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Abstract. We show that untwisted respectively twisted conjugacy classes of a compact
and simply connected Lie group which satisfy a certain integrality condition correspond
naturally to irreducible highest weight representations of the corresponding affine Lie alge-
bra. Along the way, we review the classification of twisted conjugacy classes of a simply
connected compact Lie group G and give a description of their stabilizers in terms of the
Dynkin diagram of the corresponding twisted affine Lie algebra.

1. Introduction

Let G be a group and τ ∈ Aut(G) an automorphism of G. The τ -twisted con-
jugacy classes of G are the orbits of the action of G on itself which is given by
g : h �→ ghτ(g−1). We shall always allow τ to be the identity in which case the
τ -twisted conjugacy classes of G are just the ordinary conjugacy classes of G.

In this note, we study twisted and untwisted conjugacy classes of a compact
simply connected simple Lie group G which satisfy a certain integrality condition.
This condition appears in the physics literature where it is used in the classification
of so called D-branes in the Wess-Zumino-Witten model [4, 11]. In a mathematical
context, integral conjugacy classes play a role in the study of gerbes on compact
Lie groups [14]. Furthermore, the integrality condition for conjugacy classes in the
group G (which we will state in equation (1) below) can be seen as an analogue of
the integrality condition for coadjoint orbits of G. It is well known that, via the Bo-
rel-Weil-Bott construction, integral coadjoint orbits of G correspond to irreducible
representations of G. On the other hand, it has been observed in [14] that untwisted
integral conjugacy classes in G are parametrized by the same set as irreducible
highest weight representations of the affine Lie algebra corresponding to G. This
observation has been extended in [18] to the case of twisted conjugacy classes of
SU(3) (where the twisting automorphism comes from the diagram automorphism
of the Dynkin diagram of SU(3)), and irreducible highest weight representations
of the corresponding twisted affine Lie algebra.
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The main goal of this note is to extend the correspondence between integral
conjugacy classes and irreducible highest weight representations to twisted con-
jugacy classes of arbitrary simple compact and simply connected Lie groups and
to give a geometric reason for this correspondence which works for both twisted
and untwisted conjugacy classes simultaneously. This is achieved by translating
the integrality condition for untwisted respectively twisted conjugacy classes in a
compact Lie group G to an integrality condition for coadjoint orbits of the cor-
responding untwisted respectively twisted loop group of G. The correspondence
to irreducible highest weight representations then comes naturally from the ideas
of geometric quantization (or, equivalently, Kirillov’s orbit method) which relates
certain coadjoint orbits of a Lie group to its unitary representations. Along the way,
we review some standard facts about conjugacy classes in compact Lie groups and
extend them to the case of twisted conjugacy classes. A rather algebraic approach
relating twisted conjugacy classes to irreducible highest weight representations of
twisted affine Lie algebras via boundary conformal field theory has been developed
in [5, 10].

The contents of this note is as follows: In section 2, we review some basic facts
about twisted conjugation. In section 3, we explicitly describe the set of twisted
conjugacy classes of a compact simply connected Lie group G as a convex polytope
in an Euclidean vector space whose faces of maximal dimension are in one to one
correspondence with the vertices of a certain twisted affine Dynkin diagram. In
fact, this polytope can naturally be identified with the fundamental domain of the
twisted affine Weyl group corresponding to G and an automorphism τ of G. This
generalizes the classical situation of ordinary conjugacy classes which are param-
etrized by the fundamental alcove of the affine Weyl group corresponding to G. In
section 4, we show how to calculate the stabilizers of the twisted conjugacy clas-
ses. Since we chose G to be simply connected, the stabilizers of twisted conjugacy
classes are connected subgroups of G. The Dynkin diagram of the Lie algebras of
the stabilizers turn out to be exactly the sub-diagrams of the twisted affine Dynkin
diagram described in section 3. Again, this is well known in the untwisted case.
The fundamental groups of the stabilizers can be easily calculated from the root
data so that we have a complete description of the stabilizers.

Finally, section 5 contains the main results of this paper. Suppose, the group G

is simple and simply connected. Let η denote the Cartan 3-form on G. That is, η is
a left invariant 3-form on G which generates H 3(G, Z). Let C denote an untwisted
or twisted conjugacy class in G, and let ι : C → G denote the inclusion. It is known
that the 3-form ι∗η on C is exact. Hence we can choose a 2-form � on C such that
d� = ι∗η. Finally, fix some a ∈ R∗. We call an untwisted or twisted conjugacy
classes C ⊂ G integral at level a, if the integral

a

∫
N

η − a

∫
∂N

� (1)

takes values in Z for all 3-cycles N ⊂ G with ∂N ⊂ C. In other words, we call a
conjugacy class C integral at level a, if the relative 3-cocycle a(η, �) defines an
integral element of the relative cohomology group H 3(G, C)
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It is not hard to see that integral conjugacy classes at level a can only exist if
a itself is an integer. Furthermore, there is a well known correspondence between
(twisted) conjugacy classes in G and coadjoint orbits of the corresponding (twisted)
loop group L(G) [9, 19]. Let �G denote the space of based loops in G. Using a
modified version of the transgression homomorphism σ : H 3(G) → H 2(�G) we
can pull back the relative 3-cocycle a(η, �) to a 2-cocycle on the coadjoint orbit
of L(G) which corresponds to the twisted conjugacy class C. It turns out that this
2-cocycle is in the same cohomology class as the standard symplectic structure
on the coadjoint orbit. This allows to translate the integrality condition (1) for a
conjugacy class C to an integrality condition for the natural symplectic form on the
corresponding coadjoint orbit of L(G). It is known [9, 16, 19], that integral coad-
joint orbits of a (twisted) loop group correspond naturally to integrable irreducible
highest weight representations of the corresponding affine Lie algebra. So we get a
natural one-to-one correspondence between integral conjugacy classes of the group
G at non-negative level and integrable irreducible highest weight representations
of the corresponding affine Lie algebra.

