp-5, canc_5, exec_5, prec_5, 

runn-6, cald-6, cotd-6, find-6, nread-6, comp-6, canc-6, exec-6, prec-6, 

runn-7, cald-7, cotd-7, find-7, nread-7, comp-7, canc-7, exec-7, prec-7, 

runn-8, cald-8, cotd-8, find-8, nread-8, comp-8, canc-8, exec_8, prec-8, 

dead, pprec, pcald) 

Tile output of the test, under CWB-NC, reveals that C is indeed a dead activity instance. 

cwb-nc> chk WorkflowO deadc 

Invoking alternation-free model checker. 
Building automaton... 

States: 526 

Transitions: 830 

Done building automaton. 
TRUE, the agent satisfies the formula. 

Execution time (user, system, gc, real): (11.375,0.000,0.015,11.375) 

It is also instructive to highlight the translation of the Go instance for this model, which is 

instance 7 in the presented source. Here, we seek to ascertain that either: 

* Instances 3 and 5 have completed, in which case Nve win. Or, that 

* Instances 3 and 5 have finislied, in which case we lose. 
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As GoQuerys take precedence over StopQuerys in Go types, as realised by the differing priorities on C, 
win and lose, if the first of these scenarios holds (i. e. we win) then we complete the synchronisation 
instance. If the second scenario holds (i. e. we lose), but not the first, we cancel the synchronisation 
instance. The disabling operator is used to garbage-collect the residual logic, once one of these 

eventualities occurs. 

A. 4.2 PCCS Example of Deadlock Detection 

Consider tile following two Liesbet workflow models. 0 

Pa, r(Seq(A, B, C), Seq(D, E, F) 

B= Act(join(Go(Completed-act(E»» 

E= Act(join(Co(Completed-act(B»» 

Par(Seq(A, B, C), Seq(D, E, F) 

B= Act(join(Go(Completed-act(E»» 

The first of these contains an obvious source of deadlock. That being, the execution of B may 0 
only commence once the (single) instance of E has completed. But, tile execution of E may only 

commence once the (single) instance of B has completed. The second model removes the latter 

constraint and should complete normally. 
The PCCS source for the first model follows, where we omit the definitions of certain tracker 

and generic agent types for brevity. 00 

PCCS Verification Run 

#0 

Generated from: file: samples/LiesbetDeadTestDead. liesbet 

On: Fri Jul 14 12: 28: 01 BST 2006 

appropriate tracker and generic type agents 

proc WorkflowO 

***Instance: O: Pl 

InitialState2[runn-0/riinn, cald-0/cald, cotd-0/cotd, 
find-0/find, ninit-0/ninit, comp-0/comp, canc-0/canc, exec-0/exec, 

prec-0/prec, cald-0/pcald] 

Par2[runn-0/runn, cald-0/cald, cotd-0/cotd, 
find-0/find, ninit-0/ninit, comp-0/comp, canc-0/canc, exec_O/exec, 

exec-1/execl, exec_7/exec2l I 

***Instance: l: Sl 
InitialState3[runn-1/riinn, cald-1/cald, cotd-1/cotd, 

find-1/find, ninit-1/ninit, comp-1/comp, canc-1/canc, exec-1/exec, 

prec-1/prec, prec-0/pprec, cald-0/pcald] I 
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SeO[runn-l/runn, cald-1/cald, cotd_l/cotd, 
find-1/find, ninit-1/ninit, comp-1/comp, canc_l/canc, exec-1/exec, 

exec_2/exec3, find-2/find3, exec-3/exec2, find-3/find2, exec_6/execl] 

***Instance: 2: A 

InitialStateO[runn_2/runn, cald_2/cald, cotd-2/cotd, 
find-2/find, ninit_2/ninit, comp-2/comp, canc_2/canc, exec-2/exec, 

prec-1/pprec, cald-1/pcald] I 

***Instance: 3: JOIN-SEC-B 

Initialftate2(runn-3/runn, cald-3/cald, cotd_3/cotd, 
find-3/find, ninit-3/ninit, comp-3/comp, canc_3/canc, exec-3/exec, 

prec-3/prec, prec-1/pprec, cald-1/pcald] I 

Seq2(runn-3/runn, cald-3/cald, cotd_3/cotd, 
find_3/find, ninit_3/ninit, comp-3/comp, canc_3/canc, exec_3/exec, 

exec_4/exec2, find-4/find2, exec-5/execil I 

***Instance: 4: BJoin 

InitialStateSCO[runn-4/runn, caLld-4/cald, cotd_4/cotd, 
find-4/find, ninit-4/ninit, comp-4/comp, canc-4/canc, exec-4/exec, 

prec-3/pprec, cald-3/pcald, canc-3/pcancl I 

***GoQuery 
('cotd-11: 5. ldoneO: 4. nil I doneO: 4. lcomp-4: 10. nil)\IdoneO} 
[> 'find-4: 5. nil 

)I 

***Instance: 5: B 

InitialStateSCO[runn-5/riinn, cald-5/cald, cotd_5/cotd, 
find_5/find, ninit-5/ninit, comp-5/comp, canc-5/canc, exec-5/exec, 

prec-3/pprec, cald-3/pcald, canc-3/pcancl I 

***Instance: 6: C 

InitialStateO[runn-6/runn, cald-6/cald, cotd-6/cotd, 
find_6/find, ninit-6/ninit, comp-6/comp, canc-6/canc, exec-6/exec, 

prec-1/pprec, cald-1/pcald) I 

***Instance: 7: S2 

InitialState3(runn_7/runn, cald_7/cald, cotd-7/cotd, 
find-7/find, ninit_7/ninit, comp-7/comp, canc-7/canc, exec-7/exec, 

prec-7/prec, prec-0/pprec, cald-0/pcald] I 

Seq3[runn-7/runn, cald-7/cald, cotd-7/cotd, 
find-7/find, ninit_7/ninit, comp-7/comp, canc-7/canc, exec-7/exec, 

exec-8/exec3, find_8/find3, exec-9/exec2, find-9/find2, exec-12/execil I 
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***Instance: 8: D 

InitialStateOCrunn_8/runn, cald_8/cald, cotd-8/cotd, 
find-8/find, ninit-8/ninit, comp-8/comp, canc-8/canc, exec-8/exec, 

prec-7/pprec, cald-7/pcald) I 

***Instance: 9: JOIN-SEC-E 

InitialState2[runn-9/riinn, cald-9/cald, cotd-9/cotd, 
find_9/find, ninit-9/ninit, comp-9/comp, canc-9/canc, exec-9/exec, 

prec-9/prec, prec_7/pprec, cald-7/pcaldl I 

Seq(runn-9/runn, cald-9/cald, cotd-9/cotd, 
find_9/find, ninit-9/ninit, comp-9/comp, canc-9/canc, exec-9/exec, 

exec-10/exec2, find-10/find2, exec-11/execil I 

***Instance: 10: EJoin 

InitialStateO[rw: Ln-10/runn, cald_10/cald, cotd-10/cotd, 
find-10/find, ninit-10/ninit, comp-10/comp, canc-10/canc, exec-10/exec, 

prec-9/pprec, cald-9/pcald, canc-9/pcancl I 

***GoQuery 
(Icotd-5: 5. ldonel: 4. nil I donel: 4. lcomp-10: 10. nil)\{donel} 
(> 'find-10: 5. nil 

)I 

***Instance: ll: E 

InitialStateO[runn_ll/riinn, cald-11/cald, cotd-II/cotd, 
find-11/find, ninit-11/ninit, comp-11/comp, canc-11/canc, exec-11/exec, 

prec-9/pprec, cald-9/pcald, canc_9/pcanc] I 

***Instance: 12: F 

InitialStateO[runn_12/rurin, cald_12/cald, cotd-12/cotd, 
find_12/find, ninit_12/ninit, comp-12/comp, canc_12/canc, exec_12/exec, 

prec-7/pprec, cald-7/pcald) I 

Basics6Ccomp-2/compl, comp-5/comp2, comp-6/comp3, comp-8/comp4, comp-11/comp5, comp-12/comp6l I 

)exec-0: 3. pprec: 5. nil I 'find-0: 10. lrfind: 10. nil 

) \{ 
runn-O, -cald-0, cotd-0, find-0, ninit-0, 

runn-1, cald-1, cotd-1, find_l, ninit_l, 

runn-2, cald-2, cotd_2, find-2, ninit-2, 

runn-3, cald-3, cotd-3, find-3, ninit-3, 

runn_4, cald-4, cotd-4, find-4, ninit-4, 

runn-5, cald-5, cotd-5, find_5, ninit-5, 

runn-6, cald-6, cotd_6, find_6, ninit-6, 

comp-0, canc-0, exec-0, prec-0, 

camp-1, canc-1, exec-1, prec-1, 

comp_2, canc-2, exec-2, prec-2, 

comp-3, canc-3, exec-3, prec-3, 

comp-4, canc-4, exec-4, prec-4, 

comp-5, canc-5, exec-5, prec-5, 

comp-6, canc-6, exec-6, prec-6, 
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runn-7, cald-7, cotd-7, find-7, ninit-7, comp-7, canc-7, exec_7, prec_7, 

runn_8, cald_8, cotd-8, find-8, ninit-8, comp_8, canc-8, exec-8, prec-8, 

runn_9, cald-9, cotd_9, find_9, ninit-9, comp-9, canc-9, exec-9, prec-9. 

runn_10, cald-10, cotd-10, find-10, ninit-10, comp-10, canc-10, exec_10, prec-10, 

runn-11, cald-11, cotd-11, find-11, ninit-11, comp_11, canc_11, exec-11, prec_11, 

rurin-12, cald-12, cotd-12, find-12, ninit-12, comp-12, canc-12, exec-12, prec-12, 

pprec, pcald} 

Under CWB-NC, the proposition f ind (see Section 5.6.1) is found to be FALSE, as appropriate. 

cwb-nc> load test. pccs 
Execution time (user, system, gc, real): (0.047,0.000,0.000,0.047) 

cwb-nc> load testp. mu 
Execution time (user, system, gc, real): (0.015,0.000,0.000,0.015) 

cwb-nc> chk WorkflowO find 

Invoking alternation-free model checker. 
Building automaton... 
States: 35 

Transitions: 36 

Done building automaton. 
FALSE, the agent does not satisfy the formula. 

