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Abstract We show how the recently developed the-
ory of geodesic transport barriers for fluid flows can
be used to uncover key invariant manifolds in exter-
nally forced, one-degree-of-freedom mechanical sys-
tems. Specifically, invariant sets in such systems turn
out to be shadowed by least-stretching geodesics of the
Cauchy–Green strain tensor computed from the flow
map of the forced mechanical system. This approach
enables the finite-time visualization of generalized sta-
ble and unstable manifolds, attractors and generalized
KAM curves under arbitrary forcing, when Poincaré
maps are not available. We illustrate these results by
detailed visualizations of the key finite-time invariant
sets of conservatively and dissipatively forced Duffing
oscillators.
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1 Introduction

A number of numerical and analytical techniques are
available to analyze externally forced nonlinear me-
chanical systems. Indeed, perturbation methods, Lya-
punov exponents, Poincaré maps, phase space embed-
dings and other tools have been become broadly used
in mechanics [1, 2]. Still, most of these techniques,
are only applicable to nonlinear systems subject to au-
tonomous (time-independent), time-periodic, or time-
quasiperiodic forcing.

These recurrent types of forcing allow for the anal-
ysis of asymptotic features based on a finite-time sam-
ple of the underlying flow map—the mapping that
takes initial conditions to their later states. Indeed,
to understand the phase space dynamics of an au-
tonomous system, knowing the flow map over an ar-
bitrary short (but finite) time interval is enough, as
all trends can be reproduced by the repeated appli-
cations of this short-time map. Similarly, the period
map of a time-periodic system (or a one-parameter
family of flow maps for a time-quasiperiodic sys-
tem) renders asymptotic conclusions about recur-
rent features, such as periodic and quasiperiodic or-
bits, their stable and unstable manifolds, attractors,
etc.
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By contrast, the identification of key features in the
response of a nonlinear system under time-aperiodic
forcing has remained an open problem. Mathemat-
ically, the lack of precise temporal recurrence in
such systems prevents the use of a compact extended
phase space on which the forced system would be au-
tonomous. This lack of compactness, in turn, renders
most techniques of nonlinear dynamics inapplicable.
Even more importantly, a finite-time understanding
of the flow map can no longer be used to gain a full
understanding of a (potentially ever-changing) non-
autonomous system.

Why would one want to develop an understand-
ing of mechanical systems under aperiodic, finite-time
forcing conditions? The most important reason is that
most realistic forms of forcing will take time to build
up, and hence will be transient in nature, at least ini-
tially. Even if the forcing is time-independent, the
finite-time transient response of a mechanical system
is often crucial to its design, as the largest stresses and
strains invariably occur during this period.

Similar challenges arise in fluid dynamics, where
temporally aperiodic unsteady flows are the rule rather
than the exception. Observational or numerical data
for such fluid flows are only available for a limited
time interval, and some key features of the flow may
only be present for an even shorter time. For instance,
the conditions creating a hurricane in the atmosphere
are transient, rather than periodic, in nature, and the
hurricane itself will generally only exist for less than
two weeks [3]. As a result, available asymptotic meth-
ods are clearly inapplicable to its study, even though
there is great interest in uncovering its internal struc-
ture and overall dynamics.

In response to these challenges in fluid dynam-
ics, a number of diagnostic tools have been devel-
oped [4, 5]. Only very recently, however, has a rig-
orous mathematical theory emerged for dynamical
structures in finite-time aperiodic flow data [6]. This
theory finds that finite-time invariant structures in a
dynamical system are governed by intrinsic, metric
properties of the finite-time flow map. Specifically, in
two-dimensional unsteady flows, structures acting as
transport barriers can be uncovered with the help of
geodesics of the Cauchy–Green strain tensor used in
continuum mechanics [7]. This approach generalizes
and extends earlier work on hyperbolic Lagrangian
Coherent Structures (LCS), which are locally most re-
pelling or attracting material lines in the flow [8–11].

In this paper, we review the geodesic transport the-
ory developed in [6] in the context of one-degree-
of-freedom, aperiodically forced mechanical systems.
We then show how this theory uncovers key in-
variant sets under both conservative and dissipative
forcing in cases where classic techniques, such as
Poincaré maps, are not available. Remarkably, these
finite-time invariant sets can be explicitly identified
as parametrized curves, as opposed to plots requiring
post-processing or feature extraction.

