
Comput Sci Res Dev (2013) 28:185–192
DOI 10.1007/s00450-012-0216-2

S P E C I A L I S S U E PA P E R

A fast and scalable low dimensional solver for charged particle
dynamics in large particle accelerators

Yves Ineichen · Andreas Adelmann · Costas Bekas ·
Alessandro Curioni · Peter Arbenz

Published online: 23 May 2012
© Springer-Verlag 2012

Abstract Particle accelerators are invaluable tools for re-
search in the basic and applied sciences, in fields such as ma-
terials science, chemistry, the biosciences, particle physics,
nuclear physics and medicine. The design, commissioning,
and operation of accelerator facilities is a non-trivial task,
due to the large number of control parameters and the com-
plex interplay of several conflicting design goals.

We propose to tackle this problem by means of multi-
objective optimization algorithms which also facilitate mas-
sively parallel deployment. In order to compute solutions in
a meaningful time frame, that can even admit online op-
timization, we require a fast and scalable software frame-
work. In this paper, we focus on the key and most heavily
used component of the optimization framework, the forward
solver. We demonstrate that our parallel methods achieve a
strong and weak scalability improvement of at least two or-

Y. Ineichen (�)
IBM Research—Zurich & Paul Scherrer Institut, Rüschlikon,
Switzerland
e-mail: yves.ineichen@psi.ch

A. Adelmann
Paul Scherrer Institut, Villigen, Switzerland
e-mail: andreas.adelmann@psi.ch

C. Bekas · A. Curioni
IBM Research—Zurich, Rüschlikon, Switzerland

C. Bekas
e-mail: bek@zurich.ibm.com

A. Curioni
e-mail: cur@zurich.ibm.com

P. Arbenz
Computer Science Department, ETH, Zürich, Switzerland
e-mail: arbenz@inf.ethz.ch

ders of magnitude in today’s actual particle beam configura-
tions, reducing total time to solution by a substantial factor.

Our target platform is the Blue Gene/P (Blue Gene/P is a
trademark of the International Business Machines Corpora-
tion in the United States, other countries, or both) supercom-
puter. The space-charge model used in the forward solver
relies significantly on collective communication. Thus, the
dedicated TREE network of the platform serves as an ideal
vehicle for our purposes. We demonstrate excellent strong
and weak scalability of our software which allows us to per-
form thousands of forward solves in a matter of minutes,
thus already allowing close to online optimization capabil-
ity.

Keywords Beam dynamics simulation · Scalability ·
Space charge · Multi-objective optimization · BG/P

1 Introduction

In contemporary scientific research, particle accelerators
play a significant role. Fields, such as material science,
chemistry, the biosciences, particle physics, nuclear physics
and medicine rely on reliable and effective particle accelera-
tors as research tools. Achieving the required performance is
a complex and multifaceted problem in the design, commis-
sioning, and operation of accelerator facilities. Today, tun-
ing machine parameters, e.g., bunch charge, emission time
and various parameters of beamline elements, is most com-
monly done manually by running simulation codes to scan
the parameter space. This approach is tedious, time consum-
ing and can be error prone. In order to be able to reliably
identify optimal configurations of accelerators we propose
to solve large multi-objective design optimization problems
to automate the investigation for an optimal set of tuning

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159156286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:yves.ineichen@psi.ch
mailto:andreas.adelmann@psi.ch
mailto:bek@zurich.ibm.com
mailto:cur@zurich.ibm.com
mailto:arbenz@inf.ethz.ch

186 Y. Ineichen et al.

Fig. 1 Multi-objective framework: the pilot (master) solves the opti-
mization problem specified in the input file by coordinating optimizer
algorithm and workers running forward solves

parameters. Observe that multiple and conflicting optimal-
ity criteria call for a multi-objective approach.

We developed a modular multi-objective software frame-
work (see Fig. 1) where the core functionality is decou-
pled from the “forward solver” and optimizer (master/slave).
This allows to easily interchange optimizer algorithms, for-
ward solvers and optimization problems. A “pilot” coor-
dinates all efforts between the optimization algorithm and
the forward solver. This forms a robust and general frame-
work for massively parallel multi-objective optimization.
Currently the framework offers one concrete optimization
algorithm, a genetic algorithm employing a NSGAII [1] se-
lector. Normally this methods are plagued by the trade-of
between level of detail and time to solution. We address this
problem by using forward solvers with different time and
detail complexity.