Execution time (user, system, gc, real): (6.844,0.000,0.062,6.844) 

cwb-nc> 

For the other workflow model, there should be no deadlock - we have removed one of the join 

conditions responsible for the cyclic dependency. Its PCCS source is the same as that above with 
activities 9 (SeqCancel) and 10 (EJoin) removed, and activity 11 (E) promoted to being a direct 

child of activity 7 (S2). 

The CWB-NC output when testing f ind on this model is as follows, correctly indicating an 
absence of deadlock. 

cwb-nc> load test. pccs 
Execution time (user, system, gc, real): (0.031,0.000,0.000,0.031) 

cwb-nc> chk WorkflowO find 

Invoking alternation-free model checker. 
Building automaton... 
States: 99 

Transitions: 106 

Done building automaton. 
TRUE, the agent satisfies the formula. 

Execution time (user, system, gc, real): (11.656,0.000,0.403,11.656) 

cwb-nc> 

A. 5 Support for Non-monotonic and Distinct Reference Queries 

In order to support non-monotonic and distinct reference queries, we need to clian. e the charac- 
teristic of our PCCS-based characterisation that instances of synchronisation types are evaluated 
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between instances of other types grabbing execution rights. Instead, we need to move to a cliar- 

acterisation where syrichronisation instances compete for these ri. ghts; and, once such an instance 
has them, its respective GoQuery and/or StopQuery is fully evaluated to determine satisfiability, 

prior to releasing them. This will ensure a sound characterisation for non-monotonic and distinct 

queries. We also may support negated queries, and queries directly oil Initial and Running states 

- as opposed to supporting queries on NotInitial. We do not provide further details here for 

non-monotonic querying - although, it should be quite evident how this would be achieved. 
With regard to distinct reference queries, it is important that they be evaluated atomically, so 

that if all component sub-queries of a GoQuery, or StopQuery, for a type may be satisfied at some 
time point, it will not be the case that another querying instance is able to "steal" the use of the 

candidate instances. This is not relevant if we are not using distinct queries, because candidate 
instances may be used without limit in satisfying such queries. 

In the following, we give just a flavour of the PCCS-based support for distinct querying. We 

present a more detailed overview of our support for distinct querying in Appendix Section B. I. 2, 

which describes our SitCaic-based support for it. 

Distinct queries are satisfied against target instances, just as non-distinct queries are satisfied. 
An instance t may be used to satisfy a distinct query just once per instance di, pertaining to 

the distinct reference type of a query. (See Section 3.1.3 for more information regarding distinct 

reference types. ) For every pair (t, di) which could be used in the satisfaction of a specific query, 
we make use of an agent ProxyInit (for satisfying queries pertaining to the Initial state), which 
may evolve into agents ProxyRunn, ProxyCotd, or ProxyCald as the pertaining tracker agent for 0 C, C, 
instance t evolves. 

Each of these agents will make use of the followin- channels: C, 0 

a Incoming: 

- Proxy channels for querying each of the states: Completed, Cancelled, Finished, 

Running and Initial - specifically, pcotd: 5, pcald: 5, pf ind: 5, priinn: 5 and pinit: 5. 

-A channel for marking the proxy agent as expended: exp: 3 0 C, 

9 Outgoing: 
0 Z, 

- Querying channels to be connected to t's tracker agent's state-querying cliannels - 
specifically, cotd: 5, cald: 5, f ind: 5, runn: 5 and init: 5. 

Tile ProxyInit agent would have the following PCCS definition: 

proc ProxyInit 

lcald: 3. ProxyCald + 'runn: 3. ProxyRunn + pinit: 5. ProxyInit + exp: 3. nil 

While the proxy agent has not been used to satisfy a query for its pertaining (t, di) pair, the 

agent: 

" May evolve into ProxyRunn, ProxyCotd or ProxyCald, as appropriate, in response to changes 
in the state of tile pertaining tracker agent for the instance. 

C, C, 

" Allows querying instances to ascertain that the target instance is in the Initial state, using 00C, 
pinit, and facilitates the marking of the agent as expended, meaning that it can no longer 

0000 
be used to satisfy queries against the instance pair. 0 
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A similar definition is appropriate for RroxyRiinn, viz. 

proc ProxyRunn = 
Icald: 3. ProxyCald + 'cotd: 3. ProxyCotd + prunn: 5. ProxyRunn + exp: 3. nil 

For ProxyCotd and ProxyCald, we also allow 'finislied' queries, as shown. 

proc ProxyCald = 

pcald: S. ProxyCald + pfind: 5. ProxyCald + exp: 3. nil 

proc ProxyCotd = 

pcotd: S. PrpxyCotd + pfind: 5. ProxyCotd + exp: 3. nil 
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When we make use of a distinct query within a GoQuery, or a StopQuery, we use the proxy 

channels in place of cotdt etc., as presented in the definition of QTj-j in Appendix Section A. 3. 
The proxy agents and associated channels are constructed as part of the translation process as 0 
needed. Then, if such a query is satisfied, there will be a residual piece of logic for the query which 

marks (by I exp: 3) the specific target instance pairs, used in satisfying the query, as expended. 

A. 6 CancelActivity and Exit 

For Liesbet2, we translate synchronisation activity types by outputting PCCS agents which have 
C, 0 

been customised for the visibility horizons of the pertainin. - instances (see Appendix Section A. 3). 
For CancelActivity, we adopt a similar approach. 

The translation of CancelActivity types is defined by the following extension to Mpccsj-ý. 

Mp ... 
ECancelActivity(O)J(st-chsi -, ppreci, pcaldi) 

InitialStateo(SCit Pprecl/pprect pcald, /pcald 

I 

CT(CTIOI (st-chsi -+»[Seil 

The auxiliary function CTJ-] translates (as part of Step 3) the cancellation reference, which, 

syntactically, will be of the form qtype, or qtype IN rtype, into an a. gent which effects cancel on 
all instances within the visibility horizon of the cancellation instance. Similarly to QTJ-J, which 
is used in the translation of queries for synchronisation types, CTJ-ý relies on the existence of a 
relation, namely, CancInScope, which is built in Step 1 of the translation process. The definition of 
CancInScope follows from that of CotdInScope, presented in Appendix Section A. 3. The definition 

of CTJ-j is, then, as follows. 

CTIOI(st-chsi --, )= 
(fl, 

cc Ic: 3). Icomp: 3. nil 

where, for 0 being qtype, 
C=I canct I 3rtype. CancInScope(canci, canct, rtype, qtype) 

and for 0 being qtype IN rtype 
C=( canct I CancInScope(canci, canct, rtype, qtype) 

Tben, Ole definition of CT, whicli is responsible for constructing the definition of the customised 0 
agent pertaining to the translated CancelActivity type is as follows. We pass in the output from 00 
CTJ-ý. 
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CT(tCanc-Ref) = lrunn: 10. tCanc-Ref + Icald: 5. nil 

The translation of Exit is defined by the following extension to -A4pcc5j-jj where we assume 
that the cancellation channel of the root instance, rcanc, is set aside by Mpccsj-j for use in 

translating Exit types. 0 

Mpccs [Exit] (st-chsi -, ppreci, pcaldi)= 
InitialState 0 (SC, 

, 
ppreci /pprýý 

, 
pCald, /pcald 

CT(Ircanc: 3. nil) (SCil 

A. 7 MultiLimit' and MultiLimitSeq' 

The MultiLimit' and MultiLimitSeq' multiple-instance activity types are represented in our 
PCCS characterisation, in a st rai alit forward way. In section 3.5, we note that these types represent 
a possibility for satisfying the representational requirements epitomised by the YAWL workflow 
patterns, relating to multiple-instance activity types. 

We have presented characterisations for Multi and MultiSeq in Section 5.5. It is worth noting 
that, for verification, it is better efficiency-wise to use the limited-instance (MultiLimit/MultiLimitSeq) 

types, rather than the Multi/MultiSeq types. This is because the auxiliary counter that is used 
in the characterisation of an unlimited-instance type, to keep a track of the number of outstanding 
child instances, is quite costly from the perspective of the size of the verification state-space. 

The translation of MultiLimit' and MultiLimitSeq' is defined by the following extensions to 
mpcCSI-J. 

Mp, c, 
[MultiLimit(n)(ExecAct (join (ExecActioin))) J(st-chsi ppreci, pcaldi) = 

let st-chsij, --+ in ... st-chsij. - in let st-chsi., - in ... st-chsi. ý -+ in let preci in 
MultiLimit"[SCi, SCijl, 

jl, ---, 
SCijn, 

j., SCiei, 
elp ... m 

SCien, 
en] 

InitialState 2n [SC, 
, 

pprec, 
, 

pcaldi /pcald 
, 

pr, ci /Pý. 
c 

] 

Mpý, EExecActJoin](st-chsiji --+, preci, caldi) I 
... 

I 

Mpcc., EExe cAct Join] (st-chsij. ý, precj, caldi) 

I 

Mpýc., [ExecAct](st-chsi., --ý, precj, caldi) I 
... 

I MpccsjExecActj(st-chsiý. ý, precj, caldi) 

Mpccs[MultiLimitSeq(n) (ExecAct (join (ExecAct Join))) I (st-chs i ý, ppreci, pcaldi) = 
let st-chsiji ý in ... st-chsij. ý in let st-chSiel - in ... st-chsi.. ý in let preci in 

MultiLimitSeq n (SC,, SC, jl, jl. ..., 
scij., J., sci. 1'. 1, ---, 

scie. 
'e. 