The organization of this paper is as follows. Sec-
tion 2 is divided into two subsections: Sect. 2.1 pro-
vides the necessary background for the geodesic the-
ory of transport barriers developed in [6]. In Sect. 2.2,
we describe a numerical implementation of this the-
ory that detects finite-time invariant sets as trans-
port barrier. Section 3 presents results from the ap-
plication of this numerical algorithm to one degree-
of-freedom mechanical systems. First, as a proof of
concept, Sect. 3.1 considers conservative and dissipa-
tive time-periodic Duffing oscillators, comparing their
geodesically extracted invariant sets with those ob-
tained form Poincaré maps. Next, Sect. 3.2 deals with
invariant sets in aperiodically forced Duffing oscilla-
tors, for which Poincaré maps or other rigorous extrac-
tion methods are not available. We conclude the paper
with a summary and outlook.

2 Set-up

The key invariant sets of autonomous and time-
periodic dynamical systems–such as fixed points, pe-
riodic and quasiperiodic motions, their stable and un-
stable manifolds, and attractors–are typically distin-
guished by their asymptotic properties. In contrast,
invariant sets in finite-time, aperiodic dynamical sys-
tems solely distinguish themselves by their observed
impact on trajectory patterns over the finite time in-
terval of their definition. This observed impact is a
pronounced lack of trajectory exchange (or transport)
across the invariant set, which remains coherent in
time, i.e., only undergoes minor deformation. Well-
understood, classic examples of such transport barri-
ers include local stable manifolds of saddles, parallel
shear jets, and KAM tori of time-periodic conservative
systems. Until recently, a common dynamical feature
of these barriers has not been identified, hindering the
unified detection of transport barriers in general non-
autonomous dynamical systems.
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As noted recently in [6], however, a common fea-
ture of all canonical transport barriers in two dimen-
sions is that they stretch less under the flow than neigh-
boring curves of initial conditions do. This observation
leads to a nonstandard calculus of variations problem
with unknown endpoints and a singular Lagrangian.
Below we recall the solution of this problem from
[6], with a notation and terminology adapted to one-
degree-of-freedom mechanical oscillators.

A one-degree-of-freedom forced nonlinear oscilla-
tor can generally be written as a two-dimensional dy-
namical system

ẋ = v(x, t), x ∈ U ⊂ R
2, t ∈ [t0, t1], (1)

with U denoting an open set in the state space, where
the vector x labels tuples of positions and velocities.
The vector v(x, t), assumed twice continuously differ-
entiable, contains the velocity and acceleration of the
system at state x and at time t .

Let x(t1; t0, x0) denote the final state of system (1)
at time t1, given its state x0 at an initial time t0. The
flow map associated with (1) over this time interval is
defined as

F
t1
t0

: x0 �−→ x(t1; t0, x0), (2)

which maps initial states to final states at t1. The
Cauchy–Green (CG) strain tensor associated with the
flow map (2) is defined as

C
t1
t0

(x0) = [
DF

t1
t0

(x0)
]�

DF
t1
t0

(x0), (3)

where DF
t1
t0

denotes the gradient of the flow map (2),
and the symbol � refers to matrix transposition.

Note that the CG tensor is symmetric and positive
definite. As a result, it has two positive eigenvalues
0 < λ1 ≤ λ2 and an orthonormal eigenbasis {ξ1, ξ2}.
We fix this eigenbasis so that

C
t1
t0

(x0)ξi(x0) = λi(x0)ξi(x0),
∣∣ξi(x0)

∣∣ = 1, i ∈ {1,2}, (4)

ξ2(x0) = Ωξ1(x0), Ω =
(

0 −1
1 0

)
.

We suppress the dependence of λi and ξi on t0 and t1

for notational simplicity.

2.1 Geodesic transport barriers in phase space

A material line γt = F t
t0
(γt0) is an evolving curve of

initial conditions γt0 under the flow map F t
t0

. As shown
in [6], for such a material line to be a locally least-
stretching curve over [t0, t1], it must be a hyperbolic,
a parabolic or an elliptic line (see Fig. 1).

The initial position γt0 of a hyperbolic material line
is tangent to the vector field ξ1 at all its points. Such
material lines are compressed by the flow by locally
the largest rate, while repelling all nearby material
lines at an exponential-in-time rate. The classic exam-
ple of a hyperbolic material lines is the unstable man-
ifold of a saddle-type fixed point.

A parabolic material line is an open material curve
whose initial position γt0 is tangent to one of the di-
rections of locally largest shear. At each point of the
phase space, the two directions of locally largest shear
are given by

η± =
√ √

λ2√
λ1 + √

λ2
ξ1 ±

√ √
λ1√

λ1 + √
λ2

ξ2, (5)

as derived in [6]. Parabolic material lines still repel
most nearby material lines (except for those parallel to
them), but only at a rate that is linear in time. Classic
examples of parabolic material lines in fluid mechan-
ics are the parallel trajectories of a steady shear flow.