2. Twisted conjugation

Let G be a Lie group and let τ be an automorphism of G. The τ–twisted conjugacy
classes of G are the orbits of the following action of the group G on itself:

G × G → G,

(g, h) �→ ghτ(g−1) .

Let τ ′ be another automorphism of G which differs from τ by an inner automor-
phism. That is, τ ′(g) = τ(ugu−1) for some u ∈ G. Then the map h �→ uh maps
τ ′–twisted conjugacy classes in G to τ–twisted conjugacy classes and induces an
diffeomorphism between the corresponding twisted conjugacy classes. From this
point of view, it is enough to consider automorphisms τ up to inner automorphisms
of G.

Now let us suppose that G is compact and semi-simple. Let Aut(G) denote
the group of automorphisms of G, and let Int (G) denote the subgroup of inner
automorphisms. Then Aut(G)/Int (G) is a finite group. After fixing a maximal
torus T ⊂ G and a basis � of the root system 	 of G with respect to T , the group
Aut(G)/Int (G) can be identified with a subgroup of the group of graph–automor-
phisms of the Dynkin diagram of 	. In fact, if we assume G to be simply connected,
then the groupAut(G)/Int (G) is isomorphic to the group of graph–automorphisms
of the Dynkin diagram. This observation allows us to find a nice representative in
each connected component of Aut(G). Namely, after fixing a maximal torus T ⊂ G

and a basis � of the root system 	 of G, any graph–automorphisms of the Dynkin
diagram corresponds to a permutation of the set � and can be lifted to an automor-
phism of G leaving T invariant. From now on, we will only consider automorphisms
τ of G which come from this construction.

One can view twisted conjugacy classes as G-orbits in the non-connected Lie
group G̃ = G � Aut(G)/Int (G), where G acts on G̃ by conjugation. From this
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point of view, the twisted conjugacy classes have been studied in [17] (see also [15]
and [19]).

3. The space of conjugacy classes

Our first goal is to describe the set of τ–twisted conjugacy classes in G. Choosing τ

to be the identity yields a description of the set of ordinary conjugacy classes in G.
Since τ leaves the maximal torus T ⊂ G invariant, we can consider the subgroup
T τ ⊂ T of τ–invariants. This group will in general not be connected. Let us denote
by T τ

0 the connected component of T τ containing the identity. It is a fact that every
τ–twisted conjugacy class in G intersects T τ

0 in at least one point (see e.g. [7],
Proposition 4.3).

So in order to describe the set of τ–twisted conjugacy classes in G, it remains
to check, which elements of T τ

0 are twisted conjugate under G. To this end, let us
introduce the twisted Weyl group

W(G, T , τ ) = Nτ
G(T τ

0 )/T τ
0 .

Here, Nτ
G(T τ

0 ) = {g ∈ G | gT τ
0 τ(g)−1 = T τ

0 } denotes the normalizer of T τ
0 with

respect to τ -twisted conjugation. It is a general fact that W(G, T , τ ) is a finite group
(see e.g.[7]). The twisted Weyl group W(G, T , τ ) can be seen as a generalization of
the ordinary Weyl group N(G, T ) = NG(T )/T of G with respect to the maximal
torus T . One can show that two elements of T τ

0 are twisted conjugate under G if
and only if they are conjugate under W(G, T , τ ). So the space of τ -twisted con-
jugacy classes in G can be identified with the quotient T τ

0 /W(G, T , τ). We shall
now describe this quotient in more detail.

Let W = NG(T )/T denote the usual Weyl group of G. The action of τ on
the torus T induces an action of τ on the Weyl group W(G, T ). Let Wτ denote
the subgroup of W(G, T ) which consists of elements commuting with τ . We also
introduce the finite group (T /T τ

0 )τ . Then one obtains the following isomorphism
[15, 19]:

W(G, T , τ ) ∼= W(G, T )τ � (T /T τ
0 )τ .

The group Wτ is the Weyl group of the identity component of the fixed point group
Gτ . Since T τ

0 is a maximal torus of this group and every element of Wτ commutes
with τ , the group Wτ acts on T τ

0 by its Weyl group action on T τ
0 . Now let us study

the action of (T /T τ
0 )τ on T τ

0 . Take some element t̄ ∈ (T /T τ
0 )τ and fix a pre-image

t of t̄ under the projection T → T/T τ
0 . The condition that t̄ is invariant under τ

translates to the equation τ(t) = ts for some s ∈ T τ
0 . Hence t t0τ(t−1) = t0s for

all t0 ∈ T τ . Thus, T/T τ
0 acts on T τ

0 by translations.
The group T/T τ

0 and its action on T τ
0 can be described more explicitly: Let h

denote the Lie algebra of T . The Killing form on G induces a W(G, T )–invari-
ant inner product on h which is also invariant under the action of τ on h. Let hτ

denote the τ–invariant part of h, i.e. the Lie algebra of T τ
0 and let π : h → hτ

denote the orthogonal projection with respect to the Killing form on h. Finally, let
exp : h → T denote the exponential map. Its kernel is a lattice in h and we can
identify T with h/ker(exp). Since τ acts on T , its induced action on h leaves the
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lattice ker(exp) invariant so that we have T τ
0 = hτ /ker(exp)τ . Finally, one checks

directly that (T /T τ
0 )τ ∼= π(ker(exp))/ker(exp)τ and that the translation action of

(T /T τ
0 )τ on T τ

0 comes from the translation action of π(ker(exp)) on hτ .
The observations above allow us to identify the space of twisted conjugacy

classes with the set hτ /Wτ � π(ker(exp)). This set can be identified with a poly-
tope in hτ as follows. First, let K ⊂ h denote the fundamental Weyl chamber K =
{h ∈ h | α(h) > 0 for all α ∈ �}. Then K ∩ hτ 	= ∅ and we have K ∩ hτ = {h ∈
hτ |α|hτ (h) > 0 for all α ∈ �}. The closure K̄ = {h ∈ h |α(h) ≥ 0 for all α ∈ �}
of K is a fundamental domain for the action of the Weyl group W of G on h. Sim-
ilarly, the closure K̄ ∩ hτ is a fundamental domain for the action of Wτ on hτ .

