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Abstract Functional gradient descent (FGD), a recent technique coming from com-
putational statistics, is applied to the estimation of the conditional moments of the short
rate process with the goal of finding the main drivers of the drift and volatility dynam-
ics. FGD can improve the accuracy of some reasonable starting estimates obtained
using classical short rate models introduced in the literature. It exploits the predictive
information of an enlarged set of variables, including yields at other maturities, time,
and macroeconomic indicators. Fitting this methodology to the time series of monthly
US 3-month Treasury bill rates, we find that the drift dynamics react mostly in a non-
linear way to changes in macroeconomic variables, whereas volatility dynamics are
subjected to time-dependent regime-switches. Finally we show the superior perfor-
mance of the final predictions obtained by applying FGD in a forecasting exercise.

Keywords Functional gradient descent · Short rate process · Macroeconomic
variables · Time-varying drift and volatility dynamics

JEL Classification C14 · C52 · E43 · E44 · E47

1 Introduction

In the last 20 years the academic community has devoted a lot of attention to the
understanding, modeling, and forecasting of the short-term interest rate process, giv-
ing rise to an enormous number of studies published in the literature. The main reason
for such strong interest is the key role played by the short rate in many practical
applications such as the pricing of bond and interest-rate dependent derivative
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securities and (interest rate) risk management. In fact, the short rate process is gener-
ally thought to be the most important state variable driving the whole term structure
of interest rates.

Recent studies in continuous time have focused on the description and estimation
of (possible) non-linearities in the drift and diffusion functions of the short rate using
parametric and semi- or even non-parametric approaches. Among others, it is worth-
while citing the results of Aït-Sahalia (1996b) who proposed a general parametric
specification nesting most existing parametric interest rate models, in particular the
classical Vasicek (1977) and Cox et al. (1985) models. Given the potential risk of model
misspecification inherent in the parametric assumption yielding significant economic
implications in the pricing of interest rate derivatives, nonparametric modeling has
received considerable attention. Aït-Sahalia (1996a) proposed a non-parametric esti-
mator of the diffusion function from discretely observed data in connection with a
parametric drift function. Stanton (1997) proposed nonparametric estimators of the
drift and diffusion functions based on different orders of approximation of the Itô
process using the infinitesimal generator and Taylor series expansions. Bandi and
Phillips (2003) generalized the nonparametric approach to recurrent diffusion pro-
cesses, relaxing the assumption of stationarity for the short rate process. Sam and
Jiang (2009) extended the nonparametric estimator proposed by Stanton (1997) by
incorporating the informative potential of a panel of yields in the nonparametric esti-
mation. They found in simulations that the proposed estimator can lead to significant
efficiency gains relative to the nonparametric estimator constructed using only the time
series of observed short rates, reducing problems related to spurious non-linearities in
the drift function (see, for example, Pritsker 1998, or Chapman and Pearson 2000).

In the discrete setting, different time series models of the short rate dynamics have
recently been proposed in order to take into account the regime-switching behavior and
the heteroskedasticity and high persistence over time of the short rate process. These
models also try to relate short rates with macroeconomic fundamentals like indicators
of inflation and real activity. In their studies, Gray (1996), Bansal and Zhou (2002),
Bansal et al. (2004), Audrino (2006), Audrino and De Giorgi (2007), and Audrino
and Medeiros (2011) showed empirically that the incorporation of regime shifts (of a
Markovian or threshold type) in the time series model for the short rate process signifi-
cantly improves the accuracy of the estimates and predictions of short rate conditional
means and variances, with important implications for the pricing of interest-rate sen-
sitive derivative instruments. Moreover, motivated by the results illustrated in Ang
and Piazzesi (2003), Diebold et al. (2006), Ang et al. (2007), and Rudebusch and
Wu (2008), who considered macroeconomic fundamentals as observable factors in
yield curve modeling, Audrino (2006) and Audrino and Medeiros (2011) included
macroeconomic information as predictors and regime-switching variables in the con-
struction of the short rate model, showing that such information is highly relevant
for improving the fit and the prediction of the models. Indices of inflation and real
activity are found to be among the main determinants, driving both the local short rate
conditional dynamics in the different regimes and the way in which regime switches
are determined.

This study follows the idea of extending the information set for the estimation
of the first two conditional short rate moments (i.e. drift and diffusion functions) by
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considering exogenous variables such as other yields and/or observable indicators
of macroeconomic fundamentals as presented in Audrino (2006) and Sam and Jiang
(2009). It applies a standard functional gradient descent (FGD, introduced in Audrino
and Bühlmann (2003), and generalized in Audrino and Trojani (2007)) algorithm based
on regression trees with the main goal of finding the most relevant forces driving the
short rate dynamics among a large pool of possible candidates. FGD is strictly related
to boosting, a multiple prediction and aggregation scheme for classification proposed
in the 1990s by Freund and Schapire (1996): in fact, FGD yields a general representa-
tion of boosting algorithms. Starting with Breiman (1999), who showed that boosting
can be viewed as an optimization algorithm in function space, many other studies
have brought boosting from classification to other settings (see Bühlmann 2003, for a
detailed review). In our particular case, we apply boosting to the nonlinear time series
analysis of the short rate dynamics by exploiting its FGD representation.

