
J. Math. Biol. (2010) 61:715–737
DOI 10.1007/s00285-009-0319-y Mathematical Biology

Analyzing and reconstructing reticulation networks
under timing constraints

Simone Linz · Charles Semple · Tanja Stadler

Received: 13 May 2009 / Revised: 19 November 2009 / Published online: 27 December 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Reticulation networks are now frequently used to model the history of life
for various groups of species whose evolutionary past is likely to include reticulation
events such as horizontal gene transfer or hybridization. However, the reconstructed
networks are rarely guaranteed to be temporal. If a reticulation network is temporal,
then it satisfies the two biologically motivated timing constraints of instantaneously
occurring reticulation events and successively occurring speciation events. On the
other hand, if a reticulation network is not temporal, it is always possible to make
it temporal by adding a number of additional unsampled or extinct taxa. In the first
half of the paper, we show that deciding whether a given number of additional taxa is
sufficient to transform a non-temporal reticulation network into a temporal one is an
NP-complete problem. As one is often given a set of gene trees instead of a network in
the context of hybridization, this motivates the second half of the paper which provides
an algorithm, called TemporalHybrid, for reconstructing a temporal hybridization
network that simultaneously explains the ancestral history of two trees or indicates
that no such network exists. We further derive two methods to decide whether or not
a temporal hybridization network exists for two given trees and illustrate one of the
methods on a grass data set.

All authors contributed equally to this work.

S. Linz
Department of Computer Science, University of California, Davis, CA, USA
e-mail: linzs@cs.ucdavis.edu

C. Semple
Biomathematics Research Centre, Department of Mathematics and Statistics,
University of Canterbury, Christchurch, New Zealand
e-mail: c.semple@math.canterbury.ac.nz

T. Stadler (B)
Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
e-mail: tanja.stadler@env.ethz.ch

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159156201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

716 S. Linz et al.

Mathematics Subject Classification (2000) 05C05 · 05C20 · 92D15

1 Introduction

Evolution is often regarded as a tree-like process in which an ancestral species evolves
to a set of present-day species via a sequence of speciation events. This approach is
well-suitable to tackle various questions arising from evolutionary studies. However,
reticulation has now been shown to be an important process in the evolution of various
ancestral and present-day species (for example, see Mallet 2005; Ochman et al. 2000
and references therein). Two major reticulation scenarios that are discussed in this
paper are horizontal gene transfer (HGT) and hybridization. In the case of the latter,
two organisms of different ancestral species combine their DNA to create a new spe-
cies. This process is common in certain groups of plants and fish (Mallet 2005). On the
other hand, in the case of HGT, which is widely observed among bacteria (Ochman
et al. 2000), a piece of DNA (e.g. a gene) is transferred from one organism to another
which is not its offspring. Consequently, if the genome of a species is chimeric as
a result of one or more HGT or hybridization events, its evolutionary history can
often be better represented by using a reticulation network rather than a phylogenetic
tree.

Recently, a lot of effort has been put into the development of algorithms to recon-
struct reticulation networks for a set of present-day species (for example, see
Makarenkov et al. 2006 and references therein). However, as pointed out in Maddison
(1997), although a reticulation network might explain several conflicting signals in a
data set, there may be no process of instantaneously occurring reticulation events that
realizes this network. Consequently, the two (resp. three) species that are involved in
an HGT (resp. a hybridization) event are not guaranteed to exist contemporaneously.
Roughly speaking, we say that a reticulation network is temporal if each reticulation
event can be realized between coexisting ancestral species while speciation events
occur successively. Beside the reconstruction of possibly non-temporal reticulation
networks, there exists a number of algorithms that do calculations on networks and
implicitly assume that the input consists of a temporal reticulation network. For exam-
ple, Jin et al. (2007) have developed an algorithm for computing the parsimony score
of a temporal reticulation network.

A reticulation network that is not temporal does not necessarily imply that the
network is incorrect. By allowing for additional taxa that for instance correspond to
unsampled or extinct taxa one can always transform a non-temporal reticulation net-
work into a temporal one without introducing any new reticulation events (Baroni
et al. 2006; Moret et al. 2004). For example, consider the reticulation network shown
in Fig. 1, where the non-arrowed arcs are directed down the page. If one ignores
the dashed arc and its end vertices, then the network is not temporal. However, by
allowing for this dashed arc and the taxon x , the resulting network is temporal. Given
this, a natural task in the study of biologically meaningful reticulation networks is to
calculate the minimum number of additional taxa that must be allowed for, so that the
resulting network is temporal. We call the analogous decision problem AddTaxa and
show in the first half of this paper that this problem is NP-complete.

