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Abstract In this paper we describe active set type algo-
rithms for minimization of a smooth function under gen-
eral order constraints, an important case being functions
on the set of bimonotone r × s matrices. These algorithms
can be used, for instance, to estimate a bimonotone regres-
sion function via least squares or (a smooth approximation
of) least absolute deviations. Another application is shrink-
age estimation in image denoising or, more generally, re-
gression problems with two ordinal factors after represent-
ing the data in a suitable basis which is indexed by pairs
(i, j) ∈ {1, . . . , r} × {1, . . . , s}. Various numerical examples
illustrate our methods.

Keywords Active set algorithm · Dynamic programming ·
Estimated risk · Pool-adjacent-violators algorithm ·
Regularization

1 Introduction

Monotonicity and other qualitative constraints play an im-
portant role in contemporary nonparametric statistics. One
reason for this success is that such constraints are often
plausible or even justified theoretically, within an appropri-
ate mathematical formulation of the application. Moreover,
by imposing shape constraints one can often avoid more
traditional smoothness assumptions which typically lead to
procedures requiring the choice of some tuning parameter.
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A good starting point for statistical inference under qualita-
tive constraints is the monograph by Robertson et al. (1988).

Estimation under order constraints leads often to the fol-
lowing optimization problem: For some dimension p ≥ 2 let
Q : R

p → R be a given functional. For instance,

Q(θ) =
p∑

u=1

wu(Zu − θu)
2 (1)

with a certain weight vector w ∈ (0,∞)p and a given data
vector Z ∈ R

p . In general we assume that Q is continuously
differentiable, strictly convex and coercive, i.e.

Q(θ) → ∞ as ‖θ‖ → ∞,

where ‖ · ‖ is some norm on R
p . The goal is to minimize Q

over the following subset K of R
p: Let C be a given collec-

tion of pairs (u, v) of different indices u,v ∈ {1,2, . . . , p},
and define

K = K(C) = {
θ ∈ R

p : θu ≤ θv for all (u, v) ∈ C
}
.

This defines a closed convex cone in R
p containing all con-

stant vectors.
For instance, if C consists of (1,2), (2,3), . . . , (p−1,p),

then K is the cone of all vectors θ ∈ R
p such that θ1 ≤

θ2 ≤ · · · ≤ θp . Minimizing (1) over all such vectors is a stan-
dard problem and can be solved in O(p) steps via the pool-
adjacent-violators algorithm (PAVA). The latter was intro-
duced in a special setting by Ayer et al. (1955) and extended
later by numerous authors, see Robertson et al. (1988) and
Best and Chakravarti (1990).

As soon as Q(·) is not of type (1) or C differs from the
aforementioned standard example, the minimization of Q(·)
over K becomes more involved. Here is another example for
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K and C which is of primary interest in the present paper:
Let p = rs with integers r, s ≥ 2, and identify R

p with the
set R

r×s of all matrices with r rows and s columns. Further
let Kr,s be the set of all matrices θ ∈ R

r×s such that

θi,j ≤ θi+1,j whenever i < r and

θi,j ≤ θi,j+1 whenever j < s.

This corresponds to the set Cr,s of all pairs ((i, j), (k, �))

with i, k ∈ {1, . . . , r} and j, � ∈ {1, . . . , s} such that either
(k, �) = (i + 1, j) or (k, �) = (i, j + 1). Hence there are
#C = 2rs − r − s constraints.

Minimizing the special functional (1), i.e. Q(θ) =∑
i,j wij (Zij − θij )

2, over the bimonotone cone Kr,s is a
well recognized problem with various proposed solutions,
see, for instance, Spouge et al. (2003), Burdakow et al.
(2004), and the references cited therein. However, all these
algorithms exploit the special structure of Kr,s or (1). For
general functionals Q(·), e.g. quadratic functions with pos-
itive definite but non-diagonal Hessian matrix, different ap-
proaches are needed.

The remainder of this paper is organized as follows. In
Sect. 2 we describe the bimonotone regression problem and
argue that the special structure (1) is sometimes too restric-
tive even in that context. In Sect. 3 we derive possible al-
gorithms for the general optimization problem described
above. These algorithms involve a discrete optimization step
which gives rise to a dynamic program in case of K = Kr,s .
For a general introduction to dynamic programming see
Cormen et al. (1990). Other ingredients are active meth-
ods as described by, for instance, Fletcher (1987), Best and
Chakravarti (1990) or Dümbgen et al. (2007), sometimes
combined with the ordinary PAVA in a particular fashion.
It will be shown that all these algorithms find the exact solu-
tion in finitely many steps, at least when Q(·) is an arbitrary
quadratic and strictly convex function. Finally, in Sect. 4
we adapt our procedure to image denoising via bimonotone
shrinkage of generalized Fourier coefficients. The statistical
method in this section was already indicated in Beran and
Dümbgen (1998) but has not been implemented yet, for lack
of an efficient computational algorithm.

2 Least squares estimation of bimonotone regression
functions

Suppose that one observes (x1, y1,Z1), (x2, y2,Z2), . . . ,
(xn, yn,Zn) with real components xt , yt and Zt . The points
(xt , yt ) are regarded as fixed points, which is always possi-
ble by conditioning, while

Zt = μ(xt , yt ) + εt

for an unknown regression function μ : R × R → R and
independent random errors ε1, ε2, . . . , εn with mean zero.
In some applications it is plausible to assume μ to be bi-
monotone increasing, i.e. non-decreasing in both arguments.
Then it would be desirable to estimate μ under that con-
straint only. One possibility would be to minimize

n∑

t=1

(Zt − μ(xt , yt ))2

over all bimonotone functions μ. The resulting minimizer
μ̂ is uniquely defined on the finite set of all design points
(xt , yt ), 1 ≤ t ≤ n.