In our application the forward solver provides informa-
tion about the beam behavior for a given input configuration.
The OPAL (Object Oriented Parallel Accelerator Library)
framework [4] already features a parallel three dimensional
macro particle tracker for beam dynamic simulations inte-
grating millions of macro particles in time. During a simu-
lation run the tracker calculates and applies forces acting on
particles, e.g. space charge (electric interactions of charged
particles) and external electric and magnetic fields induced
by beam line elements such as solenoids and radio frequency
cavities. In particular computing space charge forces is com-
putationally intensive. Commonly (and also in OPAL) the
arising N -Body problem is solved in every timestep using an
FFT-based or iterative [3] solver. This, and additional com-
putationally demanding components of a full 3D tracker, put
a severe limitation on the time frame within which we can
perform optimization of particle accelerators.

In order to facilitate a poly-algorithmic approach (fa-
vored by the optimizer), trading the level of detail for time

Fig. 2 Sketch of a sliced
particle bunch

to solution depending on the situation, we incorporated a
simplified model (similar to [5]) into OPAL (named “en-
velope tracker”) providing a fast forward solver with re-
duced details while retaining important characteristics for
the multi-objective optimizer. This can be achieved by re-
placing macro particles with slices (number of slices �
number of particles), as depicted in Fig. 2. Slices describe
the beam envelope, i.e. extension of the beam in transver-
sal direction. As with macro particles, slices are subject to
forces and the ellipses deform accordingly. Since the En-
velop Tracker employs a number of slices that is orders of
magnitude smaller than the number of macro particles used
in the 3D tracker (commonly less then 1000), execution time
reduces drastically while beam characteristics are retained.
For example, the space charge calculation N -Body prob-
lem becomes very small and can cheaply be solved by an
O(slices2) approach or even estimated cheaply in closed
form. In this paper we solely focus on improvements to-
wards a fast and scalable forward solver, in the context of
the new fast envelope tracker:

– In Sect. 2 we discuss implementation and paralleliza-
tion of a fast envelope tracker for beam dynamic simu-
lations. In order to understand performance we provide
an overview of the theoretical complexity of all involved
components.

– In Sect. 3 we test the scalability of our methods. The
compute platform of choice was the Blue Gene/ P Super-
computer. We achieve a very good parallel performance
by taking advantage of fast MPI collectives on the Blue
Gene/P TREE network.

– The incorporation and parallelization of the new envelope
tracker within OPAL was far from being simple. Signifi-
cant code re-engineering was crucial in achieving our pur-
poses.

We report that in current beam dynamics simulations our
parallelization of the envelope model reduces the time to
solution by two orders of magnitude (from 3D tracker to
O(n2) space charge slice tracker), and even more with the
analytical space charge model. This opens the way for large
scale multi-objective optimization design of particle accel-
erators.

A fast and scalable low dimensional solver for charged particle dynamics in large particle accelerators 187

Table 1 Description of employed variables

Variable Description

i slice index

c speed of light

zi longitudinal position of slize i

Ri radius of slice i

βi speed of slice i relative to speed of light

γi Lorentz factor of slices i

Q the bunch charge

L the length of the bunch

Eext
z total external electric field

Esc
z total space charge field

K sum of focusing gradient of all active beamline elements

2 The envelope tracker

The envelope tracker solves an ordinary differential equa-
tion describing the equations of motion for homogeneously
charged slices. Slices are generally ellipses and in special
cases circles (see Fig. 2) (see [6] for the complete mathe-
matical framework). Important variables are summarized in
Table 1.

The main equation describing the time evolution of each
slice radius Ri (similar for axes by solving the equation
twice for both axes independently) is

d2

d2t
Ri + βiγ

2
i

d

dt
(βiRi) + Ri

∑

j

K
j
i

= 2c2kp

Riβi

×
(

G(Δi,Ar)

γ 3
i

− (
1 − β2

i

)G(δi,Ar)

γi

)

+ 4εnc

γi

1

R3
i

, (1)

where εn is the computed root mean square normalized
emittance, kp the beam perveance, G(Δi,Ar) the radial
space charge term and Δi = zi − ztail is the distance from
slice i to the tail of the bunch, δi = zi + zhead. Ar,i denotes
the slice rest frame aspect ratio Ri/(γiL). The evolution of
longitudinal motion for each slice is

d

dt
βi = e0

m0cγ
3
i

(
Eext

z (zi , t) + Esc
z (zi, t)

)

d

dt
zi = cβi.

