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Abstract Many grasslands in the Chihuahuan Desert have transformed to shrublands
dominated by creosotebush (Larrea tridentata). Grassland restoration efforts have been
directed at controlling creosotebush by applying herbicide over large spatial scales.
However, we have a limited understanding of how landscape-scale restoration affects
biodiversity. We examined whether restoration treatments in southern New Mexico, USA
have influenced the community structure of lizards, which are sensitive to shrub
encroachment. We compared lizard community structure on 21 areas treated with herbicide
from 7 to 29 years ago with paired untreated areas that were dominated by shrubs and
matched by geomorphology, soils, and elevation. To examine mechanisms underlying
responses to restoration, we tested whether the abundance of a grassland specialist,
Aspidoscelis uniparens, depended on time since treatment, treatment area and isolation,
and local habitat quality. Because lizards use rodent burrows as habitat, we tested whether
community structure and A. uniparens abundance depended on the abundance of the
keystone rodent, Dipodomys spectabilis. Treated areas had reduced shrub cover and
increased grass cover compared to untreated areas. Lizard community composition differed
strongly between areas, with four species responding to treatments. Divergence in com-
munity composition between treated—untreated pairs was greatest for old treatments
(=22 years), and community composition was influenced by D. spectabilis. In particular,
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the abundance of A. uniparens was greatest on old treatments with a high density of
D. spectabilis. Overall, our results demonstrate lizard community structure responds to
grassland restoration efforts, and keystone species can shape restoration outcomes. Rees-
tablishment of keystone species may be a critical constraint on the recovery of animal
biodiversity after habitat restoration.

Keywords Aspidoscelis spp. - Dipodomys spectabilis - Desertification -
Grassland restoration - Keystone species - Shrub encroachment

Introduction

Shrub encroachment into arid and semiarid grasslands has occurred worldwide over the last
century (Burrows et al. 1990; Van Auken 2000; Moleele et al. 2002). Livestock over-
grazing, fire suppression, and drought have led to increased shrub cover, increased soil
erosion, decreased water infiltration, and nutrient redistribution (Schlesinger et al. 1990).
Wildlife species are also affected by changes in plant composition. At local scales,
alterations in habitat heterogeneity and food resources can affect species distribution,
abundance, and community structure (Whitford 1997; Krogh et al. 2002; Bestelmeyer
2005; Valone and Sauter 2005). At landscape scales, the loss and spatial isolation of
grassland habitat can lead to the decline of grassland or savanna-dependent species
(e.g., Blaum et al. 2007).

Shrub removal has been initiated in desertified ecosystems in an attempt to restore grass
cover. In the northern Chihuahuan Desert of the southwestern United States, encroachment
by creosotebush (Larrea tridentata) and honey mesquite (Prosopis glandulosa) has
decreased grassland habitat (Buffington and Herbel 1965; Grover and Musick 1990; Peters
et al. 2006). Removal of creosotebush in southern New Mexico is accomplished by her-
bicide application, often at large spatial scales. Since 1980, the United States Bureau of
Land Management (BLM) has applied herbicide to >90,000 ha of public land in southern
New Mexico (P. Smith, personal communication). Historical restoration efforts were pri-
marily aimed at increasing forage production for livestock, and herbicide application can
be effective at reducing creosotebush cover and increasing grass cover (Perkins et al.
2006). Restoration efforts were expanded starting in 2005 under the Restore New Mexico
program with an explicit goal of improving habitat for wildlife. Animal biodiversity can
provide essential ecosystem services (e.g., Ostfeld and Keesing 2000), and protection of
wildlife is regarded as an important component of stewardship on public lands (Burger
2002). Although it is generally assumed that animals respond positively to habitat resto-
ration, this assumption is rarely tested.

Diversity of lizards is high in arid regions (Pianka 1973), and desert lizards function as
important consumers of terrestrial arthropods (e.g., ants and termites; Whitford and Bes-
telmeyer 2006) and prey for a variety of vertebrates (Pianka 1986). Grassland restoration
could have a strong impact on lizard community structure. Lizard species have specialized
patterns of space use that are directly tied to vegetation composition and cover (e.g.,
widely-foraging in open spaces vs. sit-and-wait under vegetation; Pianka 1966, 1973;
Reilly et al. 2007). Vegetation structure also affects species distribution and abundance by
mediating prey abundance (Jones 1981), predation risk (Hawlena and Bouskila 2006), and
availability of refuge (Davidson et al. 2008). Thus, lizard community structure can depend
strongly on the plant community (Pianka 1966), and lizard communities are sensitive to
changes in vegetation cover and microhabitat diversity resulting from shrub encroachment
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(Jones 1981; Meik et al. 2002; Menke 2003). However, it is unknown how lizard com-
munities respond to grassland restoration efforts at landscape scales.

We addressed the hypothesis that lizard community structure (i.e., species richness,
diversity, evenness, composition) changes in response to landscape-scale efforts to restore
perennial grasslands in the Chihuahuan Desert in southern New Mexico. The relative
abundance of lizards was documented on replicated areas treated with herbicide to target
creosotebush and paired shrub-dominated areas that were untreated. Based on comparisons
of community structure of lizards between shrubland and grassland habitats (Menke 2003;
Castellano and Valone 2006), we predicted there would be no difference in species rich-
ness, evenness, or diversity between treated and untreated areas. However, given the links
between vegetation structure and the realized niche of individual species (e.g., space use,
food resources), we expected the assemblage of lizard species to vary between treated and
untreated areas.