Finally, an elliptic material line is a closed curve
whose initial position γt0 is tangent to one of the two
directions of locally largest shear given in (5). As a
result, elliptic lines also repel nearby, nonparallel ma-
terial lines at a linear rate, but they also enclose a
connected region. Classic examples of elliptic mate-
rial lines are closed trajectories of a steady, circular
shear flow, such as a vortex.

Initial positions of hyperbolic material lines are,
by definition, strainlines, i.e., trajectories of the au-
tonomous differential equation

r ′ = ξ1(r), r ∈ U ⊂ R
2, (6)

where r : [0, �] �→ U is the parametrization of the
strainline by arclength. A hyperbolic barrier is then a
strainline that is locally the closest to least-stretching
geodesics of the CG tensor, with the latter viewed as a
metric tensor on the domain U of the phase space. The
pointwise closeness of strainlines to least-stretching
geodesics can be computed in terms of the invariants
of the CG strain tensor. Specifically, the C2 distance
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Fig. 1 The three types of
transport barrier in
two-dimensional flows
(Color figure online)

(difference of tangents plus difference of curvatures)
of a strainline from the least-stretching geodesic of Ct

t0

through a point x0 is given by the geodesic strain de-
viation

dξ1
g (x0) = |〈∇λ2, ξ2〉 + 2λ2κ1|

2λ3
2

, (7)

with κ1(x0) denoting the curvature of the strainline
through x0 [6]. A hyperbolic barrier is a compact
strainline segment on which d

ξ1
g is pointwise below a

small threshold value, and whose averaged d
ξ1
g value is

locally minimal relative to all neighboring strainlines.
Similarly, initial positions of parabolic and elliptic

material lines are, by definition, shearlines, i.e., trajec-

tories of the autonomous differential equation

r ′ = η±(r), r ∈ U ⊂ R
2. (8)

A parabolic barrier is an open shearline that is close to
least-stretching geodesics of the CG tensor. The point-
wise C2-closeness of shearlines to least-stretching
geodesics is given by the geodesic shear deviation

d
η±
g (x0) =

√
1 + λ2 − √

λ1√
1 + λ2

+
∣∣∣∣

〈∇λ2, ξ1〉
2λ2

√
1 + λ2

∓ 〈∇λ2, ξ2〉(√1 + λ2
3 − √

λ2
5
)

2λ3
2

√
1 + λ2

3

∣∣∣∣
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∓ κ1[√λ2
5 + (1 − λ2

2)
√

1 + λ2]
λ2

2

√
1 + λ2

+ κ2√
1 + λ2

, (9)

with κ2(x0) denoting the curvature of the ξ2 vector
field at the point x0 [6]. The geodesic shear devia-
tion should pointwise be below a small threshold level
for an open shearline to qualify as a parabolic barrier.
Similarly, a closed shearline is an elliptic barrier if
its pointwise geodesic shear deviation is smaller than
small threshold level.

For the purposes of the present discussion, we call
a mechanical system of the form (1) conservative if
it has vanishing divergence, i.e., ∇ · v(x, t) = 0, with
∇ referring to differentiation with respect to x. This
property implies that flow map of (1) conserves phase-
space area for all times [13].

While a typical material line in such a conserva-
tive system will still stretch and deform significantly
over time, the length of a shearline will always be
preserved under the area-preserving flow map F

t1
t0

(cf.
[6]). An elliptic barrier in a conservative system will,
therefore, have the same enclosed area and arclength
at the initial time t0 and at the final time t1. These two
conservation properties imply that an elliptic barrier in
a non-autonomous conservative system may only un-
dergo translation, rotation and some slight deforma-
tion, but will otherwise preserve its overall shape. As
a result, the interior of an elliptic barrier will not mix
with the rest of the phase-space, making elliptic barri-
ers the ideal generalized KAM curves in aperiodically
forced conservative mechanical systems.

2.2 Computation of invariant sets as transport
barriers

In this section, we describe numerical algorithms for
the extraction of hyperbolic and elliptic barriers in a
one-degree-of-freedom mechanical system with gen-
eral time dependence. Parabolic barriers can in princi-
ple also exist in mechanical systems, but they do not
arise in the simple examples we study below. In con-
trast, parabolic barriers are more common in geophys-
ical fluid mechanics where they typically represent un-
steady shear jets.

