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Abstract This paper presents the regime-switching recurrent reinforcement learn-
ing (RSRRL) model and describes its application to investment problems. The RSRRL
is a regime-switching extension of the recurrent reinforcement learning (RRL) algo-
rithm. The basic RRL model was proposed by Moody and Wu (Proceedings of the
IEEE/IAFE 1997 on Computational Intelligence for Financial Engineering (CIFEr).
IEEE, New York, pp 300–307 1997) and presented as a methodology to solve stochastic
control problems in finance. We argue that the RRL is unable to capture all the intrica-
cies of financial time series, and propose the RSRRL as a more suitable algorithm for
such type of data. This paper gives a description of two variants of the RSRRL, namely
a threshold version and a smooth transition version, and compares their performance
to the basic RRL model in automated trading and portfolio management applications.
We use volatility as an indicator/transition variable for switching between regimes.
The out-of-sample results are generally in favour of the RSRRL models, thereby sup-
porting the regime-switching approach, but some doubts exist regarding the robustness
of the proposed models, especially in the presence of transaction costs.

1 Introduction

The recurrent reinforcement learning (RRL), proposed by Moody and Wu (1997),
is a direct reinforcement approach for investment decision making. It has an auto-
regressive outlook and can be likened to a recurrent neural network with a single
layer. Previous work has already shown that the RRL offers good promise in finding
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profitable strategies in financial markets. Despite the reported findings, its simplistic
nature casts some doubts about its ability to capture the non-linearities present in finan-
cial data. This is the motivating factor behind our study. We propose a new model,
called regime-switching recurrent reinforcement learning (RSRRL), that augments
the existing RRL with regime-switching properties to cater for these non-linearities.
The principal goal of this paper is to give a detailed description of this new model,
and compare its performance with the basic RRL in investment applications. We look
at two variants of the RSRRL, a threshold version (TRRL) and a smooth transition
(STRRL) version. We perform controlled experiments using artificial data to better
understand the working principles of both sets of algorithms, and then use real-world
data sets to test the efficiency of the systems in a simple automated trading setting.
Additionally, an active portfolio management strategy based on these models is inves-
tigated and the performance of the three types of investors is compared with a passive
benchmark.

The outline of the paper is as follows: in Sect. 2, we present a review of previous
work concerned with the application of RRL in financial trading. Section 3 is devoted
to the RSRRL. It starts by briefly reviewing the RRL methodology and proceeds with
a detailed description of the RSRRL model, with emphasis on the learning proce-
dure and the selection of indicator/transition variables. The ensuing section describes
the experiments carried out to compare the two methodologies, presents the results,
and provides an assessment of the main findings. Section 5 provides the concluding
remarks and discusses possibilities for future work.

2 Literature review

Early work by Moody and Wu (1997) and Moody et al. (1998) aimed at demonstrating
the efficiency of the RRL methodology for training trading systems and portfolios by
optimising the differential Sharpe ratio (DSR). Their early studies emphasized on two
main aspects. First, trading systems based on the reinforcement learning paradigm
perform better than those based on supervised learning techniques. Second, mechan-
ical traders trained to maximise a risk-adjusted performance criterion like the DSR
outperform trading systems which aim at either maximising profits or minimising
some error criterion. Based on these results, Moody and Saffell (2001) used real data
sets to test the efficacy of the RRL-traders. They used the half-hourly US Dollar/Brit-
ish Pound FX rate from the first 8 months of quotes in 1996 to train a 3-position, i.e.
{long, short, neutral} trader. The differential downside deviation ratio (see Moody and
Saffell 2001) was used as the performance criterion. The RRL-traders led to profitable
situations and positive Sharpe ratios in both the absence and presence of transaction
costs, thereby indicating the ability of the RRL technique to discover structure in
real-world financial data series. The authors also compared the performance of the
RRL-trader with a Q-trader (a reinforcement learning approach developed by Watkins
(1989)) and a simple buy-and-hold strategy for an asset allocation problem between
the S&P 500 and T-bills for a 25-year period (1970–1994). It was found that both
sets of RRL-traders and Q-traders yield higher Sharpe ratios than the buy-and-hold
strategy, suggesting that reinforcement learning approaches are able to uncover useful
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Regime-switching recurrent reinforcement learning 91

patterns. And interestingly, RRL-traders outperformed the Q-traders in all aspects,
be it performance, interpretability or computational efficiency, thereby enhancing the
appeal for direct reinforcement learning approaches in the design of trading systems.

As a follow-up work on the single-layer RRL technique, Gold (2003) extended the
model to a two-layer neural network and subsequently drew comparisons between the
effectiveness of this variant with the original single-layer network. He used half-hourly
quotes from 25 different FX markets for the entire year of 1996. The traders were of
the {long, short} type and the DSR was the objective function used for optimising the
network weights. The author also performed some tuning to obtain good candidate
values for some key model parameters like the learning rate and number of training
epochs. His results showed that the RRL-traders were profitable in most markets,
although for a select few, very low and even negative Sharpe ratios were reported.
Despite the slightly mitigated performance, the general impression was that the RRL
algorithm is able to capture certain patterns and come up with profitable situations.
Moreover, the results also demonstrated that better performance is obtained with the
one-layer network than with the two-layer version. The author attributed this to noisy
financial data. He claimed that the more intricate version overfits the data and tenta-
tively pointed out that trading in FX markets might not require models that are too
complex.