It remains to find a fundamental domain for the action of the group Wτ �

π(ker(exp)) on hτ . It is well known that if the group G is simply connected and
for τ = id, the lattice ker(exp) is the dual root lattice of G. Hence, the group
W � ker(exp) is the affine Weyl group of g, or equivalently the Weyl group of
the affine Kac-Moody algebra corresponding to g. A fundamental domain for the
action of W � ker(exp) is given by the fundamental alcove, i.e. by the set

a = {h ∈ h | α(h) ≥ 0 for all α ∈ � and θ(h) ≤ 1} .

Here, θ ∈ 	 denotes the highest root of 	 with respect to �. If G is not simply
connected, we have to divide h by W � , where  ⊂ h denotes the lattice of all
smooth homomorphisms S1 → T .

We now want a similar description for a fundamental domain for the action of
Wτ � π(ker(exp)) on hτ . First, we have to make a general observation. Denote
by 	τ the set 	τ = {α|hτ | α ∈ 	}. This is a subset in (hτ )∗, and if 	 is not of
type A2n, the set 	τ is a root system. If 	 is of type A2n with n > 1, then 	τ is a
non-reduced root system of type BCn, i.e. it is built out of the root system Bn and
Cn such that the long roots of Bn are the short roots of Cn. In the case 	 = A2, the
set 	τ consists of the union of two root systems of type A1 such that each element
in one copy of A1 is two times an element of the other copy of A1.

For simply connected G we use the observation [19] that the group Wτ �

π(ker(exp)) is the Weyl group of the twisted affine Lie algebra corresponding to g
and the automorphism τ . A fundamental domain for the action of this group on hτ

can be described as follows: If 	 is not of type A2n, let θτ denote the highest short
root of 	τ with respect to the basis {α|hτ | α ∈ �}. If 	 is of type A2n with n > 1,
let θτ denote the highest short root of the subsystem Bn of BCn multiplied by two
(i.e. θτ is a long root of the system Cn). If 	 is of type A2, let θτ denote the unique
positive long root of 	τ .

Now, in all cases, a fundamental domain for the action of the group Wτ �

π(ker(exp)) on hτ is given by the set

aτ = {h ∈ hτ | α|hτ (h) ≥ 0 for α ∈ � and θτ (h) ≤ 1

ord(τ)
} .

A proof of this fact can be found e.g. in [13], chapter 6. (Note that we have used
a different normalization of the invariant bilinear form on the twisted affine Lie
algebra than the one used in [13].) Again, if G is not simply connected, we have to
divide hτ by the action of Wτ � π().
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Example 3.1. Let G = SU(n) be the special unitary group. A maximal torus T ⊂
SU(n) is given by the set of diagonal matrices. The exponential map

exp : (x1, . . . xn) �→ diag(e2πix1 , . . . , e2πixn) ,

identifies the Lie algebra of T with the set {(x1, . . . xn) ∈ Rn | ∑
xj = 0}. One

can check directly, that the set of conjugacy classes in SU(n) is parametrized by
the fundamental alcove

a = {(x1, . . . , xn) ∈ Rn | x1 ≥ . . . ≥ xn,
∑

i

xi = 0, and x1 − xn ≤ 1} .

Example 3.2. For n ≥ 3, The group SU(n) admits a non-trivial outer automorphism
τ which is defined as follows. Let Jn denote the matrix Jn = antidiag(1, . . . ,1)
if n is odd and Jn = antidiag(1, . . . ,1,-1, . . . ,-1) if n is even. Then we can
set τ(A) = JnĀJ−1

n for A ∈ SU(n). The automorphism τ acts on h via τ :
diag(x1, . . . , xn) �→ diag(−xn, . . . , −x1). Hencehτ = {diag(x1, . . . , xn) |xi =
−xn+1−i for 1 ≤ i ≤ n}. If n = 2m is even, the polytope aτ which parametrizes
the set of τ -twisted conjugacy classes in SU(n) is given by

aτ = {(x1, . . . , xm) ∈ Rm | x1 ≥ . . . ≥ xm ≥ 0, and x1 + xm ≤ 1

2
} .

If n = 2m + 1 is odd and m > 1, the polytope aτ is given by

aτ = {(x1, . . . , xm) ∈ Rm | x1 ≥ . . . ≥ xm ≥ 0, and x1 ≤ 1

4
} .

Finally, in the case SU(3), we have hτ = {(x, 0, −x) | x ∈ R}, and

aτ = {x ∈ R | 0 ≤ x ≤ 1

4
} .

4. Stabilizers

Throughout this section, let G be simply connected. Given an element h ∈ G, the
conjugacy class containing h is isomorphic to G/StabG(h), where StabG(h) =
{g ∈ G | ghτ(g−1) = h} denotes the stabilizer of h in G. The aim of this section is
to give an explicit description of the stabilizers. We first describe the Lie algebras
of the stabilizers. Using this description along with some general facts of the theory
of compact Lie groups, we can calculate the fundamental groups of the stabilizers.
The fact that G is a simply connected compact Lie group implies that all stabilizers
are connected. So we have a complete description of the twisted conjugacy classes
in G.