Our numerical algorithms require a careful compu-
tation of the CG tensor. In most mechanical systems,

trajectories separate rapidly, resulting in an exponen-
tial growth in the entries of the CG tensor. This growth
necessitates the use of a well-resolved grid, as well as
the deployment of high-end integrators in solving for
the trajectories of (1) starting form this grid. Further
computational challenges arise from the handling of
the unavoidable orientational discontinuities and iso-
lated singularities of the eigenvector fields ξ1 and ξ2.
The reader is referred to Farazmand & Haller [10] for
a detailed treatment of these computational aspects.

As a zeroth step, we fix a sufficiently dense grid G0

of initial conditions in the phase-space U , then advect
the grid points from time t0 to time t1 under system (1).
This gives a numerical representation of the flow map
F

t1
t0

over the grid G0. The CG tensor field C
t1
t0

is then
obtained by definition (3) from F

t1
t0

. In computing the
gradient DF

t1
t0

, we use careful finite differencing over
an auxiliary grid, as described in [10].

Since, at each point x0 ∈ G0, the tensor C
t1
t0

(x0) is a
two-by-two matrix, computing its eigenvalues {λ1, λ2}
and eigenvectors {ξ1, ξ2} is straightforward. With the
CG eigenvalues and eigenvectors at hand, we locate
the hyperbolic barriers using the following algorithm.

Algorithm 1 (Locating hyperbolic barriers)

1. Fix a small positive parameter εξ1 as the admissi-
ble upper bound for the pointwise geodesic strain
deviation of hyperbolic transport barriers.

2. Calculate strainlines by solving the ODE (6) nu-
merically, with linear interpolation of the strain
vector field between grid points. Truncate strain-
lines to compact segments whose pointwise geo-
desic strain deviation is below εξ1 .

3. Locate hyperbolic barriers as strainline segments
γt0 with locally minimal relative stretching, i.e.,
strainline segments that locally minimize the func-
tion

q(γt0) = l(γt1)

l(γt0)
. (10)

Here l(γt0) and l(γt1) denote the length of the
strainline γt0 and the length of its advected image
γt1 , respectively.

Computing the relative stretching (10) of a strainline
γt0 , in principle, requires advecting the strainline to
time t1. However, as shown in [6], the length of the ad-
vected image satisfies l(γt1) = ∫

γt0

√
λ1 ds, where the
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Fig. 2 Locating closed shearlines using a Poincaré section of
the shear vector field. Closed shearlines pass through the fixed
points of the corresponding Poincaré map

integration is carried out along the strainline γt0 . This
renders the strainline advection unnecessary.

Numerical experiments have shown that a direct
computation of ξ1 is usually less accurate than that
of ξ2 due to the attracting nature of strongest eigen-
vector of the CG tensor [10]. For this reason, comput-
ing ξ1 as an orthogonal rotation of ξ2 is preferable.
Moreover, it has been shown [12] that strainlines can
be computed more accurately as advected images of
stretchlines, i.e. curves that are everywhere tangent to
the second eigenvector of the backward-time CG ten-
sor C

t0
t1

. In the present paper, this approach is taken for
computing the strainlines.

Computing elliptic barriers amounts to finding limit
cycles of the ODE (8). To this end, we follow the ap-
proach used in [6, 12] by first identifying candidate
regions for shear limit cycles visually, then calculat-
ing the Poincaré map on a one-dimensional section
transverse to the flow within the candidate region (see
Fig. 2). Hyperbolic fixed points of this map can be lo-
cated by iteration, marking limit cycles of the shear
vector field (see [12] for more detail).

This process is used in the following algorithm to
locate elliptic barriers.

Algorithm 2 (Locating elliptic barriers)

1. Fix a small positive parameter εη± as the admis-
sible upper bound for the average geodesic shear
deviation of elliptic transport barriers.

2. Visually locate the regions where closed shearlines
may exist. Construct a sufficiently dense Poincaré
map, as discussed above. Locate the fixed points of
the Poincaré map by iteration.

3. Compute the full closed shearlines emanating from
the fixed points of the Poincaré map.

4. Locate elliptic barriers as closed shearlines whose
average geodesic deviation 〈dη±

g 〉 satisfies 〈dη±
g 〉 <

εη± .

In the next section, we use the above algorithms for
locating invariant sets in simple forced and damped
nonlinear oscillators.

3 Results

We demonstrate the implementation of the geodesic
theory of transport barriers on four Duffing-type os-
cillators. As a proof of concept, in the first two exam-
ples (Sect. 3.1), we consider periodically forced Duff-
ing oscillators for which we can explicitly verify our
results using an appropriately defined Poincaré map.

