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Abstract This paper presents a novel approach to real-time
obstacle avoidance based on Dynamical Systems (DS) that
ensures impenetrability of multiple convex shaped objects.
The proposed method can be applied to perform obstacle
avoidance in Cartesian and Joint spaces and using both au-
tonomous and non-autonomous DS-based controllers. Ob-
stacle avoidance proceeds by modulating the original dy-
namics of the controller. The modulation is parameterizable
and allows to determine a safety margin and to increase the
robot’s reactiveness in the face of uncertainty in the local-
ization of the obstacle. The method is validated in simula-
tion on different types of DS including locally and globally
asymptotically stable DS, autonomous and non-autonomous
DS, limit cycles, and unstable DS. Further, we verify it in
several robot experiments on the 7 degrees of freedom Bar-
rett WAM arm.

Keywords Realtime obstacle avoidance · Nonlinear
dynamical system · Harmonic potential function · Robot
manipulator

1 Introduction

In our quest to develop robots that react to arbitrary forms of
perturbations, we seek methods by which this reactivity will
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be effortless and will unfold naturally from the control law.
Imagine you are being served tea by a robot. As the robot is
about to pour the boiling liquid in the cup you are holding,
you sneeze. As a result of your sudden hiccup, the cup is dis-
placed and your hand is now in the way of the robot in place
of the cup. Surely, you wish the robot would be able to react
swiftly, so as to redirect its motion to the cup while avoid-
ing your hand. These are examples of fast perturbations that
require a reactivity of the order of the second. These encom-
pass a wide variety of perturbations dealt with by robotics
such as: when an obstacle suddenly appears in the robot’s
path, when the target moves, or when the robot is pushed
away from its trajectory while in motion. In these situations,
there is no time to re-plan no matter how fast the replanning
technique may be and hence alternative techniques must be
sought.

Dynamical systems-based approaches to robot control of-
fer such robustness to real-time perturbations. When con-
trolled through a Dynamical System (DS), a robot motion
unfolds in time with no need to re-plan. In this paper, we
propose an obstacle avoidance algorithm that can be inte-
grated into existing DS-based motion control approaches,
while retaining the swiftness and robustness provided by
these approaches. In the presented method, we assume that
the robot motion is driven by a continuous and differentiable
DS in the absence of obstacle(s). This DS is provided by the
user, and henceforth we will call it the original DS. Given
the original DS and an analytical formulation describing the
surface of obstacles, our algorithm is able to instantly mod-
ify the robot’s trajectory to avoid collisions with obstacles.
Our approach has two main features: (1) As it only requires
the differentiability of the original DS, it can be applied on
a large set of DS including locally and globally asymptoti-
cally stable DS, autonomous and non-autonomous DS, limit
cycles, unstable DS, etc., and (2) It does not modify the crit-
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ical points of the original DS. Thus the attractors of the orig-
inal DS are also the attractors of the modulated DS.

The rest of this paper is structured as follows. Section 2
describes main existing obstacle avoidance methods in the
literature. Section 3 formalizes our obstacle avoidance algo-
rithm for robot motions in the presence of a convex obstacle.
Section 4 discusses the stability of the control law after ap-
plying the proposed obstacle avoidance algorithm. Section 5
describes how the avoidance trajectories can be customized
through different parameters such as safety factor, reactivity,
etc. Section 6 extends the presented approach to avoid mul-
tiple obstacles. Section 7 gives a conceptual sketch on how
to use the proposed algorithm in robot experiments. Section
8 presents the experimental results, and Sect. 9 concludes
the paper.

2 Related work

Obstacle avoidance is a classical problem in robotics and
many approaches have been proposed to solve it. One may
distinguish between local and global methods, depending
on whether the obstacle influences the behavior only locally
or everywhere. Local methods such as the Bug’s algorithm
(Lumelsky and Skewis 1990), the Vector Field Histogram
(Borenstein and Koren 1991), and the Curvature-Velocity
method (Simmons 1996) offer fast response in the face of
perturbations. These are usually locally optimal and hence
are not ensured to always find a feasible path.

Global methods, such as those dealt with by path plan-
ning algorithms (Lozano-Perez 1983; Kuffner and LaValle
2000; Kavraki et al. 1996) ensures to find a valid so-
lution, if it exists. Despite recent efforts at reducing the
computational costs of such global searches for a feasible
path (Diankov and Kuffner 2007; Burns and Brock 2005;
Toussaint 2009), these methods cannot offer the reactivity
sought for swiftly avoiding obstacles that appear suddenly.

The reshaping method such as the Elastic Band approach
(Quinlan and Khatib 1993; Brock and Khatib 2002) aims at
realtime trajectory adaptation in dynamic environments. In
this method, the initial shape of the elastic band is a free
path generated by a classical planner. In the presence of ob-
stacles, this band is deformed by applying repulsive forces.
The work by Fraichard et al. (1991) also follows the same
principle in which the original path is deformed locally to re-
flect changes in the environment topology. In these methods
if the path being executed becomes infeasible due to obsta-
cles coming into its way, the reshaping algorithm cannot be
applied any more (Yoshida and Kanehiro 2011).

Hybrid systems that switch between local and global
methods offer an interesting compromise. In Barbehenn et
al. (1994), a task is decomposed into several segments that
are amenable locally. If the local approach fails, the global

method is invoked. Yoshida and Kanehiro (2011) propose
a reactive motion planning approach which considers both
the possibility of re-planning and deformation of the path
during the execution of a task. In this approach, the planner
first attempts to locally modify the trajectory in the pres-
ence of an obstacle. In situations where deformation is no
longer possible (i.e. the path becomes infeasible), a new
feasible trajectory is re-planned. The work by Vannoy and
Xiao (2008) proposes an adaptive motion planner that con-
siders the simultaneous path and trajectory planning of high-
DOF robots. This method provides multiple diverse trajec-
tories at all times to allow instant adaptation of robot mo-
tion to newly sensed changes in the environment. The elastic
roadmap approach (Yang and Brock 2007) is similar to the
conventional roadmap algorithm with the difference that it
allows the modification of the vertices and edges during the
execution of the task, hence the roadmap always represents
task-consistent motions.

In Artificial Potential Fields (Khatib 1986) each obsta-
cles is modeled with a repulsive force that prevents the robot
from colliding with the obstacle. An appropriate repulsion
force should be computed so that it repels sufficiently the
trajectory away from the obstacle while avoiding to get stuck
in local minima. The Attractor Dynamics Approach (Iossi-
fidis and Schöner 2006) is another variant of the potential
field method, which uses heading direction rather than the
Cartesian position of the vehicle. The Dynamic Potential
Field (Park et al. 2008) extends the potential field principle
by taking into account not just the path but also the veloc-
ity along the path. Sprunk et al. (2011) propose a kinody-
namic trajectory generation method, in which the dynam-
ics of the robot is considered during path generation. This
method uses quintic Bezier splines to specify position and
orientation of the holonomic robot, and optimizes it accord-
ing to a user-defined cost function.

Hoffmann et al. (2009) proposes a dynamical based ap-
proach to obstacle avoidance. This method, in essence, is
very similar to the Attractor Dynamics approach in that it
changes the original dynamics of motion by introducing a
factor in the motion equation that stirs the motion away from
the obstacle. This method is implemented to avoid point-
mass objects in two and three dimensional spaces. For non-
point objects, this approach requires determining a repulsion
parameter that deforms the trajectory enough not to hit the
obstacle.

Harmonic Potential functions (Kim and Khosla 1992;
Feder and Slotine 1997) were first introduced to overcome
the limitation of Potential Fields. This approach takes in-
spiration in the description of the dynamics of (incom-
pressible and irrotational) fluids around impenetrable obsta-
cles. In contrast to potential field-based methods, harmonic
potential-based methods are powerful in that they do not
have local minima. Harmonic potentials have been used for
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control in numerous ways in the past few years. We mention
here only the works that are closest to our method.

Kim and Khosla (1992) were among the first groups to
use harmonic potential functions to control mobile robots
and in particular to control a 3 DOF arm manipulator. Feder
and Slotine (1997) extended Kim and Khosla’s work to mov-
ing obstacles with constant translational and/or rotational
velocities. To support multiple obstacles, they partitioned
the space into regions affected by a single obstacle at most.
To avoid the problem of partitioning, Waydo and Murray
(2003) developed an alternative formulation using a continu-
ous weighting factor. Similarly to Feder and Slotine (1997),
this work only considered moving obstacles with constant
velocity. A major advantage of harmonic potential functions
over other potential functions is that they ensure that the
target is the only attractor of the system. Unfortunately, in
practice, requiring that the motions of both the robot and the
obstacle follow harmonic functions may be too limiting.