123

Analyzing and reconstructing reticulation networks 717

Fig. 1 A temporal hybridization
network with one additional
taxa x

In the second half of this paper, we focus our attention on hybridization and con-
sider a task that is one step closer to the initial biological data. Instead of being given a
reticulation network, one frequently starts with a set of gene trees. For example, due to
hybridization, these gene trees—reconstructed for different genetic loci—often reveal
inconsistencies. Here, a fundamental problem is to calculate the smallest number of
hybridization events needed to simultaneously explain the set of gene trees. While
this problem is NP-hard, Bordewich et al. (2007) and, more recently, Collins et al.
(2009) have implemented a fixed-parameter algorithm for solving it when the initial
set consists of two gene trees, T and T ′ say. This algorithm is dependent on finding
an associated optimal agreement forest. For the purposes of the introduction, simply
think of the forest as a smallest collection of (disjoint) subtrees common to T and
T ′. From this forest, the algorithm HybridPhylogeny (Baroni et al. 2006) can be
applied to reconstruct a hybridization network that explains T and T ′, and in which
the number of hybridization events equates to the size of the forest. However, despite
its practical application, HybridPhylogeny does not guarantee that the resulting
network is temporal. In the second half of the paper, we provide an algorithm, called
TemporalHybrid, that constructs temporal hybridization networks from agreement
forests. It is worth noting here that there is no guarantee that such networks exist. Fur-
thermore, two applications of TemporalHybrid are given with the second application
being used to analyze a grass data set.

The paper is organized as follows. The next section contains some notation and ter-
minology that is used throughout the paper and formally defines the decision problem
AddTaxa. In Sect. 3, we show that AddTaxa is NP-complete. As fixed-parameter
algorithms have been shown to often be a valuable tool for attacking instances of
an NP-complete problem that are otherwise not solvable in reasonable time, we end
Sect. 3 by showing how a fixed-parameter algorithm for another NP-complete problem
can be used to solve AddTaxa. In the first part of Sect. 4, we present the algorithm
TemporalHybrid. Two methods to decide whether or not a temporal hybridization
network for two trees exists are presented in the end of Sects. 4.2 and 4.3. The second
method is illustrated on a grass data set. Section 5 summarizes the paper.

2 Modeling reticulate evolution

In this section, we give some preliminary definitions for acyclic digraphs that are
commonly used to model reticulate evolution, and formally state the decision problem
AddTaxa.

123

718 S. Linz et al.

Let X be an arbitrary finite set. A reticulation network N on X is a rooted acyclic
digraph with the following properties:

(i) the root has indegree 0 and outdegree 2;
(ii) X is the set of leaves of the network, i.e. vertices with outdegree 0 and indegree 1;

(iii) all remaining vertices are interior vertices, and each such vertex either has in-
degree 1 and outdegree 2 or has indegree 2 and outdegree 1;

(iv) either one arc or both arcs ending in a vertex with indegree 2 are reticulation
arcs, all other arcs in the network are tree arcs; and

(v) every interior vertex has at least one outgoing tree arc.

The set X represents in our context a collection of present-day taxa. Furthermore,
vertices of N with indegree 1 are referred to as tree vertices while vertices of N with
indegree 2 are referred to as reticulation vertices. In this paper, a reticulation vertex
represents either a hybrid species or a species which evolved due to HGT. Property
(v) in the definition of a reticulation network guarantees that every species that arises
from either a speciation or a reticulation event exists for a certain time before possibly
going extinct. For example, an ancestral species does not yield two new hybrid spe-
cies and simultaneously becomes extinct. This is biologically well-motivated since,
although hybridization can result in the extinction of one or both hybridizing species,
this process takes at least a few generations, and hybridization and extinction are often
only locally observed (Martinsen et al. 2001; Wolf et al. 2001). Ignoring the dashed
arc and its end vertices for the moment, Fig. 1 shows a reticulation network, where
X = {a, b, c, d}. Here, as in all figures in the paper, the direction of any non-arrowed
arc is down the page.

Let N be a reticulation network with vertex set V and arc set A, and let u, v ∈ V .
If there is a directed path from u to v and u �= v, we write u < v and refer to u as an
ancestor of v and to v as a descendant of u. If (u, v) is an arc of N , we call (u, v) a
parent arc of v, and say that u is a parent of v and that v is a child of u.

A reticulation vertex due to hybridization is called a hybridization vertex and the
parent arcs of such a vertex are called hybridization arcs. Similarly, a reticulation
vertex due to HGT is called an HGT vertex and exactly one of its two parent arcs is an
HGT arc with this arc indicating the direction of the DNA transfer. Hybridization and
HGT arcs are collectively referred to as reticulation arcs (see definition of a reticula-
tion network). A hybridization network is a reticulation network where all reticulation
events are due to hybridization while an HGT network is a reticulation network where
all reticulation events are due to HGT.