The way FGD works is quite intuitive. FGD takes a simple parametric or non-
parametric model as a first approximation and modifies it in a non-parametric way to
improve a pre-specified goodness-of-fit statistic. One of the main advantages of FGD
with regression trees is that it is able to choose the most relevant predictors from a
large set of candidates. This helps in determining the most relevant forces driving the
short rate process. A second important advantage of FGD is that the most relevant
predictors for the drift function can differ from those chosen as most informative for
the volatility function. This will allow us to disentangle the main forces driving the
conditional mean from those determinant for the conditional variance of the short rate
process. In our study, to model the short rate process we will use as starting mod-
els approaches proposed in the literature that use only the information included in
the short rate time series. Applying the FGD approach we will include in the set of
possible candidates yields at other maturities as well as indices of real activity and
inflation.

We apply FGD to the time series of monthly US 3-month Treasury bill yields during
the time period between June 1961 and July 2007. Our findings show that the addi-
tional yield curve and macroeconomic information incorporated by the FGD approach
cannot be neglected and produces significantly better fits of the short rate dynamics.
Interestingly, the relevant forces driving the conditional mean and variance functions
of the short rate process are significantly different.

The conditional mean dynamics are driven mainly by the macroeconomic factors:
they are chosen from 45 to 70% of the time, depending on the starting model. The
relevance of yields at other maturities is limited, given that the relative percentage of
their being chosen is always less than 25%. Surprisingly, the choice of “Time” as a
predictor variable is also limited (less than 15%). Given that our starting models have
no regimes, structural breaks in time do not seem to be highly relevant for modeling
the time series dynamics of the short rate conditional mean in our sample period. In
contrast, we find completely different results for the volatility function. In this case
the most relevant predictor is always “Time.” It is chosen from 56 to 75% of the
times, depending on the starting model. As expected, structural breaks in time are
highly relevant for modeling the short rate conditional variance dynamics and cannot
be neglected. This confirms previous results found in the literature about the existence
of so-called volatility regimes, such as, for example, the existence of an extremely
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high volatility regime during the 1979–1982 FED experiment. Macroeconomic and
term structure information seem only to be marginally relevant in this case.

The non-parametric nature of our approach can account for non-linearities of the
short-rate drift and volatility functions in the dependence of all relevant predictors. In
fact, our results support the estimates found for example in Sam and Jiang (2009) of
a non-linear conditional mean of the short rate process.

In a final application to short rate forecasting, we show that applying FGD to the
classical parametric and nonparametric estimators proposed in the literature is able to
significantly improve both conditional mean and variance forecasts. In some cases,
the accuracy of the final predictions obtained using simple classical models improved
by FGD is similar to those one gets from very flexible approaches that take regime
switches and macroeconomic information explicitly into account. The advantage of
the FGD procedure is that it reduces the computational costs associated with the esti-
mation of such flexible models of a factor of about 300. Thus, for practical reasons
FGD is clearly to be preferred.

Moreover, results of a test for superior predictive ability (SPA, introduced by Hansen
2005) among the models show that FGD alone is not able to improve the out-of-sample
performances of starting models that do not take into account heteroskedasticity and
high persistence of short rate process over time (for example by including GARCH-
type dynamics in the conditional variance equation). Such models are clearly over-
performed in our forecasting exercise.

The remainder of the paper is constructed as follows. In Sect. 2 we present a gen-
eral univariate nonparametric time series model of the short rate process and introduce
the classical FGD procedure to estimate the conditional mean and variance functions.
Empirical results of our real data investigation on monthly US 3-month Treasury bill
yields are illustrated and discussed in Sect. 3. Section 4 concludes.

2 Modeling Approach

This section first introduces our univariate time series model for the conditional mean
and variance functions of the short rate process. In a second step, the classical FGD
(FGD) estimation procedure is reviewed, together with the algorithm that can be
applied to estimate the model.

2.1 The General Model

As a starting point, let us consider a time-homogenous Itô diffusion process as a
classical continuous time univariate model of the short rate rt at time t :

drt = μ(rt )dt + σ(rt )dwt , (1)

where wt is the standard Brownian motion with t ∈ [0, T ], and μ(rt ) and σ(rt ) are,
respectively, the drift and volatility functions. In particular, most existing models of the
short-term interest rate process are nested in the parametric specification introduced
by Aït-Sahalia (1996b):
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drt =
(
α0 + α1rt + α2r2

t + α3r−1
t

)
dt + σrγ

t dwt , (2)

where (α0, α1, α2, α3, σ, γ ) are unknown parameters and both drift and volatility
functions are specified to capture potential nonlinearities. For example, by restricting
(α2 = α3 = γ = 0) we get the Vasicek (1977) model, and by restricting (α2 = α3 =
0, γ = 1

2 ) the Cox et al. (1985) model.
In this study, we focus on a discretized general version of the continuous-time

model (1) of the form:

�rt = rt+δ − rt = μt + εt , (3)

where

εt = √
ht zt , μt = g(�t−1), ht = f (�t−1), (4)

for some unknown conditional mean and variance functions g(·) ∈ R and f (·) ∈ R
+,

respectively, and a sampling interval δ > 0. (zt )t∈Z is a sequence of independent
identically distributed innovations with zero mean and unit variance. In model (4),
the relevant conditioning information, denoted by �t−1, is assumed to be as wide
as possible. Specifically, we set �t−1 = {r̃t−1, xex

t−1}, where r̃t−1 = {rt−1, rt−2, . . .}
and xex

t−1 is a vector of all other relevant exogenous variables used for prediction. In
this study, typical factors included in xex

t−1 are yields at other maturities, the spread
between the long and the short rates, and some relevant macroeconomic variables such
as indices for real activity and inflation already introduced in previous studies of the
short rate dynamics such as Audrino (2006). Clearly, such a definition of �t−1 allows
us to exploit all the additional predictive information included in the term structure
and in the macroeconomic variables for estimating the dynamics of the short rate
process. In particular, this model allows for a broad variety of (possibly nonlinear)
shapes of the conditional mean and variance functions in reaction to past market and
macroeconomic information.

It is immediate seen that the general model (3)–(4) nests the discretized version
of the Aït-Sahalia (1996b) parametric continuous-time model (2), as well as discret-
ized versions of the Vasicek (1977) and Cox et al. (1985) models as special cases.
Taking the heteroskedasticity and high persistence over time features shown by the
short rate process explicitly into account, one can easily specify the conditional vari-
ance function ht = f (·) to include the parametric GARCH(1,1) dynamics:

ht = f (�t−1) = f1(�t−1) + w + aε2
t−1 + bht−1, (5)

where w, a and b are the unknown parameters, and f1(�t−1) an unspecified function
depending on the whole past information set. Similarly, the model (3)–(4) nests the
threshold-based regime-switching model proposed by Audrino (2006), too.

Various nonparametric estimators of the discretized drift and diffusion functions g
and f have been proposed in the finance literature. In particular, we want to review
here the approach proposed by Stanton (1997) and recently generalized by Sam and
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Jiang (2009). Using the infinitesimal generator and Taylor series expansion, Stanton
(1997) proposed nonparametric estimators of the drift and diffusion functions in (1)
based on various orders of approximation of the Itô process. In greater details, Stanton
(1997) proposes the following nonparametric estimators for g(·) and f (·) based on a
first-order approximation of the discretized process (3)–(4):

ĝStanton(r) =
∑T

t=1 (rt+1 − rt ) Kh (rt − r)∑T
t=1 Kh (rt − r)

and (6)

f̂Stanton(r) =
∑T

t=1 (rt+1 − rt )
2 Kh (rt − r)∑T

t=1 Kh (rt − r)
, (7)

where Kh(u) = 1
h K (u/h) and K (·) is a standard kernel function that satisfies usual

regularity conditions. In this case, the conditioning information set �t−1 reduced to
past values of the short rate process and no exogenous information is considered. The
estimators (6) and (7) are obtained by setting δ = 1 a fixed sampling interval. In fact,
our empirical study is based on monthly data and the sampling interval δ will be equal
to one month. Stanton (1997) showed with simulations in some simple settings that
the error made in estimating the true drift and diffusion functions using second and
third order discretized approximations based on monthly data is negligible. In our case
results are qualitatively the same as those reported for the first-order approximation.

Sam and Jiang (2009) generalized Stanton (1997) approach by enlarging the infor-
mation set considered in a pure endogenous estimation. They proposed a nonparamet-
ric estimator based on a panel of yields that is able to reduce some of the problems
arising when using the estimators (6)–(7). In particular, Sam and Jiang (2009) showed
in simulations that spurious nonlinearities or biases toward the boundaries in the esti-
mation of the drift and volatility functions can be significantly reduced. In this study
we will proceed along similar lines, enlarging the conditioning information set even
further by including observable indicators of macroeconomic fundamentals in addi-
tion to yields at other maturities. The way in which the conditional mean and variance
functions g(·) and f (·) are estimated using FGD is presented in the next section.

2.2 Estimation of the Conditional Mean and Variance Functions Using FGD

The main idea of FGD is to compute estimates ĝ(·) and f̂ (·) for the general, nonpara-
metric conditional mean and variance functions g(·) and f (·) which minimize a loss
function λ (generally chosen to be the negative pseudo log likelihood) under some
constraints on the form of ĝ(·) and f̂ (·). These constraints are required to ensure com-
putational feasibility, mainly in a generalized multivariate setting. More specifically,
given an initial estimate ĝ0(·) and f̂0(·), the estimates ĝ(·) and f̂ (·) are obtained as
additive nonparametric expansions around the starting models, i.e.