We also evaluated potential mechanisms underlying the response of species to habitat
restoration in two ways. First, we tested whether community composition was related to
time since herbicide treatment, vegetation and habitat structure, and abundance of the
banner-tailed kangaroo rat (Dipodomys spectabilis). Dipodomys spectabilis is a keystone
species that modifies vegetation patterns through selective herbivory and granivory (Guo
1996; Schooley et al. 2000; Davidson and Lightfoot 2006), and it plays an engineering role
by constructing large mounds that provide refuge for wildlife species (e.g., Hawkins and
Nicoletto 1992; Davidson and Lightfoot 2007). Davidson et al. (2008) showed that lizard
abundance was related positively to the availability of mounds of burrowing rodents.
However, the distribution of D. spectabilis is restricted by shrub cover (Krogh et al. 2002),
and the species has limited dispersal abilities (Skvarla et al. 2004). Thus, D. spectabilis
may exhibit a lagged response to grassland restoration. If the abundance of D. spectabilis
influences lizard community composition, there may also be time lags in the response of
lizards to restoration. Second, we conducted a detailed analysis of the abundance of the
desert grassland whiptail (Aspidoscelis uniparens), which is associated with grasslands
(Menke 2003). We were particularly interested in understanding the relative importance of
local and landscape-scale constraints on the response of A. uniparens to grassland resto-
ration. We evaluated how the abundance of A. uniparens depended on treatment area
and isolation, time since herbicide treatment, and habitat quality factors (i.e., vegetation
structure and density of D. spectabilis).

Materials and methods
Study area

We conducted the study in a 44 120-km? area in the northern Chihuahuan Desert centered
near Hatch, New Mexico (Fig. 1). Dominant shrubs in the region include L. tridentata,
P. glandulosa, Flourensia cernua, Ephedra trifurca, and Atriplex canescens. The dominant
grasses are Sporobolus spp., Pleuraphis mutica, Bouteloua eriopoda, Muhlenbergia por-
teri, and Scleropogon brevifolius. Other common plants include Yucca torreyi and the
subshrub Gutierrezia sarothrae. Average annual precipitation is 240 mm, with >60 % of
precipitation occurring from June to October (data from the Jornada Experimental Range,
Fig. 1; Throop et al. 2011).
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Fig. 1 Map of study sites and land cover in the study region in southern New Mexico, USA. Paired treated—
untreated areas were located at each study site. The USDA Cropland Data Layer Map (http://
www.nass.usda.gov/research/Cropland/SARS1a.htm) from 2010 was used to generate the land cover map.
Hatch, New Mexico and the Jornada Experimental Range are indicated on the map

Sampling design

We selected 21 sites treated with the herbicide tebuthiuron (TEB) used to target creo-
sotebush. Sites were treated with TEB by the BLM at a standard rate of 0.56 kg/ha between
1982 and 2004. The average area of TEB application (i.e., “treated areas”) was 946 ha
(range = 265-2,317 ha), and the shape of treatments varied among areas. For each
treatment area, we also established a paired shrub-dominated area that was not treated with
TEB. The distance between treated and untreated areas within pairs was <4.5 km, and
pairs were matched by geomorphology, soil type, and elevation. The average elevation of
treated and untreated areas was 1,509 m (range = 1,260-1,756 m).

Within each treated and untreated area, we used ArcGIS (ESRI, Redlands, California,
USA) to generate a pool of 8-10 belt transects that were 1,000 x 60 m (length x width).
Transects were at least 300 m apart and 100 m from major roads. From this pool, we
randomly selected two transects for lizard sampling. Due to logistical constraints, transects
within treated and untreated areas were separated by <1.5 km.
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Lizard surveys

We used visual surveys to count lizards at each transect within treated and untreated areas
(Germaine and Wakeling 2001; Meik et al. 2002; Davidson et al. 2008). All transects for a
single treated—untreated pair were sampled on a single day between 25 July and 2 Sep-
tember 2011. Each belt transect was subdivided into two 1,000 x 30 m sections, and a
single observer was randomly assigned to each section. We completed surveys between
800 and 1315. Observers walked in a serpentine path along the 1,000-m length of each
section and searched the ground for lizards. Binoculars were used to identify lizards to
species. Individuals that could not be confidently identified were excluded from analyses.
Search time was recorded for each observer, and abundances for each species were pooled
across the two transects within each area. Abundances were standardized by search effort
(lizards/observer hours) for all analyses.

We took two steps to avoid bias due to differential detection probability between treated
and untreated areas. First, the same two observers conducted lizard surveys concurrently on
each belt transect. Second, to avoid bias associated with temperature-dependent lizard
activity, we alternated between starting surveys on treated versus untreated areas each day.
We also used occupancy modeling (MacKenzie et al. 2006; Kendall and White 2009) and
information theory (Burnham and Anderson 2002) to demonstrate that detection proba-
bility did not strongly differ between treated and untreated areas for five of the six species
analyzed (Appendix A, Supplementary Material). Species observed at <5 areas were
excluded from analyses. We also excluded species with low detection probability (e.g.,
arboreal species, species with cryptic coloration or motionless behavior).

