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Abstract Since the detection of nitric oxide two and a half
decades ago, there has been an incredible boost in
endothelial function research, which is fascinating the
research community. Physiologically, endothelial cells
synthesize a number of vasoactive substances. In particular,
several endothelium-derived relaxing factors (EDRFs) have
been characterized, whereby nitric oxide is the most
important. In humans, endothelial dysfunction is one of
the first clinically detectable alterations in the development
of atherosclerosis and is characterized by an imbalance in
the release of vasoactive substances. Thus, it is the aim of
this article to give an overview about endothelial function
in humans, to summarize the different possibilities to assess
endothelial function in this species, and to give an overview
of the role of EDRFs in different cardiovascular diseases.
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Endothelium-derived hyperpolarizing factor

Introduction

In the past, the endothelium was believed to be just a
simple semipermeable membrane lining the inner part of
arteries, veins, and lymphatic vessels. In the last three
decades, however, thanks to extensive research in this field,
it became apparent that this cellular monolayer is funda-
mental for the homeostasis of vascular tone (Fig. 1).

In humans, endothelial dysfunction is one of the first
clinically detectable alterations in the development of
atherosclerosis. In recent years, a number of studies assess-
ing endothelial function have been performed in healthy
subjects, as well as in patients. Through this research, the
role of endothelial cells in health and cardiovascular disease
could be largely defined. Clinical studies have been
performed in several vascular beds, including the forearm
vasculature, the microcirculation of different organs, as well
as the coronary circulation. It is the aim of this article to
summarize the different possibilities to assess endothelial
function in humans and to give an overview of the role and
alterations of endothelium-derived relaxing factors (EDRFs)
in different cardiovascular diseases.

Methods for assessing human endothelial dysfunction

Several methods have been developed in recent years;
however, an optimal methodology does not exist so far, and
hence, there is no clear gold standard. The different
techniques used all have their advantages and disadvan-
tages and allow for the investigation of different vascular
beds.

Mainly large conduit arteries are able to dilate in
response to reactive hyperemia (i.e., flow-mediated vasodi-
latation) or receptor-operated agonists such as acetylcholine
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in the presence of an intact layer of endothelial cells. These
responses are mediated by the release of nitric oxide (NO)
or other vasodilator substances such as prostacyclin (PGI2),
able to activate smooth muscle cells (Fig. 1 and text below).
Of note, not all blood vessels are able to dilate to the same
extent in response to these stimuli, as the expression of
specific endothelial receptors for these agonists as well as
the intrinsic stiffness of a given blood vessel plays an
important role. Nevertheless, independent by the technique
used to assess function, a significant association between
endothelial function and cardiovascular risk factors and
disease has been noted. Indeed, in humans, endothelial
dysfunction has been documented in the presence of most
major cardiovascular risk factors including in arterial
hypertension [59, 73], in normotensive individuals with a
family history of hypertension [96], in active smokers [17,
116] and passive smokers [18], in dyslipidemia [15, 89], in
aging subjects [59], in diabetes mellitus [13, 23, 62, 88,
91], in obesity [91], in hyperhomocysteinemia [105], and in
patients with inflammatory or infectious diseases [36, 37,
48]. Moreover, a prognostic role of endothelial dysfunction
of epicardial coronary arteries, as well as those of the
peripheral circulation, has been documented [8, 40, 43, 45,
67, 81, 84, 85, 94, 104].

Flow-mediated vasodilatation:

The most important and widely used techniques to assess
endothelial function in humans take advantage of the fact
that endothelial cells release NO and other endothelium-

derived relaxing factors in response to blood flow induced
shear stress. To measure this response in vivo, Celermajer
et al. developed an elegant noninvasive technique to
determine flow-mediated vasodilatation (FMD) of the
brachial or radial artery in response to reactive hyperemia
after short periods of total blockage of blood flow by a
blood pressure cuff [16]. Thereby, the change in diameter of
the studied blood vessel is assessed by ultrasound at
baseline and during reactive hyperemia (Fig. 2). This
response is mainly NO-mediated as demonstrated by
Joannides et al. [50, 51] (Fig. 3). Moreover, at least in
patient populations, peripheral endothelial function as
assessed by FMD correlates with coronary artery endothe-
lial function [3]. The method, however, does require
extensive training and experience and suffers standardiza-
tion. Several attempts have been made to standardize the
technique and the different protocols [20, 26].