As only one parent arc of an HGT vertex is an HGT arc, a reticulation network
can lead to different HGT networks depending on which parent arc is the HGT arc. In
contrast, as both parent arcs of a hybridization vertex are hybridization arcs, a reticu-
lation network leads to a unique hybridization network. The discrimination between
HGT and hybridization arcs becomes crucial when considering temporal reticula-
tion networks whose formal definition is given in the next paragraph. Throughout the
paper, whenever we refer to a reticulation network we mean that the network is either
a hybridization network or an HGT network. Furthermore, in the context of figures,
reticulation arcs are always drawn with an arrow while tree arcs are drawn without
an arrow. Again ignoring the dashed arc and its end vertices, Fig. 1 and the left figure

123

Analyzing and reconstructing reticulation networks 719

Fig. 2 A non-temporal HGT network (left) and its associated critical graph (right)

Fig. 3 A temporal hybridization
network for the 4 taxa a, b, c,
and d with a temporal labeling

in Fig. 2 show a hybridization network and an HGT network, respectively. Lastly,
we remark that our definition of a hybridization network N coincides with that of
a so-called tree-child phylogenetic network, which has been introduced by Cardona
et al. (2009). But note that an HGT network is not necessarily a tree-child network as
the two children of a tree vertex can both be HGT vertices, see Fig. 2.

We next formalize the notion of assigning dates to the vertices of a reticulation
network. Let N be a reticulation network with vertex set V and arc set A, and let V ′
be a subset of V . Let f : V ′ → R

+ be a map such that, for all s, t ∈ V ′, we have
f (s) = f (t) whenever (s, t) is a reticulation arc, and f (s) < f (t) whenever there
is a directed path from s to t that contains a tree arc. Then f is a partial temporal
labeling of N . If V ′ = V , then f is a temporal labeling of N , and we say that N is
temporal or has a temporal representation. As an example, consider the hybridization
network shown in Fig. 3 which illustrates a temporal labeling f of this network.

Not all reticulation networks have a temporal representation. However, as noted
in Baroni et al. (2006), one can always make such a network temporal by allowing for
additional taxa that do not introduce new reticulation vertices. Such taxa may corre-
spond to unsampled or extinct taxa. This can be done as follows. Let N be a reticulation
network, and let e = (u, v) be an arc of N . Consider the reticulation network obtained
from N by replacing e with a 2-arc directed path consisting of (u, z) and (z, v), and
then adjoining a new taxa x via the new arc (z, x). We say that the resulting reticu-
lation network has been obtained from N by adding a new taxa x across (u, v). As
an example, consider Fig. 1. The hybridization network shown (including the dashed
arc) has been obtained from the underlying solid-arc hybridization network by adding
x across (u, v). We will soon see that by adding new taxa in this way to N it is always

123

720 S. Linz et al.

possible to produce a reticulation network that has a temporal representation. This
motivates the following decision problem which is the main focus of the first part of
this paper.

Problem: AddTaxa(N , k)

Instance: A reticulation network N and a positive integer k.

Question: Is there a temporal reticulation network that can be obtained from N by
adding at most k new taxa?

If an instance of AddTaxa(N , k) is restricted to HGT or hybridization net-
works, we refer to the resulting decision problems as AddTaxaHGT(N , k) and
AddTaxaHybrid(N , k), respectively.

3 ADDTAXA is NP-complete

In this section, we show that both AddTaxaHGT(N , k) and AddTaxaHybrid(N , k) are
NP-complete. We begin with some further definitions and establish several preliminary
results. Let N be a reticulation network, and let (v, v1) be a reticulation arc. If there
exists a reticulation vertex w with w �= v1 such that v < w, but v1 ≮ w, then v

is said to be critical, in which case, v1 is a critical reticulation vertex. Furthermore,
we call v1 a critical HGT vertex or a critical hybridization vertex if N is an HGT or
a hybridization network, respectively. To illustrate, consider Fig. 2. In the left-hand
figure, u is a critical vertex as the reticulation vertex v1 is a descendant of u, but is not
a descendant of u1.

For a reticulation network N , let CN denote the graph whose vertex set is the set
of critical vertices of N and whose arc set is

{(u, v) : u < v1, where (v, v1) is a reticulation arc in N }.

The graph CN is called the critical graph of N . As an example, the critical graph of
the HGT network shown in Fig. 2 is shown in the right of that figure.

Lemma 3.1 Let N be a reticulation network. Then N has a temporal representation
if and only if there exists a partial temporal labeling for the set consisting of the critical
vertices and the critical reticulation vertices of N .

Proof Evidently, if N has a temporal representation, then, by restricting the labeling
of such a representation to the critical vertices and the critical reticulation vertices,
we have a partial temporal labeling of these vertices. Next we prove the converse for
hybridization networks and then use this fact to prove the converse for HGT networks.

Let N be a hybridization network. Suppose that we have a partial temporal label-
ing fc of the critical vertices and critical hybridization vertices of N . By assigning
values to the other vertices of N , we extend the labeling of these vertices under fc to
a temporal labeling of N . We do this in two steps; we first extend to all hybridization
vertices and their parents, and then, second, extend to all remaining tree vertices.

123

Analyzing and reconstructing reticulation networks 721

For a hybridization arc (v, v1) in which v is critical, it is possible that the other
parent of v1, say v′, is not critical. In this case, extend fc by assigning v′ the same value
as v and v1. Since v′ is not critical, every hybridization vertex that is a descendant of v′
is also a descendant of v1. It is now easily seen that this extension is a partial temporal
labeling of N . Continuing in this way, we eventually assign appropriate values to all
parents of critical hybridization vertices.