Environmental covariates

To record habitat structure, we established two 50-m transects at each belt transect.
Transects were located 30 m from the center and at opposite ends of each belt transect.
The line-point-intercept method was used to quantify cover by grasses, live shrubs, rocks
(gravel and cobble), and bare soil (Herrick et al. 2005). Habitat variables were averaged
across vegetation transects located within treated and untreated areas.

We conducted visual surveys to count mounds of D. spectabilis within each belt transect
used to sample lizards. Mounds of D. spectabilis are 2—-5 m in diameter and up to 0.5 m tall
(Cross and Waser 2000) and easily detected during visual surveys. Mounds were counted
during lizard surveys, and we assessed mound activity using animal sign (e.g., open
burrows, fresh digging, tail drag marks, seed husks; Jones 1984, Krogh et al. 2002).
A single mound is generally occupied by a single adult, and a count of active mounds is
highly correlated with mark-recapture estimates of adult population size (> = 0.96; Cross
and Waser 2000).

Data analysis

Wilcoxon signed rank tests were used to compare habitat structure and lizard community
indices (species richness, evenness, and diversity) between treated and untreated areas.
We used the Shannon diversity index and Pielou’s (1969) index of evenness. To evaluate
whether lizard species composition differed between treated and untreated areas, we used a
blocked multi-response permutation procedure (MRBP; Mielke and Berry 1982). We used
site as the blocking factor, Euclidean distances, and within-block median alignment. The
wilcox.test function in program R (v. 2.15.0; R Development Core Team 2012) was used to
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conduct the Wilcoxon signed rank tests, and PC-ORD (McCune and Mefford 1999) was
used to conduct the MRBP.

We used nonmetric multidimensional scaling (NMDS; Kruskal 1964) to visualize
potential gradients in species composition between treated and untreated areas. We used
Bray—Curtis distances and limited the ordination to two axes. To explore a possible lagged
response of lizard community composition to herbicide treatment, we defined treatments as
either young (treated 1994-2004) or old (treated 1982-1989). In addition to evaluating
whether sites clustered in ordination space based on treatment age, we used a ¢ test to
determine whether Bray—Curtis distances between treated—untreated pairs were greater for
old treatments than for young treatments. The vegan package (Oksanen et al. 2011) in
program R (v. 2.15.0; R Development Core Team 2012) was used to calculate Bray—Curtis
distances (vegdist function) and to conduct the NMDS (metaMDS function).

To examine how community composition correlated with environmental factors, we
used the envfit function in the vegan package in R (Oksanen et al. 2011). In this procedure,
fitted vectors depict how environmental factors correlate with the NMDS ordination (e.g.,
Pillsbury et al. 2011). Fitted vectors are calculated using a linear model in which the value
of an environmental factor is the dependent variable, and the NMDS axes are the inde-
pendent variables. The direction of each vector in the ordination indicates the most rapid
rate of change of an environmental factor, and the length of each vector is proportional to
model fit, *. A P value was calculated for each environmental factor using 10,000 Monte
Carlo permutations. Environmental factors included shrub cover, grass cover, rock cover,
bare soil, elevation, and the density of active mounds of D. spectabilis. To improve
linearity, we used the natural logarithm of grass cover and the square root of D. spectabilis
mound density.

Generalized linear mixed models (GLMM) were used to evaluate the degree to which
the abundance of individual species differed between treated and untreated areas. We
specified a Poisson distribution for the response variables. Treatment was used as the fixed
factor, and a random intercept was estimated for each site. GLMMSs were conducted using
the Imer function in package Ime4 in R (Bates et al. 2011). We used an alpha of 0.10 for all
hypothesis tests.

We used hierarchical partitioning (hier.part function in R; Walsh and Mac Nally 2008)
to provide insight into the mechanisms underlying the response of the grassland-associated
species, A. uniparens, to grassland restoration. Hierarchical partitioning was used to assess
how treatment age (young vs. old), metapopulation factors (treatment area and isolation),
and habitat quality factors (grass cover, shrub cover, and density of active mounds of
D. spectabilis) affected the abundance of A. uniparens on treated areas. Hierarchical
partitioning is useful for isolating the independent and joint effects of predictor variables
that are collinear (Heikkinen et al. 2004). Independent and joint effects are computed by
running models with all possible combinations of predictor variables and using the increase
in the fit of models with a particular variable compared to the corresponding model without
that variable (Mac Nally 2000; Heikkinen et al. 2004). Because intact, undisturbed
grasslands are extremely limited in our study area, we calculated isolation as the distance
to the nearest area treated with herbicide, including treated areas that were not part of this
study. Distances were calculated between the center of each area. A Poisson distribution
was specified for all models, and log-likelihood was used as the goodness-of-fit measure.
Treatment area, isolation, and grass cover were In-transformed. We defined D. spectabilis
mound density as a categorical variable based on the median density (>1.4 mounds/
ha = High, <1.4 mounds/ha = Low). We calculated pseudo P (Dobson 2002) to estimate
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the percent variation in A. uniparens abundance explained by treatment age, metapopu-
lation factors, and habitat quality factors.

Results
Habitat structure

Treatment with herbicide was highly effective at influencing vegetation cover (Fig. 2).
Treated areas had less shrub cover (V = 231, P < 0.001) and greater grass cover (V = 25,
P = 0.002) than untreated areas that were not treated with herbicide. Bare soil (V = 84,
P = 0.29) and rock cover (V= 156, P = 0.17) did not differ between treated and
untreated areas.