] 

InitialState 2n [SC, 
, 

pprec 
pprec t 

pcaldi /pcald 
v 

P"c/preJ 

. 
A4p,, jExecActJoin](st-chsjp ý, precj, caldi) 

Mp, ýý[ExecActJoiný(st-chsjj. ý, precj, caldi) 
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A4pccsjExecActj(sLchsj., ý, preci, caldi) I ... I M, C"lExecActl(st-chsiýý ý, precj, caldi) 

The definition of the PCCS agents for MultiLimit' and MultiLimitSeq', for the case where 0 
n is 3, are now presented. 

proc MultiLimit3 = 
Irunn: 10. lexecj3: 3. MultiLimit3f + Icald: 5. nil 

proc MultiLimit3f = 
'cotdj3: 10. lexece3: 3. lexecj2: 3. MultiLimit2f + 
Icaldj3: 10. lcance3: 3. lcancj2: 3. lcance2: 3.3cancjl: 3. lcancel: 3. nil + 
Icald: 5. nil 

proc MultiLimit2f = 
'cotdj2: 10. lexece2: 3. lexecjl: 3. MultiLimitlf + 
Icaldj2: 10. lcance2: 3. lcancjl-. 3. lcancel: 3. nil + 
'cald: 5. nil 

proc MultiLimitlf = 
'cotdjl: 10. lexecel: 3. nil + Icaldjl: 10. lcancel: 3. nil + Icald: 5. nil 

proc MultiLimitSeq3 = 
Iriinn: 10. lexecj3: 3. MultiLimitSeq3fj + Icald: 5. nil 

proc MultiLimitSeq3fj = 
'cotdj3: 10. lexece3: 3. MultiLimitSeq3fe + 

Icaldj3: 10. lcance3: 3. lcancj2: 3. lcance2: 3. lcancjl: 3. lcancel: 3. nil + 
Icald: 5. nil 

proc MultiLimitSeq3fe = 
Ifinde3: 10. lexecj2: 3. MultiLimitSeq2fj + 'ca-ld: 5. nil 

proc MultiLimitSeq2fj = 
'cotdj2: 10. lexece2: 3. MultiLimitSeq2fe + 
Icaldj2: 10. lcance2: 3. lcancjl: 3. lcancel: 3. nil + 
Icald: 5. nil 

proc MultiLimitSeq2fe = 
Ifinde2: 10. lexecjl: 3. MultiLimitlf + Icald: 5. nil 

In the pres ented PCCS characterisation of MultiLimit and MultiLimitSeq, we create n in- 

stances of the execution activity, ExecAct, and its associated join condition. Similarly to the 
definition of Seqn agents, the first (join condition, execution activity) pair to be executed are 
those with the Iii-liest index. This makes for more simple definitions of the MultiLi, itn and 0 
MultiLimitSeq' agents. 0 

We start by executing the first join condition instance. If it completes successfully then this C) 
triggers the execution of its corresponding execution activity instance. If it gets cancelled, however, 

0C, n0 
all remaining execution and join condition instances get cancelled. For MultiL iMitn C, , as soon as 
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an execution activity instance has been set running, we initiate the execution of the next join 0 
condition instance. This continues until we run out of instances. For MultiLimitSeq' types, we 

need to wait for the execution activity instance that we have just set running to finish before we 
initiate the execution of the next join condition instance. 

A. 8 MultiMerge" 

The translation of MultiMerge" is defined by the following extension to M 
0 pccSJ-j- 

. 
A4p, jMultiMerge(Chg1, 

... Chgn, Chcl, ..., Chcm)l(st-chsi -, ppreci, pcaldi)= 
let st-chsiz, ý in ... st-chsig. in let st-chsic, --+ in ... st-chsic. - in let preci in 

MultiMerge'-'[SCi, SCjgj, 
gj, 

scig. 
e., scici, cl, ..., 

sci.,. ] 

InitialState' 
+n [SC,, ppreci /ppýec 

, 
pcald, /pcald 

, 
preci /prec 

MpccsEChg1ý(sLchsjgj ý, precj, caldi) I A4pcc, jChgnj(sLchsjs ý, preci, caldi) 

. A4pccýjChc1](sLchsj, j ý, precj, caldi) I Mpcc, jChcmj(st-chsj, ý -+, preci, caldi) 

The definition of the PCCS agent for MultiMerge", for the case where n is 4 and m is 2, is 

now presented. n is the number of guard instances of the Multimerge type, and in is the number 

of continuation instances. 

proc MultiMerge2-4 

riinn: 10. 'execgl: 3. lexecg2: 3. lexecg3: 3. lexecg4: 3. MultiMerge2-4f + 'cald: 5. nil 

proc MultiMerge2-4f 

cotdgl: 10. lgo: 3. lused: 3. nil + Icaldgl: 10. lused: 3. nil 

'cotdg2: 10. lgo: 3. lused: 3. nil + Icaldg2: 10.. Iused: 3. nil 

'cotdg3: 10. lgo: 3. lused: 3. nil + Icaldg3: 10. 'used: 3. nil 

cotdg4: 10. lgo: 3. lused: 3. nil + Icaldg4: 10. 'used: 3. nil 

go: 3. lexeccl: 3. (go: 3. lexecc2: 3. (go: 3. (go: 3. stop: 3. nil + stop: 3. nil) + stop: 3. nil) + 

stop: 3. lcancc2: 3. nil) + 

stop: 3. lcanccl: 3. lcancc2: 3. nil 

used: 3. used: 3. used: 3. used: 3. 'stop: 3. nil 
)\Igo, stap, used} 

In MultiMerge", all of the guard instances are set running. Then, the first guard instance to 000 
complete successfully triggers the execution of the first continuation instance. This is facilitated 

C, 
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in MultiMerge"f by signalling on go. The second guard to complete successfully triggers the 0 C, CICI 
execution of the second continuation instance, and so on. Notably, once m guard instances have 

completed successfully, and the execution of 7n continuation instances has been initiated, there 

will not be any more continuation instances to execute, notwithstanding the fact that more guard 
instances may complete successfully. Whenever, guard instances get completed or cancelled, a 

synchronisation is made on used. This occurs so that when all guard instances have finished, we C, 
may cancel the unused continuation instances (by signalling on stop). C, 0 

A. 9 Discriminator7n-n 

The translation of Discriminatorm-n is defined by the following extension 0 to mpccSpj- 

Mp,,, IDiscriminator(m) (Chgl,. 
. ., Chgn, Chc)j(st_chsj --+, ppreci, pcaldi)= 

let st-chsig, ý in ... st-chsi, -+ in let st-chsi, ý in let preci in 

Discriminator" [SCj, SCjgj, j, ..., 
SCjý,., SCi, j 

InitialState n+l (SC,, pprec, /pprec 
, 

pcald, /pcald 
, 

pre ci /P... ] 

MpýcýEChglj(st-chsigi ý, precj, caldi) I ... I A4pccýjChgnj(st-chsi, -, preci, caldi) 

Mp,, EChc](st-chsiý --ý, preci, caldi) 

The definition of the PCCS agent for Discriminator", for the case where n is 4 and 7n is C, 
2, is now presented. n is the number of guard instances of the Discriminator type, and 7n is its 

completion threshold, for executing the continuation instance. C, 

proc Discriminator2-4 

runn: 10. lexecgl: 3. lexecg2: 3. lexecg3: 3. lexecg4: 3. Discriminator2-4f + 'cald: 5. nil 

proc Discriminator2-4f 

, cotdgl: 10. lwin: 3. nil + Icaldgl: 10. llose: 3. nil 

, cotdg2: 10. 'win: 3. nil + Icaldg2: 10. llose: 3. nil 

, cotdg3: 10. 'win: 3. nil + Icaldg3: 10. 'lose: 3. nil 

, cotdg4: 10. lwin: 3. nil + Icaldg4: 10. llose: 3. nil 

lose: 3. lose: 3. lose: 3. lcanc: 3. nil 

win: 3. win: 3. execc: 3. nil 

)\Iwin, lose} 

Ifind: 5. nil 
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In Discriminatorm-n, all of the guard instances are set runnino'. Whenever one of them 

completes (resp. gets cancelled), a synchronisation on win (resp. lose) occurs. If sufficient 

synchronisat ions on win occur (i. e. the completion threshold is met), the continuation instance 

is executed. If sufficient syn chro n isat ions on lose occur (i. e. the failure threshold is met), the 

Discriminator instance, as a whole, is cancelled. The failure threshold corresponds to the number 

of , ruard instances which must fail (i. e. get cancelled) in order that the completion threshold can 

never be reached. Its value is (n - rn) + 1. Once the Discriminator instance has finished, tile 

residual logic of the generic type aprit, is garba ge- collected. 00C, C, 



Appendix B 

SitCalc Characterisation - 
Additional Information 

In this appendix, we complete the presentation of the SitCalc characterisation for Liesbet, and 
the presentation of the translation function Msjtc,, j&]. 

B. 1 Remaining SitCalc Characterisation of Liesbet 

In this section, Ave present the SitCalc-based characterisation of the Liesbet types omitted from 

the presentation in Chapter Six. 

Completion and Cancellation Actions on Childless Structured In- 

stances 

Childless structured instances may be explicitly completed (or cancelled). (Notably, child-bearing 

structured instances are completed/cancelled implicitly as a side-eff ect of some action occurrence 

on another instance. For instance, a child-bearing instance may be completed through propagation 

as a side-effect of a descendant instance finishing. ) The childless types in question are: FreeChoice, 

Empty, Go, Stop, CancelActivity and Exit. 
There are four action schemas that are concerned with the completion and cancellation of 

childless structured instances. We concentrate on the most general two for the time being - the 

other two are concerned with something very specific, namely, the completion or cancellation of Go 

or Stop synchronisation types which make use of distinct querying (see Appendix Section B. 1.2). 

The two general action schemas are complete/1 and cancel/l. The action precondition axioms 
for these actions are now presented. Note that the CType/2 (resp. GType/2) fluent records the 

custoinised (resp. generic) type of an instance i in situation s. 