The next two examples deal with aperiodically
forced Duffing oscillators (Sect. 3.2). In these exam-
ples, despite the absence of a Poincaré map, we still
obtain the key invariant sets as hyperbolic and elliptic
barriers.

To implement Algorithms 1 and 2 in the forthcom-
ing examples, the CG tensor is computed over a uni-
form grid G0 of 1000 × 1000 points. A fourth order
Runge–Kutta method with variable step-size (ODE45
in MATLAB) is used to solve the first-order ODEs (1),
(6), and (8) numerically. The absolute and relative tol-
erances of the ODE solver are set equal to 10−4 and
10−6, respectively. Off the grid points, the strain and
shear vector fields are obtained by bilinear interpola-
tion.

In each case, the Poincaré map of Algorithm 2 is
approximated by 500 points along the Poincaré sec-
tion. The zeros of the map are located by a standard
secant method.

3.1 Proof of concept: periodically forced Duffing
oscillator

Case 1: Pure periodic forcing, no damping Consider
the periodically forced Duffing oscillator

ẋ1 = x2,
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Fig. 3 Five hundred iterations of the Poincaré map for the periodically forced Duffing oscillator. Two elliptic regions of the phase-space
filled by KAM tori are shown

ẋ2 = x1 − x3
1 + ε cos(t).

For ε = 0, the system is integrable with one hyper-
bolic fixed point at (0,0), and two elliptic fixed points
(1,0) and (−1,0), respectively. As is well known,
there are two homoclinic orbits connected to the hy-
perbolic fixed point, each enclosing an elliptic fixed
point, which is in turn surrounded by periodic orbits.
These periodic orbits appear as closed invariant curves
for the Poincaré map P := F 2π

0 . The fixed points of
the flow are also fixed points of P .

For 0 < ε � 1, the Kolmogorov–Arnold–Moser
(KAM) theory [13] guarantees the survival of most
closed invariant sets for P . Figure 3 shows these sur-
viving invariant sets (KAM curves) of P obtained for
ε = 0.08. For the KAM curves to appear continuous-
looking, nearly 500 iterations of P were needed, re-
quiring the advection of initial conditions up to time
t = 1000π . The stochastic region surrounding the
KAM curves is due to chaotic dynamics arising from
the transverse intersections of the stable and unstable
manifold of the perturbed hyperbolic fixed point of P .

The surviving KAM curves are well-known, clas-
sic examples of transport barriers. We would like to
capture as many of them as possible as elliptic barriers
using the geodesic transport theory described in pre-
vious sections. Note that not all KAM curves are ex-
pected to prevail as locally least-stretching curves for a
given choice of the observational time interval [t0, t1];
some of these curves may take longer to prevail due to
their shape and shearing properties.

We use the elliptic barrier extraction algorithm of
Sect. 2.2 with εη± = 0.7. Figure 4 shows the result-
ing shearlines in the KAM regions, with the closed
ones marked by red. Note that these shearlines were
obtained from the CG tensor computed over the time
interval [0,8π], spanning just four iterations of the
Poincaré map. Despite this low number of iterations,
the highlighted elliptic barriers are practically indis-
tinguishable form the KAM curves obtained from 500
iterations.

Figure 5 shows the convergence of an elliptic bar-
rier to a KAM curve as the integration time T = t1 − t0
increases. Note how the average geodesic deviation
〈dη±

g 〉 decreases with increasing T , indicating decreas-
ing deviation from nearby Cauchy–Green geodesics.

Remarkably, constructing these elliptic barriers
requires significantly shorter integration time (only
four forcing periods) in comparison to visualization
through the Poincaré map, which required 500 forc-
ing periods to reveal KAM curves as continuous ob-
jects. Clearly, the overall computational cost for con-
structing elliptic barriers still comes out to be higher,
since the CG tensor needs to be constructed on a rel-
atively dense grid G0, as discussed in Sect. 2.2. This
high computational cost will be justified, however, in
the case of aperiodic forcing (Sect. 3.2), where no
Poincaré map is available.