Lizard community structure

Overall, we identified 1,438 individual lizards representing 13 species. Five species were
observed at <5 areas and were excluded from further analyses: A. exsanguis, A. neo-
mexicana, Cophosaurus texanus, Gambelia wislizenii, and Urosaurus ornatus. Phryno-
soma cornutum and Sceloporus cowlesi were also excluded because of low detection
probability. The remaining six species represented 97 % of all identified lizards and were
included in all analyses: little striped whiptail (Aspidoscelis inornata), checkered whiptail
(A. tesselata), tiger whiptail (A. tigris), A. uniparens, greater earless lizard (Holbrookia
maculata), and common side-blotched lizard (Uta stansburiana). Aspidoscelis uniparens
was the most frequently observed species (61 % of all identified lizards).

There were no differences in lizard species richness (V = 50, P = 0.57), evenness
(V =119, P = 0.61), or diversity (V = 96, P = 0.75) between treated and untreated areas
(Appendix B: Fig. B1, Supplementary Material). However, species composition differed
between treated and untreated areas (MRBP test, T = —1.91, P = 0.05). This treatment

Fig. 2 Comparison of mean 3
(+ 1 SE) vegetation, soil, and O Untreated
rock cover between areas treated O Treated
with the herbicide tebuthiuron T
and paired untreated (n = 21) in S
southern New Mexico, USA. T T
Asterisk (*) indicates a significant .
difference (P < 0.05) between 2 o —|_
treated and untreated areas based 8 @ *
on a Wilcoxon signed rank test =
c T
S
g8 -
T T
o |
-
o
Shrub Grass Bare Soil Rock

@ Springer



928 Biodivers Conserv (2013) 22:921-935

effect was corroborated by the GLMM analyses for individual species and the NMDS
ordination (see below).

Abundance differed between treated and untreated areas for four lizard species (Fig. 3).
Abundance was greater on treated areas for A. inornata (beta estimate = 1.67, SE = 0.51,
P < 0.001) and A. uniparens (beta estimate = 0.48, SE = 0.072, P < 0.001), whereas
abundance was greater on untreated areas for A. tesselata (beta estimate = —0.91,
SE = 0.31, P = 0.003) and A. rigris (beta estimate = —0.33, SE = 0.13, P = 0.01).
There was no difference in abundance for U. stansburiana between treated and untreated
areas, and H. maculata was marginally greater on treated than on untreated areas (beta
estimate = 0.59, SE = 0.42, P = 0.16).

The NMDS ordination (stress = 11.5 %) revealed three site groupings (Fig. 4a). Within
groupings, the lizard community was dominated by one of three sets of species: A. inor-
nata; A. tigris and U. stansburiana; and A. tesselata, A. uniparens, and H. maculata.
Treated—untreated pairs typically clustered together in ordination space. However, within
groupings, treatments tended to be shifted in a consistent direction in ordination space
compared to their paired untreated areas. This pattern was most evident for sites with
high values on the first NMDS axis. Untreated areas at these sites were dominated by
A. tesselata, whereas paired treatments were dominated by A. uniparens and H. maculata.

Divergence in lizard community composition between treated—untreated pairs depended
on treatment age. Specifically, Bray—Curtis distances were greater for old treatments than
for young treatments (Fig. 4a; t = 1.90, P = 0.076). Treated areas also tended to separate
by age along the first NMDS axis (Fig. 4a). This separation was explained in part by the
density of active D. spectabilis mounds (Fig. 4b; ?=017,P = 0.026). Scores on the first
axis for treated areas only were strongly correlated with mound density (r, = 0.58), but
this was not the case for untreated areas (r, = 0.12). Thus, the correlation of mound
density to the ordination was primarily driven by D. spectabilis activity on treated areas.
Overall, elevation exhibited the strongest correlation with the ordination (Fig. 4b;
r* = 0.66, P < 0.001). Rock cover (** =0.15, P = 0.041) and bare soil (+* = 0.12,
P = 0.073) were also correlated with the ordination, but shrub cover (r2 = 0.023,
P = 0.64) and grass cover (r2 = 0.0031, P = 0.94) were not (Fig. 4b).
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Fig. 3 Comparison of mean (4+ 1 SE) lizard abundance for six species between areas treated with the
herbicide tebuthiuron and untreated areas (n = 21) in southern New Mexico, USA. Asterisk (*) indicates a
significant difference (P < 0.05) between treated and untreated areas based on generalized linear mixed
models
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Fig. 4 Nonmetric multidimensional scaling of lizard species composition at 21 areas treated with
tebuthiuron herbicide (filled circles and triangles) and paired untreated areas (open circles) in southern New
Mexico, USA. Areas were treated with herbicide between 1982 and 1989 (filled circles) or 1994 and 2004
(filled triangles). Treated—untreated pairs are connected by lines and species scores are indicated by
abbreviations a Aino = Aspidoscelis inornata, Ates = Aspidoscelis tesselata, Atig = Aspidoscelis tigris,
Auni = Aspidoscelis uniparens, Hmac = Holbrookia maculata, Usta = Uta stansburiana. Fitted vectors
b represent the correlation of environmental factors with the ordination. Vector arrows indicate the direction
of the most rapid rate of change of environmental factors, and the length of each vector is proportional to .
“Mounds” indicates active mound density of Dipodomys spectabilis. See a for symbol legend