Venous occlusion plethysmography

Forearm venous plethysmography is a more invasive
technique, as it typically requires cannulation of the
brachial artery and intraarterial administration of substan-
ces, hormones, or drugs. The technique essentially meas-
ures changes in volume of the forearm during brief periods
of venous occlusion and thereby measures blood flow
rather than changes in large artery diameter (see above).
Substances including acetylcholine, bradykinin, and sero-
tonin or nitroglycerin are usually infused to measure
endothelium-dependent and endothelium-independent va-

Fig. 1 Endothelium-derived vasoactive substances. Shear stress and
activation of a variety of receptors leads to a release of nitric oxide
(NO) by inducing endothelial nitric oxide synthase. It exerts relaxation
of vascular smooth muscle cells and exerts antiproliferative effects as
well as inhibits thrombocyte aggregation and leucocyte adhesion.
Other endothelium-derived relaxing factors including endothelium-
derived hyperpolarizing factor (EDHF) and prostacyclin (PGI2) are
also shown. ACE angiotensin-converting enzyme, Ach acetylcholine,

AI angiotensin I, AII angiotensin II, AT1 angiotensin 1 receptor, Bk
bradykinin, COX cyclooxygenase, ECE ET-converting enzyme,
EDHF endothelium-derived hyperpolarizing factor, ETA and ETB
endothelin A and B receptors, ET-1 endothelin-1, L-Arg L-arginine,
PGH2 prostaglandin H2, ROS reactive oxygen species, S1 serotonin-
ergic receptor, TH thromboxane receptor, Thr thrombin, TXA2

thromboxane, 5-HT serotonin
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sodilatation, respectively (Fig. 4) [59, 73]. The advantage
of this technique is the possibility to administer different
agonists and antagonists and even novel substances at a
systemically ineffective dose into the brachial artery, with
the contralateral arm serving as a control. Changes in
forearm blood flow as assessed by venous occlusion
plethysmography are determined in both forearms, and
results are expressed as the ratio of both arms. Although the
microcirculation in the forearm is not a target organ of
atherosclerosis, it seems that the response to acetylcholine
has nevertheless an independent predictive value for future
cardiovascular events [26].

Coronary endothelial function measurements

Assessment of coronary endothelial function is always
handicapped by its invasive nature. Indeed, it requires
catheterization of usually the left coronary artery with an
angiography catheter and the intracoronary infusion of
acetylcholine, papaverine, or other substances such as L-
monomethyl arginine and the assessment of changes in
coronary artery diameter by quantitative angiography.
However, if performed appropriately by experienced oper-
ators, it provides very valuable information about the
coronary vascular bed. Indeed, the healthy coronary
circulation with a functionally intact endothelium will
respond to intracoronary acetylcholine infusion with epi-
cardial und microvascular relaxation resulting in vasodila-
tation and an increase of coronary blood flow. However, if
the endothelium is dysfunctional, acetylcholine induces
paradoxical vasoconstriction and a decrease in coronary
blood flow [60]. The response to intracoronary acetylcho-
line has important prognostic impact and predicts future
cardiovascular events [84].