For a more detailed discussion, suppose that we want to
estimate μ on a finite rectangular grid

{
(x(i), y(j)) : 1 ≤ i ≤ r,1 ≤ j ≤ s

}
,

where x(1) < x(2) < · · · < x(r) and y(1) < y(2) < · · · < y(s)

contain at least the different elements of {x1, x2, . . . , xn}
and {y1, y2, . . . , yn}, respectively, but maybe additional
points as well. For 1 ≤ i ≤ r and 1 ≤ j ≤ s let wij be the
number of all t ∈ {1, . . . , n} such that (xt , yt ) = (x(i), y(j)),
and let Zij be the average of Zt over these indices t . Then∑n

t=1(Z
t − μ(xt , yt ))2 equals

Q(θ) =
∑

i,j

wij (Zij − θij )
2,

where θ = (θij )i,j stands for the matrix (μ(x(i), y(j)))i,j ∈
Kr,s .

Setting 1: Complete layout Suppose that wij > 0 for all
(i, j) ∈ {1, . . . , r} × {1, . . . , s}. Then the resulting optimiza-
tion problem is precisely the one described in the introduc-
tion.

Setting 2a: Incomplete layout and simple interpolation/ex-
trapolation Suppose that the set U of all index pairs (i, j)

with wij > 0 differs from {1, . . . , r} × {1, . . . , s}. Then

Q(θ) =
∑

u∈U
wu(Zu − θu)

2

fails to be coercive. Nevertheless it can be minimized over
Kr,s with the algorithms described later. Let θ̌ be such a min-
imizer. Since it is uniquely defined on U only, we propose to
replace it with θ̂ = 2−1(θ + θ), where

θij = max
({

θ̌i′j ′ : (i′, j ′) ∈ U , i′ ≤ i, j ′ ≤ j
}∪ {θ̌min}

)
,

θ ij = min
({

θ̌i′j ′ : (i′, j ′) ∈ U , i ≤ i′, j ≤ j ′}∪ {θ̌max}
)
,

and θ̌min and θ̌max denote the minimum and maximum, re-
spectively, of {θ̌u : u ∈ U }. Note that θ and θ belong to
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Fig. 1 Simple interpolation/extrapolation versus light regularization

Kr,s and are extremal in the sense that any matrix θ ∈
Kr,s ∩ [θ̌min, θ̌max]r×s with θu = θ̌u for all u ∈ U satisfies
necessarily θij ≤ θij ≤ θij for all (i, j).

Setting 2b: Incomplete layout and light regularization In-
stead of restricting attention to the index set U , one can esti-
mate the full matrix (μ(x(i), y(j)))i,j ∈ R

r×s by minimizing
a suitably penalized sum of squares,

Q(θ) =
∑

u∈U
wu(Zu − θu)

2 + λP (θ),

over Kr,s for some small parameter λ > 0. Here P(·) is a
convex quadratic function on R

r×s such that Q(·) is strictly
convex. One possibility would be Tychonov regularisation
with P(θ) = ∑

i,j (θij − θo)
2 and a certain reference value

θo, for instance, θo =∑
i,j wijZij /

∑
i,j wij . In our particu-

lar setting we prefer the penalty

P(θ) =
∑

((i,j),(k,�))∈Cr,s

(θk� − θij )
2, (2)

because it yields smoother interpolations than the recipe for
Setting 2a or the Tychonov penalty. One can easily show that
the resulting quadratic function Q is strictly convex but with
non-diagonal Hessian matrix. Thus it fulfills our general re-
quirements but is not of type (1).

Note that adding a penalty term such as (2) could be
worthwhile even in case of a complete layout if the un-
derlying function μ is assumed to be smooth. But this
leads to the nontrivial task of choosing λ > 0 appropriately.
Here we use the penalty term mainly for smooth interpola-
tion/extrapolation with λ just large enough to ensure a well-
conditioned Hessian matrix. We refer to this as “light regu-
larization”, and the exact value of λ is essentially irrelevant.

Example 2.1 To illustrate the difference between simple
interpolation/extrapolation and light regularization with
penalty (2) we consider just two observations, (x1, y1,Z1)=
(2,3,0) and (x2, y2,Z2) = (6,8,1), and let r = 7, s = 10
with x(i) = i and y(j) = j . Thus wij = 0 except for w2,3 =
w6,8 = 1, while Z2,3 = 0 and Z6,8 = 1. Any minimizer θ̌

of
∑

u∈U wu(Zu − θu)
2 over K7,10 satisfies θ̌2,3 = 0 and

θ̌6,8 = 1, so the recipe for Setting 2a yields

θ̂ij =

⎧
⎪⎨

⎪⎩

0, if i ≤ 2, j ≤ 3,

1, if i ≥ 6, j ≥ 8,

0.5, else.

The left panel of Fig. 1 shows the latter fit θ̂ , while the right
panel shows the regularized fit based on (2) with λ = 10−4.
In these and most subsequent pictures we use a gray scale
from black = 0 to white = 1.