(2)

Algorithm 1 states all necessary steps in order to solve
these equations. The first three methods (invoked on line
2,4 and 5) handle the sampling of the time and position
dependant external electric and magnetic fields present in
a particle accelerator, e.g., cavities and magnets. While
switchElement() ensures that, at the current position

Algorithm 1 Core code of the Envelope Tracker
1: for all timesteps do
2: switchElements()
3: for all slices do
4: getExternalFields()
5: getKFactors()
6: end for
7: synchronizeSlices()
8: calcCurrent()
9: calcSpaceCharge()

10: if not all slices emitted then
11: emission()
12: end if
13: for all emitted slices do
14: timeIntegration()
15: end for
16: t ← t + Δt

17: end for

of the bunch, the correct elements are active, the other two
calculate the external electric and magnetic field and slice
deformation forces for each slice. Next we calculate self in-
duced fields (see next two sections). During the emission
process all slices are emitted at the cathode. Finally, in ev-
ery timestep, we integrate the already emitted slices by a
5th order Runge-Kutta integration scheme with monitoring
of local truncation errors (as presented in [8, pp. 714ff]) is
used to solve (1) and (2). The ODE can be solved for each
slice independently and, therefore, in parallel.

A comparison shows that important quantities are within
a 5 % margin compared to the 3D tracker. In the context
of our multi-objective optimization application this level of
detail suffices.

N2 space charge computation In order to compute space-
charge and current profile efficiently in parallel we collect β

(speed of a slice relative to the speed of light) and z position
of all n slices a priori on all processors (“synchronization”
of slice information). This synchronization alone requires
two MPI_Allreduce over an array of size n.

The actual space charge and current profile calculation
are the most computationally involved in Algorithm 2. The
N -Body problem requires O(n2) operations and one global
reduction on single floating point numbers. The current pro-
file calculation is more expensive due to a Savitzky-Golay
smoothing filter (implemented as in [8]), solving a linear
system of equations by performing an LU decomposition
as well as two convolutions. Here, ns denotes the number
of points of the current density that need to be smoothed.
Typically ns is only a small fraction of n.

Analytical space charge computation In order to reduce
the space charge computation costs we calculate an analyt-

188 Y. Ineichen et al.

Algorithm 2 O(n2) space charge computation
for all i ∈ slices do

for all j ∈ slices do
dz ← |zj − zi | {distance from slice j to i}
if dz > minimal slice distance we consider then

v ← calculated influence of slice j {scaled by

1/

√
d2
z }

if zj > zi {check if j is left or right of i} then
sm ← sm − v

else
sm ← sm + v

end if
end if

end for
Fl,i ← longitudinal space charge force depending on
sm

Ft,i ← transversal space charge force can be computed
independently

end for

ical approximation of space charge forces. This is achieved
by introducing a factor z/L denoting the fraction of slices
to the right of the slice under consideration. Assuming a
cylindrical beam shape the longitudinal space charge term
becomes

E(z) = Q

2πε0R2

[√(
1 − z

L

)2

+
(

R

L

)2

−
√(

z

L

)2

+
(

R

L

)2

−
∣∣∣∣1 − z

L

∣∣∣∣ +
∣∣∣∣
z

L

∣∣∣∣

]
.

The radial space charge term can be deduced similarly. Since
the analytic formulation does solely depend on the bunch
length an the z position of the slice under consideration, par-
allelization is trivial: the bunch length (zhead − ztail) has to
be computed once by finding the minimal and maximal slice
z position using an MPI_Allreduce. Note that comput-
ing the current profile (calcI()) is not required under the
analytic space charge model.

2.1 Theoretical complexity

To understand the performance of the code we first cover
a detailed analysis of the complexity of all methods intro-
duced in Algorithm 1. In the following analysis we will de-
note the total number of slices by n, the total number of
timesteps by t , with m the total number of beamline ele-
ments and s is the degrees of freedom of a slice. With help
of these abbreviations we deduce worst case bounds for the
number of floating point operations (FLOPs), and summa-
rized in Table 2.

Table 2 Complexity summary and number of MPI_Allreduce
(NM) for various phases of envelope tracker (∗ denotes analytical space
charge computation)

Phase FLOPs NM Size

switchElements() O(m) –

getExternalFields() O(m) –

getKFactors() O(m) –

synchronizeSlices() O(1) 2 n

calcCurrent() O(n3) 1 n

calcSpaceCharge() O(n2) 2 1

calcSpaceCharge()∗ O(1) 2 1

emission() O(n) 1 1

timeIntegration() O(ns2) –

Starting from the top, we note that external fields meth-
ods do not require communication and operations are pro-
portional to the number of currently active beamline ele-
ments. Subsequently, space charge forces have to be com-
puted by one of the two described methods. Emission re-
quires one collective reduction over one double and is done
n times in total (independent of t). Finally, the Runge-Kutta
integrator is called, requiring no communication and only
O(ns2) FLOPs (here s = 10).