A full-fledged automated trading system based on the RRL was put forward by
Dempster and Leemans (2006). They used a slightly modified version of the basic
RRL as part of a trading system with a layered structure for trading in FX markets. The
system consists of a machine learning layer, a risk management layer and a dynamic
utility optimisation layer. The purpose of the risk management layer is to subject the
output of the machine learning layer to certain risk constraints before the final trading
decision is taken. The main role of the dynamic optimisation layer is to find opti-
mal values for the model parameters in an adaptive fashion. They used one-minute
data for the Euro-Dollar currency pair, spanning a period from January 2000 upto
January 2002. The results showed that the risk management layer and the dynamic
utility optimisation layer give rise to better performance, hence implying that such a
layered structure might be worth considering while designing fully automated trading
systems. An important point reported by the authors concerns the use of inputs other
than lagged returns to the RRL. They experimented with various popular technical
indicators as input, but did not notice any added improvement in performance. This
led them to conclude that the RRL algorithm is able to efficiently exploit structure in
past returns time series.

More recently, Bertoluzzo and Corazza (2007) used the RRL algorithm to develop
a {long, short, neutral} trading system, and applied it to nine of the major world finan-
cial market indices for the period between April 1992 and March 2007. The model
is similar to the one proposed by Moody and Wu (1997) except that the authors used
the reciprocal of the returns weighted direction symmetry index1 as their maximi-
sation criterion instead of the DSR. Daily closing prices were considered instead of
high-frequency data. Moreover, a stop-loss criterion was included to prevent large

1 It corresponds to the ratio of the cumulative positive trading returns to the cumulative negative trading
returns.
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drawdowns. Once more, results were very encouraging; the RRL-traders led to prof-
itable situations in all but one case.

3 Model description

3.1 Recurrent reinforcement learning

Reinforcement Learning (RL) is a type of machine learning technique which focuses
on goal-directed learning from interaction (Sutton and Barto 1998). It is a way of
programming agents by reward and punishment without needing to specify how the
task is to be achieved (Kaelbling et al. 1996); in other words, the learning process
does not require target outputs, and is therefore different from supervised learning
which is based on the availability of input/output pairs for training. RL can be used to
find approximate solutions to stochastic dynamic programming problems and it can
do so in an online fashion (Moody et al. 1998). In the last decade or so, it has attracted
rapidly growing interest in the computational finance community, especially for the
design of trading systems. The RRL, proposed by Moody and Wu (1997), is one such
algorithm that uses the reinforcement paradigm to make investment decisions. It is
an adaptive policy search algorithm which tries to maximise a certain performance
criterion in order to learn profitable investment strategies. As its name suggests, the
system is recurrent, meaning that the current investment decision has a say in shaping
future decisions. In the presence of transaction costs, investment performance depends
on sequences of interdependent decisions; the recurrent nature of the algorithm takes
this path-dependency into account (Moody et al. 1998). Moody and Saffell (2001)
describe the RRL as a computationally efficient algorithm that allows for simpler
problem representation, avoids Bellman’s curse of dimensionality, and circumvents
problems that are generally associated with trading systems based on price forecasts.

The RRL model can be thought of as a gradient ascent algorithm which aims at opti-
mising some desired criterion. The basic version was developed to trade fixed position
sizes in a single security, but it can easily be extended to trade in varying quantities,
or to manage multiple asset portfolios (see Moody et al. 1998), or for asset allocation
(see Moody et al. 1998; Moody and Saffell 2001). A single-asset, two-position trader
will be discussed in this paper. The trader can take only long or short positions of
constant magnitude. Neutral positions are not allowed, so he is always in the market;
this is also known as a reversal system (Gold 2003). The trading function is as follows:

Ft = tanh

(
m−1∑
i=0

wi rt−i + wm Ft−1 + wm+1v

)
. (1)

Ft is the output of the network at time t . A long position is adopted when Ft > 0;
the trader buys an asset at time t and makes a profit if the price goes up in the next
time step. If Ft < 0, the trader short sells an asset at time t and makes a profit if
the price goes down at time t + 1. If a three-position trader were to be considered,
two cut-off points, fs and fb, need to be chosen such that −1 < fs < 0 < fb < 1;
then, a long position is adopted when Ft > fb, a short position when Ft < fs , and

123



Regime-switching recurrent reinforcement learning 93

a neutral position when fs ≤ Ft ≤ fb. These thresholds can be set arbitrarily or
some search/optimisation technique can be employed for finding the most appropriate
values.

The price return rt corresponds to the difference in value of the asset between the
previous period and the current period, i.e. rt = pt − pt−1. The term v is the familiar
bias present in neural network models, typically having a value of 1. The wi ’s denote
the system parameters or network weights that need to be optimised. Note that the
time indexation of the weights has been dropped for clarity. The term Ft−1, i.e. the
trade position at the previous time step, induces recurrence and hence some kind of
internal memory. The RRL model is not restricted to taking only lagged price returns
as inputs. It can easily accommodate technical indicators or other economic variables
that might have an impact on the security.

3.2 Regime-switching recurrent reinforcement learning

Despite the relative success of the single-layer RRL model, it can be argued that its
linear outlook makes it ill-suited to capture all the intricate aspects of financial data.
An approach with a higher degree of non-linearity could very much aid in increasing
its predictive capabilities. One straightforward way of accounting for the non-lineari-
ties is to incorporate hidden layers in the network. But, Gold (2003) noted a decline in
performance when he introduced a hidden layer in the RRL topology. Indeed, multi-
layer models are prone to overfitting, especially with noisy financial data, and are
quite often unable to generalise properly. Moreover, such black-box approaches ren-
der inference about the input–output relationship difficult, if not impossible. A certain
degree of transparency ensures that automated trading systems are more tractable,
thereby allowing the human expert to adopt remedial measures or perform fine-tuning
more efficiently whenever performance starts to degenerate. There is a need for non-
linear models that can perform well out-of-sample and that can shed some light on
how economic variables affect financial markets. Regime-switching models provide
an elegant solution to this kind of problem. These models define different states of
the world (regimes), and assume that the dynamic behaviour of economic variables
depends on the regime that occurs at any given point in time. This implies that cer-
tain properties of the time series, such as its mean, variance, autocorrelation, etc., are
different in different regimes. Such models offer a great deal of transparency and the
concept of regimes helps to capture non-linearities. Moreover, the regime-switching
framework is more adapted for modelling dramatic changes in behaviour in economic
time series, as a consequence of events such as financial crises or major changes in
government policy (Hamilton 2008).