Example 2.2 (Binary regression) We generated a random
matrix Z ∈ {0,1}r×s with r = 70 rows, s = 100 columns
and independent components Zij , where

Pr(Zij = 1) = θij

= x(i) + y(j)

4
+ 1{y(j) ≥ 1/2 + cos(πx(i))/4}

2

with x(i) = (i − 0.5)/r and y(j) = (j − 0.5)/s. Thereafter
we removed randomly all but 700 of the 7000 components
Zij . The resulting data are depicted in the upper left panel
of Fig. 2, where missing values are depicted grey, while the
upper right panel shows the true signal θ . The lower pan-
els depict the least squares estimator with simple interpo-
lation/extrapolation (left) and light regularization based on
(2) with λ = 10−4 (right). Note that both estimators are very
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Fig. 2 Binary regression with incomplete layout

similar. Due to the small value of λ, the main differences
occur in regions without data points.

The quality of an estimator θ̂ for θ may be quantified by
the average absolute deviation,

AAD = 1

rs

r∑

i=1

s∑

j=1

|θ̂ij − θij |.

For the estimator with simple interpolation/extrapolation,
AAD turned out to be 7.5607×10−2, the estimator based on
light regularization performed slightly better with AAD =
7.4039 × 10−2.

3 The general algorithmic problem

We return to the general framework introduced in the begin-
ning with a continuously differentiable, strictly convex and
coercive functional Q : R

p → R and a closed convex cone

K = K(C) ∈ R
p determined by a collection C of inequality

constraints.
Before starting with explicit algorithms, let us character-

ize the point

θ̂ = argmin
θ∈K

Q(θ).

It is well-known from convex analysis that a point θ ∈ K

coincides with θ if, and only if,

∇Q(θ)�θ = 0 ≤ ∇Q(θ)�η for all η ∈ K, (3)

where ∇Q(θ) denotes the gradient of Q at θ . This charac-
terization involves infinitely many inequalities, but it can be
replaced with a criterion involving only finitely many con-
straints.

3.1 Extremal directions of K

Note that K contains all constant vectors c1, c ∈ R, where
1 = 1p = (1)

p

i=1. It can be represented as follows:
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Lemma 3.1 Define

E = K ∩ {0,1}p.

Then any vector x ∈ K may be represented as

x = min(x)1 +
∑

e∈E
λee

with coefficients λe ≥ 0 such that
∑

e∈E λe = max(x) −
min(x).

Here min(x) and max(x) denote the minimum and max-
imum, respectively, of the components of x.

Modified characterization of θ̂ By means of Lemma 3.1
one can easily verify that (3) is equivalent to the following
condition:

∇Q(θ)�θ = 0 ≤ ∇Q(θ)�e for all e ∈ E ∪ {−1}. (4)

Thus we have to check only finitely many constraints. Note,
however, that the cardinality of E may be substantially larger
than the dimension p, so that checking (4) is far from trivial.

Application to Kr,s Applying Lemma 3.1 to the cone
Kr,s ⊂ R

r×s yields the following representation: With

Er,s = Kr,s ∩ {0,1}r×s

any matrix x ∈ K may be written as

x = ao1r×s +
∑

e∈Er,s

λee

with coefficients ao ∈ R and λe ≥ 0, e ∈ Er,s .
There is a one-to-one correspondence between the set Er,s

and the set of all vectors ẽ ∈ {1,2, . . . , r + s}r with compo-
nents ẽ1 < ẽ2 < · · · < ẽr via the mapping

e �→
(

i +
s∑

j=1

eij

)r

i=1

.

Since such a vector ẽ corresponds to a subset of {1,2, . . . ,

r + s} with r elements, we end up with

#Er,s =
(

r + s

r

)
=
(

r + s

s

)
.

Hence the cardinality of Er,s grows exponentially in min(r, s).
Nevertheless, minimizing a linear functional over Er,s is pos-
sible in O(rs) steps, as explained in the next section.

Proof of Lemma 3.1 For x ∈ K let a0 < a1 < · · · < am be
the different elements of {x1, x2, . . . , xp}, i.e. a0 = min(x)

and am = max(x). Then

x = a01 +
m∑

i=1

(ai − ai−1)
(
1{xt ≥ ai}

)p
t=1.

Obviously, these weights ai −ai−1 are nonnegative and sum
to max(x) − min(x). Furthermore, one can easily deduce
from x ∈ K that (1{xt ≥ a})pt=1 belongs to E for any real
threshold a. �

3.2 A dynamic program for Er,s

For some matrix a ∈ R
r×s let L : R

r×s → R be given by

L(x) =
r∑

i=1

s∑

j=1

aij xij .

The minimum of L(·) over the finite set Er,s may be obtained
by means of the following recursion: For 1 ≤ k ≤ r and 1 ≤
� ≤ s define

H(k, �) = min

{
r∑

i=k

s∑

j=1

aij eij : e ∈ Er,s , ek� = 1

}
,

H(k, s + 1) = min

{
r∑

i=k

s∑

j=1

aij eij : e ∈ Er,s

}
.