In this paper we propose a local obstacle avoidance ap-
proach which can be used to locally modify the robot mo-
tions that are generated by a DS. The proposed method en-
sures that this local modification of trajectories does not
change the main properties of the original DS. For instance,
if the original DS is globally stable (i.e. all trajectories reach
the target point) when there is no obstacle in the robot work-
ing space, it also remains stable in the presence of obstacles.
The system described above could also be pictured as a hy-
brid controller in the sense that: the globally stable DS is the
global planner generating trajectories that always reach the
target, and the local planner is the proposed method that de-
forms the generated trajectory in the presence of obstacles.
Both the path generation and deformation are done simulta-
neously at each time step. This approach is similar, in spirit,
to the harmonic potential functions. The main differences
lies in that our approach does not require the robot to follow
harmonic functions, hence it can be applied to a larger set of
robot motions.

3 Obstacle avoidance formulation

Consider a state variable ξ ∈ R
d that defines the state of a

robotic system. Its temporal evolution may be governed by
either an autonomous (time-invariant) or non-autonomous
(time-varying) DS according to:

ξ̇ = f (ξ), f : R
d �→ R

d autonomous DS (1)

ξ̇ = f (t, ξ), f : R
+ × R

d �→ R
d non-auto. DS (2)

where f (.) is a continuous function (we further use the nota-
tion f (.) to refer to both autonomous and non-autonomous
DS). Given an initial point {ξ}0, the robot motion along time
can be computed by integrating f (.) recursively:

{ξ}t = {ξ}t−1 + f (.)δt (3)

Fig. 1 Effect of the modulation induced by a spherical obstacle (lo-
cated at the origin and with radius ro = 2) on (a) a two dimen-
sional flow generated by ξ̇1 = 1.0 and ξ̇2 = sin(ξ1), and (b) a three
dimensional flow generated by ξ̇1 = 1.0, ξ̇2 = − sin(ξ2/4) sin ξ1, and
ξ̇3 = sin ξ1

where δt is the integration time step and t is a positive inte-
ger. Figures 1 and 3 illustrate a few examples of such func-
tions.

Next we show how we can induce a modulation on our
generic motion due to the presence of an obstacle. We first
consider a hyper-sphere obstacle. We then extend this model
to convex objects.

3.1 Hyper-sphere obstacles

Consider a d-dimensional hyper-sphere object centered at
ξo with radius ro. The object creates a modulation through-
out the robot’s state space, which is conveyed through the
non-linear function φs(ξ ; ξo, ro) : R

d �→ R
d as follows:1

φs
(
ξ ; ξo, ro

) =
(

1 + (ro)2

(ξ − ξo)T (ξ − ξo)

)(
ξ − ξo

)
(4)

where (.)T denotes the transpose. To determine how φ mod-
ulates the velocity of the robot, we compute the Jacobian
which yields:

Ms
(
ξ ; ξo, ro

) = ∇φs
(
ξ ; ξo, ro

)
(5)

1The development of Eq. (4) was partly inspired by the complex po-
tential function that models the uniform flow around a circular cylin-
der (Milne-Thomson 1960). In both formulations the modulation of the
flow due to the object’s presence decreases quadratically with the dis-
tance to the center of the object (see the second term in Eq. (4)). The
main difference between the two approaches lies in their functionality.
Equation (4) is a d-dimensional vector and its Jacobian is a d × d ma-
trix which can be used to modulate the original flow. In contrast, the
complex potential function is a scalar value, and its derivative directly
gives the modified flow in the presence of the obstacle.
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Fig. 2 Illustration of the
tangential hyper-plane and its
basis (left), and the deflection
hyper-plane (right) for a
3-dimensional object

To simplify the notation, we express the modulation in
a frame of reference centered on the object and define ξ̃ =
ξ − ξo:

Ms
(
ξ̃ ; ro

) = I +
(

ro

ξ̃ T ξ̃

)2(
ξ̃ T ξ̃I − 2ξ̃ ξ̃ T

)
(6)

where I is the identity matrix. We call Ms the dynamic mod-
ulation matrix. The final model for real-time avoidance of
spherical obstacles can be obtained by applying the dynamic
modulation matrix to the original DS given by Eqs. (1)–(2):

ξ̇ = Ms
(
ξ̃ ; ro

)
f (.) (7)

Ms(ξ̃ ; ro) in Eq. (7) is a modulation factor that locally
deforms the original dynamics f such that the robot does
not hit the obstacle.

Theorem 1 Consider a d-dimensional static hyper-sphere
obstacle in R

d with center ξo and radius ro. The obstacle
boundary consists of the hyper-surface X b ⊂ R

d = {ξ ∈
R

d : ‖ξ − ξo‖ = ro}. Any motion {ξ}t , t = 0..∞ that starts
outside the obstacle, i.e. ‖{ξ}0 − ξo‖ > ro, and evolves ac-
cording to Eq. (7) never penetrates into the obstacle, i.e.
‖{ξ}t − ξo‖ ≥ ro.

Proof See Appendix A. �

Figure 1 illustrates the effect of the modulation induced
by such a spherical object on two and three-dimensional
flows. As it is illustrated, in both cases the flow is deflected
properly and it passes the obstacle.

3.2 Convex obstacles

Suppose a continuous function Γ (ξ̃ ) that projects R
d into R.

The function Γ (ξ̃ ) has continuous first order partial deriva-
tives (i.e. C1 smoothness) and increases monotonically
with ‖ξ̃‖. The level curves of Γ (i.e. Γ (ξ̃ ) = c, ∀c ∈ R)
enclose a convex region. By construction, the following re-
lation holds at the surface of the obstacle:

Γ (ξ̃ ) = 1 (8)

For example Γ (ξ̃ ) : ∑d
i=1(ξ̃i/ai)

2 = 1 corresponds to a
d-dimensional ellipsoid with axis lengths ai . We can divide
the space spanned by Γ into three regions X o, X b , and
X f to distinguish between points inside the obstacle, at its
boundary, and outside the obstacle respectively:

Interior points : X o = {
ξ ∈ R

d : Γ (ξ̃ ) < 1
}

(9)

Boundary points : X b = {
ξ ∈ R

d : Γ (ξ̃ ) = 1
}

(10)

Free region : X f = {
ξ ∈ R

d : Γ (ξ̃ ) > 1
}

(11)

At each point ξb ∈ X b on the outer surface of the obsta-
cle, we can compute a tangential hyper-plane defined by its
normal vector n(ξ̃ b):

n
(
ξ̃ b

) =
[

∂Γ (ξ̃b)

∂ξb
1

· · · ∂Γ (ξ̃b)

∂ξb
d

]T

(12)

By extension, we can compute a deflection hyperplane at
each point ξ ∈ X f outside the obstacle with normal:

n(ξ̃ ) =
[

∂Γ (ξ̃ )
∂ξ1

· · · ∂Γ (ξ̃ )
∂ξd

]T

(13)

Each point on the deflection hyper-plane can be ex-
pressed as a linear combination of a set of (d − 1) lin-
early independent vectors. These vectors form a basis of
the deflection hyper-plane. One particular set of such vec-
tors e1, . . . , ed−1 is2

ei
j (ξ̃ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ∂Γ (ξ̃ )
∂ξi

j = 1

∂Γ (ξ̃ )
∂ξ1

j = i �= 1

0 j �= 1, j �= i

i ∈ 1..d − 1 , j ∈ 1..d

(14)

where ei
j corresponds to the j -th component of the i-th basis

vector. Figure 2 illustrates the tangential and the deflection
hyper-planes for a three-dimensional object.

2In case ∂Γ (ξ̃ )/∂ξ1 vanishes, the vectors are no longer linearly inde-
pendent and one should choose another index for the derivative which
is non-zero.
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Fig. 3 Modifying the original motion of a flow with a modulation ma-
trix for: (a) A two dimensional flow with ξ̇1 = log((ξ1 + 3)2 + 2)

and ξ̇2 = sin(ξ1). (b) A three dimensional autonomous flow with
ξ̇1 = log((ξ1 + 3)2 + 2), ξ̇2 = 0, and ξ̇3 = sin(ξ1). (c) A sta-
ble limit cycle motion with ξ̇1 = ξ2 − ξ1(ξ

2
1 + ξ2

2 − 1) and ξ̇2 =

−ξ1 − ξ2(ξ
2
1 + ξ2

2 − 1). (d) A three dimensional non-autonomous
flow with ξ̇1 = log((ξ1 + 3)2/(t + 1) + 2), ξ̇2 = sin(5t) − 0.1, and
ξ̇3 = 0.05t cos(ξ2). In all four cases the obstacle is centered at ξo = 0.
In (c), the thick black line represents the stable limit cycle

As in the case of the spherical object, we can determine
a modulation matrix M(ξ̃) given by:3

M(ξ̃) = E(ξ̃) D(ξ̃ ) E(ξ̃ )(−1) (15)

with the matrices of basis vectors E(ξ̃) and associated
eigenvalues D(ξ̃):

E(ξ̃) = [
n(ξ̃ ) e1(ξ̃ ) · · · ed−1(ξ̃ )

]
(16)

D(ξ̃) =
⎡

⎢
⎣

λ1(ξ̃ ) 0
. . .