There exists some well-established regime-switching methods that have gained
prominence in econometrics. These include the threshold model, initially proposed
by Tong (1978), the Markov-Switching model of Hamilton (1989), the artificial neu-
ral network model of White (1989), and the smooth transition model (see Teräsvirta
1994), the latter being a more general version of the threshold model. In this study,
the threshold and smooth transition versions have been considered because of their
simplicity and the degree of transparency that they offer. Suppose that we have a
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2-regime situation for some dependent variable yt , transition/indicator variable qt and
a threshold value c. Assuming that each regime is characterised by an AR(1) process,
the regime-switching model can be expressed as

yt = (φ0,1 + φ1,1 yt−1)(1 − Gt ) + (φ0,2 + φ1,2 yt−1)(Gt ) + zt
(2)

Gt =
{

I [qt > c] for TAR

[1 + exp(−γ [qt − c])]−1 for STAR

where zt denotes an i.i.d white noise process, TAR stands for ‘threshold autoregressive’
and STAR denotes ‘smooth transition autoregressive’. The values Gt for the threshold
model are binary values while for the smooth transition version, Gt can take any value
in the range [0 1]. The parameter γ dictates the smoothness of the transition. As γ

tends to infinity, the logistic function approaches the indicator function. The interested
reader is referred to Franses and van Dijk (2000) for more details about these models.

The RSRRL, viz the regime-switching version of the recurrent reinforcement learn-
ing algorithm, can be formulated by considering (1) and (2). To simplify the discus-
sion, the focus will be on models that involve only two regimes. It is however trivial to
extend the model to account for multiple regimes and/or multiple indicator variables.
A two-regime system can be described as

Ft = yt,1Gt + yt,2(1 − Gt )
(3)

yt, j = tanh

(
m−1∑
i=0

wi, j rt−i + wm, j Ft−1 + wm+1, jv

)
for j = {1, 2}.

These systems can be thought of having two RRL networks (see Fig. 1), each one
corresponding to a particular regime and having a distinct set of weights. The overall
output Ft of the system is the weighted sum of the outputs yt,1 and yt,2 of the indi-
vidual networks. The weighting factor is actually the value of the indicator/transition
variable. Initially, both networks have the same set of weights. During training, the
model promotes selective learning and this leads to each network developing a unique
set of weights. If the system is in a particular regime, the network associated with that
regime is exposed to higher weight updates than the other. For the threshold version
(TRRL), each network learns a distinct mapping that corresponds to a specific region
in the space spanned by the indicator variable. The latter effectively acts as a switch
or gating device that selects the appropriate network at each time step. The smooth
transition version (STRRL), on the other hand, allows a certain amount of overlap
between the two regimes. The extent of the overlapping is regulated by the term γ .

3.3 Indicator/transition variable selection

There are many economic and financial variables that affect price movements in mar-
kets, but only a few actually can be regarded as potential candidates for switching
between regimes in the RSRRL model. The very nature of the RRL calls for a transition
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Fig. 1 RSRRL network structure where D is the delay operator and m = 4

variable that has certain desirable characteristics. First and foremost, it must have an
impact on the serial correlation of the price returns process. This is a rather obvious
requirement since the model takes lagged returns as inputs and is thus sensitive to the
autocorrelations present in the data. Absence of any relationship between the indicator
variable and serial correlation in the returns will most certainly lead to spurious learn-
ing. Next, for proper learning, the frequency of switching between regimes should
be reasonable. Excessive switching tends to destabilise the learning process, while
unreasonably low switching frequencies lead to situations where the system is reliant
on very old information; this is not desirable since financial markets are dynamic,
meaning that patterns that were present a decade ago might not be present now. On
top of that, during the training phase, it is also important that the system goes through
enough instances of each regime so that learning is not biased towards one network.
Additionally, the indicator should preferably be an observable variable or a function
of an observable variable that can readily and reliably be computed. Latent variables
can therefore also be good candidates as long as the estimation process is fast and
straightforward. The key strengths of the RRL are its speed and simplicity; an overly
complex indicator might add too much of a computational burden and prove to be a
deterring factor in the appeal of the algorithm. Last but not least, while choosing an
indicator, one should bear in mind that the RRL inherently picks up trends in the data.
Therefore, using trend or momentum indicators might add little value to the regime-
switching model. Thus, the chosen indicator(s) should deliver some extra information
about the market that the RRL cannot directly perceive. Also, if more than one indica-
tor is to be used, the combination needs to be done in a smart way. Indicators should
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deliver different type of information about the market and confirm each other rather
than duplicate signals.

3.4 Differential Sharpe ratio for online learning

The learning process of the RSRRL is in essence similar to that of the RRL described
in Moody and Wu (1997). It involves maximising a certain performance criterion to
obtain a set of network weights that can lead to profitable strategies. Moody et al.
(1998) showed that RRL systems trained by maximising risk-adjusted performance
criteria perform better than those trained by minimizing error functions. They used
stochastic gradient ascent to maximise the DSR, a variant of the well-known Sharpe
ratio introduced by Sharpe (1966). The DSR is derived by making use of exponential
moving average estimates of the first and second moments of the trading returns dis-
tribution. The same approach has been adopted in this paper. The trading return Rt ,
as defined by Moody et al. (1998), is expressed as

Rt = r f
t + sign(Ft−1)(rt − r f

t ) − δ|sign(Ft ) − sign(Ft−1)| (4)

where r f
t is the risk-free rate of interest and δ is the transaction cost rate per share

traded. The exponential moving average Sharpe ratio can be expressed in terms of the
trading return Rt . It is given by

St = At√
Bt − A2

t

, (5)

where

At = At−1 + η(Rt − At−1) = At−1 + η�A,

Bt = Bt−1 + η(R2
t − Bt−1) = Bt−1 + η�B.