Then

min
e∈Er,s

L(e) = H(1, s + 1),

and

H(k,1) =
r∑

i=k

s∑

j=1

aij ,

H(k, � + 1) = min

(
H(k, �),

s∑

j=�+1

aij + H(k + 1, � + 1)

)

where we use the conventions that H(k + 1, ·) = 0 and∑s
j=s+1 · = 0. In the recursion formula for H(k, � + 1),

the term
∑s

j=�+1 aij + H(k + 1, � + 1) is the minimum of

Lk(e) = ∑r
i=k

∑s
j=1 aij eij over all matrices e ∈ Er,s with

ek� = 0 and ek,�+1 = 1 (if � < s), while H(k, �) is the mini-
mum of Lk(e) over all e ∈ Ek,s with ek� = 1.

Table 1 provides pseudocode for an algorithm that deter-
mines a minimizer of L(·) over Er,s .

3.3 Active set type algorithms

Throughout this exposition we assume that minimization of
Q over an affine linear subspace of R

p is feasible. This is
certainly the case if Q is a quadratic functional. If Q is twice
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Table 1 Minimizing a linear functional over Er,s

Algorithm e ← DynamicProgram(a)

b ← (∑s
j=� ak,j

)
k≤r,�≤s+1

H ← (0)k≤r+1,�≤s+1

for k ← r downto 1 do

Hk,1 ← Hk+1,1 + bk,1

for � ← 1 to s do

Hk,�+1 ← min(Hk,�, bk,�+1 + Hk+1,�+1)

end for

end for

e ← (0)k≤r,�≤s

k ← 1, � ← s

while k ≤ r and � ≥ 1 do

if Hk,�+1 = Hk,� then

(ei,�)
r
i=k ← (1)ri=k

� ← � − 1

else

k ← k + 1

end if

end while.

continuously differentiable with positive definite Hessian
matrix everywhere, this minimization problem can be solved
with arbitrarily high accuracy by a Newton type algorithm.

All algorithms described in this paper alternate between
two basic procedures which are described next. In both pro-
cedures θ ∈ K is replaced with a vector θnew ∈ K such that
Q(θnew) < Q(θ) unless θnew = θ .

Basic procedure 1: Checking optimality of θ ∈ K Suppose
that θ ∈ K satisfies already the following two equations:

∇Q(θ)�θ = 0 = ∇Q(θ)�1. (5)

According to (3), this vector is already the solution θ̂ if, and
only if, ∇Q(θ)�e ≥ 0 for all e ∈ E . Thus we determine

� ∈ argmin
e∈E

∇Q(θ)�e

and do the following: If ∇Q(θ)�� ≥ 0, we know that θ = θ̂

and stop the algorithm. Otherwise we determine

to = argmin
t∈R

Q(θ + t�) > 0

and replace θ with

θnew := θ + to�.

This vector θnew lies in the cone K, too, and satisfies the in-
equality Q(θnew) < Q(θ). Then we proceed with basic pro-
cedure 2.

Basic procedure 2: Replacing θ ∈ K with a “locally opti-
mal” point θnew ∈ K The general idea of basic procedure
2 is to find a point θnew ∈ K such that

θnew = argmin
x∈V

Q(x) (6)

for some V in a finite family V of linear subspaces of R
p .

Typically these subspaces V are obtained by replacing some
inequality constraints from C with equality constraints and
ignoring the remaining ones. This approach is described be-
low as basic procedure 2a. But we shall see that it is poten-
tially useful to modify this strategy; see basic procedures 2b
and 2c.

Basic procedure 2a: The classical active set approach For
θ ∈ K define

V(θ) = {
x ∈ R

p : xu = xv for all (u, v) ∈ C with θu = θv

}
.

This is a linear subspace of R
p containing 1 and θ which

is determined by those constraints from C which are “ac-
tive” in θ . It has the additional property that for any vector
x ∈ V(θ),

λ(θ ,x) = max
{
t ∈ [0,1] : (1 − t)θ + tx ∈ K

}
> 0.

Precisely, λ(θ ,x) = 1 if x ∈ K, and otherwise,

λ(θ ,x) = min
(u,v)∈C:xu>xv

θv − θu

θv − θu − xv + xu

.

The key step in basic procedure 2a is to determine xo =
argminx∈V(θ) Q(x) and λ(θ ,xo). If xo ∈ K, which is equiv-
alent to λ(θ ,xo) = 1, we are done and return θnew = xo.
This vector satisfies (6) with V = V(θ) and V = V(θnew).
The latter fact follows simply from V(θnew) ⊂ V(θ). If xo �∈
K, we repeat this key step with θnew = (1 − λ(θ ,xo)θ +
λ(θ ,xo)xo in place of θ .

In both cases the key step yields a vector θnew satisfying
Q(θnew) < Q(θ), unless xo = θ . Moreover, if xo �∈ K, then
the vector space V(θnew) is contained in V(θ) with strictly
smaller dimension, because at least one additional constraint
from C becomes active. Hence after finitely many repetitions
of the key step, we end up with a vector θnew satisfying (6)
with V = V(θnew). Table 2 provides pseudocode for basic
procedure 2a.