Table 2 illustrates that the n2 space charge model is com-
putationally the most expensive part. The other phases are
comparably cheap and do not require additional communi-
cation. Therefore, we expect them to scale perfectly.

2.2 Parallelization

In this section we describe the parallelization of all relevant
sections of the code, without considering the analytic space
charge computation (embarrassingly parallel).

We distribute all slices in contiguous blocks on all
available processors, creating a distribution with a load
imbalance of at most 1 slice. The number of synchro-
nization points is small, i.e. one per timestep in synch-
ronizeSlices(). Once this synchronization takes place
we only depend on a small number of collectives for single
variables. The last communication related expensive part is
calculating beam statistics. For the moment we can neglect
this because, from an optimization point of view, we only
need to calculate beam statistics a constant number of times
during a simulation (� t).

The envelope tracker is parallelized by employing MPI
collectives, such as e.g. MPI_Allreduce. On the other
hand OPAL relies on another framework, the Independent
Parallel Particle Layer (IPPL) [2], providing an abstract
layer for handling parallel fields and particles. The envelope
tracker implementation only uses OPAL’s features to incor-
porate external electric and magnetic fields and the infras-
tructure, e.g. to handle input files. Since these features do not

A fast and scalable low dimensional solver for charged particle dynamics in large particle accelerators 189

require much communication, reported performance results
generally do not benchmark IPPL, but only our pure MPI
implementation of the envelope tracker. However, when ex-
amining the total MPI time it is important to take into con-
sideration that using OPAL’s features employ the IPPL
message class (MPI layer using pre-posted MPI_Isend’s).

During the development of the code we first encoun-
tered quite limited scalability. An extensive profiling and
benchmarking process revealed that some parts of the orig-
inal code were responsible as they were purely serial (Am-
dahl’s law). We used the IBM HPCTOOLKIT (see below) for
profiling. Thus, while other parts scaled perfectly the serial
part of the code became dominant and parallel performance
dropped fast. This led to a large code review resulting in
more optimizations and parallelization of serial parts. Cur-
rently the Savitzky-Golay smoother is the last part of the
code that remains serial. Since it smooths only a very small
fraction of the total number of slices (ns � n), it currently
only negligibly affects overall scalability, but is likewise af-
fected by Amdahl’s law.

3 Results

Results presented in this section were measured on an IBM
Blue Gene/P system. One node consists of a Quad core 450
PowerPC running at 850 MHz and a peak performance of
13.6 GFLOP/s (per node). The machine has 5 networks,
two of which are of particular interest for our application: a
3D Torus network and a (tree) network for collectives. The
Torus network has a bandwidth of 6 GB/s. The collective
network has a bandwidth of 2 GB/s and a round-trip worst
case latency of 2.5 µs. More details are given in [9].

3.1 Experimental setting

The Blue Gene/P system offers 3 modes of operation. In VN
mode (default for all our experiments), each of the 4 cores
per compute node spawns an MPI process. In the DUAL
mode we have 2 MPI processes and each of them can spawn
2 shared memory threads. Finally, the SMP mode features
1 MPI process per node which can have 4 threads.

We measured timings of different components with
help of IPPL timers (providing a simple wrapper for
MPI_Wtime for minimum, average and maximum) and the
HPCTOOLKIT [7] for MPI analysis and in-depth details re-
garding spent cycles. Total time measures the total run time
from start to end. In addition, we report timings of space
charge and current density calculation (lines 8 and 9 in Al-
gorithm 1), the time integration (line 14 in Algorithm 1)
and external field evaluation (line 4 in Algorithm 1). The
simulation performs the first 2000 timesteps of the actual
SWISSFEL Injector, Phase 1.

Fig. 3 Timings for simulation with 1,000 slices with analytical (Top)
and n2 (Bottom) space charge model, minimum and maximum dashed,
average solid line

3.2 Strong scaling

In Fig. 3 minimum, maximum and average timings for 1,000
slices are plotted. We see that minimum and maximum tim-
ings are narrow, showing that the problem is well balanced.
As expected space charge and current profile dominate par-
allel performance. Timings of the ODE solver and exter-
nal field evaluation are one magnitude smaller and at some
point scale below of the total communication time (after
128 cores).