0 λd(ξ̃ )

⎤

⎥
⎦ (17)

where
⎧
⎨

⎩

λ1(ξ̃ ) = 1 − 1
|Γ (ξ̃)|

λi(ξ̃ ) = 1 + 1
|Γ (ξ̃ )| 2 ≤ i ≤ d

(18)

The dynamic modulation matrix M(ξ̃) propagates the in-
fluence of the obstacle on the motion flow. The result of
Eq. (15) is invariant to the choice of the basis e1..ed−1. Fur-
thermore, the matrix of basis vector is invertible in R

d \ ξo.
At the obstacle reference point ξo, the deflection hyper-
plane is undefined; however, this does not cause any prob-
lem since ξo is a point inside the obstacle (recall Γ (0) < 1).
Moreover, since Γ (ξ̃ ) monotonically increases with ‖ξ̃‖, the
matrix of eigenvalues and by extension the dynamic modu-

3Derivation of Eqs. (15)–(16) are inspired from the proof of Theo-
rem 1. For a spherical obstacle, these equations yield to the same result
given by Eq. (6).

lation matrix converge to the identity matrix as the distance
to the obstacle increases. Hence, the effect of the dynamic
modulation matrix is maximum at the boundaries of the ob-
stacle, and vanishes for points far from it.

Similarly to the hyper-sphere obstacle avoidance given
by Eq. (7), we can apply the modulation given by Eq. (15)
on our original motion flow f which yields:

ξ̇ = M(ξ̃)f (.) (19)

Theorem 2 Consider a convex manifold Γ (ξ̃ ) = 1 that en-
closes a static d-dimensional obstacle with respect to a ref-
erence point ξo inside the obstacle. A motion {ξ}t , that starts
outside the obstacle, i.e. Γ ({ξ}0) ≥ 1, and evolves according
to Eq. (19) does not penetrate the obstacle, i.e. Γ ({ξ}t ) ≥ 1,
t = 0..∞.

Proof See Appendix B. �

Figure 3 illustrates with four examples the effect of the
modulation induced on the field of motion in the presence
of different obstacles.

4 Robot discrete movements

So far we have shown how the dynamic modulation matrix
M(ξ̃) can be used to deform a robot motion such that it does
not collide with an obstacle. However in many robot experi-
ments, e.g. reaching a target, not only should the robot avoid
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the obstacle, but it should also reach a target, which we fur-
ther denote ξ∗. In other words, we would like the modified
motion to preserve the convergence property of the origi-
nal dynamics while still ensuring that the motion does not
penetrate the object. In this section we discuss the stability
of DS when they are modulated with the proposed obstacle
avoidance method. Throughout the section, we will assume
that the target point ξ∗ is outside the obstacle boundary, i.e.
ξ∗ ∈ X f .

Suppose a d-dimensional globally asymptotically stable
autonomous or non-autonomous DS defined by Eqs. (1)
or (2). The global stability of f requires that the velocity
vanishes solely at the target point ξ∗, i.e. f (ξ∗) = 0 for au-
tonomous DS and limt→∞ f (t, ξ∗) = 0 for non-autonomous
DS. When f is modulated with the dynamic modulation ma-
trix M(ξ̃), ξ∗ remains an equilibrium point because the ve-
locity still vanishes at the target, i.e. M(ξ∗ − ξo)f (ξ∗) = 0
for autonomous DS, and limt→∞ M(ξ∗ − ξo)f (t, ξ∗) =
M(ξ∗ − ξo) limt→∞ f (t, ξ∗) = 0 for non-autonomous DS.

However, in the presence of an obstacle, the target may
not remain the unique equilibrium point of the system. Other
possible equilibrium points may be created due to the mod-
ulation term M(ξ̃). These points can be computed by look-
ing at the null space of M(ξ̃). For all ξ ∈ X f , the matrix
M(ξ̃) is full rank and hence ξ∗ will be the only equilibrium
point in X f . Only on the boundaries of the obstacle, i.e.
ξb ∈ X b , M(ξ̃b) loses one rank yielding a number of spu-
rious equilibrium points. In fact, these spurious equilibrium
points ξ s ∈ X b are generated when there is collinearity be-
tween the velocity and the normal vector at the boundary
points:4

n
(
ξ̃ s

)T f (.)

‖f (.)‖ = ±1 and Γ
(
ξ̃ s

) = 1 (20)

where n(ξ̃ s) is the unit normal vector of the tangential hy-
perplane at ξ̃ s . The set X s includes all solutions to Eq. (20).
Depending on the function f , these equilibrium points could
be either saddle points and/or local minima.

Computing this set of equilibrium points may not always
be feasible. We can however simplify our task by observ-
ing that, since all the equilibrium points appear solely on the
obstacle boundary, one may avoid remaining stuck by us-
ing some external mechanisms. Algorithm 1 describes such
a mechanism: when one detects that the motion has stopped
at the outer surface (boundary) of an obstacle (i.e. at an equi-
librium point), she applies a small perturbation along any of
the basis vectors e1..ed−1. All of these vectors determine
directions that ensure that the flow will move away from
the obstacle. If the equilibrium point is a saddle point, the

4From Theorem 2 we know that the normal velocity at the boundary
points vanishes. Hence, if f (ξ) is aligned with the normal vector of the
tangential hyperplane at a boundary point, we have M(ξ̃)f (ξ) = 0.

Fig. 4 Illustration of using Algorithm 1 to avoid possible equilib-
rium point(s) on the obstacle boundary. The target point is shown
with a black star. The saddle point(s) and local minimum are rep-
resented with hollow circle and diamond, respectively. The obstacle
boundary is modeled with (ξ̃1/1)2 + (ξ̃2/2)2 = 1 when ξ̃1 > 0 and
(ξ̃1/3)4 + (ξ̃2/2)2 = 1 elsewhere. (a) When the DS is defined by
ξ̇1 = −ξ1 + 3 and ξ̇2 = −ξ2, the modulated dynamics has two saddle
points at (−3,0) and (0,1). Without using Algorithm 1, the motion
stops at (−3,0) (see (a)-left). However, by using Algorithm 1 for one
iteration, the motion continues until it reaches the target (see (a)-right).
(b) By modifying the DS along its second dimension to ξ̇2 = −3ξ2, the
modulated dynamics will have one local minimum at (−3,0) and three
saddle point at (0,1), (−2.6757,1.2120), and (−2.6757,−1.2120).
Without using Algorithm 1, the motion stops at the local minimum
(−3,0) (see (b)-left). In this situation, Algorithm 1 is used iteratively
until the trajectory leaves the basin of attraction of the local minimum
(i.e. the range between the local minimum and the saddle point). Then,
the motion continues its way to the target (see (b)-right). The part of
trajectory that generated by Algorithm 1 is plotted with a thick red line

algorithm exits in one iteration. But if it is a local mini-
mum, the obstacle is contoured along the direction of the
basis vector ei until it leaves the basin of attraction of the
local minimum. The positive scalar α controls the ampli-
tude of the movement along the basis vector ei . The value
of α should be chosen by compromising between the accu-
racy, safety, and speed of the movement. For large integra-
tion time step δt , one should use a small α to decrease the
drifting error (due to integration) from the desired trajectory
when contouring the obstacle. Furthermore, since contour-
ing takes place at the outer surface of the obstacle, for safety
reasons one should generally avoid selecting a high value
for α. A very small value for α is also not recommended
since it significantly slows down the contouring speed. Fig-
ure 4 illustrates two examples where the Algorithm 1 is used
to handle a saddle point and a local minimum.

5 Characterizing the path during obstacle avoidance

When doing obstacle avoidance, sometimes it is more prac-
tical to customize the path to avoid an obstacle based on the
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Algorithm 1 Procedure to handle equilibrium points at the
obstacle boundary

Require: ξ t , ξ̇ t , and the integration time step δt

1: if Γ (ξ̃ t ) = 1 and ξ̇ t = 0 then
2: Choose one of the basis vectors ei of tangential

hyper-plane.
3: Define a small positive scalar α > 0
4: while true do
5: ξ t+1 ← ξ t + αeiδt

6: Compute ξ̇ t+1 from Eq. (19)
7: if (ei)T ξ̇ t+1 > 0 or n(ξ̃ )T ξ̇ t+1 > 0 then
8: exit
9: end if

10: t ← t + 1
11: end while
12: end if

object’s property. For example, fragile or sharp objects may
require a large safety margin while soft and round object
may not. Furthermore, it is essential to react and deflect the
robot trajectory earlier when it goes toward a fire flame than
when it is just heading towards a soft pillow. In this section,
we extend the proposed obstacle avoidance approach to in-
corporate user’s preference during obstacle avoidance.