Finger plethysmography

Recently, a finger plethysmographic device allowing the
detection of pulsatile arterial volume changes has been
introduced [56, 58]. Similar to the assessment of endothe-
lial function via the FMD technique by ultrasound of the
brachial artery, a pressure cuff is placed on one upper arm,
while the other arm serves as a control. After measuring
baseline blood volume changes, the blood pressure cuff is
inflated above systolic pressure and is then deflated to
induce reactive hyperemia on one arm. Similar volume

Fig. 3 NO in flow-mediated vasodilatation. Radial artery flow
(milliliters per minute) and radial artery diameter (millimeters)
measured at baseline and during reactive hyperemia before and after
infusion of NG-monomethyl-L-arginine (L-NMMA). **P<.01 vs base;
P<0.05 and P<0.01 vs corresponding control value. Modified from
Joannides et al. [50]

Fig. 2 Flow-mediated vasodilata-
tion. Schematic ultrasound images
of the brachial artery at baseline,
after reactive hyperemia induced
flow-mediated vasodilatation and
after nitroglycerin (GTN) applica-
tion, are shown. Blood pressure
cuffs can be placed on the upper
or the lower side of the transducer
in the antecubital fossa; however,
the latter is the preferred method.
On the left hand side, the time
course of an FMD measurement
is shown [20]. See text for further
explanation
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changes after nitroglycerin can be measured. This technique
tends to measure microvascular function.

Pulse wave analysis

With this noninvasive technique, the pulse-wave and
velocity profile of the propagation of the arterial wave
form and its reflected wave is assessed. The central aortic
waveform is calculated as the augmentation index [115].
Although not the only contributor, endothelial function
plays an important role in arterial stiffness and thus affects
the results of this methodology as well. It therefore has
been used to determine effects of endothelial mediators on
arterial stiffness.

Endothelium-derived relaxing factors in human
endothelial function

A considerable knowledge on the role of the endothelium in
vascular homeostasis has accumulated as reflected by the
contributions to this special issue on the endothelial saga.
Physiologically, endothelial cells synthesize a number of
antiatherogenic substances. In particular, several EDRFs
have been characterized (Fig. 1). Most of them are released
after an increase in intracellular calcium within endothelial

cells in response to shear forces and/or receptor-operated
mediators. Currently, the most extensively studied mole-
cules are NO, PGI2, and endothelium-derived hyperpolariz-
ing factors (EDHF; Fig. 1).

The contribution of these mediators to endothelium-
dependent dilatation is inversely related to the vessel size.
Indeed, NO- and PGI2-mediated responses seem to be more
important in conduit vessels, whereas EDHF seems to be
more prominent in resistance arteries, particularly also in
the coronary circulation [87].

Nitric Oxide

The term endothelium-derived relaxing factor was original-
ly proposed by Robert Furchgott for a then unknown factor
leading to relaxation of the smooth muscle of large arteries
in response to acetylcholine. NO was later found to be the
mediator of this response. NO is synthesized by the
endothelial isoform of NO synthase (NOS) from its
precursor L-arginine [71], which is inhibited by false
substrates of the precursor of NOS, e.g., L-NG-monomethyl
arginine (L-NMMA) [72]. NOS is a highly regulated
protein and the endothelial isoform (eNOS) is predomi-
nantly found in endothelial cells. Its full function is
dependent on activation of calmodulin and the presence of
L-arginine and cofactors such as tetrahydrobiopterin (BH4)
[1, 92]. BH4 supplementation increases NO synthesis in
patients with hypercholesterolemia [24] and coronary artery
disease [61].

NO is released from endothelial cells in response to
activation of different receptors and especially to shear
stress induced by blood flow (Fig. 1) [2, 39, 82]. The free
radical has a very short half-life, easily crosses biological
membranes and thus quickly diffuses from the endothelium
to the vascular smooth muscle cell to activate soluble
guanylyl cyclase which in turn induces an increase in cyclic
guanosine monophosphate (cGMP) concentrations, thus
leading to a relaxation of the smooth muscle cells with
consequent vasodilatation (Fig. 1) [39, 70, 71, 90].