Poss (complete (i), s) =- State U, s) =Running A (GType(i, s)=GId-FRE V GType(i, s)=GId-EMP V 

GType(i, s)=GId-CAN V GType(i, s)=GId-CAR V GType(i, s)=GId-EXI V 
(CType(i, s) = CUSTOMISED-SYNC-TYPE A CUSTOMISED-COMPLETION-CONDITION) V ... )A 

-(3p, i,, c, g, sc, f, j). Poss(add-activity(p, il, c, g, sc, f, j), s) 

Poss (cancel W, s) =- State (i, s)=Running A (GType(i, s)=GId-FRE V 

297 
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(CType(i, s) = CUSTOMISED-SYNC-TYPE A CUSTOMISED-CANCELLATION-CONDITION) VA 

-(3p, i', c, g, sc, f, j). Poss(add-activity(p, il, c, g, sc, f. j), s) 

The first of these axioms (for complete/1) says that it is possible to complete a FreeChoice 

(GId-FRE), Empty (GId-EMP), CancelActivity (GId-CAN or GId-CAR), or customised synchronisation 
(Go or Stop) instance iff the instance is running, and it is not possible to add another instance (via 

add-activity/7) to the CNNIS. Further information regarding the facilitation of CancelActivity 

in the SitCalc semantics for Liesbet is presented in Appendix Section B. I. 5. 

Note that these axioms are, for the most part, domain-independent, but they may be custornised 

for a particular model with respect to the use of synchronisation types. For any occurrence of a 

customised synchronisation type, in the precondition axiom for complete/1, its corresponding 

completion condition (which must also hold for tile action to be possible) will be the GoQuery of 

the pertaining synchronisation instance. We present an example of this at the end of this section. 

The second of these axioms is similar to tile first, except that Empty, CancelActivity, and 

Exit instances may not be (explicitly, at least) cancelled. These possibilities are thus removed 

from the axiom for cancel/l. Note that occurrences of a customised cancellation condition in an 

instance of the cancel/1 action precondition axiom correspond to the StopQuery of the pertaining 

synchronisation instance. Clearly, if a synchronisation type only has one type of query then it will 

only appear in one of the complete, cancel/1 axioms (i. e. complete/I for GoQuery only, and 

cancel/1 for StopQuery only)- 

For complete/1 actions, we need to modify the definition of Completing/3, and CompletingAction/2, 

viz. 

Completing (i, a, st) =- (a=comp-bas(i) V a=complete(i)) A st=Completed 

CompletingAction(i, a) ý- a=comp-bas(i) V complete(i) 

For cancel/I actions, we need to modify the definition of CancellingAction/2, viz. 

CancellingAction(i, a) =- a=canc-bas(i) V cancel(i) 

We also modify the action precondition axioms for comp-bas, canc-bas/1 to say that these 

actions are only possible if a complete, cancel/1 on an instance is not possible. This is a straight- 
forward extension. 

Finally, the customised completion/cancellation conditions, in these precondition axionis, will 

make use of (instances of) the InScope/5 predicate. This predicate determines the visibility horizon 

for instances, and has the following definition. 
C, 

InScope(i, t, r, c, do(a, s)) =- 

(3p, g, sc, f, j). sc=NONE A (((3c'). a--add-activity(p, i, cl, g, sc, f, j) A 

(Ingcope(p, t, r, c, s) V (CType(p, s)=r A CType(t, s)=c A Descendant (p, t, s)))) v 

(a=add-activity(p, t, c, g, sc, f, j) A (3c'). InScope(i, p, r, cl, s))) V 

InS cope (i, t, r, c, s) 

Referring to Figure B. 1, the successor state axioni for InScope/5 says that a target instance 
0 C, 1=1 
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r An instance i has target t (of customised type c) in its visibility horizon iff there is 0 
a reference instance (of type r) which is ancestral to both instances, and there is no 
intervening isolated scope (see Section 3.1.3). t may not be an ancestor of i. 0 

Figure B. l: InScope/5, Defining Visibility Horizons. 

t is in the visibility horizon of an instance i, with reference type r, and custornised type c (in 

situation do (a, s)) iff 

the instance i is being added to tile CINIS (via action a) and (i) i is not isolated (sc=NONE), 
0 

and (ii) its parent p has t (with respect to r and c) in its visibility horizon OR its parent p 
is itself of type r and t (of custornised type c) is a descendant of p 

OR 

the target t is being added to the CWS (via a) and (i) t; is not isolated, and (ii) t's parent 
is in tile visibility horizon of i 

OR 

e InScope for i, with t/r/c, holds in the previous situation. (Once an instance of this fluent 

is asserted to the BXr, it persists thereafter. ) 

As an example of the dispensation made for synchronisation types within the precondition 

axioms for complete, cancel/1, say we have a Go instance with GoQuery Completed-act (q), and 

customised type name CId-G. Then, according to the definition of the translator (for Liesbet 0 
models) presented below in Appendix Section B. 2, the pertaining fragment of the precondition 0 rý 
axiorn for complete/1 would look as follows, albeit presented in an abridged form here. 

0 

CType(i, 
_s) 

= CId-G A (3t, r). InScope(i, t, r, q, s) A State (t, s) =Completed It is Nvorth not- 

ing that, in Section 6.2.2, we made the assertion that most of the SitCalc-based characterisation 
of a Liesbet model instance n-my be considered as foundational axioms, as they are domain- 

independent in nature. It is trivial to specify versions of the axionis presented here for cancel, 
complete/1 which are also doinain-independent. They inay instead refer, in a domain-independent 

way, to auxiliary fluents, whose instances would be used to represent the domain-dependent infor- 

mation. 
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B. 1.2 Distinct Querying 

Distinct queries are supported by means of custornisat ions to action precondition axioms for two 

further action schemas, viz. complete, cancel/3. Actions pertaining to these sclienias take two 

additional arguments compared with actions for synchronisation types which do not make use of 
distinct querying. 

To recap from Section 3.1.4, a GoQuery or StopQuery, within a synchronisation type, may be 

a composite query, meaning that it may contain a number of sub-queries which are composed into 

boolean expressions, where some of the sub-queries may be queries involving distinct reference 
types, i. e. distinct queHes. There are some restrictions on the use of distinct queries which make 
their semantic characterisation much simpler: 

" They are not allowed to be tinder the scope of a negation at any level of nesting. 0 

" In any one GoQuery, or StopQuery, the sarne distinct reference type should be used, which 

will necessarily resolve to the same instance. 

" Disjunction exists only at the outer-i-nost query level of a GoQuery or StopQuery. 

" The target instances that may be used to satisfy each distinct query within a conjunct (of 
0 

the top-level disjunction - see previous point) inust fall into disjoint sets. 

In satisfying a composite query involving distinct queries, we must mark as expended the 

target instances used to satisfy the query against the common instance of the distinct reference 
type. The two additional arguments for the action scliernas, complete, cancel/3, are: di, which 
is the instance of tile distinct reference type used to satisfy the Go/StopQuery, and 1 which is a 
list of targets to mark as expended against di. 

As disjunction exists at the outer querying level only, we can construct the customisation of 
the pertinent action precondition axiom (for GoQuerys, this will be the axiom for complete/3, 

and for StopQuerys, cancel/3), as a disjunction where we assign the target instances to mark as 

expended in each of the conjuncts, by assigning the action argument 1. 

For example, we may have the following query, used to complete a Go type, CId_G. 

Finished-act(CId-A dist in CId_P) I Finished-act(CId-B dist in CId_P) 

Finished-act(CId-C in CId_P) + 

Finished-act(CId-D dist in CId_P) I Finished-act(CId-C in CId_P) 
Here, the query is satisfied either by satisfying distinct queries on A and B and a non-distinct 

query oil C or by satisfying a distinct query on D and a non-distinct query oil C. Note that tile 
disjunction appears at the outer-most level. 

The action precondition for complete U, di, 1) is custornised to include the case of completing 
CId_G using this query. Art abridged version follows. 

Poss(complete(i, di, l), S) 

CType(i, s)=CId-G A 

(3til, ti2, ti3). DistInScope(i, di, CId-P, s) A 

(1=Ctil, ti2l A -DistQuery(til, di, s) A -DistQuery(ti2, di, s) A 

InScope(i, til, CId-P, CId-A, s) A InScope(i, ti2, Cld-P, CId-B, s) A 
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(3ti). InScope(i, ti, CId-P, CId-C, s) V 

1=[ti3l A -DistQuery(ti3, di, s) A InScope(i, ti3, CId-P, CId-D, s) A 

Gti) 
. InScope U, ti, CId-P, CId-C, s)) 

One or more instances of the fluent DistInScope(i, di, d, s) are asserted to the BXF when- 

ever an activity instance is added to the CNVS. The fluent asserts di to be the instance of dis- 

tinct reference type d to be used for querying instance i, which is the instance being added. 0n 
Dist; Query(t, di, s) recordsexpended target instancest against distinct (referencetype) instances 

di. 
Finally, for complete/3 actions, we need to modify the definition of Completing/3, and 

CompletingAction/2, viz. 

Completing(i, a, st) =- 
(a=comp-bas(i) V a=complete(i) V (3di, l). a=complete(i, di, l)) A st=Completed 

CompletingActi0n(i, a) =- a=comp-bas(i) V complete(i) V (3di, l). a=complete(i, di, l) 

For cancel/3 actions, we need to modify the definition of CancellingAction/2, viz. 

CancellingAction(i, a) =- a=canc-bas(i) V cancel(i) v (3di, l). a=cancel(i, di, l) 

B. 1.3 UnorderedSeq 

To suPport UnorderedSeq, Nve firstly augment the definition of SetRunning/5, to include a case 
for GId-UOS, viz. 

SetRunning(p, ij, st, s) -ý p=i A st=Running V 

State (p, s)=Running A 

(GType(p, s)=GId-UOS A (st=Running V st=Initial) V 

-GType(p, s)=GId-UOS A (st=Running A f=EXEC V st=Initial A -f=EXEC)) V 

-State (p, s)=Running A st=Initial 

Here, we allow the children of UnorderedSeqs to (non-deterministically) be set to an Initial 

or Running state. We also chan0le the definition of ExecuteNextChild/4 to handle the case of 0 
completion being propagated to UnorderedSeq instances which still have children to run, in order 0 C, 
to make a similar dispensation. In this case, we simply allow execution to be propagated to some 
yet-to-be-run child of tile UnorderedSeq. 