In the context of one-degree-of-freedom mechan-
ical systems, the outermost elliptic barrier marks the
boundary between regions of chaotic dynamics and re-
gions of oscillations that are regular on a macroscopic



696 A. Hadjighasem et al.

Fig. 4 Shearlines (black) of the periodically forced Duffing oscillator computed at t0 = 0, with integration time T = 8π . The extracted
elliptic barriers with 〈dη±

g 〉 ≤ εη± = 0.7 are shown in red (Color figure online)

Fig. 5 Convergence of an elliptic barrier (red) to a KAM curve
(black) as the integration time T = t1 − t0 increases. The grad-
ually decreasing average geodesic deviation 〈dη±

g 〉 confirms the

convergence to Cauchy–Green geodesics that closely shadow
the underlying KAM torus (Color figure online)

scale. To demonstrate this sharp dividing property of
elliptic barriers, we show the evolution of system (12)
from three initial states, two of which are inside the el-
liptic region and one of which is outside (Fig. 6a). The
system exhibits rapid changes in its state when started
from outside the elliptic region. In contrast, more regu-
lar behavior is observed for trajectories starting inside
the elliptic region. This behavior is further depicted in
Fig. 7, which shows the evolution of the x1-coordinate
of the trajectories as a function of time.

Case 2: Periodic forcing and damping Consider now
the damped-forced Duffing oscillator

ẋ1 = x2,

(11)

ẋ2 = x1 − x3
1 − δx2 + ε cos(t),

with δ = 0.15 and ε = 0.3. This system is known to
have a chaotic attractor that appears as an invariant set
of the Poincaré map P = F 2π

0 (see, e.g., [1]). Here,
we show that the attractor can be very closely ap-
proximated by hyperbolic barriers computed via Al-
gorithm 1.

Figure 8a shows strainlines computed backward in
time with t0 = 0 and integration time T = t1 − t0 =
−8π . The strainline with globally minimal relative
stretching (10) is shown in Fig. 8b. Black dots mark
the points where the geodesic deviation d

ξ1
g exceeds

the admissible upper bound εξ1 = 10−3. At its tail
(covered by black dots), the strainline persistently de-
viates from CG geodesics, and hence should be trun-
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Fig. 6 (a) The outermost elliptic barrier (black curve) and three
initial conditions: Two inside the elliptic barrier (blue and green)
and one outside the elliptic barrier (red). (b) The corresponding
trajectories are shown in the extended phase space of (x1, x2, t).
The closed black curves mark the elliptic barrier at t0 = 0 and
t1 = 16π (Color figure online)

cated. The resulting hyperbolic barrier, as a finite-time
approximation to the chaotic attractor, is shown in
Fig. 8c.

The approximate location of the attractor can also
be revealed by applying the Poincaré map to a few
initial conditions (tracers) released from the basin of
attraction. For long enough advection time, the ini-
tial conditions converge to the attractor highlighting
its position (see Figs. 9a and 9b). In Fig. 9c, the hy-
perbolic barrier is superimposed on the advected trac-
ers showing close agreement between the two. Fig-
ure 9d shows the tracers advected for a longer time
(T = 40π ) together with the hyperbolic barrier; the
two virtually coincide. Note that the hyperbolic barrier
is a smooth, parametrized curve (computed as a trajec-

Fig. 7 The x1-coordinate of the trajectories of Fig. 6

tory of (6)), while the tracers form a set of scattered
points.

3.2 The aperiodically forced Duffing oscillator

In the next two examples, we study aperiodically
forced Duffing oscillators. In the presence of aperi-
odic forcing, the Poincaré map P is no longer defined
as the system lacks any recurrent behavior. However,
KAM-type curves (i.e., closed curves, resisting signif-
icant deformation) and generalized stable and unstable
manifolds (i.e., most repelling and attracting material
lines) exist in the phase-space and determine the over-
all dynamics of the system.

Case 1: Purely aperiodic forcing, no damping Con-
sider the Duffing oscillator

ẋ1 = x2,

(12)
ẋ2 = x1 − x3

1 + f (t),

where f (t) is an aperiodic forcing function ob-
tained from a chaotic one-dimensional map (see
Fig. 10).

While KAM theory is no longer applicable, one
may still expect KAM-type barriers to survive for
small forcing amplitudes. Such barriers would no
longer be repeating themselves periodically in the ex-
tended phase space. Instead, a generalized KAM bar-
rier is expected to be an invariant cylinder, with cross
sections showing only minor deformation. The exis-
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Fig. 8 Construction of the attractor of the damped-forced Duffing oscillator as a hyperbolic transport barrier (Color figure online)

tence of such structures can, however, be no longer
studied via Poincaré maps.