As of two cores the MPI timings are constant, indepen-
dent of the total number of cores employed. Notice that,
even with this rather small problem size, the achieved band-
width is quite satisfactory, although still far form the peak.
In particular, for 128 cores on core 0 we get

Ncalls × bytes × 8

t × 220
= 7999 × 7988.0 b × 8

1.583 s × 220
≈ 308 MB/s,

for all MPI_Allreduce with size n. Collectives of single
values (4 and 8 bytes) are latency dominated. One indica-
tion is the total time of 6007×4 byte messages and 16006×
8 byte messages is roughly the same (0.245 and 0.333). Fur-

190 Y. Ineichen et al.

Fig. 4 Parallel efficiency for average timings of 1,000 slices for ana-
lytical (Top) and n2 (Bottom) space charge

thermore, considering the “ideal” latency

t

Ncalls
= 0.245 s

6007
≈ 41 µs,

we are only latency bound for small collectives.
On the Blue Gene/P it is possible to switch between dif-

ferent communication strategies for the collectives. This can
be achieved by changing environment variables that control
the DCMF layer (see [9]), i.e. DCMF_*. We experimented
with two different values: TREE and GLOBAL for the all re-
duce operation. TREE forces the MPI_Allreduce to use
the collective network whereas GLOBAL uses the global col-
lective network protocol (see [9] for more details). The de-
fault is using the tree and direct put protocol. In both cases
we did not see any improvement. In fact for TREE commu-
nication time even increases slightly.

The parallel efficiency for measured average timings is
shown in Fig. 4. When increasing the number of cores from
1 to 4 field evaluation and ODE solver suffer from cache
effects. Independently of where you cache utilization is on
1 core, by increasing the number of cores, the amount of data
per core shrinks and therefore cache performance drops.

Fig. 5 Average timings (solid line) for analytical (Top), n2 space
charge model (Middle) with 10,000 slices and 500,000 (Bottom) slices
with analytical space charge model. (Minimum and maximum dashed
line)

As we already mentioned, current simulations use up to
1000 slices, which clearly limits overall scalability to at
most 1000 MPI processes. However, in the future (inclu-
sion of coherent synchrotron radiation and other physical
phenomena) we can require a significantly higher resolu-
tion and therefore more slices. In view of these facts and to
demonstrate the parallel performance potential of the code
with regard to larger number of cores we provide the aver-
age timings for a larger problem (10,000 slices) in Fig. 5. As
expected we see a much better parallel efficiency (≈85 % at

A fast and scalable low dimensional solver for charged particle dynamics in large particle accelerators 191

Fig. 6 Weak scaling (average timings) of analytical (Top) and n2 (Bot-
tom) space charge model

128 relative to 8 cores). The reason for this can be found by
inspecting the saturation of the bandwidth. For 10,000 slices
on core 0 out of 128 we get

7999 × 80000.0 b × 8

7.385 s × 220
≈ 661 MB/s.

We also note that the timings for ODE solver, field eval-
uation as well as MPI timings are almost two magnitudes
smaller than space charge and current density calculation for
the n2 space charge model.

3.3 Weak scaling

Weak scaling is shown in Fig. 6. Since the overall complex-
ity of the n2 space charge model is quadratic, we fix the
work per core to

�√nc × 100	,
and for the analytical space charge model respectively to

nc × 100,

slices for nc cores and starting with 100 slices on 1 core.
For n2 space charge we note a drop in execution time for

all parts except for space charge and current density calcula-
tion, where we notice a slightly increasing tendency caused
by the serial smoother. An increasing number of latency
bound small all reduce collectives imply a growing trend of
total MPI time with increasing number of cores. Again, field
evaluation and ODE solver performance is very good. The
steep increase in MPI time towards large number of cores is
caused by IPPL posting lots of MPI_Iprobe’s (16.8s on
2048 cores).

The analytical space charge calculation has almost ideal
weak scaling, only the MPI time shows an increasing ten-
dency towards the end. As seen with the n2 space charge
model, this is caused by IPPL (here 12.3 s on 2048 cores
and 20.3 s on 4096 cores).

4 Conclusion

We presented a scalable parallel fast solver for beam dy-
namic simulations. The envelope tracker is fully integrated
into OPAL and can be used for production mode beam
dynamic simulations. OPAL is a large and complex soft-
ware suite. Thus, integrating and parallelizing the envelope
tracker required extensive algorithmic adaptation and code
re-engineering. Both, the envelope tracker and the discussed
scalability results, are a crucial cornerstone in our massively
parallel multi-objective optimization framework.