5.1 Safety margin

The desired safety margin around an object can be obtained
by scaling the state variable (in the obstacle frame of refer-
ence) in the dynamic modulation matrix M(ξ̃) given by Eq.
(18) as follows:

M(ξ̃η) = E(ξ̃η) D(ξ̃η) E(ξ̃η)
(−1) (21)

where ξ̃η = ξ̃ ./η corresponds to the element-wise division
of ξ̃ by η ∈ R

d , and ηi ≥ 1, ∀i ∈ 1..d is the desired safety
factor, which inflates the object along each direction ξ̃1 with
the magnitude ηi (in the obstacle frame of reference). By
choosing different value for each ηi , one can control the re-
quired safety margin along the corresponding direction of
the object. Figure 5 illustrates the effect of different safety
margins for a 2D object in a uniform flow.5

5.2 Reactivity

The magnitude of the modulation created by the obstacle
can be tuned by modifying the eigenvalues of the dynamic

5One can also define different safety factors along the positive and neg-
ative directions of each object’s axis by considering an if -else condition
on the sign of each ξ̃i .

Fig. 5 Controlling the safety margin around the obstacle via the safety
factor. The obstacle is inflated in the direction ξ1 and ξ2 with the value
η1 and η2, respectively. The area between the dashed line and the ob-
stacle boundary is the safety margin. The direction of the motion is
from left to right

Fig. 6 Controlling the reactivity of the motion to the presence of the
obstacle (for η1 = η2 = 1.2). By increasing ρ, the reactivity increases,
hence the flow deflects earlier in time and with a higher magnitude.
Note that on the right graph, the white gap between the dashed line
and the trajectories is part of the free region

modulation matrix as follows:
⎧
⎪⎨

⎪⎩

λ1(ξ̃ ) = 1 − 1

|Γ (ξ̃)| 1
ρ

λi(ξ̃ ) = 1 + 1

|Γ (ξ̃ )| 1
ρ

2 ≤ i ≤ d
(22)

where ρ > 0 is the reactivity parameter. The larger the reac-
tivity, the larger the amplitude of the deflection, and conse-
quently the earlier the robot responds to the presence of an
obstacle. A large ρ also extends the deflection farther out.
Figure 6 illustrates the effect of using different reactivity pa-
rameters for a 2D object in a uniform flow.

5.3 Tail-effect

In the proposed obstacle avoidance formulation, the mod-
ulation due to the obstacle continues affecting the motion
even when the robot is moving away from the obstacle (see
Fig. 7-left). We call this effect of the obstacle on trajectories
tail-effect. In case of uncertainty in sensing, such a behavior
may be beneficial as it would mitigate imprecise detection of
the real volume of the obstacle. When it is not desirable, one
can remedy the tail-effect by defining the first eigenvalue of
the dynamic modulation matrix as follows:

λ1(ξ̃ ) =
⎧
⎨

⎩

1 − 1

|Γ (ξ̃)| 1
ρ

n(ξ̃ )T ξ̇ < 0

1 n(ξ̃ )T ξ̇ ≥ 0
(23)

In the above equation, we use the sign of n(ξ̃ )T ξ̇ to check
whether a trajectory is going towards (negative sign) or away
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Fig. 7 Controlling the tail-effect after passing the obstacle. Left: The
tendency of the trajectories to follow the obstacle shape after passing
it. Right: Remedying the tail-effect by defining the first eigenvalue ac-
cording to Eq. (23)

(positive sign) from the obstacle. Figure 7-right illustrates
the result after using Eq. (23). In this figure one can see that
the tail-effect is significantly reduced. However, the slight
modulation of the trajectories after passing the obstacle is
still required in order to ensure the continuity in the velocity.

6 Extension to multiple obstacles

So far we have shown how the dynamic modulation matrix
can be used to avoid a single obstacle. However, in the pres-
ence of multiple obstacles, the current dynamic modulation
matrix is ineffective and should be modified to include the
effect of all the obstacles. Beware that this extension can-
not be simply obtained by multiplying together the dynamic
modulation matrix of all the obstacles. In this case, the im-
penetrability condition is only guaranteed for one of the ob-
stacles. Note that for the sake of clarity of equations, in this
section we did not consider the extensions that we have pro-
vided in Sect. 5 on the safety margin, reactivity, and tail-
effect (here we use the default value η = ρ = 1, and do not
remedy the tail-effect). In Sect. 7, we unify all these exten-
sions into a single final model (see Table 1).

Let us consider K obstacles with associated reference
points ξo,k and boundary functions Γ k(ξ ; ξo,k), k = 1..K

(the parameters of the k-th obstacle is denoted by (.)k). We
modify Eq. (18), and compute the eigenvalues of the k-th ob-
stacle based on both its current state, and the state of other
obstacles as follows:

⎧
⎨

⎩

λk
1(ξ̃

k) = 1 − ωk(ξ̃ k)

|Γ (ξ̃ k)|
λk

i (ξ̃
k) = 1 + ωk(ξ̃ k)

|Γ (ξ̃ k)| 2 ≤ i ≤ d
(24)

where ξ̃ k = ξ − ξo,k , Γ k(ξk) is the simplified notation of
Γ k(ξ ; ξo,k), and ωk(ξ̃ k) are weighting coefficients that are

computed according to:6

ωk
(
ξ̃ k

) =
K∏

i=1,i �=k

(Γ i(ξ̃ i ) − 1)

(Γ k(ξ̃ k) − 1) + (Γ i(ξ̃ i) − 1)
(25)

First observe that ωk(ξ̃ k) are continuous positive scalars
between zero and one, i.e. 0 ≤ ωk(ξ̃ k) ≤ 1. Second, at the
boundary of the k-th obstacle (i.e. Γ k(ξ̃ k) = 1), we have
ωk(ξ̃ k) = 1 and ωi(ξ̃ i) = 0, ∀i ∈ 1..K and i �= k. As we will
discuss later on, these two properties are crucial to ensure
impenetrability of the obstacles. Note that, when only one
obstacle exists (K = 1), we simply set ω1(ξ̃1) = 1 and Eq.
(24) simplified into Eq. (18).

By substituting Eq. (25) into the matrix of eigenvalues
given by Eq. (17), the dynamic modulation matrix for each
obstacle becomes:

Mk
(
ξ̃ k

) = Ek
(
ξ̃ k

)
Dk

(
ξ̃ k

) (
Ek

(
ξ̃ k

))−1 (26)

The combined modulation matrix that considers the net
effect of all the obstacles is then given by:

M̄(ξ) =
K∏

k=1

Mk
(
ξ̃ k

)
(27)

Equation (27) ensures the impenetrability of all the K

obstacles. To verify this, suppose a point ξb on the boundary
of the k-th obstacle. At this point, following the properties
of ω mentioned above and considering Eqs. (24), (17), (26),
and (27), we have:

ωi
(
ξ̃ b,i

) = 0 ⇒ λi
j

(
ξ̃ b,i

) = 1 ∀j ∈ 1..d, ∀i ∈ 1..K,

i �= k

⇒ Di
(
ξ̃ b,i

) = I

⇒ Mi
(
ξ̃ b,i

) = Ei
(
ξ̃ b,i

)
I

(
Ei

(
ξ̃ b,i

))−1

= I

⇒ M̄
(
ξb

) = Mk
(
ξ̃ b,k

)

Furthermore, because ωk(ξ̃ b,k) = 1, Mk(ξ̃ b,k) and by ex-
tension M̄(ξb) is exactly similar to Eq. (15). Hence fol-
lowing Theorem 2, the obstacle is impenetrable. By mov-
ing from one obstacle to another, the weighting coefficients
smoothly changes between zero and one, and by this, im-
penetrability is always ensured for all the obstacles.

Following the discussion given in Sect. 4, the target point
ξ∗ is the only equilibrium point in the free region because

6Equation (25) is in spirit very similar to the weighting coefficients
proposed in Waydo and Murray (2003) with the difference that we use
Γ k(ξ) to compute weights (rather than the distance between the obsta-
cles).
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Fig. 8 Extension of the proposed approach to multiple obstacles. The
combined dynamic modulation matrix ensures the impenetrability of
all obstacle even if they are very close or connected to each other. How-
ever, for the case where the objects are connected (see (d)), some local
minima may appear that cannot be avoided with Algorithm 1. Trajecto-
ries that stop at the local minima are plotted with dashed lines. A trivial
solution to handle this problem is to model all the connected obstacles
as a single convex obstacle

all the modulation matrices Mk has full rank. However, as
discussed before, on the boundaries of each obstacle a set of
saddle points or local minima may be generated. Provided
the obstacles are not connected, i.e. they do not have a con-
tact point, these equilibrium points can be handled by fol-
lowing Algorithm 1.