The DSR is obtained by expanding the exponential moving average version to first
order in the adaptation rate η (Moody et al. 1998). It is given by

Dt = Bt−1�A − 1
2 At−1�B

(Bt−1 − A2
t−1)

3
2

. (6)

It can be optimised incrementally using gradient ascent. If ρ corresponds to the learn-
ing rate, the weight update equation is given by

wt, j = wt−1, j + ρ�wt, j for j = {1, 2}, (7)

where

�wt, j = d Dt

d Rt

(
d Rt

d Ft

d Ft

dwt, j
+ d Rt

d Ft−1

d Ft−1

dwt−1, j

)
.
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The derivative d Ft
dwt

for online training can be computed using an approach similar to
backpropagation through time (BPTT) introduced by Werbos (1990) and discussed in
Moody et al. (1998),

d Ft

dwt, j
≈ ∂ Ft

∂wt, j
+ ∂ Ft

∂ Ft−1

d Ft−1

dwt−1, j
for j = {1, 2} (8)

where

∂ Ft

∂wt, j
= ∂ Ft

∂yt, j
× ∂yt, j

∂wt, j
,

∂ Ft

∂ Ft−1
=

2∑
j=1

(
∂ Ft

∂yt, j
× ∂yt, j

∂ Ft−1

)
.

All the required derivatives can be computed using basic differentiation rules, and thus
the weight update process turns out to be rather straightforward and relatively fast.

4 Experiments

Three sets of experiments were carried out to gauge the performance of the basic RRL
and the RSRRL models. The first one dealt with artificially generated data to illus-
trate the capabilities of the RSRRL to pick up trading signals in both one-regime and
two-regime environments. The second set of experiments looked at how the different
trading systems fared when faced with daily real financial data. The third experiment
dealt with an active portfolio management strategy based on signals from the three
models.

4.1 Methodology

The traders were of the {long, short} type and could only trade a fixed number (frac-
tion) of shares at a time. If a trader is already in a certain position, he holds this
position until the reverse trade signal is output by the system. The risk-free rate, r f

t ,
in (4) has been assumed to be zero in all the experiments, which is reasonable since
we are dealing with daily data2. The training phase consisted of allowing the trad-
ers to go through data of length Ltr for a number of epochs ne. The performance
of the traders was assessed by considering the trades made during an out-of-sample
period Lte. The model parameters include the learning rate ρ, the adaptation rate η,
the number of price return inputs m, the size of the training window Ltr , the num-
ber of training epochs ne, and the size of the test window Lte. The values used were
Ltr = 2000, Lte = 375, m = 5, ne = 5, ρ = 0.01, and η = 0.01. These values are

2 For a three-position trader, r f
t cannot be overlooked despite its relatively low daily value since it might

be beneficial for the trader to be out of the market for extended periods.
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not optimal, but can be relied upon for proper learning. They are inspired from pre-
vious work by Moody and Saffell (2001) and Gold (2003) and based on preliminary
results from simple grid search experiments that we carried out. For instance, ‘good’
candidates for ne are integer values between three and six. Larger values for ne tend to
destabilise the learning process. Or, for the learning rate, relatively high values such
as ρ = 0.1 corrupt the learning process. The initial weights were sampled from a
uniform distribution such that −0.1 ≤ wi ≤ 0.1. During learning, the weights are
constrained within the range −1.0 ≤ wi ≤ 1.0 to prevent saturation.

Because of the non-stationarity of the objective function, the optimisation process
is not very stable. In particular, the models are very sensitive to the initial weights:
traders having the same parameter settings except for the initial weights do not exhibit
convergent behaviour during training. In this study, only the best performing traders
during the in-sample period have been considered for out-of-sample trading. A bunch
of traders were trained and their in-sample performance recorded. Only the top 1%
(referred to as ‘elitists’ from hereafter) were considered for the test period. Note that
this approach is probably not the most robust one, since in-sample performance does
not always correlate positively with out-of-sample performance. In future, persistence
in RRL/RSRRL behaviour could be investigated more thoroughly to determine the
way forward while switching from the training period to the test period.

4.2 Artificial data series

A set of controlled experiments was conducted using artificial returns series to compare
and contrast the behaviour of each bunch of traders. Two scenarios were considered,
one in which the data series is characterised by a single regime and the second one
consisting of data with regime-switching properties. The generic form of the data-
generating process was as follows

rt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ
(1)
0 +

p∑
i=1

φ
(1)
i rt−i + at , if

√
ht > c

φ
(2)
0 +

p∑
i=1

φ
(2)
i rt−i + at , if

√
ht ≤ c

(9)

at = √
ht zt , zt ∼ N (0, 1)

ht = α0 + α1a2
t−1 + β1ht−1.

For the first scenario, both regimes were generated by AR processes with identical
coefficients which effectively correspond to a single-regime situation. For the other
scenario, the data series were constructed from the concatenation of two independent
AR processes exhibiting autocorrelation of same magnitude but of different sign. In
other words, the data from scenario 2 is made up of portions having either negative
autocorrelation or positive autocorrelation. p was set to 2. For each scenario, 100 dif-
ferent realisations of the process were considered, and for each realisation, 10 ‘elitist’
traders were picked for out-of-sample evaluation. Thus, an ensemble of 1,000 traders
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Fig. 2 Boxplots to compare the out-of-sample performance of an ensemble of 1,000 elitist traders for the
different systems. The left panel corresponds to the single regime situation and the right panel is for the
two-regime model. For the single-regime situation, the notches on the boxplots overlap, which imply that
the median performance of the three systems is not significantly different from one another (5% level).
For the two-regime scenario, the RSRRL systems perform significantly better than the RRL. First sce-

nario: φ0 = 0.01, φ1 = 0.2, φ2 = 0.1. Second scenario: φ
(1)
0 = −0.01, φ

(1)
1 = −0.2, φ

(1)
2 = −0.1;

φ
(2)
0 = 0.01, φ

(2)
1 = 0.2, φ

(2)
2 = 0.1

were considered for each model. The threshold c was set to 1, and the slope parameter
γ for the STRRL was fixed to 20.