Response of Aspidoscelis uniparens to grassland restoration

Treatment age, metapopulation factors, and habitat quality factors accounted for 29 %
(pseudo %) of the variation in A. uniparens abundance. Hierarchical partitioning revealed
that treatment age and the abundance of D. spectabilis mounds had considerable inde-
pendent effects on A. uniparens abundance (Fig. 5). The abundance of A. uniparens was
~3 times higher on old treatments than young treatments (Fig. 6a; P < 0.001), whereas
A. uniparens abundance was greatest on treated areas with a high density of D. spectabilis
mounds (Fig. 6b; P < 0.001). A substantial portion of the explained variation was also due
to joint effects for treatment age and D. spectabilis mound density. The independent and
joint contributions of habitat area, isolation, grass cover, and shrub cover were all low
(Fig. 5). The negative joint contribution of shrub cover indicated that it was a suppressor
variable (albeit a weak one), which suppressed the independent contribution of other
variables (Mac Nally 2000).

Discussion

Our results show that lizards respond to landscape-scale efforts to remove creosotebush
and restore perennial grasslands in the Chihuahuan Desert. Herbicide application was
effective at reducing shrub cover and increasing grass cover. Although lizard community
indices were similar between treated and untreated areas, shrub removal strongly affected
community composition. The relative abundances of lizards varied between treated and
untreated areas, and differences in community composition increased with treatment age.
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Fig. 5 Independent and joint effects of treatment age, metapopulation factors, and habitat quality factors on
the abundance of Aspidoscelis uniparens in southern New Mexico, USA. Independent and joint effects were
estimated using hierarchical partitioning and are expressed as a percentage of the total variation explained.
“Mound density” indicates active mound density of Dipodomys spectabilis
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Fig. 6 Effects of a treatment age and b density of active Dipodomys spectabilis mounds on the mean (+ 1
SE) abundance of Aspidoscelis uniparens on treated areas in southern New Mexico, USA. “Mound density”
indicates active mound density of Dipodomys spectabilis

Furthermore, differences in community composition were related to the abundance of
D. spectabilis, suggesting that keystone species can shape responses of lizard communities
to grassland restoration. Our study illustrates the high degree of interdependence of
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restoration objectives in the Chihuahuan Desert ecosystem and the long time frame nec-
essary to assess restoration efforts.

Species richness, diversity, and evenness of lizards were similar between treated and
untreated areas, paralleling other comparisons of lizard communities between shrub-
dominated and grassland habitats (Meik et al. 2002; Menke 2003; Castellano and Valone
2006). However, we found considerable variation in community composition. First, the
ordination revealed three assemblages differentiated by environmental gradients, primarily
elevation. Aspidoscelis inornata and A. tesselata were represented at high-elevation sites,
whereas A. tigris, A. uniparens, H. maculata, and U. stansburiana were represented more
at mid- to low-elevation sites. Elevation affects lizard distribution and abundance by
creating gradients in temperature (Fischer and Lindenmayer 2005), vegetation structure
(Meik and Lawing 2008), and rock cover (Monasterio et al. 2010). In our system, elevation
was correlated with rock cover and bare soil, but it was not correlated with vegetation
cover (Fig. 4b). Given that elevation was more strongly correlated with the ordination
than was rock cover or bare soil, changes in community composition along the elevation
gradient likely reflected changes in environmental temperature.

Second, community composition was influenced by restoration treatments. The ordi-
nation revealed differentiation in community composition between treated—untreated pairs
within the three site groupings, and four of the six species differed in abundance between
treated and untreated areas. Given our paired study design, which controlled for elevation
and geomorphology at the site level, observed differences in abundance likely reflect a
direct response of each species to shrub removal. Habitat preferences were generally
consistent with previous studies for each species (e.g., Christiansen et al. 1971; Whitford
and Creusere 1977; Baltosser and Best 1990; Schall 1993; Menke 2003). Aspidoscelis
tigris is associated with shrublands and occurred at highest abundance on untreated areas,
whereas A. inornata and A. uniparens are associated with grasslands and occurred at
highest abundance on treatments. Aspidoscelis tesselata was most abundant on untreated
areas, but this pattern could reflect greater detection probability on untreated than treated
areas (Appendix A, Supplementary Material).

Studies on the response of lizards to habitat restoration have assessed practices
including prescribed burning (Mushinsky 1992; Litt et al. 2001; Templeton et al. 2011),
livestock removal (Castellano and Valone 2006), and non-native plant removal (Bateman
et al. 2008). Consistent with our findings, these studies show effects of restoration practices
on lizards are largely species-specific. By evaluating community composition at replicated
treated and untreated areas across a broad region, our results demonstrate that restoration
changes lizard assemblages at the local scale, which should increase beta diversity at the
landscape scale.