Together with the assignment given in the last paragraph, we now extend the partial
temporal labeling fc of a hybridization network to all remaining hybridization ver-
tices and their respective parents so that the resulting extension is a partial temporal
labeling of N . We do this using induction on the number k of hybridization vertices
not currently assigned a temporal label. If k = 0, then this extension is vacuous. Now
suppose that we can extend fc to include an additional k − 1 hybridization vertices
and their respective parents, where k ≥ 1. Let v1 be a hybridization vertex without a
label, and suppose that its parents are v and v′. Let ta denote the maximum value of
a temporal label assigned to an ancestor of v1. If no ancestor of v1 has been assigned
such a label, set ta = 0. Let td denote the minimum value of a temporal label assigned
to a descendant of v1. If no descendant of v1 has been assigned such a label, set
td = ∞. Note that, since v1 is unlabeled, neither v nor v′ is critical, and so every
hybridization vertex that is a descendant of v or v′ is a descendant of v1. Therefore,
td is also the minimum value of a temporal label assigned to a descendant of either
v or v′. Now ta < td ; otherwise we contradict the induction assumption that we can
extend fc to k −1 additional hybridization vertices and their respective parents. It now
follows that any real number in the interval (ta, td) can be assigned to v1, v, and v′
to obtain an appropriate extension of fc to k hybridization vertices and their parents.
Thus, by induction, fc can be extended to all such hybridization vertices and their
parents.

Now that all hybridization vertices and their respective parents are labeled appro-
priately, we next label the remaining tree vertices of N . We first partition the set of tree
vertices (including the root) of N as follows. Let C1, C2, . . . , Ck denote the maximal
connected subgraphs of N whose vertex sets consist entirely of tree vertices. For all
i , the subgraph Ci is a rooted tree as each vertex is a tree vertex. Without loss of
generality, we may assume that C1, C2, . . . , Ck is ordered so that i < j if and only if
either the root of Ci is an ancestor of the root of C j or neither the root of Ci nor the
root of C j is an ancestor of the other. Thus C1 contains the root of N . Beginning with
the vertices in C1 and using this ordering, we can systematically label the remaining
unlabeled tree vertices of N as follows. For each i , label the root with a real number
bigger than that of any of its ancestors, but smaller than that of any descendant that
is labeled and, label each of its leaves with a real number bigger than that of any cur-
rently labeled ancestor, but smaller than that of any descendant that is labeled. Now
label the rest of the vertices of Ci appropriately. Note that Ci may contain a vertex v

that has already been assigned a label; in which case v is a parent of a hybridization
vertex. However, this is not problematic as it simply means that each ancestral vertex
of v must be labeled with a real number smaller than the label assigned to v, and
each descendant vertex of v must be labeled with a real number bigger than the label
assigned to v. As Ci is a rooted tree, this is always possible. The resulting labeling is
a temporal labeling of N .

123

722 S. Linz et al.

Now, let N be an HGT network and suppose that we have a partial temporal labeling
fc of the critical vertices and the critical HGT vertices of N . Let N ′ be the hybrid-
ization network that is obtained from N by adding a new taxa across the parent tree
arc of each HGT vertex and viewing each HGT vertex as a hybridization vertex. By
construction, a vertex is critical in N ′ if and only if it is critical in N . Thus fc is also
a partial temporal labeling of the critical vertices and critical hybridization vertices
of N ′. By assigning values to the other vertices of N ′ as described in the proof for
hybridization networks, we can extend fc to a temporal labeling f ′ of N ′. Restrict-
ing f ′ to the vertices of N , it is easily checked that this restriction gives a temporal
labeling of N . This completes the proof of the lemma.

Remark We remarked prior to the formal description of AddTaxa that a reticulation
network N can always be made temporal by adding new taxa in a certain way. Indeed,
because of Lemma 3.1, we can do this as follows. Suppose that (v, v1) is a reticulation
arc in N such that v is critical, and consider the reticulation network N ′ obtained from
N by adjoining a new taxa x across (v, v1). Let (z, x) denote the adjoining arc. Since
(v, z) is not a reticulation arc, v is not critical in N ′. Furthermore, z is not critical in
N ′. So N ′ has strictly less critical vertices than N . Continuing in this way, we even-
tually obtain a reticulation network with no critical vertices and thus, by Lemma 3.1,
a network that is temporal.

We next restrict our attention to HGT networks. The reason for this is that we first
prove that AddTaxaHGT(N , k) is NP-complete and then use this result to show that
AddTaxaHybrid(N , k) is NP-complete.

Lemma 3.2 Let N be an HGT network, and let (v, v1) be an HGT arc of N such
that v is critical. Let N ′ be the HGT network obtained from N by adding a new taxa
across (v, v1). Then the graphs CN ′ and CN \v are equal.

Proof First observe that, as v is not incident with an HGT arc in N ′, it is not critical.
Moreover, the parent vertex, z say, of the new taxa in N ′ is also not critical since,
except for the new taxa, z and v1 have the same descendants. It now follows that the
vertex sets of CN ′ and CN \v are equal. Furthermore, for all vertices u and w in CN ′ ,
we have that (u, w) is an arc in CN ′ if and only if it is an arc in CN \v. Thus the graphs
CN ′ and CN \v are equal.