ĝ(�t−1) = ĝ0(�t−1) +
Mg∑
j=1

B(g)
j (�t−1) and (8)
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f̂ (�t−1) = f̂0(�t−1) +
M f∑
j=1

B( f )
j (�t−1), (9)

where the optimal stopping values Mg and M f are generally estimated to minimize
approximations of the expected prediction error. From the simple estimates of the gra-
dient of the loss function λ, FGD determines ĝ(·) and f̂ (·) as additive nonparametric
expansions of ĝ0(·) and f̂0(·) which minimize the loss function λ. Therefore, FGD
can be seen as a procedure that aims at producing estimates that locally improve the
accuracy measured by the loss function of some initial estimates by means on nonpara-
metric additive expansions. Such nonparametric expansions are based on some simple
estimates B j of the gradient of the loss function λ in a neighborhood of the initial
estimates. These simple estimates are made using a pre-specified statistical procedure
B, called base learner. In the standard algorithm used in this study, base learners are
regression trees given by:

B(u)
j (�t−1) =

L∑
k=1

a(k)
j,u I[

�t−1∈R(k)
j,u

], u ∈ {g, f },

where a(k)
j,· are some constant location parameters, L is the number of end nodes in

the decision tree, and R(k)
j,· are the partition cells of the regression trees.

Given that regression trees have the ability to choose from among a class of predic-
tors exactly those that are the most relevant for estimation and prediction, and given
that in the classical procedures regression trees with a low number of end-nodes are
considered (i.e. L ∈ {2, 3}), we have a perfect tool to provide an answer to our main
question regarding the main forces driving the short rate dynamics. Moreover, given
that the regression trees estimated in the additive expansions (8)–(9) for the conditional
mean and variance functions may be different, we can disentangle the most relevant
predictors driving the drift from those driving the volatility functions.

In our standard FGD procedure, we choose the loss function λ to be the nega-
tive log-likelihood implied by a “nominal” Gaussian distribution assumption for the
innovations zt in (4), i.e.

λ(r, g, f ) = 1

2
log(2π) + 1

2
log( f ) + 1

2 f
(r − g)2,

where the constant term 1
2 log(2π) will not affect the optimization. The optimization

of λ with respect to g and f is performed by calculating the corresponding partial
derivatives. This step of the optimization suggests the name Functional Gradient
Descent.

The choice of the starting models used in the FGD algorithm is important, since
FDG aims at locally improving the pseudo log likelihood criterion of an initial model
estimate by means of nonparametric additive expansions. Therefore, one should start
from adequate initial estimates, in order to obtain a satisfactory performance. In the
real application investigated in the next section, we will consider as starting models:
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1. the discretized parametric Cox et al. (1985) model;
2. a generalized version of the parametric Cox et al. (1985) model incorporating

GARCH(1,1) dynamics in the conditional variance equation similar to (5) with
f1(�t−1) = σ 2rt ;

3. the discretized parametric model proposed by Aït-Sahalia (1996b) given in (2);
4. the nonparametric estimators introduced by Stanton (1997) and given in (6)–(7);
5. and the threshold-based regime-switching model introduced by Audrino (2006).

Models 1, 3, and 4 are standard models introduced in the literature and used in practice.
Model 2 allows us to already take heteroskedasticity and high persistence of the short
rate process explicitly into account in the starting model still maintaining the compu-
tational costs associated with the whole estimation low. Model 5 is a fair competitor
for the FGD improved simple models 1 to 4, in particular for the forecasting exercise
performed in Sect. 3.4, already incorporating regime-shifts and macroeconomic infor-
mation and yielding highly accurate out-of-sample predictions. In the case of model
5. we do not expect FGD to be able to improve significantly the predictions, given
the high flexibility of the starting model. In fact it has been already shown in the past
literature that it does not make much sense to use FGD in connection with too sophis-
ticated models. The idea in this case is to verify whether FGD in connection with
the other very simple, classical models can yield forecasts that are enough accurate
(with respect to the benchmark model 5) and can be easily estimated, thus reducing
computational time.

All details about the standard FGD algorithm used in this study can be found, for
example, in Audrino and Trojani (2007).1

3 Empirical Results

3.1 Data

The data used in this study are 3-month U.S. Treasury bill rates downloaded on a daily
basis from the Federal Reserve Board web-page and constructed as in Gürkaynak et al.
(2007). In order to calculate the yields on a monthly basis, we take the last trading date
of each month. We will use the daily data in our forecasting application in Sect. 3.4 to
get more accurate realized measures for the unobservable conditional variances. The
data span the period between June 1961 and July 2007, for a total of 554 monthly
observations. Figure 1 plots the data as well as the monthly changes in short-term
interest rates. Table 1 presents some sample statistics.

Figure 1 illustrates quite aptly the dramatic changes in the short-term interest rates
that occurred, for example, during the FED experiment in the 1979–1982 period.
The volatility of the monthly changes associated with the FED experiment is striking
and stimulated the idea of modeling the short rate dynamics using different regimes
for the conditional variance (see, among others, Gray 1996, or Audrino 2006). As
expected and already illustrated in previous studies, Table 1 shows that the mean

1 The main FGD code written in S-PLUS together with some worked out examples are available for free
downloading at http://www.mathstat.unisg.ch/People.aspx.
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Fig. 1 The top panel contains a time series of monthly 3-month Treasury-bill rates (in percentages). The
first differences of this series are shown in the bottom panel. The sample period is June 1961 to July 2007,
for a total of 554 observations

change in the short-term interest rates is close to zero and that there is significant
excess kurtosis.