As in section 2, let τ denote an automorphism of G which leaves a maximal
torus T ⊂ G invariant and induces an automorphism of the corresponding Dynkin
diagram of G. Let a ⊂ h denote the polytope parametrizing the set of conjugacy
classes in G, and let aτ denote the polytope in hτ parametrizing the set of τ–twisted
conjugacy classes in G.
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Let us set �̃ = � ∪ {−θ}, where, as before, � denotes a basis of 	. Then �̃

are the vertices of the extended Dynkin diagram of 	 or equivalently, the Dynkin
diagram of the affine Lie algebra corresponding to G. Similarly, the set �̃τ =
�τ ∪ {−θτ } labels the vertices of the Dynkin diagram of the twisted affine Lie
algebra corresponding to G and the automorphism τ of G.

It is implicitly contained in the classical literature on compact Lie groups (see
e.g. [1]), that the stabilizers of elements of G under ordinary conjugation have Dyn-
kin diagrams which can be obtained by deleting vertices from the Dynkin diagram
corresponding to �̃. This fact is a special case of the following proposition in the
case τ = id. 1

Proposition 4.1. Let G act on itself by τ–twisted conjugation and let H ∈ aτ .
Then the Dynkin diagram of the Lie algebra of Stab(exp(H)) is the sub-diagram
of the Dynkin diagram corresponding to �̃τ which is obtained by deleting all α

from the finite Dynkin diagram �τ for which α(H) 	∈ Z and deleting the vertex
corresponding to θτ whenever θτ (H) 	∈ 1

ord(τ)
+ Z.

The Lie algebra of Stab(exp(H)) is given by the sum of hτ and the sub-algebra
of g corresponding to the diagram described above.

Proof. Let us start with the case thatg is not of typeA2m.The groupStabG(exp(H))

can be written as

StabG(exp(H)) = {g ∈ G | exp(H)τ(g) exp(−H) = g} .

Therefore its Lie algebra is given by

Lie(StabG(exp(H))) = {X ∈ g | Ad(exp(H)) ◦ τ(X) = X} .

We can decompose the Lie algebra gC into the eigenspaces of τ :

gC =
ord(τ )−1⊕

k=0

gk ,

where gk denotes the e
2πi k

ord(τ) –eigenspace of the action of τ on gC. It is known
that g0 is a semi-simple Lie algebra with root system 	τ and that gk with k 	= 0 are
representations of g0 whose highest weight is given by θτ , the highest short root
of 	τ . The Cartan sub-algebra of g0 is given by hτ

C
. Decomposing gk into weight

spaces with respect to hτ , we can write

gC = hτ ⊕
⊕
α∈	τ

gα ⊕
ord(τ)−1⊕

k=1

⊕
λ∈Pk

gλ ,

where Pk ⊂ (hτ )∗ denotes the set of weights of gk as a representation of g0

1 The method described in [12] does not give the complete set of the possible stabilizers.
E.g. the group B4 appears as a stabilizer in F4, but cannot be obtained by deleting vertices
of the unextended Dynkin diagram of F4.
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Let us view X as an element of gC and write

X = H0 +
∑

α∈	τ

Xα +
ord(τ)−1∑

k=1

∑
λ∈Pk

Xλ ,

we see that we get

Ad(exp(H)) ◦ τ(X) =H0 +
∑

α∈	τ

e2πiα(H)Xα

+
ord(τ)−1∑

k=1

∑
λ∈Pk

e
2πi k

ord(τ) e2πiλ(H)Xλ .

This implies that the Lie algebra of Stab(exp(H)) is given as the sum of hτ
C

with
those gα such that α(H) ∈ Z and those gλ with λ ∈ Pk such that λ(H) ∈ −k

ord(τ )
+Z.

Since we have chosen H ∈ aτ , and since θτ is the highest weight of the gk we have
0 ≤ α(H) ≤ 1 and 0 ≤ λ(H) ≤ 1

ord(τ)
for all α ∈ 	τ and λ ∈ Pk . Furthermore,

|λ(H)| = 1
ord(τ)

can only be obtained for λ = ±θτ in which case H has to lie
on the boundary of aτ . If H lies in the interior of aτ , we have α(H) 	∈ Z for all
α ∈ 	τ and λ(H) 	∈ −k

ord(τ )
+ Z for all λ ∈ Pk . If H lies on the boundary of aτ , the

stabilizer of H is generated by the elements of �̃τ = �τ ∪ {θτ } for which either
α(H) ∈ Z if α ∈ �τ or θτ (H) ∈ −k

ord(τ )
+ Z.

The case that g is of type A2m can be obtained by similar arguments, one just
has to be more careful with the root system 	τ which is non-reduced. ��
Remark 4.2. There is a second approach to Proposition 4.1 which works for semi-
simple conjugacy classes in algebraic groups. This approach uses the classification
of finite order automorphisms of simple Lie algebras and has been worked out in
the proof of Theorem 3.2 in [15].

Finally, we have to study the topology of the stabilizers. Since we assumed G

to be simply connected, all stabilizers are connected. So in order to describe them
explicitly, we only have to determine their fundamental groups. This can be done
using some standard facts from the theory of compact Lie groups (see e.g. [7]): Let
	H ⊂ (hτ )∗ denote the root system of the group Stab(exp(H)), let QH ⊂ (hτ )∗
denote the lattice generated by 	H .

We can use the normalized Killing form on h to identify (hτ )∗ with hτ . Let Q∨
H

be the image of QH under this embedding. Then

π1(Stab(exp(H))) ∼= ker(exp)τ /Q∨
H .