Figure 11 confirms that generalized KAM-type
curves, obtained as elliptic barriers, do exist in this
problem. These barriers are computed over the time
interval [0,4π] (i.e. t0 = 0 and t1 = t0 + T = 4π ). As
discussed in Sect. 2.1, the arclength of an elliptic bar-
rier at the initial time t0 is equal to the arclength of
its advected image under the flow map F

t1
t0

at the final
time t1. This arclength preservation is illustrated nu-
merically in Fig. 12, which shows the relative stretch-

ing,

δ�(t) = �(γt ) − �(γ0)

�(γ0)
(13)

of the time-t image γt of an elliptic barrier γ0, with �

referring to the arclength of the curve. Ideally, the rel-
ative stretching of each elliptic barrier should be zero
at time t1 = 4π , i.e. δ�(4π) = 0. Instead, we find that
the relative stretching δ�(4π) of the computed ellip-
tic barriers is at most 1.5 %. This deviation from zero
arises from numerical errors in the computation of the
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Fig. 9 (a) Attractor of system (11) obtained from four iterates
of the Poincaré map. (b) Attractor obtained from 20 iterates of
the Poincaré map. (c) Attractor computed as a hyperbolic barrier
(red), compared with the Poincaré map (blue) computed for the
same integration time (four iterates). (d) Comparison of attrac-

tor computed as a hyperbolic barrier (red) with the one obtained
from 20 iteration of the Poincaré map (blue). The integration
time for locating the hyperbolic barrier is T = t1 − t0 = −8π

(Color figure online)

Fig. 10 Chaotic forcing function f (t) for (12)

CG strain tensor C
t1
t0

, which in turn causes small inac-
curacies in the computation of closed shearlines.

As noted earlier, the small relative stretching and
the conservation of enclosed area for an elliptic bar-
rier in incompressible flow only allows for small de-
formations when the barrier is advected in time. This
is illustrated in Fig. 13, which shows the blue elliptic
barrier of Fig. 11b in the extended phase-space. Each
constant-time slice of the figure is the advected image
of the barrier.

Finally, we point out that the stability of the trajec-
tories inside elliptic barriers show a similar trend as
in the case of the periodically forced Duffing equation
(Figs. 6 and 7). Namely, perturbations inside the ellip-
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Fig. 11 Closed shearlines for (12) computed in two elliptic regions. The figure shows the shearlines at time t0 = 0. The integration
time is T = 4π

Fig. 12 The relative stretching δ�(t) × 100 of closed shear-
lines of Fig. 11. The colors correspond to those of Fig. 11. By
their arclength preservation property, the advected elliptic bar-
riers must theoretically have the same arclength at times t0 = 0

and t1 = 4π . The numerical error in arclength conservation is
small overall, but more noticeable for oscillations with large am-
plitudes (green and red curves of the right panel) (Color figure
online)

Fig. 13 Generalized
KAM-type cylinder in the
extended phase space of the
aperiodically forced
undamped Duffing
oscillator. The cylinder is
obtained by advection of
the closed shearline shown
in blue in Fig. 11(b)
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Fig. 14 (a) Strainlines computed in backward time from t0 = 30 to t1 = 10. (b) The resulting hyperbolic barrier extracted with
maximum admissible geodesic deviation of εξ1 = 10−5

tic regions remain small while they grow significantly
inside the hyperbolic regions.

Case 2: Aperiodic forcing with damping In this fi-
nal example, we consider the aperiodically forced,
damped Duffing oscillator

ẋ1 = x2,

(14)
ẋ2 = x1 − x3

1 − δx2 + f (t),

with damping coefficient δ = 0.15. The forcing func-
tion f (t) is similar to that of Case I above, but with an
amplitude twice as large. As a result, none of the ellip-
tic barriers survive even in the absence of damping.

Again, because of the aperiodic forcing, the behav-
ior of this system is a priori unknown and cannot be
explored using Poincaré maps. In order to investigate
the existence of an attractor, strainlines (Fig. 14a) are
computed from the backward-time CG strain tensor
C

t1
t0

with t0 = 30 and t1 = 10. The strainline with mini-
mum relative stretching (10) is then extracted. The part
of this strainline satisfying d

ξ1
g < εξ1 is considered as

the most influential hyperbolic barrier (Fig. 14b). The
admissible upper bound εξ1 for the geodesic deviation
is fixed as 10−5.

In order to confirm the existence of the extracted at-
tractor, we advect tracer particles in forward time, first
from time t1 = 10 to time t0 = 30, then from t1 = 0
to time t0 = 30. Because of the fast-varying dynam-
ics and weak dissipation, a relatively long advection

time is required for the tracers to converge to the at-
tractor. Figure 15 shows the evolution of tracers over
[t1, t0]. Note that the attractor inferred from the trac-
ers is less well pronounced than the hyperbolic barrier
extracted over the same length of time. This shows
a clear advantage for geodesic transport theory over
simple numerical experiments with tracer advection.
For a longer integration time from t0 = 0 to t = 30,
the tracers eventually converge to the hyperbolic bar-
rier.