Basic procedure 2b: Working with complete orders The
determination and handling of the subspace V(θ) in basic
procedure 2a may be rather involved, in particular, when the
set C consists of more than p constraints. One possibility to
avoid this is to replace V(θ) and K in the key step with the
following subspace V

∗(θ) and cone K
∗(θ), respectively:
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Table 2 Basic procedure 2a

Algorithm θnew ← BasicProcedure2a(θ)

θnew ← θ

xo ← argminx∈V(θnew) Q(x)

λ ← λ(θnew,xo)

while λ < 1 do

θnew ← (1 − λ)θnew + λxo

xo ← argminx∈V(θnew) Q(x)

λ ← λ(θnew,xo)

end while

θnew ← xo

V
∗(θ) = {

x ∈ R
p : for all u,v ∈ {1, . . . , p},

xu = xv if θu = θv

}
,

K
∗(θ) = {

x ∈ R
p : for all u,v ∈ {1, . . . , p},

xu ≤ xv if θu ≤ θv

}
.

Note that 1, θ ∈ K
∗(θ) ⊂ V

∗(θ), and one easily verifies that
K

∗(θ) ⊂ K if θ ∈ K. Basic procedure 2b works precisely
like basic procedure 2a, but with V

∗(·) in place of V(·), and
λ(θ ,x) is replaced with

λ∗(θ ,x) = max
{
t ∈ [0,1] : (1 − t)θ + tx ∈ K

∗(θ)
}
.

Then basic procedure 2b yields a vector θnew satisfying (6)
with V = V

∗(θnew).
When implementing this procedure, it is useful to de-

termine a permutation σ(·) of {1, . . . , p} such that θσ(1) ≤
θσ(2) ≤ · · · ≤ θσ(p). Let 1 ≤ i1 < i2 < · · · < iq = p denote
those indices i such that θσ(i) < θσ(i+1) if i < p. Then, with
i0 = 0,

V
∗(θ) = {

x ∈ R
p : for 1 ≤ � ≤ q,

xσ(i) is constant in i ∈ {i�−1 + 1, . . . , i�}
}
,

K
∗(θ) = {

x ∈ V
∗(θ) : for 1 ≤ � < q, xσ(i�) ≤ xσ(i�+1)

}
,

and

λ∗(θ ,x)

= min
2≤�≤p:xσ(i�−1)>xσ(i�)

θσ (i�) − θσ(i�−1)

θσ(i�) − θσ(i�−1) − xσ(i�) + xσ(i�−1)

.

Basic procedure 2c: A shortcut via the PAVA In the special
case of Q(θ) being the weighted least squares functional
in (1), one can determine

θnew = argmin
x∈K∗(θ)

Q(x)

directly by means of the PAVA with a suitable modification
for the equality constraints defining V

∗(θ).

3.4 The whole algorithm and its validity

All subspaces V(θ) and V
∗(θ), θ ∈ K, correspond to par-

titions of {1,2, . . . , p} into index sets. Namely, the linear
subspace corresponding to such a partition consists of all
vectors x ∈ R

p with the property that xu = xv for arbitrary
indices u,v belonging to the same set from the partition.
Thus the subspaces used in basic procedures 2a–b belong to
a finite family V of linear subspaces of R

p all containing 1.
We may start the algorithm with initial point

θ (0) =
(

argmin
t∈R

Q(t1)
)

· 1.

Now suppose that θ (0), . . . , θ (k) ∈ K have been chosen such
that

θ (�) = argmin
x∈V(�)

Q(x) for 1 ≤ � ≤ k

with linear spaces V
(0), . . . ,V

(k) ∈ V . Then θ = θ (k) sat-
isfies (5), and we may apply basic procedure 1 to check
whether θ (k) = θ̂ . If not, we may also apply a variant of ba-
sic procedure 2 to get θ (k+1) ∈ K minimizing Q on a linear
subspace V

(k+1) ∈ V , where Q(θ (k+1)) < Q(θ (k)). Since V
is finite, we will obtain θ̂ after finitely many steps.

Similar arguments show that our algorithm based on ba-
sic procedure 2c reaches an optimum after finitely many
steps, too.

Final remark on coercivity As mentioned for Setting 2a,
the algorithm above may be applicable even in situations
when the functional Q fails to be coercive. In fact, we
only need to assume that Q attains a minimum, possibly
non-unique, over any linear space V(θ), V

∗(θ) or any cone
K

∗(θ), and we have to able to compute it. In Setting 2a, one
can verify this easily.

4 Shrinkage estimation

We consider a regression setting as in Sect. 2, this time with
Gaussian errors εt ∼ N (0, σ 2). As before, the regression
function μ : R × R → R is reduced to a matrix

M = (
μ(x(i), y(j))

)
i, j

∈ R
r×s

for given design points x(1) < x(2) < · · · < x(r) and y(1) <

y(2) < · · · < y(s). This matrix is no longer assumed to be
bimonotone, but the latter constraint will play a role in our
estimation method.
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4.1 Transforming the signal

At first we represent the signal M with respect to a cer-
tain basis of R

r×s . To this end let U = [u1 u2 · · ·ur ] and
V = [v1 v2 · · ·vs] be orthonormal matrices in R

r×r and
R

s×s , respectively, to be specified later. Then we write

M = UM̃V � =
∑

i,j

M̃ij uiv
�
j

with M̃ = U�MV = (
u�

i Mvj

)
i,j

.

Thus M̃ contains the coefficients of M with respect to the
new basis matrices uiv

�
j ∈ R

r×s . The purpose of such a

transformation is to obtain a transformed signal M̃ with
many coefficients being equal or at least close to zero.

One particular construction of such basis matrices U and
V is via discrete smoothing splines: For given degrees k,
� ≥ 1, consider annihilators

A =

⎡

⎢⎢⎢⎣

a11 · · · a1,k+1 0
a22 · · · a2,k+2

. . .
. . .