Proposition 3.3 Let N be an HGT network. Then N has a temporal representation
if and only if CN is acyclic.

Proof First suppose that CN is acyclic. To show that N has a temporal representation,
it suffices to show by Lemma 3.1 that there is a partial temporal labeling fc of the
critical vertices and critical HGT vertices of N . We define such a labeling as follows.
It is well-known and easily proved that, as CN is acyclic, it has a vertex v with indegree
zero. Let (v, v1) be the HGT arc incident with v in N . Since v has indegree zero, no
vertex in CN is an ancestor of v or v1 in N . Set fc(v) = fc(v1) = 1. Now delete
v in CN and consider the resulting graph. Since this graph is acyclic, it has a vertex
of indegree zero. Repeat the above process for this vertex, but assign it and its child
HGT vertex value 2 under fc. By deleting this vertex and continuing in this way, we

123

Analyzing and reconstructing reticulation networks 723

eventually assign all critical vertices and critical HGT vertices of N a value under fc.
Moreover, fc is a partial temporal labeling of the critical vertices and critical HGT
vertices of N and so, by Lemma 3.1, N has a temporal representation.

It remains to show that N having a temporal representation implies CN being acy-
clic. We establish this statement by showing that if CN has a directed cycle, then
N does not have a temporal representation. Suppose that CN has a directed cycle
v0, v1, . . . , vm−1, v0. For all i , let vi1 denote the child HGT vertex of vi in N . Then,
for all i modulo m, there is a directed path from vi−1 to vi1 containing at least one tree
arc. It follows that N has no temporal representation. This completes the proof of the
proposition.

Corollary 3.4 Let N be an HGT network, and let Vc be a subset of the vertex set
of CN . Then the HGT network obtained from N by adding, for each v ∈ Vc, a new
taxa across the HGT arc incident with v has a temporal representation if and only if
CN \Vc is acyclic.

Proof Combining Lemma 3.2 and Proposition 3.3 gives the desired result.

We now show that AddTaxaHGT(N , k) is NP-complete. The NP-complete prob-
lem that we use for the polynomial-time reduction is FeedbackVertexSet (Karp
1972):

Problem: FeedbackVertexSet(G, m)

Instance: Directed graph G = (V, E) and a positive integer m ≤ |V |.
Question: Is there a subset V ′ ⊆ V with |V ′| ≤ m such that G\V ′ is acyclic?

Remarks 1. Observe that if N is an HGT network, then, by Corollary 3.4, the answer
to AddTaxaHGT(N , k) is yes if and only if the answer to FeedbackVertex-

Set(CN , k) is yes.
2. Baroni et al. (2006) have provided the algorithm TempRep which determines

whether a given hybridization network N has a temporal representation or not. To
describe the idea of TempRep, let V be the vertex set of N . Ignoring the direction
of the arcs of N , an equivalence relation on V is now defined by setting

[v] = {v} ∪ {u ∈ V : there is a path of reticulation arcs from u to v in N }.

Observe that if v is not incident with a reticulation arc, then [v] = {v}. Set

[V] = {[v] : v ∈ V }.

Essentially, calling TempRep for N results in the following two steps. First, a
digraph DN is constructed whose vertex set is [V], and for which [u] and [v] are
joined by an arc ([u], [v]) precisely if there exist a ∈ [u] and b ∈ [v] such that
(a, b) is a tree arc in N . Second, it is checked whether DN is acyclic or not. In
Baroni et al. (2006, Theorem 3), it has been shown that N has a temporal rep-
resentation if and only if DN is acyclic. Inspecting the associated proof reveals

123

724 S. Linz et al.

Fig. 4 The base case for the proof of Theorem 3.5

that the same applies for when N is an HGT network. Note that both steps of
the algorithm can be computed in polynomial time. Thus, TempRep is a poly-
nomial-time algorithm, and AddTaxaHGT(N , k) and AddTaxaHybrid(N , k) are
consequently in NP.

Using the two previous remarks, we next prove the main result of this section.

Theorem 3.5 The decision problem AddTaxaHGT(N , k) is NP-complete.

Proof By Remark 2, first note that AddTaxaHGT(N , k) is in NP as we can apply
the polynomial-time algorithm TempRep to determine whether a given HGT network
has a temporal representation or not. Now, making use of Remark 1, to complete the
proof it is sufficient to show that, given an instance G of FeedbackVertexSet, we
can construct in polynomial time an HGT network N whose size is polynomial in the
size of G and for which CN and G are the same. The proof that such an HGT network
always exists is by induction on the number k of arcs of G.

If k = 0, then G consists of only isolated vertices, u1, u2, . . . , un (where n ∈ N0
arbitrary), and the HGT network shown in Fig. 4 has the property that its critical graph
consists of isolated vertices u1, u2, . . . , un . Since the size of this network is polyno-
mial in the size of G, this establishes the base case of the induction. Now assume that,
if an instance of FeedbackVertexSet has k − 1 arcs, where k ≥ 1, then there is an
HGT network with the desired properties.