We were able to achieve satisfactory parallel efficiency
for even the small number of slices of current simulations.
Indeed, we achieved an almost 2 orders of magnitude re-
duction of runtime for relevant cases in the setting of our
multi-objective optimization problem. We demonstrated that
future simulations will immediately benefit from our code.
In particular, in the context of multi-objective optimization,
we are able to tune the run-time parameters of the forward
solver in such a way that we will be able to maximize overall
performance and scalability.

Even though we notice a loss in parallel efficiency for
small problems, we demonstrated that the code is well par-
allelized (e.g. for larger problems). Bandwidth saturation
enforces a hard limit on performance with respect to prob-
lem size. Fortunately, the optimizer requires thousands of
forward solves when solving a multi-objective optimization
problem. This enables us to determine how many cores are
necessary to maximal saturate the bandwidth or to achieve
an acceptable parallel efficiency for one forward solve and
then run the maximal number of parallel forward solves as
possible.

The nature of the introduced forward solver invites addi-
tional parallelization methods, such as e.g. using extended
multithreading, that will be included and benchmarked in
the future.

192 Y. Ineichen et al.

References

1. (2003) PISA—a platform and programming language independent
interface for search algorithms. In: Fonseca CM, Fleming PJ, Zit-
zler E, Deb K, Thiele L (eds) Evolutionary multi-criterion opti-
mization (EMO 2003). Lecture notes in computer science. Springer,
Berlin, pp 494–508

2. Adelmann A The IP2L (independent parallel particle layer)
framework. Technical Report PSI-PR-09-05, Paul Scherrer In-
stitut, 2009–2010. http://amas.web.psi.ch/docs/ippl-doc/ippl_user_
guide.pdf

3. Adelmann A, Arbenz P, Ineichen Y (2010) A fast parallel Poisson
solver on irregular domains applied to beam dynamics simulations.
J Comput Phys 229(12):4554–4566

4. Adelmann A, Kraus C, Ineichen Y, Yang JJ The OPAL (Ob-
ject Oriented Parallel Accelerator Library) framework. Tech-
nical Report PSI-PR-08-02, Paul Scherrer Institut, 2008–2010.
http://amas.web.psi.ch/docs/opal/opal_user_guide-1.1.6.pdf

5. Ferrario M (2006) Homdyn user guide. Technical report, LNF.
http://nicadd.niu.edu/fnpl/homdyn/manual.pdf

6. Ferrario M, Boscolo M, Fusco V, Vaccarezza C, Ronsivalle C,
Rosenzweig JB, Serafini L (2003) Recent advances and novel ideas
for high brightness electron beam production based on photo-
injectors. In: Rosenzweig J, Travish G, Serafini L (eds) The physics
and applications of high brightness electron beams, pp 45–74

7. Lakner G, I-Hsin C, Guojing C, Fadden S, Goracke N,
Klepacki D, Lien J, Pospiech C, Seelam SR, Wen H-F (2009)
IBM System Blue Gene solution: performance analysis tool.
http://www.redbooks.ibm.com/abstracts/redp4256.html

8. Press W, Teukolsky S, Vetterling W, Flannery B (1992) Numerical
recipes in C, 2nd edn. Cambridge University Press, Cambridge

9. Sosa C, Knudson B (2010) IBM System Blue Gene solution: Blue
Gene/P application development. http://www.redbooks.ibm.com/
abstracts/sg247287.html?Open

http://amas.web.psi.ch/docs/ippl-doc/ippl_user_guide.pdf
http://amas.web.psi.ch/docs/ippl-doc/ippl_user_guide.pdf
http://amas.web.psi.ch/docs/opal/opal_user_guide-1.1.6.pdf
http://nicadd.niu.edu/fnpl/homdyn/manual.pdf
http://www.redbooks.ibm.com/abstracts/redp4256.html
http://www.redbooks.ibm.com/abstracts/sg247287.html?Open
http://www.redbooks.ibm.com/abstracts/sg247287.html?Open

	A fast and scalable low dimensional solver for charged particle dynamics in large particle accelerators
	Abstract
	Introduction
	The envelope tracker
	N2 space charge computation
	Analytical space charge computation
	Theoretical complexity
	Parallelization

	Results
	Experimental setting
	Strong scaling
	Weak scaling

	Conclusion
	References