The difference in community composition between treated—untreated pairs depended on
treatment age. Divergence in community composition was greater for old treatments than
for young treatments, indicating a lagged response to restoration. This pattern was likely
driven by the slow response of A. uniparens, the most abundant species in our system.
Specifically, the abundance of A. uniparens was greater on old treatments than young
treatments. Given the lack of large, undisturbed grasslands in our study area (Fig. 1), low
average abundance of A. uniparens on young treatments could indicate slow colonization
from source populations or limited immigration after herbicide application. However,
occupancy probability for A. uniparens was similar between treated and untreated areas
(BJ Cosentino, unpublished data), suggesting remnant populations occur in creosotebush-
dominated habitats before herbicide application. Furthermore, immigration is an unlikely
constraint because isolation was not a strong predictor of A. uniparens abundance. Because
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the abundance of A. uniparens did not depend on treatment area either, metapopulation
factors in general had limited value for predicting the response of A. uniparens to grassland
restoration.

An alternative explanation for the lagged response of A. uniparens abundance is that
habitat quality for this species is low at sites during early stages of restoration trajectories.
Vegetation structure is a direct component of habitat quality that changes with time since
herbicide application, but shrub and grass cover were not important predictors of com-
munity composition or the abundance of A. uniparens. However, vegetation may indirectly
affect the response of lizards to restoration by controlling the abundance of ecosystem
engineers (e.g., Shenbrot et al. 1991; Davis and Theimer 2003; Shipley and Reading 2006).
Banner-tailed kangaroo rats function as engineers by constructing mounds that provide
critical space for thermoregulation, foraging, and refuge during predation attempts
(Davidson et al. 2008). Davidson et al. (2008) found lizard abundance was greater on
D. spectabilis mounds than on nearby areas off mounds, and lizard abundance was greatest
in areas with mounds constructed by D. spectabilis and Gunnison’s prairie dogs (Cynomys
gunnisoni). Consistent with this pattern at a regional scale, we found that lizard community
composition was sensitive to the density of D. spectabilis—particularly on areas treated
with herbicide—and that there was a strong, positive effect of D. spectabilis density on the
abundance of A. uniparens. Because D. spectabilis is negatively affected by creosotebush
cover (Krogh et al. 2002), our results indicate shrub removal indirectly affects lizard
community composition by mediating the abundance of D. spectabilis.

The slow increase in abundance of A. uniparens likely occurred in response to a lagged
response of D. spectabilis to shrub removal. Young treatments had high shrub cover and
low density of D. spectabilis, whereas old treatments had low shrub cover and high density
of D. spectabilis (BJ Cosentino, unpublished data). The abundance of A. uniparens may
have been constrained on young treatments by limited refuge space constructed by
D. spectabilis. This hypothesis is supported by the hierarchical partitioning analysis.
Treatment age and density of D. spectabilis had the greatest joint contribution in
explaining the abundance of A. uniparens, indicating that some of the variation in
D. spectabilis density among sites is explained by treatment age. However, treatment age
and density of D. spectabilis also had strong independent effects. The independent effect of
D. spectabilis indicates that kangaroo rats had a direct effect on A. uniparens abundance,
whereas the independent effect of treatment age suggests that lizards responded to addi-
tional aspects of habitat quality correlated with treatment age (e.g., predator abundance;
Hawlena and Bouskila 2006).

Burrowing rodents can function as keystone species by having dramatic impacts on
vegetation structure and animal communities in desert ecosystems (Heske et al. 1993;
Kotliar et al. 1999; Schooley et al. 2000; Davidson et al. 2008). Our results indicate that
burrowing rodents may also play a key role in controlling the response of wildlife species
to habitat restoration, most likely through their engineering effects. However, keystone
rodents have been negatively impacted by desertification (Whitford 1997; Krogh et al.
2002) and eradication programs (Delibes-Mateos et al. 2011), and little is known about the
response of these species to habitat restoration. When the goal is to restore habitat for
wildlife, our results support the notion that the success of restoration can depend in part on
the reestablishment of keystone species (Hobbs and Cramer 2008). Studies on mechanisms
underlying the response of keystone species to restoration should be useful for generating
management recommendations to facilitate the recovery of animal biodiversity.

@ Springer



Biodivers Conserv (2013) 22:921-935 933

Acknowledgments This research was supported by a grant from the USDA-AFRI Managed Ecosystems
program and by the BLM. We thank D. Burkett for advice on sampling lizards and K. Sierzega for assistance
in the field. L. Burkett and R. Lister were instrumental in providing logistical support.

References

Baltosser WH, Best TL (1990) Seasonal occurrence and habitat utilization by lizards in southwestern
New Mexico. Southwest Nat 35:377-384

Bateman HL, Chung-MacCoubrey A, Snell HL (2008) Impact of non-native plant removal on lizards in
riparian habitats in the southwestern United States. Restor Ecol 16:180-190

Bates D, Maechler M, Bolker B (2011) Ime4: Linear mixed-effects models using S4 classes. R package
version 0.99375-42

Bestelmeyer BT (2005) Does desertification diminish biodiversity? Enhancement of ant diversity by shrub
invasion in southwestern USA. Divers Distrib 11:45-55

Blaum N, Rossmanith E, Popp A, Jeltsch F (2007) Shrub encroachment affects mammalian carnivore
abundance and species richness in semiarid rangelands. Acta Oecol 31:86-92

Buffington LC, Herbel CH (1965) Vegetational changes on a semidesert grassland range from 1858 to 1963.
Ecol Monogr 35:139-164

Burger J (2002) Restoration, stewardship, environmental health, and policy: understanding stakeholders’
perceptions. Environ Manag 30:631-640

Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-
theoretic approach, 2nd edn. Springer, New York

Burrows WH, Carter JO, Scanlan JC, Anderson ER (1990) Management of savannas for livestock pro-
duction in north-east Australia: contrasts across the tree-grass continuum. J Biogeogr 17:503-512

Castellano MJ, Valone TJ (2006) Effects of livestock removal and perennial grass recovery on the lizards of
a desertified arid grassland. J Arid Environ 66:87-95

Christiansen JL, Degenhardt WG, White JE (1971) Habitat preferences of Cnemidophorus inornatus and
C. neomexicanus with reference to conditions contributing to their hybridization. Copeia
1971:357-359

Cross CL, Waser PM (2000) Estimating population size in the banner-tailed kangaroo rat. Southwest Nat
45:176-183

Davidson AD, Lightfoot DC (2006) Keystone rodent interactions: prairie dogs and kangaroo rats structure
the biotic composition of a desert grassland. Ecography 29:755-765

Davidson AD, Lightfoot DC (2007) Interactive effects of keystone rodents on the structure of desert
grassland arthropod communities. Ecography 30:515-525

Davidson AD, Lightfoot DC, Mclntyre JL (2008) Engineering rodents create key habitat for lizards. J Arid
Environ 72:2142-2149

Davis JR, Theimer TC (2003) Increased lesser earless lizard (Holbrookia maculata) abundance on Gunn-
ison’s prairie dog colonies and short term responses to artificial prairie dog burrows. Am Midl Nat
150:282-290

Delibes-Mateos M, Smith AT, Slobodchikoff CN, Swenson JE (2011) The paradox of keystone species
persecuted as pests: a call for the conservation of abundant small mammals in their native range. Biol
Conserv 144:1335-1346

Dobson AJ (2002) Introduction to generalized linear models, 2nd edn. Chapman and Hall, London

Fischer J, Lindenmayer DB (2005) The sensitivity of lizards to elevation: a case study from south-eastern
Australia. Divers Distrib 11:225-233

Germaine SS, Wakeling BF (2001) Lizard species distributions and habitat occupation along an urban
gradient in Tucson, Arizona, USA. Biol Conserv 97:229-237

Grover HD, Musick HB (1990) Shrubland encroachment in southern New-Mexico, USA: an analysis of
desertification processes in the American southwest. Climatic Change 17:305-330

Guo Q (1996) Effects of bannertail kangaroo rat mounds on small-scale plant community structure. Oec-
ologia 106:247-256

Hawkins LK, Nicoletto PF (1992) Kangaroo rat burrows structure the spatial organization of ground-
dwelling animals in a semiarid grassland. J Arid Environ 23:199-208

Hawlena D, Bouskila A (2006) Land management practices for combating desertification cause species
replacement of desert lizards. J Appl Ecol 43:701-709

@ Springer



934 Biodivers Conserv (2013) 22:921-935

Heikkinen RK, Luoto M, Virkkala R, Rainio K (2004) Effects of habitat cover, landscape structure and
spatial variables on the abundance of birds in an agricultural-forest mosaic. J Appl Ecol 41:824-835

Herrick JE, Van Zee JW, Havstad KM, Whitford WG (2005) Monitoring manual for grassland, shrubland,
and savanna ecosystems. USDA-ARS Jornada Experimental Range/University of Arizona Press, Las
Cruces/Tuscon

Heske EJ, Brown JH, Guo Q (1993) Effects of kangaroo rat exclusion on vegetation structure and plant
species diversity in the Chihuahuan Desert. Oecologia 95:520-524

Hobbs RJ, Cramer VA (2008) Restoration ecology: interventionist approaches for restoring and maintaining
ecosystem function in the face of rapid environmental change. Annu Rev Environ Resour 33:39-61

Jones KB (1981) Effects of grazing on lizard abundance and diversity in western Arizona. Southwest Nat
26:107-115

Jones WT (1984) Natal philopatry in bannertailed kangaroo rats. Behav Ecol Sociobiol 15:151-155

Kendall WL, White GC (2009) A cautionary note on substituting spatial subunits for repeated temporal
sampling in studies of site occupancy. J Appl Ecol 46:1182—1188

Kotliar NB, Baker BW, Whicker AD, Plumb G (1999) A critical review of assumptions about the prairie dog
as a keystone species. Environ Manag 24:177-192

Krogh SN, Zeisset MS, Jackson E, Whitford WG (2002) Presence/absence of a keystone species as an
indicator of rangeland health. J Arid Environ 50:513-519

Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika 29:1-27

Litt AR, Provencher L, Tanner GW, Franz R (2001) Herpetofaunal responses to restoration treatments of
longleaf pine sandhills in Florida. Restor Ecol 9:462-474

Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the
distinction between—and reconciliation of—‘predictive’ and ‘explanatory’ models. Biodivers Conserv
9:655-671

MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and
modeling: inferring patterns and dynamics of species occurrence. Academic Press, Burlington

McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data. Mjm Software Design,
Gleneden Beach

Meik JM, Lawing AM (2008) Elevation gradients and lizard assemblage structure in the Bonneville Basin,
western USA. J Arid Environ 72:1193-1201

Meik JM, Jeo RM, Mendelson JR 1II, Jenks KE (2002) Effects of bush encroachment on an assemblage of
diurnal lizard species in central Namibia. Biol Conserv 106:29-36