ExecuteNextChild(il, i, st, s) = (3p, i"). Child(p, il, s) A 

(PropagateRunningDownInc(ill, i, st, s) A 

((GType(p, s)=GId-SEQ V GType(p, s)=GId-SEC) A Next Init ialChild (p, iI "s) V 

GType(p, s)=GId-UDS A Child(p, i", s) A State (i ", s) =Initial) V 

(3gp). Child(gp, p, s) A (GType(gp, s)=GId-EXC V GType(gp, s)=GId-DEF) A 

(3b). Child(gp, b, s) A -p=b A PropagateCancelDownInc(b, i, st, s)) 

We augment these measures with two state constraint axioms, which are added to the BN-r. 
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The first says that if an UnorderedSeq is running, then at least one child should also be 

running. 

(Vi). GType(i, s)=GId-UOS A State (i, s) =Running D (Dc). Child(i, c, s) A State (c, s) =Running 

e The second says that no more than one child should run at any one time. 

(Vi). GType(i, s)=GId-UOS A State U, s)=Running D 

((Vc, c'). Child(i, c, s) A Child(i, cl, s) A 

State(c, s)=Running A State(c', s)=Running D c=c') 

B. 1.4 Merge Types 

Merge types, i. e. MultiMerge and Discriminator, also need dispensations to be made for them 

in the definitions of PropagateCancelUp/4 and ExecuteNextChild/4. 

We firstly consider the case where cancellation has been propagated to a guard or continuation 00 
instance of a MultiMerge (GId-MUM) or Discriminator (GId-DIS) type. In the event that a guard 
is cancelled, the following applies. In a Multimerge, if the guard is the last running, we need to 

cancel remaining continuation instances (i. e. those which have not been executed); and if all other C, 
continuation instances have finished, propagate completion upwards (including the Multimerge 

instance). In a Discriminator, we check whether the guard being cancelled is sufficient for the C, in 
failure threshold to have been reached (i. e. the minimum number of guard instances that need 
to fail to signify that the completion threshold can never be reached). If the threshold has been 

reached, we cancel the single continuation instance, cancel the remaining guards, and propagate 

completion upwards (including the Discriminator instance). 

In the case that a continuation instance has been cancelled, the following applies. In a 
Multimerge, we check whether it is the last one to have been in an Initial state; if so, cancel any 

remaining guards that are still running. We also check whether all other continuation instances 

are now finished; if so, propagate completion upwards (including the Multimerge instance). In a 
Discriminator, we cancel any guards that are still running, and propagate completion upwards 000 
(including the Discriminator instance). 0 

The appropriate augmentation to PropagateCancelUp/4 is as follows. 
C, 

PropagateCancelUp(il, i, st, s) =- 

as above for the case where il is the root instance ... 
(3p). Child(p, i', s) A 

as above for CId-SEC, CId-F-XC, CId-DEF ... 
GType(p, s)=GId-MUM A (PropagateCancelDownInc(il, i, st, s) V 

(Guard(il, s) A AllGuardsFinished(p, il, s) A 

(CancelRemainingConts(p, i, st, s) V 

NoContsRunning(p, il, s) A PropagateCompleteUpInc(p, i, st, s)) V 

Cont(il, s) A (NoContsInitial(p, i', s) A CancelRemainingGuards(p, i, st, s) V 

AllContsFinished(p, il, s) A PropagateCompleteUpInc(p, i, st, s)))) V 

GType(p, s)=GId-DIS A (PropagateCancelDownInc(i', i, st, s) V 

(Guard(il, s) A DiscThreshFailed(p, s) V Cont(i', s)) A 

(CancelRemainingGuards(p, i, st, s) V CancelRemainingConts(p, i, st, s) V 

PropagateCompleteUpInc(p, i, st, s))) V 
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as above for all other cases 

Instances of the fluent Guard/2 are asserted to the BXF when guard instances of merge 

types are added to the CNNIS, and persist thereafter. Specifically, whenever tile parameter f in 

add-activity/7 is set to EXEC, and the parent instance is a Multimerge or a Discriminator 

type, an instance of the fluent Guard(i, do(a, s)), where i is the identifier of the instance being 

added, will be asserted to the BXr. Instances of Cont/2 are asserted to the BAT whenever the 

parameter f in add-activity/7 is set to CONT, and persist thereafter. 

The predicate PropagateCompleteUpInc UI, i, st, s) is the same as PropagateCompleteUp/4, 

except that it also sets the state of iI to be Completed. Its variant does not do this. The predicate 
Al lGuardsFini shed (p, gu, s) holds just when all guards of p, bar gu (which is being cancelled), 
have finished (in situation s), viz. 

AllGuardsFini shed (p, Su, s) =- (Vgul). Guard(gul, s) A Child(p, gul, s) A -gu=gul D 

(State (gu I, s) =Completed V State(Su', s)=Cancelled) 

The predicate AllContsFini shed (p, gu, s) has an identical definition, except that it applies 

to instances for which Cont/2 holds (i. e. continuation instances). 

The predicate NoContsInitial(p, i, s) (resp. NoContsRunning/3) holds iff no continuation 
instance, bar i, of the merge instance, p, is in an Initial (resp. Running) state. The definition 

C, 
of NoContsInitial/3 follows. The definition of NoContsRunning/3 is a trivial variation. 

NoContsInitial(p, i, s) =- (Vc). Cont(c, s) A Child(p, c, s) A -c=i D -State (c, s) =Initial 

The predicate CancelRemainingGuards/4 propagates cancellation through those guard in- 
0 C, CD 

stances which are still running, viz. 0 

CancelRemainingGuards(p, i, st, s) -= 
(3gu). Guard(gu, s) A Child(p, gu, s) A 

State (gu, s)=Running A PropagateCancelDownInc(gu, i, st, s) 

The definition of CancelRemainingConts/4 is trivially different - it just applies to those con- 

tinuation instances which are in the Initial state. 
Another dispensation that needs to be niade concerns ExecuteNextChild/4. We need to 

niodify the definition of this predicate for the occasion when a guard instance in a Multimerge 0 
or Discriminator is coinpleted. The appropriate augnientation to ExecuteNextChild/4 is as 
follows. 

ExecuteNextChild(il, i, st, s) = (3p, i"). Child(p, i', s) A 

as above for GId-SEQ, GId-UOS, GId-SEC, GId-EXC, GId-DEF 

(GType(p, s)=GId-MUM V GType(p, s)=GId-DIS) A Guard(il, s) A 

FirstInitialContinuation(p, c, s) A 

(GType(p, s)=GId-MUM A 

(PropagateRunningDownInc(c, i, st, s) V 

AllGuardsFinished(p, il, s) A CancelRemainingConts(p, c, i, st, s) V 

NoContsInitial(p, c, s) A CancelRemainingGuards(p, il, i, st, s)) V 

GType(p, s)=GId-DIS A Dis cThre shRe ached (p, s) A 
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(PropagateRiinningDownlnc(c, i, st, s) V CancelRemainingGuards(p, i', i, st, s))) 

In the foregoing, FirstInitialContinuationAction/3 holds for the first continuation instance 
C, 

of a inerge instance that is yet to be run - the instance is in an Initial state, viz. 0 

FirstInitialContinuation(p, c, s) = Cont(c, s) A Child(p, c, s) A State (c, s) =Initial A 

-(3c'). (cl<c A Cont(cl, s) A Child(p, c', s) A State (cl, s)=Initial) 

The predicate CancelRemainingGuards/5 (resp. CancelRemainingConts/5) is .1 variant of 
its four-arity counterpart. It takes an additional argument (#2), which gives the guard being, en 0 
completed (resp. continuation being started), so that cancellation is effected on all other running 0 C, 
guards (resp. yet-to-start continuations). The definition of CanceiRemainingGuards/5 is now 
presented. The definition of CancelRemainingConts/5 is a simple variant. 

CancelRemainingGuards(p, il, i, st, s) =- (3i"). Guard(ill, s) A Child(p, i", s) A -i"=il A 

State (i I', s)=Rilr3ning A PropagateCancelDownlnc(i", i, st, s) 

For Discriminator, if the guard instance completing means that tile (completion) threshold for 00 
cruards conipleting has now been reached (see Section 3.1.14, for more information), as determined 00 
by DiscThreshReached/2, then the continuation instance is executed and remaining guards are 0 4D 
cancelled. 

The definitions of DiscThreshReached/2 (and DiscThreshFailed/2, from above) are as fol- 

lows. 

DiscThreshReached(i, s) =- (3t, f, c). DiscThresh(i, t, s)=c A t=c+l 

DiscThreshFailed(i, s) =- (3t, f, c). DiscFailThresh(i, f, s)=c A f=c+l 

Each Discriminator instance maintains instances of the DiscThresh(i, t, s)=c -and 
DiscFai1Thresh(i, f, s)=c fluents, which are initially asserted to the BXr by the translator, 

see Section 6.3. The parameter d is the Discriminator instance, t is the completion threshold, f 
is the threshold for failed (i. e. cancelled) guards, and c is the count of completions in DiscThresh/3 

and the count of failures in DiscFailThresh/3. 
There are the following successor-state axionis for these fluents: 

DiscThresh(d, t, do(a, s))=c -= CompletingDiscAction(a, d, s) A 

(3c'). DiscThresh(d, t, s)=cl A c=c'+l V 

-CompletingDiscAction(a, d, s) A DiscThresh(d, t, s)=c 

DiscFailThresh(d, f, do(a, s))=c =- CancellingDiscAction(a, d, s) A 

(3c'). DiscFailThresh(d, f, s)=c' A c=cl+l V 

-CancellingDiscAction(a, d, s) A DiscThresh(d, f, s)=c 

Here, CompletingDiscAction(a, d, s) (resp. CancellingDiscAction(a, d, s)) holds when the 

action a causes one of the guards of d to be completed (resp. cancelled). The definition of 
CompletingDiscAction(a, d, s) is now presented. TlicdefiiiitionofCancellingDiscAction(a, d, s) 
is trivially similar - we test for a state change to Cancelled, instead of Completed. 0 
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CompletingDiscAction(a, d, s) =- (3i, st). Child(d, i, s) A Guard(i, s) A 