Let G ′ denote the directed graph obtained from G by deleting an arbitrary arc (u, v).
By the induction assumption, there is an HGT network N ′ that can be constructed in
polynomial time and is polynomial in the size of G ′, and has the property that CN ′
and G ′ are the same. As u and v are vertices in G ′, they are parents of HGT vertices in
N ′. Call the corresponding HGT vertices u1 and v1. Note that u is not an ancestor of
v1 (and therefore also not of v) since (u, v) is not an arc in G ′. Furthermore, note that
u and v are tree vertices. A generic picture of N ′ is shown in Fig. 5. We complete the
proof by modifying N ′ to obtain an HGT network N such that CN and G are the same.
CN and G being equal implies in particular that u becomes an ancestor of v1 in N .

123

Analyzing and reconstructing reticulation networks 725

Fig. 5 The bold triangle
represents the HGT network N ′
in the proof of Theorem 3.5.
Only the vertices u, u1, v, and
v1 are drawn explicitly as we
need them to obtain N from N ′
(see Fig. 6). Note that u is not an
ancestor of v1, however, v is an
ancestor of u1 if (v, u) is an arc
in G′

Fig. 6 The HGT network N constructed from N ′ in the proof of Theorem 3.5. The part of the network
enclosed by the solid triangle is the same as that shown in Fig. 5 except that vertices u, u1, v, and v1
have been renamed as y, y1, z, and z1, respectively. Each dashed line ei with i ∈ {a, b, c, d, f, g, h, w}
represents a 2-arc directed path (with the middle vertex omitted) and the attachment of a new taxa xi (also
omitted) adjoined to the middle vertex on the path, see top right of the figure. This means that the endpoint
of each dashed line corresponds to a non-critical HGT vertex

We modify N ′ in the following way: Rename the vertices u, u1, v, and v1 to y, y1,
z, and z1, respectively. Further, add a new taxa across (y, y1) and (z, z1), so that y and
z are not critical vertices. We add an arc ancestral to the root in N ′, which has four
new arcs descending (see Fig. 6). The vertices u, u1, v, and v1 are placed on these four
arcs (one on each) and HGT arcs (u, u1) and (v, v1) are added. In order to preserve
all relationships between critical vertices occurring in N ′, we add the seven HGT arcs

123

726 S. Linz et al.

ea, eb, ec, ed , e f , eg (and possibly the arc ew if (v, u) is an arc in G ′), each with a new
taxa across the arc so that the added HGT vertices are not critical (see Fig. 6):

– The arcs ea and eb are included so that each ancestor of the critical HGT vertex v1 in
N ′ is also an ancestor of the critical HGT vertex v1 in the modified HGT network.

– The arcs ec and ed are included so that each ancestor of the critical HGT vertex u1 in
N ′ is also an ancestor of the critical HGT vertex u1 in the modified HGT network.

– The arc e f is included so that each descendant of the critical vertex v in N ′ is also
a descendant of the critical vertex v in the modified HGT network.

– The arc eg is included so that each descendant of the critical vertex u in N ′ is also
a descendant of the critical vertex u in the modified HGT network.

– If (v, u) is an arc in G, then the arc ew is also included into the construction so
that v is an ancestor of u1 in the modified HGT network.

Lastly, as (u, v) is an arc in G, the arc eh is added with a new taxa across it so that u
is an ancestor of v1 in the modified HGT network.

We call this resulting HGT network N . Clearly, the construction of N from N ′
takes polynomial time and so, by the induction assumption the construction of N from
G also takes polynomial time. Moreover, the size of N is polynomial in the size of N ′
and so, again by the induction assumption, the size of N is polynomial in the size of G.

It remains to verify that the critical graph of N is G. Because of the way in which
N is constructed from N ′ and noting that neither y nor z is critical in N , the set of
critical vertices of N is exactly the same as the set of critical vertices of N ′. Thus the
vertex sets of CN and G are the same. Furthermore, by construction, if w and x are
critical vertices of N and {w, x} ∩ {u, v} = ∅, then (w, x) is an arc in CN precisely if
(w, x) is an arc in G. Thus to show that CN and G are the same, it remains to check,
for each j ∈ {u, v}, that (w, j) is an arc in CN precisely if (w, j) is an arc in G and
that (j, w) is an arc in CN precisely if (j, w) is an arc in G. First observe that because
of the addition of eh , we have (u, v) in CN . Furthermore, if (v, u) is in G, then ew is
added and so (v, u) is in CN . We next complete the check for when j = v. The check
for when j = u is similar and omitted.

Since any ancestor of v in N ′ remains an ancestor of v1 in N and any ancestor of v1
in N ′ remains an ancestor of v1 in N because of the addition of ea and eb, respectively,
it follows by the induction assumption that (w, v) is an arc in CN precisely if (w, v)

is an arc in G. Furthermore, since any descendant of v in N ′ remains a descendant
of v in N because of the addition of e f , it follows by the induction assumption that
(v,w) is an arc in CN precisely if (v,w) is an arc in G. It now follows that the two
graphs CN and G are equal. This completes the proof of the theorem.