Following the idea proposed by Sam and Jiang (2009), we download from the FED
page yields at maturities 6 month, 1 year, 3 year, 5 year, and 10 year to exploit the
possible additional information included in the yield curve. Some sample statistics are
summarized in Table 1. As expected, the yield curve is upward-sloping.

To even further enhance the information set that we are going to use for the estima-
tion, we also download some classical macroeconomic indicators used in the macro-
finance literature to improve the accuracy of the estimation and prediction of the short
rate dynamics; see, for example, Ang and Piazzesi (2003) or Audrino (2006). We
consider the same (transformed) macroeconomic variables already used by Ang and
Piazzesi (2003) in their study. We divide the macroeconomic variables into two main
groups. The first group consists of two inflation measures based on the CPI and the
PPI of finished goods. The second group contains variables that capture real activity:
the index of Help Wanted Advertising in Newspapers (HELP), unemployment (UE)
and the growth rate of industrial production (IP). Summary statistics of these vari-
ables are reported in Table 1. In principle the FGD approach allows one to extend the
prediction set by including all other variables that are thought to be relevant for the
estimation and prediction of the dynamics. The algorithm itself will choose among
all the most informative ones. We restrict the set to the mentioned variables because
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Table 1 Summary statistics of data

Central moments Autocorrelations

Mean SD Skew Kurt Lag 1 Lag 2 Lag 3

3 month rates 5.8955 2.865 1.0757 4.802 0.973 0.9445 0.9226

3 month changes 0.0044 0.6514 −0.6817 13.3928 0.0231 −0.1221 −0.0345

6 month rates 5.9639 2.8503 0.9831 4.3958 0.9819 0.9588 0.9389

1 year rates 6.1185 2.7962 0.8948 4.0838 0.983 0.9611 0.9422

3 year rates 6.5059 2.6152 0.8855 3.746 0.9859 0.9687 0.9542

5 year rates 6.723 2.5138 0.9139 3.5923 0.9876 0.9733 0.9609

10 year rates 7.0324 2.3881 0.9308 3.4835 0.9886 0.9768 0.966

CPI 4.1763 2.7367 1.4338 4.6448 0.9908 0.9775 0.9627

PPI 3.6158 4.4418 1.0094 4.561 0.9751 0.9438 0.9138

HELP 83.75 25.1699 −0.2068 1.9566 0.9867 0.9741 0.9592

IP 3.1924 4.3061 −0.8482 4.1591 0.97 0.9219 0.8612

UE 0.9937 15.4448 1.1492 4.4364 0.9561 0.9142 0.8572

The 3 month yield is from the Federal Reserve Board web-page, as are all other yield rates. The inflation
measures CPI and PPI refer to CPI inflation and PPI (Finished Goods) inflation, respectively. We calculate
the inflation measure at time t using log(Pt /Pt−12) where Pt is the (seasonal adjusted) inflation index.
The real activity measures HELP, IP and UE refer to the Index of Help Wanted Advertising in Newspapers,
the (seasonal adjusted) growth rate in industrial production and the unemployment rate, respectively. The
growth rate in industrial production is calculated using log(It /It−12) where It is the (seasonal adjusted)
industrial production index. The sample period is June 1961 to July 2007, for a total of 554 observations

these have been shown to be the most important ones in several previous empirical
studies.

3.2 Estimation Results

We present here the results of our FGD estimation using the different starting models
introduced in Sect. 2.2 for the whole time period between June 1961 and July 2007,
for a total of 554 monthly observations. Drift and volatility estimates obtained from
the starting models as well as those obtained after running the FGD procedure are
shown in Figs. 2, 3, 4, 5, and 6. In-sample performance measures and the optimal
number of iterations in the FGD algorithm obtained using standard cross-validation
are summarized in Table 2 (columns 2–4).

As expected, in the first three cases where the starting model is simple, the FGD
approach is able to improve significantly the likelihood, and the optimal number of
smoother that is added to the initial estimates is quite large (i.e. more than 50 up
to 90, depending on the starting model). In these three cases (CIR, Aït-Sahlia, and
Stanton starting models), the final drift and volatility functions are highly non-linear
in the short-rate and react to different past values of a number of exogenous variables.
Comparing the time series dynamics of the starting and the final estimates in Figs. 2,
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Fig. 2 The top two panels in the first row contain the drift and volatility functions estimated using a clas-
sical, parametric CIR model. The two panels in the middle row show the final drift and volatility estimates
after running the FGD procedure. Finally, the two panels in the bottom row illustrate the differences between
the estimated drift and volatility time series using the starting CIR model (solid lines) and the final FGD
method (dotted lines). The sample period is June 1961 to July 2007, for a total of 554 observations

3, and 4, we see that the final drift estimates vary much more and are less smooth than
the initial ones.