StateChange(i, a, st, s) A st=Completed 

B. I. 5 CancelActivity and Exit Types 

When a CancelActivity instance is completed, it is likely that there will be a number of instances 

in its visibility horizon which should be cancelled. In order to support this, we need to augment 0 
the definition of the predicate StateChange/4. The updated definition of this predicate follows; in 

it, we have added that a completing cancel activit which has iI in its visibility horizon, causes 0 Y, 

cancellation to be propagated up from i 

StateChange(i, a, st, s) a 
(3p, c, g, sc, f, j). a=add-activity(p, i, c, g, sc, f, j) A SetRunning(p, i, f, st, s) V 

Completing(i, a, st) V 

(3i'). CompletingAction(il, a) A PropagateCompleteUp(il, i, st, s) V 

(3i'). ((CancellingAction(i', a) V CompletingCancelActivity(a. il, s)) A 

PropagateCancelUp(il, i, st, s)) 

The predicate CompletingCancelActivity/3 holds just when a is a complete/1 action on a 
CancelActivity instance, which causes the cancellation of target instance i, viz. 0 

CompletingCancelActivity(a, i, s) =- (3i'). a=complete(il) A 

(3q, q', r, r'). (CancelAct(i', q, s) V CancelAct(il, q, r, s)) A 

InScope(il, i, rl, q', s) A IsType(rl, r) A IsType(q', q) A 

(State(i, s) = Running V State(i, s) = Initial) 

The fluents CancelAct/3 and CancelAct/4 record the target customised type, qtype, and plain 
reference type (if applicable), rtype, of CancelActivity types - see Section 3.1.16. Instances of 
these fluents are asserted to the BAT whenever a CancelActivity is added to the CWS, using 
add-activity/7, and thereafter persist. The use of IsType/2 is explained in Section 6.3. 

The effects of completing a (running) Exit (GId-EXI) instance are to cancel the whole model, 
as determined by the following modified definition of StateChange/4 - see the last two lines. 
This simply says that each instance i for which CType is defined (which is just a mechanism for 

enumerating all instances) should be cancelled. 

StateChange(i, a, st, s) =- 
(3p, c, g, sc, f, j). a=add-activity(p, i, c, g, sc, f, j) A SetRunning(p, i, f, st, s) V 

Completing(i, a, st) V 

(3i, ). CompletingAction(i', a, s) A PropagateCompleteUp(il, i, st, s) V 

(3i, ). ((CancellingAction(i', a) V CompletingCancelActivity(a, il, s)) A 

PropagateCancelUp(il, i, st, s)) V 

(3i, ). a=complete(il) A GType(il, s) = GId-EXI A (3c). CType(i, s)=c A 

-State U, s) =Completed A st=Cancelled 

We also need to say that the completion of Exit instances should not be propagated upwards. 0 
To this end, we migrate to a version of CompletingAction of arity three; its additional argument in 0 
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is the situation term s. In the new definition, we except complete/l actions on Exit instances 

from being a "completing action". 00 

CompletingActi0n(i, a, s) H a=comp-bas(i) V (complete(i) A -GType(i, s)=GId-EXI) V 

(3di, l). a=complete(a, di, l) 

B. 1.6 Multiple-Instance Types 

The SitCalc-based characterisation of Multi* activity types is now presented. There is a sig 
nificant overlap between how limited and non-limited Multi* types are treated. There are also 
important differences. 

As was done for choice types, the translator wraps (join condition, execution activity) pairs of 
all Multi* types in a containing SeqCancel type, which makes for a simpler characterisation. 

For MultiLimit (GId-MLI) and MultiLimitSeq (GId-MLS), the translator will specify tile cre- 
ation of n (join condition, execution activity) pairs, where n is the limit, or threshold, of the type, 

see Section 3.1.15. For Multi (GId-MUL) and MultiSeq (GId-MUS), the definition of the translator 

specifies that just one (join condition, execution activity) pair be created initially. When the join 

condition of tile given pair completes successfully, another such pair is created. For Multi, its join 

condition is immediately set running. For MultiSeq, we wait until the execution activity instance 
from the previous pair finishes before setting the join condition of the new pair running. Pairs 

continue to be created, in this way, until a join condition fails. 
We support the Multi* types, as we do merge and choice types, by dispensations within 

tile definitions of PropagateCancelUp/4 and ExecuteNextChild/4. Tile modified definition of 
PropagateCancelUp/4 is now presented (in full). The changes from its previous definition are 
localised to the case where the parent, p, (of the instance, i from which cancellation is being 

propagated) is an instance of a SeqCancel type. In this case, we need to discern whether its 

respective parent (if extant) is an instance of a Multi* type; and, if so, act appropriately, as will 
be described. 

PropagateCancelUp(il, i, st, s) =- 

ý(3p). Child(p, il, s) A PropagateCancelDownInc(i', i, st, s) V 

(3p). Child(p, il, s) A 

GType(p, s)=GId-EXC A 

(AllRemGuardsCald(p, il, s) A PropagateCancelUp(p, i, st, s) V 

-AllRemGuardsCald(p, i', s) A PropagateCancelDownInc(il, i, st, s)) V 

GType(p, s)=GId-DEF A 
(Default(i', s) A AllRemGuardsCaLld(p, il, s) A PropagaLteCaLncelUp(p, i, st, s) V 

-Def_ault(il, s) A AllRemGuardsCald(p, il, s) A (3d). Default(d, s) A Child(p, d, s) A 

(State (d, s) =Initial A PropagateRunningDownInc(d, i, st, s) V 

-State (d, s) =Initial A PropagateCancelUp(p, i. st, s)) V 

-AllRemGuardsCald(p, i', s) A PropagateCancelDownInc(il, i, st, s)) V 

GType(p, s)=GId_MUM A (PropagateCancelDownInc(i', i, st, s) V 

(Guard(i', s) A AllGuardsFini shed (p, i I, s) A 

(CancelRemainingConts(p, i, st, s) V 

NoContsRunning(p, il, s) A PropagateCompleteUpInc(p, i, st, s)) V 
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Cont(il, s) A (NoContsInitial(p, il, s) A CancelRemainingGuards(p, i, rt, s) V 

AllCont sFini shed (p, V, s) A PropagateCompleteUpInc(p, i, st, s)))) V 

GType(p, s)=GId-DIS A (PropagateCancelDownInc(il, i, st, s) V 

(Guard(il, s) A DiscThreshFailed(p, s) V Cont(il, s)) A 

(CancelRemainingGuards(p, i, st, s) V CancelRemainingConts(p, i, st, s) V 

PropagateCompleteUplnc(p, i, st, s))) V 

GType(p, s)=GId-SEC A 

((3gp). Child(gp, p, s) A 

((GType(gp, s)=GId-MLI V GType(gp, s)=Gld-MLS V 

GType(gp, s)=GId-MUL V GType(gp, s)=Gld-MUS) A 

((3e). Gua, rd(i', e, s) A 

(CancelRemainingPairs(gp, p, i, st, s) V 

CompleteDnExecActsFinished(gp, p, i, st, s)) V 

(3gu). Guard(gu, il, s) A (PropagateCancelDownInc(p, i, st, s) V 

PropagateCompleteUp(p, i, st, s))) v 

-GType(p, s)=GId-MLI A -GType(gp, s)=GId-MLS A 

-GType(gp, s)=GId-MUL A -GType(gp, s)=GIdMS A 

PropagateCancelUp(p, i, st, s)) V 

-(3gp). Child(gp, p, s) A PropagateCancelDownInc(p, i, st, s)) V 

-GType(p, s)=GId-SEC A -GType(p, s)=GId-EXC A -GType(p, s)=GId-DEF A 

-GType(p, s)=GId-MUM A -GType(p, s)=GId-DIS A 

(PropagateCancelDownInc(il, i, st, s) V PropagateCompleteUp(il, i, st, s)) 

Instances of GuardQ , e, s) are asserted to tile BAT when an execution activity instance, e (of 

a Multi* type), is added to the CNVS, and persist thereafter. The j parameter of add-activity/7 

specifies the identifier of the pertaining join instance, j, and is assigned by the translator (see 

Section 6.3). 

According to the foregoing, whenever a join condition (of a Multi* type) is being cancelled 
(given by the GO Guard (i e, s) case), we propagate cancellation down to any (join condition, 

execution activity) pairs, which are yet-to-run. These will only exist for limited types, as these are 

created by the translator a prioti. This is effected by the CancelRemainingPairs/5, which has 

the following definition. 
0 

CancelRemainingPairs(gp, p, i, st, s) =- (3b). Child(gp, b, s) A b>p A 

PropagateCancelDownInc(b, i, st, s) 

We also propagate cancellation down through the (join condition, execution activity) pair whose ID 0 
join condition is being cancelled. Moreover, if all of the execution activity instances (which may C, 
have previously been set running) have finished, we complete the Multi* instance and propagate 0 
completion upwards. This is effected by the CompleteOnExecActsFinished/5, which has the 

followin- definition. 0 

CompleteOnExecActsFinished(gp, p, i, st, s) -ý 
((Vb, gu, c). Child(gp, b, s) A b<p A Child(b, c, s) A Guard(gu, c, s) D 

-State(c, s)=Running) A 

PropagateCompleteUpInc(gp, i, st, s) 
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Whenever an execution activity instance is cancelled (given by the (3gu) . Guard(gu, i s) 

case), we propagate cancellation throughout the (join condition, execution activity) pair, just in 

case the execution activity instance was cancelled (i. e. externally) prior to the join condition 
finishing. We also propagate completion upwards from the pair itself, which will have the effect 
(by virtue of ExecuteNextChild/4) of executing another (join condition, execution activity) pair 
(specifically, the join condition would be set running), for MultiLimitSeq/MultiSeq types, if 

extant. For MultiLimitSeq, it may be the case that there is no further pair to be set running. This 

would happen if all n pairs have been executed. When all (join condition, execution activity) pairs 
have finished, in a Multi* instance, propagating completion upwards (from a cancelled execution 00 
activity instance) will complete the Multi* instance. In this case, we continue to propagate 

completion further upwards. 
The modified version of ExecuteNextChild/4 is as follows. 