Given an instance of AddTaxaHGT(N , k), consider the instance of
AddTaxaHybrid(N ′, k), where N ′ is obtained from N by adding a new taxa across
the parent tree arc of each HGT vertex and then viewing each such vertex as a hybrid-
ization vertex. Observe that N is a temporal HGT network if and only if N ′ is a
temporal hybridization network. Moreover, if N is not temporal, it is easily seen that
the minimum number of new taxa one needs to add to N so that the resulting HGT
network is temporal is equal to the minimum number of new taxa one needs to add
to N ′ so that the resulting hybridization network is temporal. Thus the answer to

123

Analyzing and reconstructing reticulation networks 727

AddTaxaHGT(N , k) is yes if and only if the answer to AddTaxaHybrid(N ′, k) is yes.
Since the construction of N ′ from N takes polynomial time in the size of N and since,
by Remark 2 prior to the statement of Theorem 3.5, we can apply the polynomial-
time algorithm TempRep to determine whether a given hybridization network has a
temporal representation, the following corollary now follows from Theorem 3.5.

Corollary 3.6 The decision problem AddTaxaHybrid(N , k) is NP-complete.

We end this section with a brief discussion on solving AddTaxa in reasonable
time. For an HGT network N , the proof of Theorem 3.5 provides an algorithm for
solving AddTaxa(N , k). In particular, construct the critical graph of N and use an
exact algorithm for FeedbackVertexSet(CN , k). For hybridization networks, we
can use the same approach as the analogous results for HGT networks also hold in
this setting.

It is straightforward to check that Lemma 3.2 and Proposition 3.3 hold for hybrid-
ization networks. For the analogous proof of Proposition 3.3, note that, in the context
of hybridization networks, if v1 is a hybridization vertex with parents v and v′, and
both v and v′ are in the critical graph, then (u, v) is an arc in CN if and only if (u, v′)
is an arc in CN . Thus v and v′ can be labeled appropriately, similar to the procedure
described in the first part of the proof of this proposition for labeling an HGT network.
Since Lemma 3.2 and Proposition 3.3 hold for hybridization networks, Corollary 3.4
holds for hybridization networks. Hence, one can also solve AddTaxa(N , k) for
when N is a hybridization network by constructing CN and using an exact algorithm
for FeedbackVertexSet(CN , k).

It is shown in Chen et al. (2008) that FeedbackVertexSet for directed
graphs is fixed-parameter tractable. The authors provide an algorithm which solves
FeedbackVertexSet(G, k) in O(4kk!nO(1)) where n is the number of vertices in G.
Thus if k is relatively small, this algorithm will work reasonably quickly in practice
regardless of the size of G.

For a reticulation network N , the size of CN is determined by the number of critical
vertices of N . This number is less than the number of reticulation vertices and we
would expect this latter number to be much less than the size of N . Consequently, k
may typically be relatively small and so the algorithm in Chen et al. (2008) should
work well in helping to find the solution for many instances of AddTaxa(N , k).

4 Constructing temporal hybridization networks for two trees

In the previous section, we determined the smallest number of taxa that must be added
to a reticulation network so that the resulting network is temporal. However, for many
evolutionary studies, we are initially given a set of gene trees rather than a reticula-
tion network. In such a case, in particular, when there are no unsampled taxa, it is
of importance to decide whether a temporal reticulation network exists that simul-
taneously explains the evolutionary histories of the gene trees under consideration.
An example showing that the existence of such a network is not guaranteed is given
after some preliminaries.

In this section, we analyze the construction of temporal hybridization networks
from so-called agreement forests. Such forests are frequently used to model reticulate

123

728 S. Linz et al.

Fig. 7 A rooted binary phylogenetic X -tree T , and the two subtrees T (Y) and T |Y with Y = {a, d, e}

evolution for when two rooted binary phylogenetic trees T and T ′ are given (see for
example Baroni et al. 2005; Bordewich and Semple 2007; Hein et al. 1996). Our anal-
ysis centers around a new algorithm, called TemporalHybrid, which reconstructs
a temporal hybridization network for T and T ′ if one exists. Two applications of
the algorithm are given at the end of this section, with the second application being
illustrated on a grass data set. Throughout this section, we restrict our attention to
hybridization networks.

4.1 The hybridization number

Before detailing TemporalHybrid, we need some additional definitions.

4.1.1 Hybrid phylogenies and the hybridization number

A rooted binary phylogenetic X-tree T is a rooted tree whose root has degree two and
all other internal vertices have degree three, and whose leaf set is X . The set X is called
the label set of T and is denoted by L(T). For a subset A of X , the minimal rooted
subtree of T that connects all the elements in A is denoted by T (A). Furthermore, the
restriction of T to A, denoted by T |A, is the rooted phylogenetic tree obtained from
T (A) by contracting every vertex of degree-2 apart from the root. An example of both
types of subtrees is shown in Fig. 7.