Figure 8 illustrates the implementation of Eq. (27) in the
presence of five obstacles positioned in different ways. To
simplify the reference to these objects, they are numbered
from one to five. In this figure, the thick black line is the
streamline that starts on the symmetric line of the obstacles
arrangement. As can be seen, the combined modulation ma-
trix is able to prevent hitting the obstacles even if there is a
narrow passage between them (see for example Figs. 8(a),
(b) or (c)).

Figure 8(d) shows the result for the case where all ob-
stacles are connected. First observe that the resulting shape
is no longer convex, but the impenetrability of the obstacles
is still preserved. However in the presence of the resulting
concave shape, Algorithm 1 cannot be used to avoid local
minima. A trivial solution to handle this problem is to model
all the connected obstacles as a single convex obstacle. Note
that at the boundaries’ intersection points, the weighting co-
efficients ωk are undefined (because the distance to more
than one obstacle is zero, and thus a division by zero occurs).
At these points, we have simply stopped the simulation.

Fig. 9 Illustration of two complex objects that are modeled with
two smooth hyper-surfaces. The analytical model for the drawer is
Γ (ξ̃ ): (ξ̃1/0.4)4 + (ξ̃2/0.4)8 + (ξ̃3/0.6)4 = 1, and the mug is mod-
eled with (ξ̃1/0.05)4 + (ξ̃2/0.05)8 + (ξ̃3/0.05)4 = 1 when ξ̃2 > 0 and
(ξ̃1/0.05)4 + (ξ̃2/0.08)2 + (ξ̃3/0.05)4 = 1 elsewhere

Fig. 10 Illustration of generating a BV from the point cloud of a toy
car. (a) The 3D model of the car. (b) The point cloud of the car taken
from the Princeton Shape Benchmark (Shilane et al. 2004). (c) The C1
smoothness BV generated using the method described by Benallegue
et al. (2009)

7 Obstacle avoidance module

The proposed obstacle avoidance algorithm requires a user
to provide an analytical formulation of the outer surface
of the obstacle. When provided with the 3D model of the
object, one may compute a smooth convex envelope (also
known as convex bounding volume) that fits tightly around
the object. This Bounding Volume (BV) can be used (instead
of the object’s shape) to perform obstacle avoidance. Fig-
ure 9 illustrates such 3D convex envelopes generated from
the 3D models of a mug and a drawer.

When solely the point cloud description of the object
is available, one may use one of the estimation techniques
to approximate the BV. For example, in Benallegue et al.
(2009), the BV is approximated using a set of spheres and
tori. To use this method, one first needs to find the relevant
patch (either sphere or torus) of the BV that corresponds to
the current position of the robot. Then, based on the ana-
lytical formulation of that patch, one can compute the dy-
namic modulation matrix as described before. Recall that
our obstacle avoidance module only requires the convexity
and C1 smoothness of the BV, which are fulfilled in this
work. Figure 10 shows an example of the convex BV gen-
erated from the point cloud of a toy car using the method
above.

When doing obstacle avoidance in a dynamic environ-
ment, it is hardly possible to generate the BVs from the out-
put of the vision system in realtime. Thus, it is necessary to
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Table 1 The complete formulation of dynamic modulation matrix

Nomenclature Formulation

d Dimension of state variable (a) For each obstacle compute the followings:

K Number of Obstacles (a.1) ξ̃ k
η = (ξ − ξo,k)./η

ξ ∈ R
d Current robot position

(a.2) Ek(ξ̃ k
η ) =

[
nk(ξ̃ k

η ) e1,k(ξ̃ k
η ) · · · ed−1,k(ξ̃ k

η )
]

ξ̇ ∈ R
d Current robot velocity

ξo,k ∈ R
d Center of k-th obstacle

(a.3) ωk
(
ξ̃ k
η

) =
K∏

i=1,i �=k

(Γ i(ξ̃ k
η ) − 1)

(Γ k(ξ̃ k
η ) − 1) + (Γ i(ξ̃ k

η ) − 1)ξ̃ k ∈ R
d Robot relative position to k-th obstacle

ξ̃ k
η ∈ R

d Scaled robot relative position to k-th obstacle

Γ k : R
d �→ R Analytical description of k-th obstacle

(a.4)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λk
1(ξ̃

k
η ) =

⎧
⎪⎨

⎪⎩

1 − ωk(ξ̃ k
η )

|Γ (ξ̃ k
η )| 1

ρ

n(ξ̃ )T ξ̇ < 0 or κ = 1

1 n(ξ̃ )T ξ̇ ≥ 0 and κ = 0

λk
i

(
ξ̃ k
η

) = 1 + ωk(ξ̃ k
η )

|Γ (ξ̃k
η )| 1

ρ

2 ≤ i ≤ d

Ek ∈ R
d×d Matrix of Basis vectors of k-th obstacle

Dk ∈ R
d×d Matrix of eigenvalues of k-th obstacle

Mk ∈ R
d×d Dynamic Modulation Matrix of k-th obstacle

nk ∈ R
d Normal vector of deflection hyperplane

for k-th obstacle

(a.5) D(ξ̃k
η ) =

⎡

⎢⎢
⎣

λk
1(ξ̃

k
η ) 0

. . .

0 λk
d(ξ̃ k

η )

⎤

⎥⎥
⎦

ei,k ∈ R
d i-th basis vector of k-th obstacle

λk
i ∈ [0 2] i-th eigenvalue of k-th obstacle

ωk ∈ [0 1] Weighting coefficient of k-th obstacle

η ∈ [0 ∞) Safety factor (a.6) Mk(ξ̃ k
η ) = Ek(ξ̃ k

η ) Dk(ξ̃ k
η ) (Ek(ξ̃ k

η ))−1

ρ ∈ R
+ Reactivity

(b) Combined Dynamic Modulation Matrix: M̄(ξ) =
K∏

k=1

Mk
(
ξ̃ k
η

)
κ ∈ {0,1} Tail-Effect

Fig. 11 A conceptual sketch describing the implementation of the ob-
stacle avoidance module for robot motions. The set Υ i = {ηi, ρi , κi}
contains the user preference for each obstacle

generate a library that stores the analytical formulations of
different objects. In our implementation, we rely on a library
of objects with known analytical convex envelopes. We use
this analytical descriptor of the envelop both to detect the
object and for our obstacle avoidance module.

Figure 11 illustrates a conceptual sketch describing how
the presented obstacle avoidance method can be used in
robot experiments. In this approach, first the raw output of

the vision system is sent to an object recognition module
to identify the object(s). When the objects are recognized,
their corresponding properties such as the analytical formu-
lation of the boundary, safety factor, etc. are sent to the ob-
stacle avoidance module. The obstacle avoidance module
modifies the original dynamics of the motion by multiply-
ing it with the combined dynamic modulation matrix M̄(ξ)

so as to avoid the obstacle safely. The complete formula-
tion of dynamic modulation matrix is summarized in Ta-
ble 1.

In the presence of fast unknown moving obstacles, the
object recognition phase may not provide the agility re-
quired to avoid the obstacle (especially when there is a large
library of the objects). In these situations, it might be more
adequate to replace the object recognition phase with an au-
tomatic BV generator algorithm (see Fig. 11). Generating a
simple BV (e.g. an ellipsoid) around the point cloud of an
obstacle can be done quite quickly. If the object moves very
rapidly, it is recommended to set a large value for the safety
margin η and for the reactivity parameter ρ (see Sect. 5) to
increase the robustness to uncertainties.

Furthermore, when there are many obstacles in the work-
ing space of the robot, it may not be necessary (and also
computationally feasible) to track all the obstacles all the
time. Since the modulation decreases as the distance to the
obstacle increases, one could ignore all obstacles for which
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Table 2 The theoretical DS used for the Simulation Experiments

(a)

{
ẋ = −x

ẏ = −x cosx − y
(d)

{
ẋ = y − x(x2 + y sinx − 1)

ẏ = −x − y(x2 + y sinx − 1)

(b)

{
ẋ = cosx

ẏ = siny
(e)

⎧
⎪⎨

⎪⎩

ẋ = |x|/2 + 1

ẏ = 0

ż = |y| cos t

(c)

{
ẋ = y

ẏ = −x + 0.9y(1 − x2)

the associated modulation matrices are close to identity7

(since we have limξ̃ k→∞ Mk(ξ̃ k) = I ).
By taking into account the obstacles that are locally rel-

evant, the processing time for the vision systems could de-
crease significantly. However, this will be at the cost of im-
posing a small discontinuity in the robot velocity when an
obstacle is added or removed from the set of relevant obsta-
cles. By setting a small threshold, this discontinuity practi-
cally becomes very negligible.