In the simple CIR setting (Fig. 2), differences in the volatility dynamics are also evi-
dent: one can easily recognize time periods where volatility estimates obtained from
the FGD procedure are systematically larger (1965–1982 period) or smaller (after
1985) than those obtained from the CIR model. This is consistent with the empirical
evidence shown in the literature about the existence of so-called volatility regimes,
i.e. time periods with volatilities higher (or smaller) than the average. Such phenom-
ena are solved in the literature using regime-switching models. The FGD procedure
seems to do exactly the same by choosing “Time” as the most relevant predictor var-
iable a considerable number of times (see the discussion below), therefore implying
some positive (or negative) shocks in volatility for different time periods. Something
similar also happens in the Stanton setting (Fig. 4), although not involving the very
high volatility 1979–1982 period associated with the FED experiment. In contrast, no
particular difference in the volatilities can be seen when the starting model is the one
proposed by Aït-Sahalia (1996b) (Fig. 3).

When now considering more flexible and complex starting models like the CIR
with GARCH effects in volatility or Audrino (2006) tree model that already takes
into account regime-shifts in the conditional mean and volatility dynamics driven by
macroeconomic variables, the FGD procedure has only a moderate (but not negligible)
impact in the likelihood performance (see Table 2, fourth and fifth rows). The number
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Fig. 3 The top two panels in the first row contain the drift and volatility functions estimated using the
general parametric model proposed by Aït-Sahalia (1996b). The two panels in the middle row show the
final drift and volatility estimates after running the FGD procedure. Finally, the two panels in the bottom row
illustrate the differences between the estimated drift and volatility time series using the starting Aït-Sahalia
(1996b) model (solid lines) and the final FGD method (dotted lines). The sample period is June 1961 to
July 2007, for a total of 554 observations

of iterations in these cases is quite small (i.e. less than 10). Once again this is not sur-
prising given the construction and purpose of FGD. As before, both drift and volatility
functions are non-linear in the short rate and depend on other different explanatory
variables. Similarly to the simple CIR setting, starting with the CIR-GARCH model
the time-varying dynamics of the drift estimates can be significantly improved using
FGD (Fig. 5). The main difference when comparing the CIR and the CIR-GARCH
models as starting models yielding the initial estimates in the FGD algorithm is now
that the dynamics of the volatilities are not significantly changed by the FGD proce-
dure. Thus, the GARCH effect seems to be more relevant than possible positive (or
negative) regime-shifts in time induced by the FGD algorithm.

As explained before, for comparison we also considered Audrino (2006) tree model
as starting model, although we are not expecting significant changes in this case. The
three local linear drift functions depending on two macroeconomic variables are clearly
visible in the top left panel of Fig. 6. In this setting the FGD procedure does not seem to
be able to further improve the accuracy of the conditional mean and variance dynam-
ics. What is however important to notice is that applying the FGD methodology to a
very simple starting model like the nonparametric Stanton (1997) estimators or the
parametric Aït-Sahalia (1996b) model we can obtain a performance similar to the
one we get using such a flexible model in a significantly reduced time: about 2 min
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Fig. 4 The top two panels in the first row contain the drift and volatility functions estimated using the
nonparametric approach proposed by Stanton (1997). The two panels in the middle row show the final
drift and volatility estimates after running the FGD procedure. Finally, the two panels in the bottom row
illustrate the differences between the estimated drift and volatility time series using the starting Stanton
(1997) estimators (solid lines) and the final FGD method (dotted lines). The sample period is June 1961 to
July 2007, for a total of 554 observations

versus half a day, respectively (reduction factor: about 300). This has clearly enormous
consequences from a practical point of view.

3.3 Main Drivers of Drift and Volatility Functions

To end this discussion we now focus on the main question this paper poses, namely
what are the main drivers of the drift and volatility dynamics of the short rate process.
Results of our estimation are summarized in Table 2 (columns 5–14) and illustrated
in Figs. 7 and 8 for the different starting models under investigation.

Focusing first on the drift estimates, one sees that the numbers reported in Table 2
clearly show the importance of considering macroeconomic variables as valuable
predictors for the conditional mean dynamics of the short rate process. In fact, the
number of times that macroeconomic indicators are chosen in the FGD procedure
when the drift estimates are improved ranges from 44 to 67%, depending on the start-
ing model. These predictors are always the most frequently chosen ones, independently
of the starting model from which the initial drift estimates are computed. This is fully
in line with previous empirical evidence that linked macroeconomic information with
the short rate dynamics and, more generally, with the whole term structure dynamics.
In looking at Fig. 7, no particular macroeconomic indicator seems to be more relevant
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Fig. 5 The top two panels in the first row contain the drift and volatility functions estimated using a clas-
sical, parametric CIR-GARCH model. The two panels in the middle row show the final drift and volatility
estimates after running the FGD procedure. Finally, the two panels in the bottom row illustrate the differ-
ences between the estimated drift and volatility time series using the starting CIR-GARCH model (solid
lines) and the final FGD method (dotted lines). The sample period is June 1961 to July 2007, for a total of
554 observations

than the others: all variables taken into consideration in the analysis are chosen (more
or less) the same number of times.