Menke SB (2003) Lizard community structure across a grassland—creosote bush ecotone in the Chihuahuan
Desert. Can J Zool 81:1829-1838

Mielke PW, Berry KJ (1982) An extended class of permutation techniques for matched pairs. Commun Stat
Theory 11:1197-1207

Moleele NM, Ringrose S, Matheson W, Vanderpost C (2002) More woody plants? The status of bush
encroachment in Botswana’s grazing areas. J Environ Manag 64:3-11

Monasterio C, Salvador A, Diaz JA (2010) Altitude and rock cover explain the distribution and abundance
of a Mediterranean alpine lizard. J Herpetol 44:158-163

Mushinsky HR (1992) Natural history and abundance of southeastern five-lined skinks, Eumeces inex-
pectatus, on a periodically burned sandhill in Florida. Herpetologica 48:307-312

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens
MHH, Wagner, H (2011) Vegan: community ecology package. R package version 2.0-3

Ostfeld RS, Keesing F (2000) Biodiversity and disease risk: the case of Lyme disease. Conserv Biol
14:722-728

Perkins SR, McDaniel KC, Ulery AL (2006) Vegetation and soil change following creosotebush (Larrea
tridentata) control in the Chihuahuan Desert. J Arid Environ 64:152-173

Peters DPC, Bestelmeyer BT, Herrick JE, Fredrickson EL, Monger HC, Havstad KM (2006) Disentangling
complex landscapes: new insights into arid and semiarid system dynamics. Bioscience 56:491-501

Pianka ER (1966) Convexity, desert lizards, and spatial heterogeneity. Ecology 47:1055-1059

Pianka ER (1973) The structure of lizard communities. Annu Rev Ecol Syst 4:53-74

Pianka ER (1986) Ecology and natural history of desert lizards. Princeton University Press, Princeton

Pielou EC (1969) An introduction to mathematical ecology. Wiley, New York

Pillsbury FC, Miller JR, Debinski DM, Engle DM (2011) Another tool in the toolbox? Using fire and grazing
to promote bird diversity in highly fragmented landscapes. Ecosphere 2(3):1-14

R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna

Reilly SM, McBrayer LB, Miles DB (2007) Lizard ecology. Cambridge University Press, Cambridge

@ Springer



Biodivers Conserv (2013) 22:921-935 935

Schall JJ (1993) Community ecology of Cnemidophorus lizards in southwestern Texas: a test of the weed
hypothesis. In: Wright JW, Vitt LJ (eds) Biology of whiptail lizards (Genus Cnemidophorus). Okla-
homa Museum of Natural History, Norman

Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG
(1990) Biological feedbacks in global desertification. Science 247:1043—-1048

Schooley RL, Bestelmeyer BT, Kelly JF (2000) Influence of small-scale disturbances by kangaroo rats on
Chihuahuan Desert ants. Oecologia 125:142-149

Shenbrot GI, Rogovin KA, Surov AV (1991) Comparative analysis of spatial organization of desert lizard
communities in Middle Asia and Mexico. Oikos 61:157-168

Shipley BK, Reading RP (2006) A comparison of herpetofauna and small mammal diversity on black-tailed
prairie dog (Cynomys ludovicianus) colonies and non-colonized grasslands in Colorado. J Arid Environ
66:27-41

Skvarla JL, Nichols JD, Hines JE, Waser PM (2004) Modeling interpopulation dispersal by banner-tailed
kangaroo rats. Ecology 85:2737-2746

Templeton AR, Brazeal H, Neuwald JL (2011) The transition from isolated patches to a metapopulation in
the eastern collared lizard in response to prescribed fires. Ecology 92:1736-1747

Throop HL, Reichmann LG, Sala OE, Archer SR (2011) Response of dominant grass and shrub species to
water manipulation: an ecophysiological basis for shrub invasion in the Chihuahuan Desert Grassland.
Oecologia 169:373-383

Valone TJ, Sauter P (2005) Effects of long-term cattle exclosure on vegetation and rodents at a desertified
arid grassland site. J Arid Environ 61:161-170

Van Auken OW (2000) Shrub invasions of North American semiarid grasslands. Annu Rev Ecol Syst
31:197-215

Walsh C, Mac Nally R (2008) Hier.part: hierarchical partitioning. R package version 1.0-3

Whitford WG (1997) Desertification and animal biodiversity in the desert grasslands of North America.
J Arid Environ 37:709-720

Whitford WG, Bestelmeyer BT (2006) Chihuahuan Desert fauna: effects on ecosystem properties and
processes. In: Havstad KM, Huenneke LF, Schlesinger WH (eds) Structure and function of a Chi-
huahuan Desert ecosystem: the Jornada Basin Long-Term Ecological Research Site. Oxford University
Press, Oxford

Whitford WG, Creusere FM (1977) Seasonal and yearly fluctuations in Chihuahuan Desert lizard com-
munities. Herpetologica 33:54-65

@ Springer



	Response of lizard community structure to desert grassland restoration mediated by a keystone rodent
	Abstract
	Introduction
	Materials and methods
	Study area
	Sampling design
	Lizard surveys
	Environmental covariates
	Data analysis

	Results
	Habitat structure
	Lizard community structure
	Response of Aspidoscelis uniparens to grassland restoration

	Discussion
	Acknowledgments
	References