Example 4.3. In figure 1 we indicate how the constructions described in this sec-
tion apply to the spaces of conjugacy classes of the simply connected compact Lie
groups of type C2 compared to the space of twisted conjugacy classes of the simply
connected Lie groups of type A3. The picture shows the fundamental domains of the
respective untwisted and twisted affine Weyl groups. The faces of the fundamental
domain are labeled with the stabilizers of the corresponding conjugacy classes.
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Fig. 1. Conjugacy classes of Sp(4) (left) versus τ -twisted conjugacy classes of SU(4)

(right) where τ is a a non-trivial outer automorphism of SU(4)

5. Integral conjugacy classes

5.1. The integrality condition

We start this section with our main definition: Suppose that G is simply connected
and simple and let η denote the left-invariant 3-form on G whose value at the
identity is given by η(X1, X2, X3) = 1

8π2 〈X1, [X2, X3]〉. Thus, η is a generator of

H 3(G, Z). Let τ be an automorphism of G, let C be a τ -twisted conjugacy class on
G and denote by ι : C → G the embedding of C into G. There is a canonical 2-form
� on C, which is defined as follows. Given an element A ∈ g, denote by AC the
generating vector field of the action of G on C. Then we set

�g(AC, BC) = 1

8π2

(〈Adg ◦ τ(A), B〉 − 〈Adg ◦ τ(B), A〉) .

It is known (see e.g. [2] Proposition 2.1, [3]) that

d� = ι∗η .

Definition 5.1. Fix some a ∈ R∗. We call a twisted or untwisted conjugacy class
C ⊂ G integral at level a if the integral

a

∫
N

η − a

∫
∂N

� (2)

takes values in Z for all 3-cycles N ⊂ G with ∂N ⊂ C.

In other words, we call a conjugacy class C integral at level a if the relative cocycle
a(η, �) ∈ H 3(G, C) is integral.

The goal of this section is to classify integral conjugacy classes in terms of inte-
gral coadjoint orbits of certain centrally extended loop groups, and thus to relate
them to integrable highest weight representations of the corresponding affine Lie
algebras.
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5.2. Coadjoint orbits of loop groups

Let G be as before. We denote by L(G) = C∞(S1, G) the loop group of G.2 There

is a universal central extension L̂(G) of the group L(G) which, as a topological
space, is a non-trivial S1-bundle over L(G). The underlying vector space of the Lie

algebra of L̂(G) is given by L̂(g) = L(g) ⊕ R, where L(g) = C∞(S1, g) denotes
the loop algebra of g. The smooth part of the dual of L̂(g) can be identified with
L(g) ⊕ R via the pairing

〈(X, a), (Y, b)〉 = 1

2π

∫
S1

〈X(θ), Y (θ)〉dθ + ab . (3)

Here, the bilinear form 〈 , 〉 on the right hand denotes the Killing form on the Lie
algebra g normalized so that the long roots of gC have square length 2.

The coadjoint action of the loop group L(G) on L(g) ⊕ R is given by [16, 9]

Ad∗
g : (X, a) �→ (gXg−1 − ag′g−1, a) ,

where g is an element of L(G) and g′ = d
dθ

g denotes the derivative of g with
respect to θ . Let us denote by O(X,a) ⊂ L(g) ⊕ R the L(G)–orbit through (X, a).

For a 	= 0, we can solve the differential equation

z′ = −1

a
Xz .

Let us denote by z(X,a) the unique solution of this equation with initial condition
z(X,a)(0) = e, where e is the identity element in G. Then, z(X,a) is a path in the Lie
group G starting at e. Now, since X ∈ L(g) is periodic, we get z(X,a)(θ + 2π) =
z(X,a)(θ)z(X,a)(2π). Taking another element (Y, a) in the coadjoint orbit O(X,a),
we have Y = gXg−1 − ag′g−1 for some g ∈ L(G). An easy calculation [16, 9]
shows that

z(Y,a)(θ) = g(θ)z(X,a)(θ)g(0)−1 . (4)

Since g is periodic, we see that z(X,a)(2π) and z(Y,a)(2π) lie in the same conjuga-
cy class in G. Furthermore, the stabilizer of (X, a) in L(G) is isomorphic to the
stabilizer of z(X,a)(2π) in G so that we get

O(X,a)
∼= L(G)/StabG(z(X,a)(2π)) .

The stabilizers have been explicitly described in section 4.
Now, let τ be an automorphism of G of finite order ord(τ) = r . The twisted

loop group L(G, τ) is defined as follows:

L(G, τ) = {g ∈ C∞(R, G) | g(θ) = τ(g(θ + 2π))} .

2 For technical reasons it is often more convenient to consider the Banach Lie group
of maps S1 → G of some fixed Sobolev class s > 1/2. We will ignore such subtleties
throughout this note and stick with the more intuitive group of smooth loops
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As in the untwisted case, there is a universal central extension ̂L(G, τ) of L(G, τ)

by the circle group S1 which, as a topological space, is a non-trivial S1–bun-

dle over L(G, τ). The Lie algebra of ̂L(G, τ) is L̂(g, τ ) = L(g, τ ) ⊕ R, where
L(g, τ ) = {X ∈ C∞(R, g) | X(θ) = τ(X(θ + 2π))} denotes the twisted loop

algebra of g. Again, the smooth part of the dual of L̂(g, τ ) can be identified with
L(g, τ ) ⊕ R via a non-degenerate pairing

〈(X, a), (Y, b)〉 = 1

2π

∫ 2π

0
〈X(θ), Y (θ)〉dθ + ab .