The results for this set of experiments are shown in Fig. 2. In the first scenario
with a single regime, the standard RRL does not outperform the RSRRL models. It
seems that both networks of the RSRRL systems are able to uncover the true data gen-
erating process. The corresponding weights in each branch typically have the same
sign, although they might differ in magnitude. Thus, both branches tend to produce
very similar trade signals after training, and the overall output of the RSRRL becomes
almost regime-independent. Inspection of the results on a realisation-by-realisation
basis showed that in some instances, the RSRRL outperform the RRL, while in oth-
ers, the RRL does significantly better. It can be inferred that with data set with a single
regime, or with regimes that are closely related to each other, the RSRRL models will
on average match the performance of the RRL. The results for the second scenario
indicate that the RSRRL systems perform significantly better than the RRL. This sug-
gests that the standard RRL cannot deal with data sets in which the serial correlation
changes sign from one portion to another. It seems that such data sets have a nullifying
effect on the learning process. A network with a single set of weights cannot perform
well in those two distinctly different regimes. Whenever there is a regime shift, the
RRL takes time to adjust to its new environment and is unable to come up with prof-
itable strategies. The RSRRL models, on the other hand, are able to avoid this pitfall,
since they develop a specific set of weights for each regime.

4.3 Financial data series

The data consisted of daily closing prices of 12 randomly-chosen components from
the Dow Jones Industrial Average (DJIA) index, namely ExxonMobil (XOM), Chev-
ron Corporation (CVX), Johnson & Jonhnson (JNJ), Pfizer (PFE), Bank of America
(BAC), United Technologies Corporation (UTX), Travelers (TRV), Wal-Mart (WMA),
3M (MMM), Procter & Gamble (PG), Dupont (DD) and Verizon Communications
(VZ). A nine-year period from April 2000 upto September 2009 was considered.
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Table 1 Ljung–Box hypothesis test results

BAC CVX DD JNJ MMM PFE PG TRV UTX WMT VZ XOM

Ltr 0.270 0.161 0.312 0.009 0.428 0.000 0.107 0.568 0.000 0.016 0.215 0.006

Lte 0.273 0.000 0.057 0.000 0.035 0.008 0.007 0.000 0.002 0.000 0.010 0.000

The p values for the Ljung–Box hypothesis test with null hypothesis of zero serial correlation. For the
training period, the null hypothesis cannot be rejected at the 5% level for the majority of the data sets. The
test period, however, shows strong evidence for serial correlation in nearly all samples

It was divided into a training portion consisting of 2,000 datapoints (roughly 8 years
of data), and a test portion of 375 datapoints corresponding to the period between
April 2008 and September 2009. From an economic viewpoint, the data sets reflect
chronologically the end of the dot-com bubble, followed by the start of the US housing
bubble and its subsequent deflation that culminated into the current crisis.

The stocks come from various sectors and their log return series exhibit varying
amounts of autocorrelation. A Ljung–Box test was carried out to quantify the serial
correlation for both the training and test periods. The p values are reported in Table 1.
Volatility was used as indicator/transition variable for the RSRRL models. The moti-
vation behind this choice stems from empirical studies carried by LeBaron (1992);
Sentana and Wadhwani (1992); Koutmos (1997) and McKenzie and Faff (2003) which
point towards a relationship between volatility and serial correlation. The authors found
that a rise in the volatility level tends to increase the likelihood of negative autocorre-
lation in price returns. Moreover, because of its persistent nature and the well-known
phenomenon of volatility clustering, there is little risk of the trading system suffering
from excessive switching between regimes. If the switching frequency is too low, then
a time-varying threshold can be used to address this issue. Despite its unobservability,
various standard techniques that ally speed and reliability exist for the estimation of
the volatility process.

The model used for the mean-volatility process is defined by (9) with p = 5. The
parameter estimates were obtained by maximising the conditional likelihood function.
Differential evolution (Storn and Price 1997) was used for the optimisation process.
The datapoints from the training set were used for this purpose. In addition to the
usual constraints associated with AR-GARCH modelling, it was ensured that each
regime contains at least 40% of the observations. Because of the recursive nature of
the GARCH process, the volatility forecasts for the out-of-sample period were readily
available. The static threshold c was used to determine the values of the indicator/tran-
sition function for the RSRRL models. The slope parameter γ for the STRRL was
set to 5. Figure 3 illustrates the relevant financial time series for the XOM data set,
together with the threshold/transition values. The volatility profile shows how mar-
kets went from turbulent to tranquil, and then back to turbulent. The graphs for the
indicator/transition function values depict this more clearly.

For each data set, the top 1% performers from an initial bunch of 1,000 were chosen
for the evaluation phase. This was repeated 20 times, yielding a total of 200 ‘elitists’
for each type of trading system. In each case, three types of scenarios were considered,
one without transaction costs, one with δ = 5 bp, and one with δ = 10 bp (see (4)).
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Fig. 3 The price series, return series, volatility estimates and indicator/transition values for the XOM data
set (from April 2000 to September 2009). The delimiters separate the training set from the test set. The
horizontal dotted lines in the graph for volatility correspond to the threshold used for the identification of
regimes. The graphs on the bottom right depict how the indicator values for the TRRL (upper graph) and the
transition values for the STRRL (lower graph) evolve. It can be seen that the test period is predominantly
in a high-volatility regime

Tables 2, 3 and 4 summarise the out-of-sample results. In Table 2, the performance
of the trading systems in the absence of transaction costs is presented. Table 4 gives
the mean out-of-sample Sharpe ratios for all the scenarios, while Table 3 shows the
influence of transaction costs on the trading frequency. The results without transaction
costs are discussed first.