8 Experiments

We evaluate the performance of the proposed approach in
three ways: (1) On a set of theoretical autonomous and non-
autonomous DS, (2) On a set of 2D motions described by dy-
namical systems that were inferred from human demonstra-
tions, using two different learning approaches: Stable Esti-
mator of Dynamical Systems (SEDS) (Khansari-Zadeh and
Billard 2011) and Dynamic Movement Primitives (DMP)
(Hoffmann et al. 2009) (see Sect. 8.2 for further informa-
tion about these approaches), and (3) In five robot exper-
iments performed on the 7-DOF Barrett WAM arm. Un-
less otherwise specified, throughout this section we consider
ρ = κ = 1, and the state of the system is defined as either
planar or 3D motions, i.e. ξ = [x y]T or ξ = [x y z]T re-
spectively.

8.1 Simulation experiments on theoretical DS

We first evaluate the method in simulation using our basic
motion flow f (.) for five different dynamical systems. These
DS are defined in Table 2 and their phase plots are illustrated
in Fig. 12.

The first DS is globally asymptotically stable at the ori-
gin. Due to the cosine term, this DS displays a high nonlin-
ear behavior. The second DS is interesting in that it has infi-
nite number of attractors, saddle points, and unstable points.

7For example, we consider the k-th obstacle is locally relevant in the
current position of the robot if: |λk

i (ξ̃
k)− 1| > ς,∀i = 1..d , where ς is

a small positive threshold.

Fig. 12 Performance evaluation of the proposed obstacle avoidance
module in the presence of five complex DS that are (a) globally sta-
ble, (b) locally stable, (c) stable limit cycle, and (d)–(e) unstable. The
left column shows the original DS, and the right column illustrates the
modulated DS in the presence of multiple obstacles. In this figure, sta-
ble, unstable, and saddle points are shown in star, solid circle and hol-
low circle, respectively. Obstacles are colored in green and the black
dashed lines illustrate their safety margin (η = 1.2 is considered for
all the obstacles). In (c), the thick black line is the stable limit cycle.
For formulation of the DS and the obstacles please refer to the text in
Sect. 8.1
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The third DS has a stable limit cycle that includes an unsta-
ble point located at origin. The forth DS is globally unstable
and has a unique unstable point at the origin. Due to the sine
terms, this DS also displays a high nonlinear behavior. The
fifth DS is globally unstable without equilibrium point.

All these DS are evaluated in the presence of multiple
obstacles. For simplicity, we consider two types of the 2D
obstacles and one 3D obstacle, but we use them in different
scales, orientations, and reference points. These obstacles
are formulated as follows:

Obstacle #1 :Γ (ξ̃ ) = (x̃/0.75)4 + (ỹ/1)2 = 1

Obstacle #2 :Γ (ξ̃ ) =
{

(x̃/1.2)4 + (ỹ/0.4)2 = 1 y ≤ yo

(x̃/1.2)2 + (ỹ/1)2 = 1 y > yo

Obstacle #3 :Γ (ξ̃ ) =
{

x̃2 + (ỹ/1.4)2 + (2z̃)2 = 1 y ≤ yo

x̃2 + ỹ4 + (2z̃)2 = 1 y > yo

Considering Fig. 12, all obstacles can be successfully
avoided in all types of DS even in the presence of high
nonlinearities and/or having several equilibrium points. As
it is expected, the multiplication of the combined dynamic
modulation matrix does not modify the original equilibrium
points of the system, and does not add any extra equilibrium
point in the free space X̄ f . The potential spurious equilib-
rium points on the boundaries of obstacles are also handled
using Algorithm 1.

8.2 Simulation experiments on SEDS/DMP

In this section we evaluate the performance of the proposed
approach to generate handwritten trajectories forming the al-
phabet letters ‘N’, ‘G’ and ‘J’. Each motion was demon-
strated three times. They were collected at 50 Hz from
pen input using a Tablet-PC. The motions are learned us-
ing SEDS and DMP. SEDS builds an estimate of the mo-
tion through an autonomous DS ξ̇ = f (ξ), and thus in the
presence of obstacle(s) it can be modulated by following
Eq. (19), whereas DMP models a motion as a second or-
der DS that takes the form of ξ̈ = g(t, ξ, ξ̇ ). This function
can be transformed into a first order DS via:
{

ξ̇ = ζ

ζ̇ = g(t, ξ, ζ )
(28)

and the modulation due to the presence of obstacle(s) can be
obtained as follows:8

{
ξ̇ = M(ξ̃)ζ

ζ̇ = g(t, ξ,M(ξ̃ )ζ )
(29)

8The same principle can be used if the SEDS motions are modeled with
a second or higher order DS.

Figure 13 illustrates the results for these motions in the
presence of four different obstacles. In this experiment the
obstacles are modeled with the following formulations:

(a) Γ (ξ̃ ) :
{

(x̃/20)2 + (ỹ/10)2 = 1 x ≤ xo

(x̃/20)6 + (ỹ/10)2 = 1 x > xo

(b) Γ (ξ̃ ) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x̃/12)2 + (ỹ/1.6)2 = 1 x ≤ xo, y ≤ yo

(x̃/32)2 + (ỹ/1.6)2 = 1 x > xo, y ≤ yo

(x̃/32)2 + (ỹ/5.6)2 = 1 x > xo, y > yo

(x̃/12)2 + (ỹ/5.6)2 = 1 x ≤ xo, y > yo

(c) Γ (ξ̃ ) :
{

(x̃/12)4 + (ỹ/4)2 = 1 y ≤ yo

(x̃/12)2 + (ỹ/10)2 = 1 y > yo

(d) Superposition of (a), (b), and (c)

The obstacles in Figs. 13(a) and (b) are rotated by 110◦
and 10◦, respectively. We used the safety factor η = 1.3
for all the obstacle models. For both autonomous and non-
autonomous DS, the modified dynamics of the motions suc-
cessfully reach the target without hitting the obstacles. Fig-
ure 13(d) shows the result for the case where multiple ob-
jects exist in the experiment.

8.3 Robot experiments

In this section we evaluate our obstacle avoidance method in
five robot experiments (three in the Cartesian space and two
in the robot joint space) performed on 7 DoF Barrett WAM
arm. The arm length is 1.1 m (when fully stretched). De-
pending on the experiment, the robot is kinematically con-
trolled in either Cartesian or joint space, and in all cases
the controller command is sent at 500 Hz. For the experi-
ments in the Cartesian space, we use the damped least square
pseudo-inverse kinematics to compute the robot’s joint an-
gles. The torque command to the robot is computed based
on the desired kinematic command using the WAM built-
in PID controller. All the results illustrated in this section
were recorded from the robot. Recordings of the robot ex-
periments are provided in Online Resource 1.

8.3.1 Experiments in the Cartesian space

The first experiment consisted of having the robot reach
for an object while avoid hitting a table and a box. The
height, length, and width of the table are 0.02, 3, and 3 m
respectively, and for the box these values are 0.24, 0.36, and
0.12 m. Note that we consider an extremely large value for
the length and width of the table to limit all trajectories to
the region above the table. The orientation and the position
of the box are computed by detecting the four markers’ lo-
cation (blobs) placed on the box at the rate of 100 fps us-
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Fig. 13 Performance evaluation of the proposed approach on follow-
ing three patterns in the presence of different obstacles. The motion
patterns are modeled with two different approaches: (left) Autonomous
DS using SEDS learning algorithm and (right) Non-autonomous DS

using DMP. In the initial and final points of the trajectories are indi-
cated by solid circle and star, respectively. Please refer to the text for
further information

Fig. 14 (a) The experiment set-up. The upper surface of the green
block corresponds to the target point. (b) Adaptation of the original dy-
namics of the reaching motion (top-left) with the dynamic modulation
matrix (top-right). The graphes in the bottom row illustrate the top and
left views of both dynamics. Red dashed line and solid blue lines corre-

spond to the trajectories from the original and the modified dynamics,
respectively. The black area represents the box outer surface, and the
green area is its estimated analytical model. The light blue rectangle
shows the upper surface of the table. The initial and final points of each
trajectory are indicated by solid circle and star, respectively

ing two hi-speed Mikrotron MK-1311 cameras. The posi-
tion and orientation of the table are fixed and are given to
the system.