The coadjoint action of L(G, τ) on L(g, τ ) ⊕ R is again given by g : (X, a) �→
(gXg−1− ag′g−1, a). It has been observed in [19] that the correspondence between
coadjoint orbits of L(G) and conjugacy classes in G extends to a correspondence
between coadjoint orbits of L(G, τ) and τ–twisted conjugacy classes in G as fol-
lows: Fix (X, a) ∈ L(g, τ ) ⊕ R with a 	= 0 and, as before, solve the differential
equation z′ = − 1

a
Xz with initial condition z(X,a)(0) = e. If (Y, a) lies in the same

coadjoint orbit as (X, a), a similar calculation as in the untwisted case shows that
z(X,a)(2π) and z(Y,a)(2π) lie in the same τ–twisted conjugacy class. Furthermore,
the stabilizer of (X, a) in L(G, τ) is isomorphic to the stabilizer of z(X,a)(2π) in
G (where we mean the stabilizer with respect to τ–twisted conjugation in G). So
we have O(X,a)

∼= L(G, τ)/Stab(z(X,a)(2π)).
On every coadjoint orbit of a Lie group there exists a natural symplectic struc-

ture. In our situation, the corresponding 2-form ω on O(X,a) with a 	= 0 is given as
follows: Fix some (Y, a) ∈ O(X,a) and let A1, A2 be two tangent vectors at (Y, a).
We can view Ai as elements of L(g). Then the 2-form ω at (Y, a) evaluated at A1
and A2 is given by

ω(Y,a)(A1, A2) = 1

2π

∫
S1

〈Y (θ), [A1(θ), A2(θ)]〉dθ + a

2π

∫
S1

〈A′
1(θ), A2(θ)〉dθ .

For twisted loop groups the 2-form on the coadjoint orbits is given by the same
formula.

5.3. Integral conjugacy classes

As we have seen in the last section, we can identify each element (Y, a) ∈ O(X,a)

with the unique solution of the differential equation z′ = − 1
a
Y z with initial condi-

tion z(0) = e. This allows to define a map

F : R × O(X,a) → G

via
F : (θ, (Y, a)) �→ z(Y,a)(θ) .

As before, let η denote the closed left-invariant 3-form on G whose value at the
identity element of G evaluated on three tangent vectors X1, X2, X3 ∈ g is given
by η(X1, X2, X3) = 1

8π2 〈X1, [X2, X3]〉.
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Using the map F , we can pull back η to a 3-form F ∗η on R × O(X,a). Its value
at (θ, (Y, a)) ∈ R × O(X,a) evaluated on a triple (δθ, δ1(Y, a), δ2(Y, a)) of tangent
vectors at (θ, (Y, a)) is

1

8π2 〈z′
(Y,a)(θ)z(Y,a)(θ)−1, [ξ1(θ), ξ2(θ)]〉 ,

where we have identified the tangent vectors δi(Y, a) with vector fields δiz(Y,a)

along z(Y,a) and have set ξi(θ) = δiz(Y,a)(θ)z(Y,a)(θ)−1. In particular, it follows
from equation (4) that in this identification, the value of the generating vector field
BO corresponding to an element B ∈ L(g) at z = z(Y,a) is given by

BO(z) = (rz)∗B − (lz)∗B(0) ,

Where rg and lg denote right and left translation by an element g ∈ G. In particular,
we find

ξB(θ) = B(θ) − Adz(θ)B(0) .

Now we can integrate the form F ∗η over [0, 2π ] to obtain a 2-form

σ(η) =
∫ 2π

0
F ∗η(θ)dθ

on the coadjoint orbit O(X,a).
Let C denote the (twisted) conjugacy class corresponding to the coadjoint orbit

O(X,a). We can define a map F2π : O(X,a) → C via

F2π (Y, a) = z(Y,a)(2π)

and use this map to pull back the 2-form � on C to a 2-form F ∗
2π� on O(X,a). It

is easy to see that the two form σ(η) − F ∗
2π� is closed.

Proposition 5.2. Let a 	= 0. Then the 2-form aσ(η)−aF ∗
2π� on the coadjoint orbit

O(X,a) is co-homologous to a multiple 1
2π

ω of the Kirillov-Kostant symplectic form
on the coadjoint orbit O(X,a).

Proof. We have to compare the two form 2πa(σ(η) − F ∗
2π�) with the symplec-

tic form ω. To this end, let us introduce a 1-form β on O(X,a), which, at a point
(Y, a) ∈ O(X,a) evaluated at a tangent vector δ(Y, a) is given by

β(Y,a)(δ(Y, a)) = a

4π

∫ 2π

0
〈z′

(Y,a)(θ)z(Y,a)(θ)−1, ξ(θ)〉dθ ,

with ξ as before. Since we have

ξi(β(δj (Y, a))(Y, a) = a

4π

∫ 2π

0
〈ξ ′

i (θ), ξj (θ)〉dθ

and

z′
(Y,a)(θ)z(Y,a)(θ)−1 = −1

a
Y (θ) ,
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we find

dβ(Y,a)(ξ1, ξ2) = 1

4π

∫ 2π

0
〈Y (θ), [ξ1(θ), ξ2(θ)]〉dθ

+ a

2π

∫ 2π

0
〈ξ ′

1(θ), ξ2(θ)〉dθ − a

4π
〈ξ1(2π), ξ2(2π)〉

and hence

2πaσ(η)(ξ1, ξ2) + dβ(ξ1, ξ2) = 1

2π

∫ 2π

0
〈Y (θ), [ξ1(θ), ξ2(θ)]〉dθ

+ a

2π

∫ 2π

0
〈ξ ′

1(θ), ξ2(θ)〉dθ

− a

4π
〈ξ1(2π), ξ2(2π)〉 .

Since we can assume the ξi to come from generating vectorfields of the L(G)-
action, we can write ξi(θ) = Bi(θ)−Adz(θ)Bi(0) for some Bi ∈ L(g) (respectively
Bi ∈ L(g, τ ) in the twisted case) and z = z(Y,a). Inserting this into the equation
above, a short calculation gives

2πaσ(η)(ξ1, ξ2) + dβ(ξ1, ξ2)

= 1

2π

∫ 2π

0
〈Y (θ), [B1(θ), B2(θ)]〉dθ + a

2π

∫ 2π

0
〈B ′

1(θ), B2(θ)〉dθ

+ a

4π
〈Adz(2π)B1(0), B2(2π)〉 − a

4π
〈Adz(2π)B2(0), B1(2π)〉 .