0 ar−k,r−k · · · ar−k,r

⎤

⎥⎥⎥⎦

∈ R
(r−k)×r ,

B =

⎡

⎢⎢⎢⎣

b11 · · · b1,�+1 0
b22 · · · b2,�+2

. . .
. . .

0 bs−�,s−� · · · bs−�,s

⎤

⎥⎥⎥⎦

∈ R
(s−�)×s,

with unit row vectors such that

A
(
xe
(i)

)r
i=1 = 0 for e = 0, . . . , k − 1,

B
(
ye
(j)

)s
j=1 = 0 for e = 0, . . . , � − 1.

An important special case is k = � = 1. Here

A = 1√
2

⎡

⎢⎢⎢⎣

1 −1 0
1 −1

. . .
. . .

0 1 −1

⎤

⎥⎥⎥⎦ and

B = 1√
2

⎡

⎢⎢⎢⎣

1 −1 0
1 −1

. . .
. . .

0 1 −1

⎤

⎥⎥⎥⎦

satisfy the equations A1r = 0 and B1s = 0.

Next we determine singular value decompositions of A

and B , namely,

A = Ũ · [0(r−k)×k diag(a1, . . . , ar−k)︸ ︷︷ ︸
0 ≤ a1 ≤ ··· ≤ ar−k

] · U�,

B = Ṽ · [0(s−�)×� diag(b1, . . . , bs−�)︸ ︷︷ ︸
0 ≤ b1 ≤ ··· ≤ bs−�

] · V �

with column-orthonormal matrices Ũ , U = [u1 u2 · · · ur ],
Ṽ and V = [v1 v2 · · · vs]. The vectors u1, . . . ,uk and
v1, . . . ,v� correspond to the space of polynomials of or-
der at most k and �, respectively. In particular, we always
choose u1 = r−1/21r and v1 = s−1/21s . Then

M = M̃11 u1v
�
1 (constant part)

+
r∑

i=2

M̃i1 uiv
�
1 +

s∑

j=2

M̃1j u1v
�
j (additive part)

+
∑

i,j≥2

M̃ij uiv
�
j (interactions).

One may also write

M = U

polynomial part half-polyn. interactions
k × � k × (s − �)

half-polyn. interactions non-polyn. interactions
(r − k) × � (r − k) × (s − �)

V �.

For moderately smooth functions μ we expect |M̃ij | to have
a decreasing trend in i > k and in j > �. This motivates a
class of shrinkage estimators which we describe next.

4.2 Shrinkage estimation in the simple balanced case

In the case of n = p = rs observations such that each grid
point (x(i), y(j)) is contained in {(x1, y1), . . . , (xn, yn)}, our
input data may be written as a matrix

Z = M + ε

with ε ∈ R
r×s having independent components εij ∼ N (0,

σ 2). Reexpressing such data with respect to the discrete
spline basis leads to Z̃ = M̃ + ε̃ with Z̃ := U�ZV and
ε̃ := U�εV . Note that the raw data Z is the maximum like-
lihood estimator of M . To benefit from the bias-variance
trade-off, we consider component-wise shrinkage of the co-
efficient matrix Z̃: For γ ∈ [0,1]r×s we consider the candi-
date estimator

M̂
(γ ) = U (γij Z̃ij )i,j V �. (7)

Eventually we will choose a shrinkage matrix γ̂ depending
on the data and compute the shrinkage estimator

M̂ = M̂
(γ̂ )

. (8)
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Let ‖A‖F denote the Frobenius norm of a matrix A, i.e.
‖A‖2

F = ∑
i,j A2

ij = trace(A�A). As a measure of risk of
the estimator (7), we consider

R(γ ,M) = E
∥∥M̂(γ ) − M

∥∥2
F

=
∑

i,j

(
(1 − γij )

2M̃2
ij + σ 2γ 2

ij

)

=
∑

i,j

(M̃2
ij + σ 2)

(
γij − M̃2

ij

M̃2
ij + σ 2

)2

+
∑

i,j

M̃2
ij σ

2

M̃2
ij + σ 2

.

Here we used the fact that the transformed error matrix ε̃ has
the same distribution as ε. An estimator of this risk is given
by

R̂(γ ) =
∑

i,j

(
σ̂ 2γ 2

ij + (1 − γij )
2(Z̃2

ij − σ̂ 2)
)

=
∑

i,j

Z̃2
ij

(
γij − (1 − σ̂ 2/Z̃2

ij )
)2

+
∑

i,j

σ̂ 2(1 − σ̂ 2/Z̃2
ij

)
,

where σ̂ is a certain estimator of σ , e.g. based on high fre-
quency components of Z̃, see later.

Thus optimal shrinkage factors would be given by γ̌ij =
M̃2

ij /(M̃
2
ij + σ 2), but these depend on the unknown sig-

nal M . Naive estimators would be γ̂ij = (1− σ̂ 2/Z̃2
ij )

+. The
resulting estimator’s performance is rather poor, but it im-
proves substantially if γ̂ in (8) is given by

γ̂ij = max

(
1 − τ log(p)σ̂ 2

Z̃2
ij

, 0

)
(9)

with τ close to 2; cf. Donoho and Johnstone (1994).
An alternative strategy, utilized for instance by Beran and

Dümbgen (1998), is to restrict γ to a certain convex set of
shrinkage matrices serving as a caricature of the optimal γ .
The previous considerations suggest to restrict −γ to be
contained in K

(k,�)
r,s , the set of all matrices θ ∈ R

r×s such
that

• θ1,j = θ2,j = · · · = θk,j is non-decreasing in j > �,
• θi,1 = θi,2 = · · · = θi,� is non-decreasing in i > k,
• (θij )i>k,j>� belongs to Kr−k,s−�.