Term structure information is also quite relevant for improving the drift dynamics:
yields at other maturities are chosen about 20% of the time, supporting the evidence
shown in Sam and Jiang (2009). On contrast, positive (or negative) shocks in time are
not found to be systematically relevant. As an implication, the regimes in time that are
introduced in classical Markovian regime-switching models (see, for example, Gray
1996) seem not to be motivated directly from the need for improving the accuracy of
the drift estimates.

The role of “Time” as the leading predictor for estimating the volatility dynamics
is clearly highlighted by the number of times it is chosen in the FGD estimation (from
57% to more than 75%, with the sole exception of the Tree model), and is well illus-
trated in the pie-charts of Fig. 8. This finding supports the idea of having different
short rate volatility regimes during which volatility is systematically high or low. The
FGD procedure allows these regimes to be taken into account by introducing some
positive (or negative) shocks in the volatility dynamics during particular time peri-
ods, in the same spirit of the regimes’ construction in Markovian and threshold-based
regime-switching type of models.

Macroeconomic information cannot be neglected and is exploited by the FGD
algorithm about 20% of the time (depending on the starting model). Yields at other
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Fig. 6 The top two panels in the first row contain the drift and volatility functions estimated using the
regime-switching tree model introduced by Audrino (2006). The two panels in the middle row show the
final drift and volatility estimates after running the FGD procedure. Finally, the two panels in the bottom
row illustrate the differences between the estimated drift and volatility time series using the starting Audrino
(2006) model (solid lines) and the final FGD method (dotted lines). The sample period is June 1961 to July
2007, for a total of 554 observations

Table 2 Estimation results

Model Iter. Likelihood Percentage of drift predictors Percentage of volatility predictors

Start End Tot. Time Short
rate

TS Macro Tot. Time Short
rate

TS Macro

CIR 51 443.799 255.613 51 11.2 25.9 18.5 44. 4 49 56.8 0 9.1 34.1

Aït-
Sahalia

91 410.769 284.991 47 4.1 13.7 23.3 58. 9 53 74.5 12.7 5.5 7.3

Stanton 92 390.029 224.279 49 7.4 11.1 21.0 60. 5 51 77.8 3.2 4.7 14.3

CIR-
GARCH

5 317.110 271.363 60 16.7 16.7 0 66. 6 40 75.0 0 0 25.0

Tree model 7 253.067 224.497 57 12.5 12.5 12.5 67. 5 43 28.6 0 14.3 57.1

Results of the FGD estimation for the time period between June 1961 and July 2007, for a total of 554
observations. The first column reports on the starting models on which the FGD estimation procedure is
applied. Iter. denotes the optimal number of iterations in the FGD algorithm. The likelihood as a performance
measure is reported for the starting estimates (obtained using the different models) and the final estimates
after running the FGD procedure. Columns 5–8 (9–14) report the percentage of the different explanatory
variables chosen in the FGD estimation for the drift (volatility) function. Tot. denotes the percentage of
times that the FGD procedure chose to improve the drift (or volatility) function. TS and Macro denote term
structure yields different than the short rate and exogenous macro variables, respectively
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Fig. 7 Pie-charts of the predictors chosen in the FGD algorithm when improving the initial drift estimates
obtained using (first row) the classical CIR model, the parametric Aït-Sahalia (1996b) model, the nonpara-
metric estimator proposed by Stanton (1997), (second row) the CIR-GARCH model, and the threshold-based
regime-switching model introduced by Audrino (2006). Possible candidates as predictors are past values of:
the short rate (X3M), yields at other maturities from 7 months (X6M) to 10 years (X10Y), macroeconomic
indicators for real activity (HELP, IP, UE) and inflation (CPI, PPI), and time. The sample period is June
1961 to July 2007, for a total of 554 observations

maturities do not seem to contribute very much to improving the (initial) volatility
estimates of the short rate process.

3.4 Application: Forecasting the Short Rate Dynamics

In a final application, we test the predictive power of the FGD methodology starting
from the estimates obtained using different approaches in a real out-of-sample exer-
cise. To this end, we divide our sample into two parts: the in-sample estimation period
runs from the beginning of the sample (June 1961) to July 2002 (494 monthly obser-
vations). The last 5 years of the sample (until July 2007) are used as an out-of-sample
forecasting period. In our forecasting exercise, we re-estimate the model parameters
and we re-run the FGD algorithm every month to get the forecasts of the conditional
mean and variance for the next month using a standard rolling window strategy.