Recall that Bi(0) = τ(Bi(2π)), (with τ = id in the untwisted case) so that we
have

a

4π
〈Adz(2π)B1(0), B2(2π)〉 − a

4π
〈Adz(2π)B2(0), B1(2π)〉 = 2πaF ∗

2π�(ξ1, ξ2)

Hence we get
2πaσ(η) − 2πaF ∗

2π� = ω .

��
Our next goal is to translate the integrality condition (2) for the pair (C, a) to

an integrality condition for the 2-form aσ(η) − aF ∗
2π� , and hence for the sym-

plectic form 1
2π

ω on the corresponding coadjoint orbit O(X,a). Given any closed
2-cycle Ñ ∈ H2(O(X,a)), we get a 3-cycle N in G by mapping (Y, a) ∈ Ñ to
{z(Y,a)(θ) | 0 ≤ θ ≤ 2π}. By the results of the last section, we have ∂N ⊂ C so
that N is indeed a relative 3-cycle. Furthermore, by construction we have∫

Ñ

1

2π
ω =

∫
Ñ

a(σ (η) − F ∗
2π�) = a

∫
N

η − a

∫
∂N

� ,

so that integrality of 1
2π

ω is necessary for the integrality for aη.
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In the other direction, we need the following proposition.

Proposition 5.3. For any relative 3-cycle N in G with ∂N ⊂ C, there exists a (not
necessarily unique) closed 2-cycle Ñ∗ ∈ H2(O(X,a)) such that ∂N∗ = ∂N . Here,
the 3-cycle N∗ is obtained from Ñ∗ by the construction described above.

We will postpone the proof of proposition 5.3 to section 5.4.
Let us fix a 3-cycle N in G with ∂N ⊂ C and let Ñ∗ ∈ H2(O(X,a)) be the 2-

cycle from proposition 5.3. As we have noted, the cycle Ñ∗ need not be unique, but
we can do with the following. Since ∂(N − N∗) = 0, we have N − N∗ ∈ H3(G).
We can write

a

∫
N

η − a

∫
∂N

� = a

∫
N−N∗

η + a

∫
N∗

η − a

∫
∂N

�

= a

∫
N−N∗

η + a

∫
Ñ∗

(
σ(η) − F ∗

2π�
)

.

Now, let us take N to be a generator of H3(G) ∼= Z. Since ∂N = ∅, we find
N∗ = 0. We have chosen η to be the generator of H 3(G, Z) ∼= Z so that the
integrality condition (2) translates to a ∈ Z . But this implies a

∫
N−N∗ η ∈ Z for

all 3-cycles N in G with ∂N ⊂ C so that integrality of aσ(η) − aF ∗
2π� implies

integrality of a(η, �). Putting everything together we get

Theorem 5.4. A pair (C, a) of an untwisted respectively twisted conjugacy class
C ⊂ G and an a 	= 0 satisfies the integrality condition (2) if and only if a ∈ Z \ {0}
and the natural symplectic structure 1

2π
ω on the corresponding coadjoint orbit

O(X,a) of the loop group L(G), respectively the twisted loop group L(G, τ) is
integral.

The integrality condition for the Kirillov-Kostant form 1
2π

ω on the coadjoint
orbit O(X,a) can be translated back to an explicit condition for the conjugacy class.
Indeed, as we have seen in section 5.2, we can take 1

a
X to be a constant 1

a
X ∈

a ⊂ h ⊂ g ⊂ L(g) in the untwisted case and 1
a
X ∈ aτ ⊂ hτ ⊂ gτ ⊂ L(g, τ )

in the twisted case. Now, the condition that 1
2π

ω is an integral 2-form translates to
the condition that α(X, a) ∈ Z for all roots α of the (twisted) affine Lie algebra

̂L(gC, τ ). This gives again the condition that a must be an integer. Furthermore, let
us identify h ⊕ R with its dual via the non-degenerate pairing from (3). Then, for
fixed positive a ∈ Z, the (X, a) satisfying the integrality condition are exactly the
highest weights of the irreducible highest weight representations of the (twisted)

affine Lie algebra L̂(g, τ ) at level a.

Remark 5.5. In fact, one can associate to each irreducible highest weight represen-
tation a coadjoint orbit of the corresponding (twisted) loop group [9, 19]. Under
this correspondence, a highest weight representation with highest weight (X, a)

does not correspond to the coadjoint orbit passing through (X, a) but rather to the
orbit through (X + ρτ , a + h∨

τ ), where ρτ ∈ hτ denotes the projection of the half
sum of all positive roots of gC to hτ , and h∨

τ denotes the dual Coxeter number of

the twisted affine Lie algebra L̂(g, τ ) (in the untwisted case, just take τ = id . See
e.g. [13] for more information on affine Lie algebras).
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5.4. Proof of Proposition 5.3

Before we start with the proof of Proposition 5.3, we need some preparations.

Lemma 5.6. For any a 	= 0, the map O(X,a) → C which is given by (Y, a) �→
z(Y,a)(2π) is surjective.

Proof. First, note that the map L(G, τ) → G which maps γ ∈ L(G, τ) to γ (0) is
surjective. Indeed, fix some g ∈ G and choose H ∈ g such that exp(H) = g. We

can decompose gC = ⊕ord(τ)−1
k=0 gk , where gk denotes the e

2πi k
ord(τ) –eigenspace of

τ . Viewing H as an element of gC, we can write H = ∑ord(τ)−1
k=0 Hk . Let us set