ExecuteNextChild(il, i, st, s) = (3p, i"). Child(p, i', s) A 

(PropagateRiinningDownInc(ill, i, st, s) A 
((3gp). ((gp=p A (GType(p, s)=GId-SEQ V GType(p, s)=GId-SEC V 

GType(p, s)=GId-MUS V GType(p, s)=GId-MLS) V 

Child(gp, p, s) A GType(gp, s)=Gld-MLI A (3e). Guard(il, e, s)) A 

NextInitialChild(gp, ill, s)) V 

GType(p, s)=GId-UOS A Child(p, ill, s) A State (i I', s)=Initial) V 
(3gp). Child(gp, p, s) A (GType(gp, s)=GId-EXC V GType(gp, s)=GId-DEF) A 

(3b). Child(Sp, b, s) A -p=b A PropagateCancelDownInc(b, i, st, s) V 
(GType(p, s)=GId-MUM V GType(p, s)=GId-DIS) A Guard(il, s) A 

FirstInitialContinuation(p, c, s) A 
(GType(p, s)=GId-MUM A 

(PropagateRunningDownInc(c, i, st, s) V 

AllGuardsFini shed (p, i I, s) A CancelRemainingConts(p, c, i. st, s) V 

NoContsInitial(p, c, s) A CancelRemainingGuards(p, il, i, st, s)) V 

GType(p, s)=GId-DIS A DiscThreshReached(p, s) A 

(PropagateRunningDownInc(c, i, st, s) V CancelRemainingGuards(p, il, i, st, s)))) 

When an execution activity instance in a Mult iLimitSeq/MultiSeq has finished (and, thus, its 

containing SeqCancel completed), we execute the next (join condition, execution activity) pair, 
if extant. For MultiLimit types whose join condition is completing, we execute the next (join 

condition, execution activity) pair, if extant. 

B. 2 Augmentations to MSRCaj-ý 

In the following, ive present the definition of Msjtc,, j, j-j for those Liesbet types not covered in 
-0 Section 6.3. Note that the result of translating a Liesbet model, using A4sjtc,, jcj-], is to assert 00 

a set of ground atoms to the BK-r, which pertain to instances of fluents that hold in the initial 

state, So. Additionally, four of the action precondition axioms, presented in the previous section, 
i. e. those for complete, cancel/1,3, may be customised. 

0 The definition Of -MSi(CalcH 
for synchronisation types is as follows. We present the trans- 

lation of a Stop type, with both StopQuery and GoQuery queries, whose unique generic type 
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identifier is GId-DST (the convention being D for double query and ST for Stop). We show just 

the translation of a non-isolated type - the isolated case follows as above. For Stop with just 

StopQuery (GId-SST), we remove the AssertStopGoQuery instruction from the following. For 

Go with both queries (GId-DGO), we change AssertStopStopQuery to AssertGoStopQuery 

and AssertStopGoQuery to AssertGoGoQuery, and remove AssertGoStopQuery for the 

single-queried case (GId-SGO), which uses just GoQuery. 

- Msitc,, I, [Stop (StopQuery, GoQuery) (ctype (ctype) (p, i, f, j) 

Assert(Activity(p, i, c, GId-DST, NONE, f, j)) 

where c=genTypeId(ctype) 

AssertStopStopQuery(QTsc[StopQuery](i), c); AssertStopGoQuery(QTsc[GoQuery](i), c); 

The helper translation function, QTscE-], translates a compound Liesbet synchronisation 

query into a query made against the fluent state of the basic action theory, taking the 

instance identifier of the synchronisation instance (which makes use of the query) as its 

sinale aramment. Its definition is as follows. We omit details of translating distinct queries 
(i. e. queries which make use of distinct reference types, see Section 3.1.3), as these are 

more involved. We have previously given a flavour of how distinct queries are constructed in 

SitCalc in Appendix Section B. 1.2. 

- QT[Truej WT 

- Q7-jFalsej(i) I 

- QTýCompleted-act(qtype)j(i) 

(3t, r, q'). InScope(i, t, r. q', s) A IsType(q', q) A State (t, s) =Completed, where q--genTypeId(qtype) 

andIsType(ql, q) -= q=q' V ISA(q', q) V (3q"). ISA(q', q") A IsType(q", q) 

- Q7-[Completed-all(qtype)](i) = 

(Vt, r, q1). InScope(i, t, r, q', s) A IsType(q', q) D State (t, s) =Completed, where ... 

- Q7-[Completed-act(qtype in rtype)](i) = 

(3t, r', q'). InScope(i, t, r', q1, s) A IsType(q', q) A IsType(rl, r) A State (t, s) =Completed, 

where ... and r=genTypeId(rtype) 

- QT[Completed-all(qtype in rtype)](i) 

(Vt, r1, q'). InScope(i, t, r, q, s) A IsType(ql, q) A IsType(rl, r) D State (t, s) =Completed, 

where ... 

- For Cancelled, Initial and Running queries, replace occurrences of Completed accordingly in 

the foregoing. 

- For Finished queries, we construct a disjunction of the pertinent Completed and Cancelled 

queries. ror instance, QTJFinished-act(qtype)](i) = QTECompleted-act(qtype)](i) V 
QT[Cancelled-act(qtype)](i) 

- QTJ-QJ(i) = -QTJQI(i) 

- QTJQ1 I ... IQ,, I(i) Q'riQ, ](i)A 
... AQTJQ. I(i) 

- QTJQI+... +QýJ(i) QTJQII(i)V... VQTJQ. I(i) 
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The instruction AssertStopStopQuery (q, c) adds: CType U, s) =c Aq within the body of the 

action precondition axiom for cancel M, constituting one of the replacements for the con- 
junct: CType(i, s) = CUSTOMISED-SYNC-TYPE A CUSTOMISED-COMPLETION-CONDITION, described in 

Appendix Section B. 1.1. Note that c is textually replaced by the given actual parameter, as 
is q. 

Similarly, the instruction AssertStopGoQuery (q, c) adds: CType U, s) =cAqA -Poss (cancel M s) 

within the body of the action precondition axiom for complete W. Note the extra condition, 

requiring that it is not possible to cancel the synchronisation instance, which enforces the 0 
priority of StopQuerys over GoQuerys for Stop synchronisation types. 

The instructions for Ass ertGoStopQuery (q, c), and AssertGoGoQuery(q, c), similarly add 

the conjunct CType(i, s) =cAq to the action precondition axioms for cancel(i), and 

complete(i), respectively, with the difference that the condition -Poss (complete W, s) 
is asserted for AssertGoStopQuery(q, c); this time, no additional condition is asserted for 

AssertGoGoQuery(q, c), thus enforcing the appropriate priority in this case. 

For CancelActivity types: 

-M sit cýt, [CancelAct ivity (qtype) (ctype (ctyp e)) I (p, i, f, i) 

Assert(Activity(p, i, c, GId-CAN, NONE, f, j)) 

where c=genTypeId(ctype) 

AssertCancelAct(i, q, c) 

where q--genTypeId(qtype) 

- MsitcýlcjCancelActivity(qtype in rtype)(ctype(ctype))J(p, i, f, j) 

Assert(Activity(p, i, c, GId-CAR, NONE, f, j)) 

where c=genTypeId(ctype) 

AssertCance1ActRef(i, q, c, r) 

where q--genTypeId(qtype) and r=genTypeId(rtype) 

The instruction AssertCancelAct(i, ql cI) (resp. Assert; CancelActRef (i, ql cl rl)) in- 

serts c=c' A q--ql (resp. c=cl A q=ql A r=rl) as a conjunct of the pertinent disjunction in 

the successor state axiom for CancelAct (resp. CancelAct; Ref), which now follows. 

CancelAct(i, q, do(a, s)) -= 
(3p, c, g, sc, f, j). (a=add-activity(p, i, c, g, sc, f, j) A 

(c=CUSTOMISED-CANCEL-ACT-TYPE A q=CUSTOMISED-QUERY-TYPE VV 

CancelAct(i, q, s) 

CancelActRef(i, q, r, do(a, s)) =- 

(3p, c, g, sc, f, j). (a=add-activity(p, i, c, g, sc, f, j) A 

(c=CUSTOMISED-CANCEL-ACT-TYPE A q--CUSTOMISED-QUERY-TYPE A 

r=CUSTOMISED-REF-TYPE V ... )) V 

CancelAct(i, q, r, s) 
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9 Choice (Chgl,..., Chgn, Chcl,..., Chcn) (ctype (ctype))] (p, ij j) 

Assert(Activity(p, i, c, GId-EXC, NONE, f, j, SO)) 

where c=genTypeId(ctype) 

Assert(Activity(i, ii, sec, Gld-SEC, NONE, EXEC, NONE, SO)) 

where il=genInstIdO and sec=genTypeIdO; 

M sjtcýj, jChglj (i 1, gl, EXEC, NONE); 

where gl=genInstIdO 

. Msjtcýj, [Chc 1] (i 1, c 1, NONE, NONE); 

where cl=genInstIdO 

Assert(Activity(i, in, sec, GId-SEC, NONE, EXEC, NONE, SO)) 

where in=genInstIdO and sec=genTypeIdo; 

Msitc. lýlChgnj (in, gn, EXEC, NONE), 

where gn=genInstIdO 

Msitcý1clChcril (in, cn, NONE, NONE); 

where cn=genInstIdO 

0 A4sitcýl, [DefaultChoice(Chgl,..., Chgn, Chcl,..., Chcn, Chd)(ctype(ctype))I(p, i, f, j) 

Assert(Activity(p, i, c, GId-DEF, NONE, f, j, SO)) 

where c=genTypeId(ctype) 

Assert (Activity U. il, sec, GId-SEC, NONE, EXEC, NONE, SO)) 

where il=genInstIdO and sec=genTypeIdo; 

A4sjtCýj, jChglj (il, gl, EXEC, NONE); 

where gl=genInstIdO 

. Msjjcýj, [Chc 11 (i 1, c 1, NONE, NONE); 

where cl=genInstIdO 

Assert(Activity(i, in, sec, GId-SEC, NONE, EXEC, NONE, SO)) 

where in=genInstIdO and sec=genTypeIdo; 