There are two main observations emanating from Table 2. First, all three models
yield mostly positive Sharpe ratios. Next, the RSRRL models outperform the RRL in
the majority of cases. The first point can be explained by looking at the Ljung–Box
test results in Table 1. For almost all data sets, the out-of-sample period is marked by
significant amounts of serial correlation, as a result of the financial crisis. Since the
RRL methodology thrive on autocorrelation in the returns series, the trading systems
are able to pick up the strong trends present in the data. It is not a coincidence that all
three systems perform rather poorly on the BAC data set: the p values for both the train-
ing and test portions point towards insignificant serial correlation, and consequently
the trading systems are not capable of finding good strategies. However, there is no
clear-cut relationship between the amount of autocorrelation and the performance of
the RRL systems. Since real-world financial time series are typically extremely noisy,
it is almost impossible to determine an exact relationship. But, it seems that, despite
the relatively high noise level, the RRL systems are able to spot the strong market
sentiments and translate this into profitable situations.

The second point, relating to the RSRRL outperforming the RRL for the majority of
the data sets studied, can be explained by considering the switch from a low-volatility
to a high-volatility regime in the whereabouts of the start of the out-of-sample period.
The RRL is unable to adjust to its new environment quickly enough, and therefore
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Table 2 Out-of-sample results for δ = 0

Dataset Trader Mean Std Median LQ UQ Max Min

BAC RRL −0.0129 0.0153 −0.0164 −0.0216 −0.0070 0.0296 −0.0483

TRRL 0.0142 0.0173 0.0195 0.0095 0.0261 0.0526 −0.0385

STRRL −0.0185 0.0139 −0.0207 −0.0269 −0.0125 0.0340 −0.0553

CVX RRL 0.0214 0.0092 0.0229 0.0184 0.0273 0.0377 −0.0064

TRRL 0.0191 0.0193 0.0148 0.0046 0.0358 0.0618 −0.0226

STRRL 0.0294 0.0237 0.0292 0.0122 0.0493 0.0826 −0.0370

DD RRL 0.0480 0.0168 0.0528 0.0468 0.0564 0.0685 −0.0145

TRRL 0.0397 0.0106 0.0386 0.0332 0.0458 0.0675 −0.0154

STRRL 0.0496 0.0155 0.0514 0.0370 0.0602 0.0797 0.0120

JNJ RRL 0.0266 0.0098 0.0276 0.0198 0.0330 0.0510 −0.0042

TRRL 0.0404 0.0111 0.0428 0.0368 0.0468 0.0584 −0.0182

STRRL 0.0304 0.0195 0.0337 0.0188 0.0450 0.0666 −0.0234

MMM RRL −0.0146 0.0197 −0.0209 −0.0248 −0.0081 0.0801 −0.0338

TRRL 0.0343 0.0256 0.0315 0.0195 0.0437 0.1124 −0.0227

STRRL 0.0233 0.0105 0.0241 0.0161 0.0305 0.0516 −0.0083

PFE RRL −0.0270 0.0066 −0.0263 −0.0303 −0.0239 −0.0120 −0.0578

TRRL 0.1508 0.0363 0.1490 0.1231 0.1860 0.2183 0.0677

STRRL 0.0962 0.0545 0.0955 0.0442 0.1380 0.1947 0.0198

PG RRL 0.0882 0.0138 0.0883 0.0770 0.0984 0.1193 0.0581

TRRL 0.0816 0.0135 0.0760 0.0729 0.0933 0.1118 0.0536

STRRL 0.0626 0.0113 0.0642 0.0579 0.0673 0.1276 0.0353

TRV RRL 0.0508 0.0060 0.0511 0.0497 0.0511 0.0972 0.0445

TRRL 0.1217 0.0087 0.1219 0.1147 0.1317 0.1346 0.1016

STRRL 0.1063 0.0055 0.1061 0.1019 0.1120 0.1156 0.0933

UTX RRL 0.1095 0.0039 0.1095 0.1086 0.1129 0.1169 0.0917

TRRL 0.0943 0.0076 0.0948 0.0906 0.0987 0.1130 0.0585

STRRL 0.0938 0.0069 0.0931 0.0899 0.0989 0.1097 0.0576

VZ RRL 0.0702 0.0070 0.0723 0.0666 0.0732 0.0912 0.0483

TRRL 0.1024 0.0104 0.1001 0.0973 0.1085 0.1355 0.0778

STRRL 0.1133 0.0117 0.1167 0.1053 0.1212 0.1347 0.0820

WMT RRL 0.0553 0.0109 0.0560 0.0518 0.0606 0.1138 0.0216

TRRL 0.0512 0.0122 0.0499 0.0428 0.0624 0.0736 0.0219

STRRL 0.0493 0.0118 0.0484 0.0423 0.0576 0.0826 0.0216

XOM RRL 0.0665 0.0097 0.0691 0.0632 0.0726 0.0909 0.0181

TRRL 0.1253 0.0299 0.1376 0.1010 0.1478 0.1821 0.0494

STRRL 0.1011 0.0162 0.0984 0.0938 0.1024 0.1595 0.0333

performs poorly. The RSRRL models however, develop two sets of weights, one for
each regime. The first set of weights is well-suited for highly volatile periods, while
the second set is more suited for tranquil periods. The high volatility in the test period
implies that the RSRRL models base their trade decisions on the first set of weights
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Table 3 Trading frequency (in %) over Ltr + Lte