YC(θ) =
ord(τ)−1∑

k=0

Hke
ik

ord(τ)
θ

The real part Y of YC is an element of L(g, τ ) and we have exp(Y )(0) = g.
Finally, fix some g0 ∈ C. We can write g0 = τ(g)hg−1 for some g ∈ G and

h ∈ Gτ . Fix H ∈ gτ with exp(− 2π
a

H) = h, and γ ∈ L(G, τ) with γ (0) =
g. Set Y0(θ) = γ (θ)Hγ (θ)−1 − aγ ′(θ)γ −1(θ). Then we have z(Y0,a)(2π) =
γ (2π) exp(− 2π

a
H)γ (0)−1 = g0. ��

Proof of Proposition 5.3. Let us fix a triangulation {Di}i∈I of ∂N and a point xi

in the interior of each triangle. If the triangulation is fine enough, each Di allows
to choose a triangle Ei in the Lie group G such that the identity element e ∈ G

is in the interior of Ei and we have Di = {gxig
−1 | g ∈ Ei}. Now, using the fact

that the exponential map exp : g → G is locally invertible at e, we can refine the
triangulation {Di}i∈I to obtain triangles E′

i in g with 0 ∈ E′
i such that exp restricted

to an open neighborhood of E′
i invertible, and exp(E′

i ) = Ei . By the construction
in the first part of the proof of Lemma 5.6, the triangles E′

i in g give triangles
E′′

i ⊂ L(G, τ) in the loop group. Finally, using Lemma 5.6, for each i ∈ I we can
choose Xi ∈ O(X,a) such that z(Xi,a)(2π) = xi . Then the set

D′
i = {Ad∗

γ (Xi, a) | γ ∈ E′′
i } ⊂ O(X,a)

is a triangle in O(X,a).
Now the idea is to take the union of all D′

i with i ∈ I . But the triangles D′
i might

not fit together to form a closed 2-cycle in O(X,a). Indeed, if an element g ∈ ∂N lies
on the boundary of two triangles D1 and D2, the construction from above associates
two elements (Y1, a) and (Y2, a) of O(X,a) to g which might be different. But we
know that both (Yj , a) associated to such g satisfy z(Yj ,a)(2π) = g. Set

Fg = {(Y, a) ∈ O(X,a) | z(Y,a)(2π) = g} ,

and let us assume for the moment that π0(Fg) = π1(Fg) = {0} for each g ∈ G.
Then, since Fg is connected, we can join (Y1, a) and (Y2, a) by a path inside

Fg . Furthermore, we can choose such a path for each point g of the edge in such a
way that it depends continuously on the point g. Indeed, we can consider the union
of all Fg with g an element of a fixed edge of the triangle Di . This set is a subset
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of the coadjoint orbit and it is connected and simply connected (being a fibration
over a closed interval with fibers isomorphic to Fg). This shows that that one can
join the edges continuously (by contracting the loop given by the edges together
with the paths joining the endpoints of the edges).

Doing this for all edges of the triangulation {Di}i∈I , we can thus “join the
edges” of the D′

i . This procedure might still leave “holes” at the vertices of the
triangulation. Let g be a vertex of the triangulation . The boundary of a “hole at g”
is homeomorphic to an image of S1 inside Fg . But since we have assumed Fg to
be simply connected, we can contract the boundary inside Fg and thereby “fill the
hole”. Repeating this process at each vertex of the triangulation, we obtain a closed
2-cycle in O(X,a) with the desired properties.

So it remains to check that we indeed have π0(Fg) = π1(Fg) = {0} for each
g ∈ G. This is the content of the following lemma 5.7. ��
Lemma 5.7. We have π0(Fg) = π1(Fg) = {0} for all g ∈ G.

Proof. Using the results of section 5.2 and denoting by StabG(g) the stabilizer of
g with respect to τ–twisted conjugation, we can write

Fg = {(Y, a) ∈ O(X,a) | z(Y,a)(2π) = g}
∼= {γ ∈ L(G, τ) | γ (0) ∈ StabG(g)}/StabL(G,τ)(X, a) .

Again using the results described in section 5.2, we have StabL(G,τ)(X, a) ∼=
StabG(g) via the map γ �→ γ (0). Let us write Gg = {γ ∈ L(G, τ) | γ (0)

∈ StabG(g)}. Then we can use the long exact sequence

· · · →π1(StabG(g)) → π1(Gg) → π1(Fg) →
→ π0(StabG(g)) → π0(Gg) → π0(Fg) → 0

to compute the homotopy groups. Indeed, it is easy to see that Gg is connected so
that π0(Fg) = {0}. Furthermore, since G is simply connected and since StabG(g)

is the fixed point set of an automorphism of G, we know that StabG(g) is connected.
So if we can show that the injection ι : StabG(g) → Gg induces a surjection of
fundamental groups, we are done.

Let ϕ : S1 → Gg , θ �→ ϕθ be a loop in Gg . The map θ �→ ϕθ (0) defines a loop
in StabG(g). Obviously, this map induces a surjection π1(Gg) → π1(StabG(g)).
It remains to show that the map is injective as well. So let ϕ and ϕ̃ be two loops in
Gg which map to the same element in π1(StabG(g)). We have to show that ϕ and
ϕ̃ are homotopic. Let f be the loop in StabG(g) defined via f (θ) = ϕθ (0) and
accordingly f̃ . Assume that � : [0, 1] × [0, 2π ] defines a homotopy from f to f̃ .
Then

�̃ : (s, θ) �→ ϕθ ι(�(0, θ))−1ι(�(s, θ))

defines a homotopy from ϕ to a loop ϕ̂ in Gg whose residual image f̂ : θ �→ ϕ̂θ (0)

equals f̃ . So from now on, we can assume that f = f̃ . Finally, we can use the
fact that the set {γ ∈ L(G, τ) | γ (0) = g0} is connected for each g0 ∈ G to
find a homotopy from ϕ to ϕ̃. Indeed, we can view the loops ϕ and ϕ̃ as sec-
tions in a fibration over S1, whose fiber at a point θ ∈ S1 is given by the set
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{γ ∈ L(G, τ) | γ (0) = ϕθ (0)}. One easily checks that the fibers are connected.
Therefore, since S1 is one-dimensional, the sections ϕ and ϕ̃ are homotopic. This
finishes the proof. ��
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