In this experiment we define the motion in the Cartesian
coordinates system. The original robot motion is learned us-

ing SEDS based on a set of demonstrations (in the absence
of obstacles) provided by the user. Figure 14 represents the
experiment set-up and the trajectories generated from the
original and the modulated dynamics of the motion. As it
is expected, all reproductions from the modified dynamics
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successfully avoid the box and reach the target. In this ex-
periment, the box center is initially placed at xc,B = 0.0,
yc,B = −0.65, and zc,B = 0.135 with respect to the robot
frame of reference. We define the box reference point to be
at xo,B = xc,B , yo,B = yc,B , and zo,B = 0, and use the an-
alytical formulation Γ (ξ̃ )B : ((x − xo,B)/0.092)4 + ((y −
yo,B)/0.23)4 + ((z − zo,B)/0.27)4 = 1 to model the box.
The table is also modeled with xo,T = yo,T = 0, zo,T =
−0.01 cm and Γ (ξ̃ )T : ((x − xo,T )/3)6 + ((y − yo,T )/3)6 +
((z − zo,T )/0.01)4 = 1. We set the safety factor of the ta-
ble to η = 1.3. For the box, we used three different values
for the safety factor, i.e. ηx = 2.5, ηy = 1.5, and ηz = 1.2,
to account for the large differences between the box height,
length, and width.

Note that, though the box and the table are connected, we
can avoid the problem highlighted in Fig. 8(d) by defining
zo,B = 0. In this way, the dynamic modulation matrix of the
box always deforms trajectories towards its upper part. Thus
no local minimum can be generated at the contact edges of
the box and the table.

Adaptation to change in the target position To verify the
adaptability of the system in a dynamic environment, we
perform an experiment in which we continuously displace
the target while the robot approaches it (see Fig. 15). Dur-
ing the reproduction, the position of the target is updated
based on the output of the stereo vision system. Since the
modulated dynamics preserves the asymptotic stability of
the model, the system can adapt its motion on-the-fly to the
change in the target position. Note that the instant adaptation
to the target position is an inherent property of the SEDS
modeling. In this experiment we are demonstrating the fact
that our approach preserves all the properties of the SEDS
model, while enabling it to perform obstacle avoidance.

Adaptation to change in both the target and obstacle po-
sitions To evaluate the performance of the system in the
presence of a moving obstacle, we extend the previous ex-
ample to a case where both the target and the obstacle posi-
tions are changed as the robot approaches the target. Please
note that in this experiment we assume that the obstacle
movement is “quasi-static”. This assumption requires the
obstacle approaching speed (the projection of the obstacle
velocity onto the vector connecting the obstacle center to
the robot end-effector) to be significantly smaller than the
robot movement in that direction. Figure 16 demonstrates
the obtained results. In this experiment, at the time between
t = 0 and t = 6 seconds, the target is moved from its origi-
nal position first in the opposite and then along the direction
of the y-axis. The box also starts moving in the period be-
tween t = 0 and t = 2 seconds. During the reproduction, the
target position and the box center and orientation are contin-
uously updated based on the output of the stereo vision sys-
tem. Similarly to the previous example, the system remains

robust to these changes in the environment and successfully
reaches the target.

Evaluation in a more dynamic environment We further
evaluate our approach in a more dynamic environment
where both the target and the obstacle are quickly displaced
as the robot moves toward the target. Both positions of the
target and the obstacle are detected at 100 Hz. The obsta-
cle is a ball with radius 5 cm. We set its safety factor to
η = 1.5. Note that the safety factor of 1.5 results in a 2.5 cm
safety margin around the ball which is necessary to com-
pensate for the size of the haptic ball attached to the robot
end-effector. Figure 17 shows the experiment set-up and the
obtained results. The robot adapts on-the-fly its motion to
both the obstacle and the target movement.

Evaluation in a complex environment In this experiment
we evaluate our method in the presence of several obstacles
including a desk lamp, a pile of books, a Wall-E toy, a pencil
sharpener, a book, a (red) glass, and a desk. The task con-
sists of having the robot place a (transparent) glass on the
desk, and in front of the person (see Fig. 18). The position
and orientation of all the objects except the glass are pre-set.
In order to have a more realistic experiment, at each trial
we add a error vector ε to the predefined position of each
obstacle ξo,i to account for uncertainty in the environment,
i.e. ξ̂ o,i = ξo,i + εi . The value of each component of the
error vector εi is drawn from a Gaussian distribution with
N (0,0025). The position of the glass is actively tracked
through the stereo camera described above. The maximum
tracking error in sensing the glass position is ±0.05 m.
The orientation of the glass is not measured, though it may
change during each trial. We approximate all the obstacles
with an ellipsoid envelope of the form

∑3
i=1(ξ̃i/ai)

2pi = 1,
where ai > 0 and pi > 0 are real and integer values, respec-
tively. To compensate for the uncertainties, we consider a
safety factor of η = 1.5 for all the obstacles. The tail-effect
of all the obstacles is removed (i.e. κ = 0), and the reactivity
to the presence of the glass is increased by setting ρ = 2 (the
default value of ρ = 1 is considered for other objects).

In this paper, we report on two trials of this experiment,
but we have also included two additional trials in the ac-
companying video. We use the same DS function that was
described in the previous robot experiments to control the
robot motions. In the first trial, the person moves the red
glass from his right to his left hand side (i.e. along the neg-
ative direction of the y-axis) while the robot is approaching
the target point. The person intentionally moves the glass
in a way that crosses the robot trajectory to the target point
(see Fig. 18(a)). In order to avoid hitting the red glass, the
robot deflects its trajectory towards the negative direction of
y-axis, and then approaches the target from its left side (in
Fig. 18(b), see the robot trajectory along y-axis in the time
period t = [3 4] seconds).
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Fig. 15 Adaptation of the
model to the changes in the
target position

In the second trial, the person takes the glass from its
right hand side and moves it to the target position while the
robot is approaching. In this situation, the robot stops near
the red glass (and the target) since it cannot get any closer to
the target (in Fig. 18(d), see the time evolution of the robot
trajectory in the time period t = [4 6] seconds). The robot
waits at this position until the person clears the areas. When
the red glass is lifted, the robot moves towards the target
point.

8.3.2 Experiments in the joint space

In this section, we validate our approach in d = 7 dimen-
sions, by controlling this time the WAM arm’s 7 joints, i.e.
ξ = [θi], i = 1..d . In the first experiment, we use our obsta-
cle avoidance approach to limit the movement range in the
second joint of the robot to values below −1.2 radian. To
reach this goal, we define a 7-dimensional obstacle Γ (θ) =∑7

i=1((θi − θo
i )/ai)

4 with ai = [10;0.1;10;10;10;10;10],
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Fig. 16 Robustness of the
model to the changes in the
target and obstacle positions

θo = [0;−1.1;0;0;0;0;0] and the safety factor η = 1.2.
The original DS is defined in the joint space and is learned
based on a set of demonstrations in the robot joint space us-
ing the SEDS learning algorithm. Figure 19 illustrates the
generated trajectories from the original and the modified
dynamics. As it is expected, in the modified dynamics, the
robot successfully reaches the target while the value of the
second joint remains below the desired value.

In the last experiment, we use our approach to avoid two
7D spherical obstacles defined in the robot joint space. The

original robot motion is a cyclic movement in θ1-θ2 plane
with θ̇1 = θ2 and θ̇2 = −θ1 + θ2(1 − (θ1/5)2) and θ̇i = 0,
∀i ∈ 3..7. The obstacles have radius of ro,1 = ro,2 = 5 de-
grees and are placed in θo,1 = [−100;45;1;61;1;−29;1]
and θo,2 = [−80;45;−1;59;−1;−31;−1], respectively.
The safety factor of η = 1.2 is used in this experiment.

Figure 20(a) illustrates the evolution of the motion in
the absence and presence of the obstacles. One can observe
that the modulated dynamics deviates in the presence of ob-
stacles, and due to the induced coupling via the dynamic
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Fig. 17 Validation of the
proposed method in a dynamic
environment, where both the
target and the obstacle are
displaced continuously. The
obstacle is a ball with the radius
of 5 cm. Please refer to the text
for the further information

modulation matrix,9 the robot also starts showing cyclic be-
havior in previously static joints, i.e. θi , i = 3..7. Figure
20(b) shows the distance to the closest obstacle along the
time. Here, one can observe that while the original motion
penetrates into the obstacle, the modulated dynamics can
smoothly avoid the obstacles. The evolution of the motion
along time is shown in Fig. 20(c). One can see that the period
of the motion is slightly decreased due to the presence of

9Note that the motions across θi , i = 3..7 would become uncoupled
if the obstacles were placed at θo,1 = [−100;45;0;60;0;−30;0] and
θo,2 = [−80;45;0;60;0;−30;0].

the obstacle.10 The corresponding robot motion in the task
space is shown in Fig. 20(d).