Trader δ (bp) BAC CVX DD JNJ MMM PFE PG TRV UTX VZ WMT XOM

RRL 0 33.7 36.2 53.9 53.8 37.3 38.0 36.0 77.7 33.2 39.9 45.8 43.3

5 25.0 23.6 25.7 15.3 18.6 32.9 28.2 21.2 21.1 31.6 17.8 23.0

10 15.8 17.3 19.6 11.7 15.2 22.3 21.4 19.9 17.1 20.7 16.0 20.0

TRRL 0 48.3 46.0 45.9 46.0 39.9 36.8 38.2 53.1 43.9 44.5 44.1 31.8

5 30.3 37.2 40.8 25.2 28.2 31.0 31.5 46.1 28.9 33.3 34.2 26.9

10 22.5 29.5 36.4 17.9 16.9 25.1 19.2 25.4 20.3 30.5 26.8 24.5

STRRL 0 38.7 39.5 47.4 45.6 37.8 37.8 41.5 56.3 37.0 40.7 45.4 28.7

5 28.8 33.8 40.2 27.2 29.6 30.1 24.6 48.1 31.8 33.6 34.0 27.2

10 22.9 29.1 38.5 17.6 25.4 22.8 19.9 24.0 24.3 31.4 28.6 22.6

Table 4 Mean out-of-sample Sharpe ratios for all three scenarios

Trader δ (bp) BAC CVX DD JNJ MMM PFE PG TRV UTX VZ WMT XOM

RRL 0 −0.013 0.021 0.048 0.027−0.015−0.027 0.088 0.051 0.110 0.070 0.055 0.067

5 −0.024 0.004 0.015 0.000 0.016−0.043 0.083 0.021 0.068 0.051 0.087 0.056

10 −0.020−0.014−0.034−0.012 0.012−0.053 0.070 0.090 0.078 0.107 0.082 0.046

TRRL 0 0.014 0.019 0.040 0.040 0.034 0.151 0.082 0.122 0.094 0.102 0.051 0.125

5 −0.005 0.004 0.042 0.053 0.028 0.109 0.052 0.113 0.036 0.094 0.055 0.092

10 −0.017−0.015−0.008−0.007 0.020 0.058 0.019 0.056 0.020 0.112 0.033 0.089

STRRL 0 −0.019 0.029 0.050 0.030 0.023 0.096 0.063 0.106 0.094 0.113 0.049 0.101

5 −0.026−0.013 0.049 0.000 0.013 0.107 0.046 0.089 0.056 0.119 0.038 0.068

10 −0.021−0.000 0.010−0.002 0.007 0.066 0.046 0.055 0.023 0.123 0.013 0.095

rather than the second. Thus, the significant regime change during the test period does
not have a detrimental effect on the out-of-sample performance. It can be inferred
that there is a difference in the sign on the serial correlation present in each volatility
regime for most of the real-world data sets. This is in line with the empirical findings
of LeBaron (1992); Sentana and Wadhwani (1992); Koutmos (1997) and McKenzie
and Faff (2003) discussed earlier. Analysis of the weights developed by the RSRRL
traders tend to support this phenomenon; for most of the data sets studied, the set of
weights developed for the high-volatility regime is typically more negative than that
developed for the low-volatility regime. Of course, this is the broad picture. In a cou-
ple of cases, the RSRRL models cannot match the performance of the standard RRL.
It could be that the high-volatility regime experienced during the financial crisis has
very different characteristics from the one seen during the training phase. Thus, the
weights learned during training are not suitable to guide the RSRRL-traders through
this new environment. Or, because of the high-level of noise in financial time series,
the systems are unable to uncover the correct input-output mapping from the sam-
ple, and, because of the additional complexity of the RSRRL models, they are more
prone to overfitting than the standard RRL. Regarding the comparative performance
of the TRRL and STRRL models, the results are in favour of the TRRL, although

123



104 D. Maringer, T. Ramtohul

the evidence is not concrete. It is possible that the drastic regime change during the
out-of-sample period supports the TRRL since the latter undergoes stronger weight
updates during learning and is therefore more apt at capturing the market sentiment
during that portion of the test period with an unusually high volatility.

The inclusion of transaction costs has an impact on overall performance of the
traders, as can be expected. For traders with the same initial weights and same net-
work parameters, but different values of δ in (4), the training phase will lead to the
development of different trading strategies for each of them. The values for the trading
frequency over the combined training and test periods in Table 3 confirm this. As the
transaction cost levels increase, the trading frequency decreases. The traders hold their
‘current’ positions for longer periods, in a bid to prevent the generation of excessive
transaction costs. The values in Table 4 correspond to the mean out-of-sample Sharpe
ratios achieved after accounting for the desired level of transaction costs. In general,
performance levels decrease as the amount of transaction costs increases, leading to
negative Sharpe ratios in quite a few situations. Although the systems come up with
strategies that involve fewer trades in the presence of transaction costs, the decrease
in trading frequency cannot fully counterbalance the detrimental effect of these costs
in the trading returns. Interestingly, in certain cases, for instance with VZ, the traders
achieve comparable or even higher Sharpe ratios in the presence of trading costs. This
hints towards a serious overfitting issue for this data set when traders are trained with-
out transaction costs. This is a good example of how inclusion of transaction costs in
the model can help uncover more robust strategies. Another notable observation from
Table 4 is that the RSRRL systems have a higher trading frequency than the standard
RRL traders, for the corresponding levels of transaction costs. Thus, for higher trans-
action cost levels, the RSRRL systems have a higher likelihood of being adversely
affected in their performance levels. This is explored further in the next section.

4.4 Portfolio management

We investigate the performance of an active portfolio management strategy based on
the signals generated by each type of trading system. Each investor holds an equally-
weighted portfolio consisting of the 12 stocks previously discussed. He has an initial
endowment of $12, with $1 invested in each stock, meaning that he holds a certain
number (fraction) of shares ni for each stock. At each time step, the investor rebalances
his portfolio based on the long/short signals generated by the RRL/TRRL/STRRL sys-
tems for each stock. He either buys or short sells ni shares of the i th stock depending
on the signal generated by the system for that stock. Consider the following example
for illustrating the strategy. Suppose that the investor is long in all the assets at time t .
Now suppose that the system for the BAC data set generates a sell signal while the
systems for the other data sets all generate buy signals. The investor holds his current
position for these stocks, but sell 2 × nBAC shares to go short in BAC. The rebalanced
portfolio is now ‘long’ in 11 stocks and ‘short’ in 1 stock.