Repelling hyperbolic barriers can be computed
similarly using forward-time computations. Figure 16
shows both hyperbolic barriers (stable and unstable
manifolds) at time t0 = 30. The repelling barrier is
computed from the CG strain tensor Ct1

t0
with t0 = 30

and t1 = 50.

4 Summary and conclusions

We have shown how the recently developed geodesic
theory of transport barriers [6] in fluid flows can be
adapted to compute finite-time invariant sets in one-
degree-of-freedom mechanical systems with general
forcing. Specifically, in the presence of general time
dependence, temporally aperiodic stable- and unsta-
ble manifolds, attractors, as well as generalized KAM
tori can be located as hyperbolic and elliptic barri-
ers, respectively. The hyperbolic barriers are computed
as distinguished strainlines, i.e. material lines along



702 A. Hadjighasem et al.

Fig. 15 (a) Tracers advected over the time interval from t1 = 10
to t0 = 30. (b) Tracers advected over a longer time interval from
t1 = 0 to t0 = 30. (c) The hyperbolic barrier (red) superimposed

on the tracers advected for the same time interval. (d) Compari-
son of the hyperbolic barrier (red) with the tracers advected for
the longer time interval (Color figure online)

which the Lagrangian strain is locally maximized. The
elliptic barriers, on the other hand, appear as dis-
tinguished shearlines, i.e. material lines along which
the Lagrangian shear is locally maximized. The bar-
riers are finally identified as strainlines and shearlines
that are most closely approximated by least-stretching
geodesics of the metric induced by Cauchy–Green
strain tensor.

We have used four simple examples for illustra-
tion. First, as benchmarks, we considered periodically
forced Duffing equations for which stable and unsta-
ble manifolds, attractors and KAM curves can also
be obtained as invariant sets of an appropriately de-
fined Poincaré map. We have shown that elliptic barri-

ers, computed as closed shearlines, coincide with the
KAM curves. Also, stable and unstable manifolds, as
well as attractors, can be recovered as hyperbolic bar-
riers. More precisely, as the integration time T = t1 −
t0 of the Cauchy–Green strain tensor Ct1

t0
increases,

the elliptic barriers in the periodically forced Duff-
ing equations converge to KAM curves. Similarly, the
chaotic attractor of the periodically forced and damped
Duffing equation is more and more closely delineated
by a hyperbolic barrier computed from the backward-
time Cauchy–Green strain tensor Ct0

t1
for increasing

T = t0 − t1 where t0 > t1.
In the second set of examples, we have computed

similar structures for an aperiodically forced Duff-
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Fig. 16 Attracting (blue) and repelling (red) barriers at t0 = 30
extracted from backward-time and forward-time computations,
respectively (Color figure online)

ing oscillator with and without damping. In this case,
Poincaré maps are no longer well-defined for the sys-
tem, and hence we had to advect tracer particles to
verify the predictions of the geodesic theory. Notably,
tracer advection takes longer time to reveal the struc-
tures in full detail than the geodesic theory does. Also,
tracer advection is only affective as a visualization tool
if it relies on a small number of particles, which in
turn assumes that one already roughly knows the loca-
tion of the invariant set to be visualized. Finally, un-
like scattered tracer points, geodesic barriers are re-
covered as parametrized smooth curves that provide a
solid foundation for further analysis or highly accurate
advection.

In our examples, elliptic barriers have shown them-
selves as borders of subsets of the phase-space that
barely deform over time. In fact, as illustrated in Fig. 6,
outermost elliptic barriers define the boundary be-
tween chaotic and regular dynamics. Trajectories initi-
ated inside elliptic barriers remain confined and robust
with respect to small perturbations. We believe that
this property could be exploited for stabilizing me-
chanical systems with general time dependence. For
instance, formulating an optimal control problem for
generating elliptic behavior in a desired part of the
phase-space is a possible approach.

Undoubtedly, the efficient and accurate computa-
tion of invariant sets as geodesic transport barriers re-
quires dedicated computational resources. Smart algo-
rithms reducing the computational cost are clearly of
interest. Parallel programming (both at CPU and GPU

levels) has previously been employed for Lagrangian
coherent structure calculations and should be useful in
the present setting as well (see e.g. [14]). Other adap-
tive techniques are also available to lower the numer-
ical cost by reducing the computations to regions of
interest (see e.g. [15, 16]).

In principle, invariant sets in higher-degree-of-
freedom mechanical systems could also be captured
by similar techniques as locally least-stretching sur-
faces. The development of the underlying multi-
dimensional theory and computational platform, how-
ever, is still under way.
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