To quantify the goodness-of-fit of the different forecasts we use the following five
criteria: the out-of-sample negative log-likelihood, the out-of-sample mean absolute
error (MAE) and mean squared error (MSE) for both the conditional mean and vari-
ance forecasts. We evaluate the performance of the conditional variance forecasts with
respect to realized variances computed aggregating squared differences of daily short
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Fig. 8 Pie-charts of the predictors chosen in the FGD algorithm when improving the initial volatility
estimates obtained using (first row) the classical CIR model, the parametric Aït-Sahalia (1996b) model,
the nonparametric estimator proposed by Stanton (1997), (second row) the CIR-GARCH model, and the
threshold-based regime-switching model introduced by Audrino (2006). Possible candidates as predictors
are past values of: the short rate (X3M), yields at other maturities from 6 months (X6M) to 10 years (X10Y),
macroeconomic indicators for real activity (HELP, IP, UE) and inflation (CPI, PPI), and time. The sample
period is June 1961 to July 2007, for a total of 554 observations

rates (higher-frequency than monthly, about 19 to 23 daily observations each month).
This should be done to overcome the problem that variances are not observable and
that monthly short rate squared differences are excessively noisy estimators for the
unobservable variances.

We perform a series of the SPA tests for forecasting one-month ahead first and
second conditional moments introduced by Hansen (2005) to quantify statistical dif-
ferences among the models. In the SPA tests, we test the null-hypothesis that each
particular model is not outperformed by any of the alternative specifications. Results
of our forecasting exercise are summarized in Table 3 for the same starting mod-
els introduced in Sect. 2.2. p Values of the SPA tests are reported in parentheses
(Panel A).

It is clear from the results of the SPA tests that the best performing models for
out-of-sample forecasting conditional first and second moments must explicitly take
into account both non-linear regimes in the drift and volatility functions and het-
eroskedasticity (as modeled by the GARCH-dynamics). Overly simple models like
the starting parametric CIR and Aït-Sahalia (1996b), or the non-parametric Stanton
(1997) approaches are clearly overperformed by the more flexible and complex com-
petitors. Nevertheless, in these settings the FGD procedure is always able to improve
the performance and, in some cases, the FGD forecasts are not significantly less
accurate than any alternative at the 5% level (this is the case, for example, of the
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Aït-Sahalia drift forecasts improved using FGD). This is even clearer in the example
of the CIR-GARCH model: in this case applying the FGD algorithm yields a sig-
nificant improvement in the out-of-sample accuracy of the predictions that are then
similar to those of the more complex regime-switching model.

To end the analysis, we also perform a series of generalized Diebold and Mari-
ano tests taking into account serial correlation (see Diebold and Mariano 1995) to
quantify the additional value of the FGD procedure in improving the starting fore-
casts of different models. Towards this goal, we perform pairwise comparisons of
the performances of the starting model forecasts against those obtained after running
the FGD procedure. Results are shown in Panel B of Table 3. Negative values of the
statistic are in favor of the final forecasts improved using the FGD algorithm. In the
parametric CIR, CIR-GARCH, and Aït-Sahalia (1996b) settings, the better forecasting
power of the predictions improved using the FGD procedure is particularly evident. No
statistically significant differences are found in the out-of-sample performances when
starting using the non-parametric estimators introduced by Stanton (1997). This result
is due to the poor performance of the starting forecasts (see Panel A of Table 3). As
has been already stated in the literature, the FGD procedure is able to improve only
reasonable starting values. In fact, in the cases where the initial estimates and forecasts
are not at all accurate, the classical FGD technique based on regression trees is not
able to produce significant improvements.

As expected the results of the tests show that improving the forecast with FGD is
not necessary in cases where the starting model already takes into account the whole
exogenous information included in the term structure and in other macroeconomic
variables, regime-shifts and heteroskedasticity such as the model proposed by Aud-
rino (2006). More interesting is that accurate predictions can be obtained using FGD
in connection with simple models, too, allowing for a significant reduction of the
computational costs.

4 Conclusions

In this study we propose the use of FGD to estimate and accurately forecast the time-
varying conditional drift and volatility dynamics of the short rate process. As one of
the nice features of FGD, it is able to improve any reasonable (and simple) starting
estimates exploiting the information included in all predictor variables thought to be
relevant in describing short rate conditional moment behavior. In fact, we allow yields
at other maturities, macroeconomic indicators, and time to be chosen as predictors in
the FGD procedure, with the goal of using information from the whole term structure
and the macroeconomy as well as regime shifts in time to improve the initial short rate
estimates.

The proposed technique can improve the estimates of some classical starting mod-
els, such as the parametric CIR and CIR-GARCH models or the non-parametric esti-
mators proposed by Stanton (1997), in a significant way. We find that conditional
drift dynamics mainly react to changes in the macroeconomy, whereas conditional
volatility dynamics are mainly driven by time-dependent regime-shifts. Moreover, the
heteroskedasticity of the short rate process cannot be neglected accurate estimates and

123



334 F. Audrino

predictions of future short rate volatility are to be obtained. All these relevant fea-
tures must be taken into account when introducing models for the short rate process
and, more generally, models for the term structure dynamics, because of the impor-
tant implications in many practical applications such as the pricing of bonds and other
interest-rate dependent (derivative) securities. The construction of a joint model for the
short rate dynamics and that of some relevant macroeconomic variables like inflation
and real activity allowing for regime-switches (depending on time or other threshold
variables) in a no-arbitrage setting is left for future research.
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