The same settings as described in Sects. 4.1 and 4.3 have been used for this set of
experiment. The ‘elitist’ traders were used to implement the active investment strat-
egy for the out-of-sample period. For comparative purposes, a ‘sell and hold’ (SnH)
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Table 5 Out-of-sample terminal log returns for the portfolio-based trading systems

Trader δ Mean Std Median LQ UQ Max Min

RRL 0 0.2794 0.0249 0.2797 0.2607 0.2975 0.3360 0.2193

5 0.1885 0.0400 0.1831 0.1550 0.2197 0.3086 0.0882

10 0.2147 0.0491 0.2179 0.1803 0.2509 0.3142 0.0728

TRRL 0 0.4621 0.0290 0.4631 0.4430 0.4823 0.5361 0.3720

5 0.3619 0.0356 0.3641 0.3352 0.3837 0.4452 0.2636

10 0.2129 0.0471 0.2126 0.1815 0.2470 0.3142 0.0855

STRRL 0 0.4068 0.0328 0.4062 0.3833 0.4296 0.5067 0.3337

5 0.2952 0.0271 0.2946 0.2768 0.3134 0.3752 0.2205

10 0.2310 0.0398 0.2292 0.2073 0.2594 0.3220 0.1264

SnH 0.1554

Fig. 4 Mean cumulative log returns of the equally-weighted portfolio based on trade recommendations
from the three types of traders. The first graph corresponds to the scenario where δ = 0, while the second
and third graphs are for scenarios that included transaction costs during training. In these graphs, the dashed
curves depict the mean performance of the traders in the absence of transaction costs during the test period.
Note that the sell and hold strategy has a terminal log return of 15.5%

strategy was used as benchmark: the passive investor initially short sells ni shares
of each stock and does nothing during the investment horizon. The results are sum-
marised in Table 5 in the form of the terminal log returns for each type of trader for
different levels of transaction costs. It can be seen that for all cases studied, the active
strategies outperform the passive benchmark, which again highlights the ability of the
RRL/RSRRL systems to discover investment policies. Regarding the performance of
the RSRRL systems relative to the standard RRL, the results are in favour of the former.
Figure 4 depicts this in terms of the mean cumulative log returns over the out-of-sam-
ple period. For the scenarios involving trading costs, the dashed profiles correspond to
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the mean performance of the trading strategies had these costs been overlooked dur-
ing the test period. The discrepancy between the solid and dashed curves provide an
insight into the influence of trading frequency and transaction costs on the behaviour
of the traders over the different data series. It can be seen that the RSRRL systems are
more seriously affected with an increase in δ, especially in the case where δ = 10 bp.
The point made in the last paragraph of Sect. 4.3 about the higher trading frequency
of the RSRRL systems w.r.t. the standard RRL traders, is illustrated in the third graph.
The discrepancy is larger for the RSRRL traders when transaction costs are ignored
in the test phase, which imply that inclusion of these costs has a bigger incidence on
their performance as a direct consequence of their higher trading frequency.

5 Conclusion

In this paper, we described the RSRRL model, which is an extended version of the RRL
algorithm put forward by Moody and Wu (1997). We proposed two variants, namely
a threshold model and a smooth transition version, and compared their performance
with the basic RRL model in investment decision making. We used both artificial data
and real-world data for our comparisons. We also emphasized on the importance of
correct identification of the regimes, and advocated the use of volatility as a suitable
indicator/transition variable.

Based on the simulation results with the artificial data, we found out that, in general,
the performance of the RSRRL matches that of the RRL in data sets having a single
regime. However, the RSRRL significantly outperform the RRL in situations where
the data sets are characterised by distinctly different regimes. Results with the real
data sets, in a simple automated trading framework, showed that the RSRRL models
were superior in the majority of cases, and justified the use of volatility as the var-
iable for defining the regimes. When applied to a portfolio management problem, it
was found that active investment strategies based on signals from the RRL/RSRRL
systems produced superior performance than a passive strategy. And once again, the
RSRRL investors performed significantly better than the RRL investor. The results
thus back the notion of integrating regime-switching with the RRL methodology, and
also demonstrate the viability of using volatility as an indicator variable.

While results have been in favour of the RSRRL models, no general inference can
be made about these models being consistently superior to the simple RRL system. For
instance, with some data series, the RRL outperform their regime-switching variants.
Thus, to get a more global idea, many more data series need to be considered, as well
as multiple out-of-sample periods. Moreover, it was seen that the RSRRL trading sys-
tems exhibit a higher trading frequency than the RRL, which negatively impact their
performance when transaction costs are considered. It is therefore important to inves-
tigate this area further by performing a more detailed sensitivity analysis to compare
the robustness levels of these trading systems. Additionally, in the presence of trading
costs, the ‘neutral’ position can be included in the trading systems, and the performance
of these three-position traders relative to the two-position systems can be investigated.

For other market types of other data frequencies, volatility might not be the ideal
indicator/transition variable. Different indicators might be required, either used in
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conjunction with volatility, or completely independently. But since the RSRRL model
is flexible, it can be easily modified to suit the financial problem or environment being
investigated. It can be customised to match the needs of the problem and indicator
variables combined in a variety of ways to best match the features of the application
environment and the beliefs of the investor. It can easily be extended to accommo-
date more regimes and/or more indicator variables. If need be, the weighted average
approach to compute the output can be altered, and more sophisticated techniques
such as fuzzy inference can be implemented.
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