NO is a free radical which is scavenged for instance by
reactive oxygen species (ROS) which play an important
role in the pathogenesis of cardiovascular diseases. Rapid
removal of ROS is important to protect cellular structures
and NO from its inactivation. In many cardiovascular
diseases, however, an increased oxidative stress is an
important hallmark. For example, superoxide anion (O2

−),
an oxygen radical, can scavenge NO to form peroxynitrite
(ONOO−), which effectively reduces the bioavailability of
endothelium-derived NO and causes posttranscriptional
modification of proteins such as superoxide dismutase and
prostacyclin synthase and DNA damage [83, 109]. In
addition, O2

− directly may act as a vasoconstrictor [4, 22,
52, 53]. A major source of O2

− is the nicotinamide adenine

Fig. 4 Venous plethysmography. Demonstration of the strain-gauge
venous plethysmography method to asses human peripheral endothe-
lial microcirculatory function. The brachial artery is cannulated and
substances including acetylcholine or nitroglycerin as well as drugs
can be infused
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dinucleotide (NADH) dehydrogenase, a mitochondrial
enzyme of the respiratory chain [110]. Its expression in
human coronary arterial smooth muscle cells is upregulated
by pulsatile stretch, thus generating increased oxidative
stress [47]. O2

− is finally degraded by superoxide dismutase
(SOD), forming H2O2 which is further metabolized by
catalase [38]. Unfortunately, the reaction between O2

− and
NO is three times faster than the detoxification of O2

− by
SOD [106]. Depending on the relative concentrations of
NO and SOD, there may be a propensity for O2

− to react
preferentially with NO, resulting in decreased bioavailability
of NO with its detrimental consequences (see above).
Oxidative stress therefore not only eliminates protective NO
but also leads to lipid peroxidation and endothelial cell death.

Importantly, despite its vasodilatation properties, NO has
also antithrombogenic, antiproliferative, leukocyte adhesion-
inhibiting effects, and influences myocardial contractility [2,
50, 51, 111]. Hence, NO has a very powerful antiathrogenic
profile and endothelial dysfunction with decreased NO levels
therefore favors vascular dysfunction and atherosclerotic
disease.

The important role of NO in humans is illustrated best
with its effect on arterial blood pressure. Of note, NO
release is an important contributor to basal vascular tone
also in humans. Thus, inhibition of NOS for instance with
L-NMMA leads to an increase in arterial blood pressure [2,
71, 72, 82, 111].

NO in cardiovascular disease

With the above-mentioned techniques, endothelial function
in vivo nowadays can be easily assessed in normal subjects
as well as patients with cardiovascular risk factors or
disease. Of interest, endothelium-dependent vasodilatation
in response to acetylcholine is blunted in patients with
hypertension, both in the forearm as well as in the coronary
circulation [25, 46, 59, 73–77, 97–99] [31, 107]. Further, a
reduced basal NO activity has been noted as the response to
the NO inhibitor L-NMMA is significantly less in hyper-
tensive patients compared with normotensive controls [12,
96]. Interestingly, normotensive offspring of hypertensive
parents exhibit impaired endothelial function as assessed by
the response to acetylcholine, and similar to patients with
manifest hypertension, basal NO synthesis is already
diminished [63]. Therefore, endothelial dysfunction in
hypertension is at least in part caused by genetic factors
and is not simply a consequence of the high arterial blood
pressure [64]. Several genetic variations in the eNOS gene
have been described [81]. Importantly, the diminished NO
bioactivity is most likely due to an increase in ROS, which
are able to scavenge NO [100].

In aging, the bioavailability of protective NO declines
with a simultaneous increase in constricting factors. The

reason for the decline in NO in the elderly is not fully
understood. Some studies suggest a decrease in the NOS
activity in aging [5, 108], whereas others do not [112].
Likely, oxidative stress is responsible because of a
prolonged exposure to ROS, with an increasing number in
dysfunctional mitochondria in endothelial cells. Elderly
humans who perform regular physical training are able
improve eNOS expression [102].

In active as well as passive smoking, a dose-related
impairment in endothelial function due to a decreased eNOS
activity has been demonstrated [68] [17, 18, 116]. Besides
hypertension, aging, and smoking, there is evidence that all
major cardiovascular risk factors (alone or in combination)
blunt endothelial function by impairing NO synthesis or
decreasing the bioavailability of the mediator at the vascular
level by increasing oxidative stress or reducing the sensitivity
of vascular smooth muscle to NO (for review, see [10]).