9 Summary and conclusion

In this paper, we proposed a Dynamical System approach
to realtime obstacle avoidance for a case where robot mo-
tions are given by autonomous or non-autonomous DS, and

10Note that this paper does not claim that the cyclic behavior is always
preserved in the presence of the obstacles.
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Fig. 18 Evaluation of the proposed method in a complex environment.
In this experiment, the robot is required to put a glass on the desk and
in front of the person, while avoid hitting several objects including a
desk lamp, a pile of books, a Wall-E toy, a pencil sharpener, an open

book, a (red) glass, and a desk. All the objects except the red glass are
fixed and their convex envelope are shown in green. The trajectory of
the red glass is indicated by red diamonds (for the clarity of the graph,
we do not display the envelope of the red glass)
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Fig. 19 Using the proposed
obstacle avoidance module to
limit the movement range in the
second joint of the robot to
values below −1.2 radian.
(a) The red dashed line and the
blue solid line corresponds to
the trajectories generated by the
original and the modified
dynamics, respectively. The
obstacle is shown in green. The
initial and final points of the
motion are indicated by solid
circle and star, respectively.
(b) Illustration of the robot
movement in the robot task
space

the obstacle(s) are convex. The method is derived for a d-
dimensional DS, hence can be used in both the Cartesian
and configuration spaces. The proposed method can han-
dle multiple obstacles, and do not modify the equilibrium
points of the original dynamics. However, in the presence of
obstacle(s) the method may lead to the appearance of sad-
dle points and local minima along the obstacles’ boundaries.
These points can be tackled through Algorithm 1.

The presented approach requires a global model of the
environment and an analytical modeling of the obstacles
boundary. When the analytical description of the obstacle
is available, our method guarantees that all obstacles will
be avoided safely. However, the analytical equation of the
obstacle or its accurate status (i.e. position and orientation)
may not be available all the time. To generate the analyti-
cal equation, it is possible to use one of the state-of-the-art
bounding-volume algorithms (e.g. Benallegue et al. 2009;
Lahanas et al. 2000; Welzl 1991) to approximate a convex
BV on the output of the vision system. In this work we used
the approach by Benallegue et al. (2009) because it satisfies
the convexity and C1 smoothness conditions required in our
approach, and it provides a good volume-ratio convex fit of
objects. In the worst case when there is little time to generate
the bounding volume, one could quickly fit the point cloud
with an ellipsoid.

The presented algorithm is able to cope with uncertainty
in the obstacle’s position by allowing certain safety margins
around the obstacle. The larger the safety margin, the more
robust the system is to uncertainty in the obstacle position.

Note that in the presence of an unforeseen object or un-
certainty in the obstacle’s position, our algorithm no longer
guarantees the safe avoidance of the obstacle, and can only
strive for the best performance.

All theorems derived in this work are based on the contin-
uous state space assumption; however, in real experiments,
robot motions are usually generated with a finite number
of points (discrete modeling). Thus the choice of integra-
tion time step is important specially in the close vicinity
of the object. In fact, when a big integration time step is
used, for trajectories that are very close to an obstacle, it
is very likely that the subsequent point falls inside the ob-
stacle due to the integration error. In this situation, tra-
jectories tend to remain inside the obstacle (because the
boundaries are impenetrable, no trajectory can enter or leave
the obstacle). In this paper, we did not face such an is-
sue by considering the integration time steps of 0.01 and
0.002 sec in all simulations and robot experiments, respec-
tively.

The presented work is limited in that it can only be ap-
plied to convex shaped obstacles. While Theorem 2 still
holds for concave shape, the simple algorithm I to overcome
local minima on the boundary can no longer apply and an al-
ternative solution must be sought. As a part of future work,
we are aiming at developing a non-harmonic formulation of
the panel method to model concave obstacles.

The quasi-static assumption that is considered in this pa-
per for moving obstacles is quite conservative. An important
extension to this work is to relax this assumption. Such ex-
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Fig. 20 Illustration of applying
the obstacle avoidance module
in the robot joint space. In this
figure, the red dashed line shows
the original cyclic motion and
the solid line demonstrates the
modulated motion in the
presence of two 7-D spherical
obstacles with the radius of 10
degrees. The robot motion is
defined in the joint space and its
evolution is shown in (a). The
solid black circle indicates the
starting point of the motion. The
distance to the closest obstacle
is illustrated in (b). The
corresponding robot motion in
the task space is shown in (c).
Please refer to the text for the
further information

tension currently exists for the case where the robot and the
obstacle motions are defined by harmonic functions (Feder
and Slotine 1997). However, further investigation should be
carried out for non-harmonic motions.

The presented work considers obstacle avoidance for a
point robot. However, it is also possible to integrate other al-
gorithms to perform collision avoidance for the whole robot.
For example, while the end-effector follows the commanded
velocity from the proposed approach, one can use the kine-
matics null-space to avoid link collision (Maciejewski and
Klein 1985). Furthermore, similarly to Park et al. (2008), we
could also use the presented approach to control the kine-
matics null-space movement. To do this, it is only necessary
to find the closest point on the robot to the obstacle, and then
use the proposed model to drive away this point from the ob-
stacle (if this movement is feasible in the joint null-space).

The source code of the proposed obstacle avoidance mod-
ule can be downloaded from: http://lasa.epfl.ch/sourcecode/.
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Appendix A: Proof of Theorem 1

Consider a hyper-surface X b ⊂ R
d corresponding to

boundary points of a hyper-sphere obstacle in R
d with a

center ξo and a radius ro. Impenetrability of the obstacle’s
boundaries is ensured if the normal velocity at boundary
points ξb ∈ X b vanishes:

n
(
ξb

)T
ξ̇ b = 0 ∀ξb ∈ X b (30)

http://lasa.epfl.ch/sourcecode/
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where n(ξb) is the unit normal vector at a boundary point
ξb:

n
(
ξb

) = ξb − ξo

‖ξb − ξo‖
ξ̃ b=ξb−ξo

−−−−−−→ n
(
ξb

) = ξ̃ b

r
∀ξb ∈ X b

(31)

The eigenvalue decomposition of the square matrix
Ms(ξ̃ , ro) is given by:

Ms
(
ξ̃ , ro

) = V s
(
ξ̃ , ro

)
Ds

(
ξ̃ , ro

)
V s

(
ξ̃ , ro

)(−1) (32)

where Ds(ξ̃ , ro) is a d ×d diagonal matrix composed of the
eigenvalues:
⎧
⎨

⎩

λ1 = 1 − r2

ξ̃ T ξ̃

λi = 1 + r2

ξ̃ T ξ̃
∀i ∈ 2..d

(33)

and V s(ξ̃ , ro) = [υ1 · · · υd ] is the matrix of eigenvectors
with:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

υ1 = ξ̃

υi
j =

⎧
⎪⎨

⎪⎩

−ξ̃i j = 1

ξ̃1 j = i

0 j �= 1, i

∀i ∈ 2..d, j ∈ 1..d
(34)

Substituting Eqs. (31), (32) and (7) into Eq. (30) yields:

n
(
ξb

)T
ξ̇ b

= (ξ̃ b)T

r
V s

(
ξ̃ b, ro

)
Ds

(
ξ̃ b, ro

)
V s

(
ξ̃ b, ro

)(−1)
f (.) (35)

Since ξb is equal to the first eigenvector of V s(ξ̃ b, ro),
Eq. (35) reduces to:

n
(
ξb

)T
ξ̇ b =

[
r

[0]d−1

]T

Ds
(
ξ̃ b, ro

)
V s

(
ξ̃ b, ro

)(−1)
f (.)

(36)

where [0]d−1 is a zero column vector of dimension d − 1.
For all points on the obstacle boundary, the first eigenvalue
is zero, i.e. λ1 = 0, ∀ξb ∈ X b . Thus, we have:

n
(
ξb

)T
ξ̇ b = [0]Td V s

(
ξ̃ b, ro

)(−1)
f (.) = 0 (37)

Appendix B: Proof of Theorem 2

The proof of Theorem 2 follows directly from that of Theo-
rem 1. Observe that:

n
(
ξb

)T
ξ̇ b = n

(
ξb

)
E

(
ξ̃ b, ro

)
D

(
ξ̃ b, ro

)
E

(
ξ̃ b, ro

)(−1)
f (.)

(38)

Considering the fact that n(ξb) is equal to the first eigen-
vector of E(ξ̃b, ro), and the first eigenvalue is zero for all
points on the obstacle boundary yields:

n
(
ξb

)T
ξ̇ b =

[
1

[0]d−1

]T

D
(
ξ̃ b, ro

)
E

(
ξ̃ b, ro

)(−1)
f (.)

= [0]Td E
(
ξ̃ b, ro

)(−1)
f (.) = 0 (39)
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