The set of all such shrinkage matrices γ is denoted by
G

(k,�)
r,s = (−K

(k,�)
r,s ) ∩ [0,1]r×s . Thus we propose to use the

shrinkage matrix

γ̂ = argmin
γ∈G

(k,�)
r,s

R̂(γ ). (10)

In the present setting one can show (cf. Beran and Dümbgen
1998) that

γ̌ = argmin
γ∈G

(k,�)
r,s

R(γ ,M) =
(

η̌ij

η̌ij + σ 2

)

i,j

with η̌ = − argmin
θ∈K

(k,�)
r,s

∑

i,j

(−(M̃2
ij + σ 2) − θij

)2
.

Similarly,

γ̂ = argmin
γ∈G

(k,�)
r,s

R̂(γ ) = (
(1 − σ̂ 2/η̂ij )

+)
i,j

with η̂ = − argmin
θ∈K

(k,�)
r,s

∑

i,j

(−Z̃2
ij − θij )

2.

This allows one to experiment with different values for σ̂

with little effort.

Estimation of the noise level Two particular estimators are
given by

σ̂1,κ =
( ∑

i/r+j/s≥κ Z̃2
ij

#{(i, j) : i/r + j/s ≥ κ}
)1/2

or

(11)

σ̂2,κ = Median
(|Z̃ij | : i/r + j/s ≥ κ

)

−1(3/4)

for a certain number κ ∈ (0,2), where −1 denotes the stan-
dard Gaussian quantile function. The idea is that for i � 1
and j � 1, the components Z̃ij are essentially equal to the
noise variables ε̃ij ∼ N (0, σ 2). Otherwise both estimators
tend to overestimate σ .

As to the choice of κ , we propose to choose it via visual
inspection of the graphs of κ �→ σ̂1,κ and κ �→ σ̂2,κ . Typi-
cally these functions are almost constant and close to σ on a
large subinterval of (0,2), non-increasing to the left of that
interval, and show random fluctuations to the right. As we
shall illustrate later, the quality of the shrinkage estimator
is rather robust with respect to the estimator σ̂ . In particu-
lar, overestimating σ slightly is typically harmless or even
beneficial.

Consistency We now augment the foregoing discussion
with consistency results that follow from more general con-
siderations in Beran and Dümbgen (1998). First of all, for

large p, the normalized quadratic loss p−1‖M̂(γ ) − M‖2
F

of a candidate estimator is close to its normalized risk
p−1R(γ ,M), uniformly over γ ∈ G

(k,�)
r,s . Precisely,

E sup
γ∈G

(k,�)
r,s

∣∣p−1‖M̂(γ ) − M‖2
F − p−1R(γ ,M)

∣∣

≤ C
σ 2 + σp−1/2‖M‖F

max(r, s)1/2
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Fig. 3 Shrinkage estimation: data and true signal (1st row), estimators with σ̂ ← cσ̂ for c = 0.5,1.0,1.5,2.0 (2nd and 3rd row)

with C denoting a generic universal constant. Moreover,
if the variance estimator σ̂ 2 is L1-consistent, the normal-
ized estimated risk p−1R̂(γ ) differs little from the nor-
malized true risk p−1R(γ ,M), uniformly in γ ∈ G

(k,�)
r,s .

Namely,

E sup
γ∈G

(k,�)
r,s

∣∣p−1R̂(γ ) − p−1R(γ ,M)
∣∣

≤ C
σ 2 + σp−1/2‖M‖F

max(r, s)1/2
+ C E

∣∣σ̂ 2 − σ 2
∣∣.
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Fig. 4 Shrinkage estimation: Transformed squared coefficients Z̃2
ij /(1 + Z̃2

ij ) (left) and bimonotone shrinkage matrix γ̂ (right)

Fig. 5 Shrinkage estimation: Average quadratic loss as a function of σ̂

In particular, the shrinkage matrix γ̂ in (10) and the

corresponding estimator M̂ = M̂
(γ̂ )

satisfy the inequali-
ties

E |p−1R̂(γ̂ ) − p−1Rmin(M)|
E |p−1‖M̂ − M‖2

F − p−1Rmin(M)|

}

≤ C
σ 2 + σp−1/2‖M‖F

max(r, s)1/2
+ C E

∣∣σ̂ 2 − σ 2
∣∣,

where Rmin(M) denotes the minimum of R(γ ,M) over all
γ ∈ G

(k,�)
r,s .

Example 4.1 We generated a random matrix Z ∈ R
r×s with

r = 60 rows, s = 100 columns and independent components
Zij ∼ N (μ(x(i), y(j)),1), where x(i) = (i − 0.5)/r , y(j) =

(j − 0.5)/s, and

μ(x, y) = 2τ(x, y)−0.25 sin(τ (x, y)) + 0.05(x + y),

τ (x, y) =
√

3x2 + 2xy + 3y2 + 1.