Therefore, many pharmacological as well as nonphar-
macological interventions to decrease oxidative stress have
been investigated. Acute administration of antioxidant
vitamins (e.g., vitamin C or E) demonstrated amelioration
of endothelial dysfunction in different conditions, e.g., in
coronary heart disease [54]. However, long-term interven-
tional studies did not show clinical benefits [19, 29]. Recently,
other antioxidative compounds such as polyphenols, mainly
found in plant-derived nutrition (for example in cocoa in
high concentrations), have been shown to improve endothe-
lial function not only by its antioxidative effects but also due
to direct induction of NOS [21, 35]. Many pharmacological
interventions have been shown to improve endothelial
function due to different mechanisms; however, this would
go far beyond the scope of this review [93].

Prostacyclin

Another important endothelium-derived relaxing factor
which is released partly in response to shear stress as well
as in response to acetylcholine is PGI2 [55, 69, 78, 82].
PGI2 is synthesized by cyclooxygenase (COX) from
arachidonic acid [66] and increases cyclic adenosine
monophosphate (AMP) in smooth muscle cells as well as
in platelets. However, it seems that in contrast to NO, PGI2
does not contribute to the maintenance of basal vascular
tone of large conduit arteries [50]. Also, in the forearm
circulation of humans, the response to acetylcholine is
unaffected by aspirin suggesting that PGI2 plays a minor
role in the control of vascular tone. However, in patients
with a decreased NO bioavailability as in atherosclerosis,
COX-2-derived prostaglandins can play an important
compensatory role [11, 95].

Moreover, PGI2 exerts important platelet inhibitory
effects. Indeed, NO and PGI2 synergistically inhibit platelet
activity [80]. Interestingly, when endothelial cells are
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stimulated with agonists that increase intracellular calcium,
NO is released continuously [44], whereas PGI2 is released
only in a transient manner [65].

In addition, PGI2 facilitates the release of NO by
endothelial cells [86], and conversely, the action of PGI2
in the vascular smooth muscle is potentiated by NO and
NO indirectly prolongs the half-life of cyclic AMP, the
second messenger of prostacyclin [27].

Endothelium-derived hyperpolarizing factor(s)

EDHFs are molecules causing smooth muscle cells to
hyperpolarize. Their involvement in the regulation of vascular
tone is defined as the response that persists in the presence of
combined inhibition of nitric oxide (by L-NMMA) and
prostacyclin (by aspirin). They may play an important role
as compensatory pathways for endothelium-dependent vaso-
dilatation in the presence of reduced NO availability [101].
In hypertensive patients, for example, vasodilatation due to
bradykinin is impaired because of NO alteration by oxidative
stress, but is due to endothelium-dependent hyperpolarization.
Thus, vasodilatation is significantly reduced by ouabain,
a Na(+)K(+)/ATPase inhibitor which blocks hyperpolariza-
tion [101]. However, studies examining the relevance of
EDHF in humans are rather scarce, mainly due to the fact
that commonly used inhibitors of the EDHF pathway are
limited by their in vivo toxicity [6].

Studies in the animal have identified several molecules/
mediators that might act as EDHF in different tissues and
species [28]. Among them, K+ [30], cytochrome P450
metabolites [14, 57, 103], lipoxygenase products [33], NO
itself [7], reactive oxygen species (H2O2) [32], cyclic
adenosine monophosphate [79], C-type natriuretic peptide
[114], and electrical coupling through myoendothelial gap
junctions [41, 42]. Central to endothelium-dependent hyper-
polarization is a potassium-mediated event with a reduction
in intracellular K+ in vascular smooth muscle which can be
triggered by all of above-mentioned mediators [34].

Carbon monoxide

Carbon monoxide (CO) is generated endogenously partly in
the endothelium and may have similar effects as NO
including relaxation of vascular smooth muscle cells [113]
and antiproliferative actions [49], which are also mediated
by an increased production of cGMP. It is, however, less
powerful than NO. CO may protect endothelial cells against
apoptosis because of its interaction with NF-kappaB [9]. Its
role in human disease, however, is not yet clear.
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