MsjtcýjcjChgn] (in, gn, EXEC, NONE); 

where gn=genInstIdO 

Msitcýjc[Chcn] (in, cn, NONE, NONE); 

where cn=genInstIdO 

MsjjcýjcjChcd3 (i, d, DEFAULT, NONE); 

where d=genInstIdO 
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MsiicýiciMultiChoice(Chgl,..., Chgn, Chcl,..., Chcn)(ctype(ctype))I(p, i, f, j) 

Assert(Activity(p, i, c, GId-MUC, NONE, f, j, SO)) 

where c=genTypeId(ctype) 

Assert(Activity(i, il, sec, GId-SEC, NONE, EXEC, NONE, SO)) 

where il=genInstIdo and sec=genTypeIdo; 

Msjtcýjc[Chglj (il, gl, EXEC, NONE); 

where gl=genInstIdO 

Msitcoic[Chcli (il, cl, NONE, NONE); 

where cl=genInstIdO 

Assert(Activity(i, in, sec, GId-SEC, NONE, EXEC, NONE, SO)) 

where in=genInstIdO and sec=genTypeIdO; 

Msitc. lýiChgn] (in, gn, EXEC, NONE); 

where gn=genInstIdO 

M sjtcýjc jChcnj (in, cn, NONE, NONE); 

where cn=genInstIdO 

Msitc. l, [MultiMerge(Chgl,..., Chgn, Chcl,..., Chcm)(ctype(ctype))I(p, i, f, j) 

Assert(Activity(p, i, c, GId-MUM, NONE, f, j, SO)) 

where c=genTypeId(ctype) 

MsjtcaicEChgl] (i, gl, EXEC, NONE); 

where gl=genInstIdO 

. 
A4sjtcýj, [Chgn] (i, gn, EXEC, NONE); 

where gn=genInstIdo 

Msjtc. jý[Chclj U, cl, CONT, NONE); 

where cl=genInstIdO 

MsjtcýjcjChcmj U, cn, CONT, NONE); 

where cn=genInstIdO 

e Msjtcýj, [Discriminator (m) (Chgl,. .., Chgn, Chc) (ctype (ctype)) I (p, i, f, j) 

Assert(Activity(p, i, c, GId-DIS, NONE, f, j, SO)) 

where c=genTypeId(ctype) 

Assert(DiscThresh(i, m, SO)=O); Assert(DiscFailThresh(i, f, SO)=O) 

where f=eval(n-m+l) 

MsjtcýjcjChglj (i, gl, EXEC, NONE); 
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where gl=genInstIdO 

Msjtcýj, EChgnj U, gn, EXEC, NONE); 

where gn=genInstIdo 

Msjtcýjý[Chcj U, C, CONT, NONE); 

where c=genlnstIdo 

0 A4sitcýl, [MultiLimit(n)(ExecAct(join(ExecActJoin))(ctype(ctype))I(p. i, f, j) 

Assert(Activity(p, i, c, GId-MLI, NONE, f, j, SO)) 

where c=genTypeId(ctype) 

Assert(Activity(i, ii, sec, GId-SEC, NONE, EXEC, NONE, SO)) 

where il=genInstIdO and sec=genTypeIdo; 

Msjtcýj, [ExecAct Join] (il, j 1, EXEC, NONE); 

where jl=genInstIdo 

Msjtcýjc[ExecActj (il, e I, NONE, j 1); 

where el=genInstIdo 

Assert (Activity U, i2. sec, GId-SEC, NONE, NONE, NONE, SO)) do not EXEC all butfirst join 

where i2=genInstIdo and sec=genTypeIdo; 

Msjtc,, jcjExecActJoin] (i2j 2, EXEC, NONE); 

where j2=genInstIdo 

M SifCalc [ExecActl U2, e2, NONE, j 2); 

where e2=genInstIdO 

Assert (Activity U, in, sec, GId-SEC, NONE, NONE, NONE, SO)) 

where in=genInstIdO and sec=genTypeIdo; 

M sitc. 1, [Exe cAct Join] (in, jn, EXEC, NONE); 

where jn=genInstIdo 

Msitc. tc[ExecActl (in, en, NONE, jn); 

where en=genInstIdo 

0 Msitc. lý[MultiLimitSeq(n)(ExecAct(join(ExecActioin))(ctype(ctype))I(p, i, f, j) = 

Assert(Activity(p, i, c, GId-MLS, NONE, f, j, SO)) 

where c=genTypeld(ctype) 
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Assert(Activity(i, ii, sec, GId-SEC, NONE, EXEC, NONE, SO)) 

where il=genInstIdo and sec=genTypeldo; 
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. 
A4sjtc,, j, jExecActJoinj (i I, j 1, EXEC, NONE) 

where j 1=genInstId 0 

Msjtcýj, jExecActj (i I, el, NONE, j I); 

where el=genInstIdO 

Assert (Activity U, i2, sec, GId-SEC, NONE, NONE, NONE, SO)) do not EXEC all butfirst join 

where i2=genInstIdO and sec=genTypeIdo; 

M sitCalc [Exe cAct Join] (i2, j 2, EXEC, NONE); 

where j2=genInstIdO 

MsitCalc[ExecActj U2, e2, NONE, j2); 

where e2=genlnstIdO 

Assert (Activity (i, in, sec, GId-SEC, NONE, NONE, NONE, SO)) 

where in=genlnstIdO and sec=genTypeIdo; 

. 
A4sjtc. j, jExecActJoin] (in, jn, EXEC, NONE); 

where jn=genlnstIdO 

. 
A4sjtc,, j, jExecActj (in, en, NONE, jn); 

where en=genInstIdO 

0 Msitc. 1, EMulti(ExecAct(join(ExecActioin))(ctype(ctype))I(p, i, f, j) 

Assert(Activity(p, i, c, GId-MUL, NONE, f, j, SO)) 

where c=genTypeId(ctype) 

Assert (Activity U, i I, sec, GId-SEC, NONE, EXEC, NONE, SO)) 

where il=genInstIdO and sec=genTypeIdo; 

Msjtc,, j, jExecActJoinj(i EXEC, NONE); 

where j'=genInstIdO 

Msitc. 1, [ExecActl W, e I, NONE, j 1); 

where el=genInstIdO 

Assert(ActivityTemplate(sec, ROOT, O, sec, GId-SEC, NONE, EXEC, NONE, SO)) 

M Sit Ca1q_,,.,, lExecAct Join] (sec, O, jt, EXEC, NONE); 

where jt=genInstIdO 

Msjtc. jc, _P,,,, 
jExecActj (sec, 0, et, NONE, j); 

where et=genInstIdO 

Note that the translation function MSitCa1q_, 
P1.,, 

1-1 is identical to Msitcýjcj-j, except that it 

asserts ActivityTemplate/9 formulas to the basic action theory for the initial state, So, rather than 

Activity/8 formulas. It also uses a distinct copy of the genInstId/O function so that instance 
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numbers are generated from the value one (inclusively). These will be relative ids, which will be 

made absolute when join and execution activity instances are added. A4SitCaICt,,. 
p,, j, 

J-J takes 

an extra parameter, which is the custornised activity type of the SeqCancel used to contain (join 

condition, execution activity instance) pairs of the Multi type. 

Msitcýl, [MultiSeq(ExecAct(join(ExecActJoin))(ctype(ctype))I(p, i, f, j) 

Assert(Activity(p, i, c, GId-MUS, NONE, f, j, SO)) 

where c=genTypeId(ctype) 

Assert(Activity(i, i', sec, GId-SEC, NONE, EXEC, NONE, SO)) 

where il=genInstIdO and sec=genTypeIdO; 

MsjtcajcjExecActJoinj(iI jI EXEC, NONE); 

where j'=genInstIdO 

Msjtc. jcjExecActj (iI, eI, NONE, j'); 

where el=genInstIdO 

Assert (ActivityTemplate (sec, ROOT, 0, sec, GId-SEC, NONE, NONE, NONE, SO)) Don't execute AlultiSeq 

join, exec pair immediately 

MsjtCajcf,,, 
Pj, f, 

[ExecActJoinj (sec, 0, j t, EXEC, NONE); 

where jt=genInstIdO 

Msitcýjý, 
_P1.,, 

[ExecActj (sec, 0, et, NONE, j); 

where et=genInstIdO 

We also need to process the ISA specifications, for custornised activity types, within a Liesbet 

model. These are handled by A4sjjc,, j, j-j in a separate translation pass. For every ISA defini- 

tion in a Liesbet model, MSUCaicl-] inserts them into the BAT, (almost) as is, as situation- 
independent atoms. That is, if ctype(q) ISA ctype(q') exists in the Liesbet model, then 

ISA (q, qI) is asserted to the BX_r. Note that the translator ensures that there are no cycles en- 

gendered by the type definitions. 

Finally, we discuss the processing of synchronisation rules, described in Section 3.3, by Msitc,, Ic 
The use of these rules is naturally accommodated in our SitCalc characterisation of Liesbet, by 

means of a straightforward augmentation of the action precondition axioms. The rules, which 

will have the scherna: SyncRule(RType, CondQuery, GoQuery), are handled by MSjjC,, jcj-j in 

a separate pass. For each synchronisation rule instance that exists, MSitCaIcH will modify all 

completion and cancellation action precondition axioms, by inserting an additional necessary con- 
dition on the right-hand side of each of these axioms, viz. 

(Vi', c'). (Descenda. nt(iI, i, s) V il=i) A 
IsType(cl, c) A CType(il, s)=c' A QTjCondQueryjW ý QTJGoQueryj(i) 

where c=genTypeId(RType) 

This says that for a completion or cancellation action to occur, concerning instance i, if i is 
C, 

a descendant of an instance iI (in s), or iI is i, then if iI is of customised type RType (or some 

sub-type thereof) and CondQuery holds for i then GoQuery must hold for i. 
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For the 4-argunient synchronisation rule variant, SyncRule (Ref , RType, CondQuery, GoQuery), 0 
we simply tag all atomic queries within CondQuery and GoQuery with the Ref argument, which 00 
is a plain reference type (see Section 3.1.3). For instance, Completed-act(A) would become 

Completed-act(A in Ref). 