We smoothed this data matrix Z as described above with an-
nihilators of order k = � = 2. The estimators σ̂1,κ and σ̂2,κ

turned out to be almost constant and slightly smaller than 1.0
on (0.5,0.65), so we chose σ̂ = 1. The first row of Fig. 3
shows gray scale images of the raw data Z (left) and the
true signal M (right). The second and third row depict the
matrix M̂ for different values of σ̂ . Precisely, to show the
effect of varying the estimated noise level, we replaced σ̂

with cσ̂ , where c = 0.5 (undersmoothing), c = 1.0 (origi-
nal estimator), c = 1.5 (oversmoothing) and c = 2.0 (heavy
oversmoothing). In these pictures the gray scale ranges from
−7 (black) to 7 (white).

Figure 4 depicts the transformed squared coefficients
Z̃2

ij /(1+ Z̃2
ij ) (left panel) and the bimonotone shrinkage ma-

trix γ̂ (right panel).
Figure 5 shows the average squared loss p−1‖M̂ − M‖2

F

as a function of σ̂ . The emerging pattern is very stable over
all simulations we looked at. This plot and Fig. 4 show that
there is a rather large range of values for σ̂ leading to esti-
mators of similar quality. Overestimation of σ̂ is less severe
than underestimation and sometimes even beneficial.

Since this is just one simulation, we also conducted a
simulation study. We generated 5000 such data matrices Z.
Each time we estimated the noise level via σ̂ = σ̂1,1. Then
we computed the shrinkage estimators M̂ in (8), where the
shrinkage matrices γ̂ were given by (10) and by (9) with
τ running through a fine grid of points in (0,2]. It turned
out that τ = 0.60 yielded optimal performance, although
this value depends certainly on the underlying signal and
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Fig. 6 Raw vineyard data (top left), transformed data and fitted values (top right), additive part (bottom left) and interactions (bottom right)

Table 3 Estimated risks of different estimators in Example 4.1

Bimonotone Componentwise thresholding (9) with

shrinkage (10) τ = 0.5 τ = 0.6 τ = 1.0 τ = 1.5 τ = 2.0

0.0790 0.0922 0.0888 0.1044 0.1342 0.1619

(0.0044) (0.0050) (0.0051) (0.0061) (0.0073) (0.0082)

noise level. Table 3 provides Monte Carlo estimates of the
corresponding risk, i.e. the expectation of the normalized
quadratic loss p−1‖M̂ − M‖2

F . The values into parentheses
are the estimated standard deviations of the latter loss. This
table shows that bimonotone shrinkage yields better results
than componentwise (soft) thresholding.

4.3 Viticultural case study

In this case study, row i of the data matrix Y ∈ R
52×3 reports

the grape yields harvested in 3 successive years from a vine-

yard near Lake Erie that has 52 rows of vines. The data is
taken from Chatterjee et al. (1995). The grape yields, mea-
sured in lugs of grapes harvested from each vineyard-row,
are plotted in the upper left panel of Fig. 6, using a differ-
ent plotting character for each of the three years. The analy-
sis seeks to bring out patterns in the vineyard-row yields
that persist across years. Year and vineyard-row are both
ordinal covariates. The covariate vineyard-row summarizes
location-dependent effects that may be due to soil fertil-
ity and microclimate. The covariate year summarizes time-
varying effects that may be due to rainfall pattern, tempera-
tures, and viticultural practices.

A preliminary data analysis based on running means
and variance estimates from triplets (Yi,j , Yi+1,j , Yi+2,j ),
1 ≤ i ≤ 50, revealed that a square-root transformation yields
a data matrix Z ∈ R

52×3 which may be viewed as a two-way
layout in which both the row and column numbers are ordi-
nal covariates, the measurement errors are independent with
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mean zero and common unknown variance σ 2 and unknown
mean matrix M = EZ.

Now we applied the orthonormal transformation into
spline bases with x(i) = i and y(j) = j , where k = 2 and
� = 1. In particular, u1 and u2 are proportional to 152 and
(i − 26.5)52

i=1, respectively. Similarly, v1, v2 and v3 are pro-
portional to 13, (−1,0,1)� and (1,−2,1)�, respectively.
The graphs of κ �→ σ̂1,κ and κ �→ σ̂2,κ revealed that σ̂ =
0.25 is a plausible estimator for σ . The resulting fitted ma-
trix M̂ is shown in the upper right panel of Fig. 6, adding
linear interpolation between adjacent elements to bring out
their trend. In addition the transformed data Zij are super-
imposed as single points.

The estimated mean grape yields reveal shared patterns
across the three years. Large dips in estimated mean grape
yields occur in the outermost rows of the vineyard and near
row 33. These point to possible geographical variations in
growing conditions, such as harsher climate at the vineyard
edges or changes in soil fertility.

It is also interesting to split the fit M̂ into an additive part
(including constant) and interactions,

M̂add = γ̂11Z̃11 u1v
�
1

+
r∑

i=2

γ̂i1Z̃i1 uiv
�
1 +

s∑

j=2

γ̂1j Z̃1j u1v
�
j ,

M̂ inter =
r∑

i=2

s∑

j=2

γ̂ij Z̃ij uiv
�
j .

The lower panels of Fig. 6 depict these parts separately. The
plot of the additive part emphasizes the pattern across rows
just described and the (nonlinear) increase across years. The

interactions reveal that a simple additive model does not
seem appropriate for these data.
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