Let T be a rooted binary phylogenetic X ′-tree, and let N be a hybridization net-
work with label set X , where X ′ ⊆ X . We say that N displays T if all of the ancestral
relationships described in T are preserved by N . Formally, N displays T if T can be
obtained from N by deleting a subset of arcs and vertices of N , and contracting any
resulting degree-2 vertices apart from the root.

A fundamental problem for biologists studying a set of present-day species whose
evolutionary history includes hybridization is to determine the extent to which hybrid-
ization has influenced their past. For two rooted binary phylogenetic X -trees T and
T ′, a common way to quantify this extent is by determining the value

h(T , T ′) = min{h(N) : N is a hybridization network on X that displays T and T ′},

where h(N) is the number of hybridization vertices of N . However, Bordewich and
Semple (2007) showed that determining this number is an NP-hard problem.

We next give an example of two trees which cannot be displayed in a tempo-
ral hybridization network. Consider the two rooted binary phylogenetic X -trees T

123

Analyzing and reconstructing reticulation networks 729

d

TT
a b c d c d b a

a c d b a b d c a b c d

a d c b b a c d b a d c

b a d c c a b d c b a

Fig. 8 Two rooted binary phylogenetic X -trees T and T ′, and all nine hybridization networks on X
displaying both trees with two hybridization vertices. None of the hybridization networks is temporal

and T ′ shown at the top of Fig. 8. It is easily seen that every hybridization net-
work that displays T and T ′ has at least two reticulation vertices. There are exactly
nine hybridization networks on X , each with two hybridization vertices, displaying
T and T ′. These networks are shown in the bottom part of Fig. 8. None of these
networks is temporal. Moreover, a straightforward check shows that any hybridiza-
tion network that displays T and T ′ with more than two hybridization vertices is not
temporal either. Thus, there is no temporal hybridization network on X that displays
T and T ′.

4.1.2 Agreement forests

The approach taken by TemporalHybrid (see Sect. 4.2) is based on the concept of a
so-called acyclic-agreement forest for two rooted binary phylogenetic X -trees T and
T ′. Loosely speaking, the smallest size of such a forest for T and T ′ equates with
h(T , T ′). We next make this precise.

Let T and T ′ be two rooted binary phylogenetic X -trees. For the upcoming def-
initions, we regard the roots of both T and T ′ as an extra vertex ρ adjoined to the
original root by an additional edge and L(T) = L(T ′) = X ∪ {ρ}. An agreement
forest for T and T ′ is a collection F = {Sρ,S1,S2, . . . ,Sk} of rooted leaf-labeled
trees, where Sρ is a rooted tree whose label set Lρ contains ρ and S1,S2, . . . ,Sk

123

730 S. Linz et al.

are rooted binary phylogenetic trees with label sets L1,L2, . . . ,Lk , respectively, such
that the following properties hold:

(i) The label sets Lρ,L1,L2, . . . ,Lk partition X ∪ {ρ}.
(ii) For all i ∈ {ρ, 1, 2, . . . , k}, Si ∼= T |Li and Si ∼= T ′|Li .

(iii) The trees in {T (Li) : i ∈ {ρ, 1, 2, . . . , k}} and {T ′(Li) : i ∈ {ρ, 1, 2, . . . , k}}
are vertex-disjoint rooted subtrees of T and T ′, respectively.

We sometimes refer to the component Sρ of F as the root component of F . To illus-
trate, consider the two trees T and T ′ in Fig. 8. Viewing the root of each of T and T ′
as an extra vertex ρ adjoined to the original root as described above, the restrictions
of T (and T ′) to the label sets {ρ, a, d}, {b}, and {c}, respectively, are the components
of an agreement forest of T and T ′.

To make the connection between hybridization networks and agreement forests,
we need to extend the definition of an agreement forest. This extension allows for
the biological constraint that species cannot inherit genetic material from their own
descendants. Let GF be the directed graph whose vertex set is F and for which (Si ,S j)

is an arc precisely if i �= j and

(I) the root of T (Li) is an ancestor of the root of T (L j) or
(II) the root of T ′(Li) is an ancestor of the root of T ′(L j).

We say that F is acyclic precisely if GF is acyclic. If F is acyclic and it has the
smallest number of components amongst all such forests of T and T ′, then F is a
maximum-acyclic-agreement forest of T and T ′, in which case we denote |F | − 1 by
ma(T , T ′).

The minimum number h(T , T ′) of hybridization events and the size of a maxi-
mum-acyclic-agreement forest of T and T ′ are related through the following theo-
rem (Baroni et al. 2005).

Theorem 4.1 Let T and T ′ be two rooted binary phylogenetic X-trees. Then

h(T , T ′) = ma(T , T ′).

We now define an ordering of an acyclic-agreement forest which will be used as
an input to the algorithm TemporalHybrid. This algorithm constructs a temporal
hybridization network if one exists by iterating through such an ordering. For an
acyclic-agreement forest F , a tuple O = (Sρ,S1,S2, . . . ,Sk) is an ordering of the
components of F if, for each i , the vertex Si has indegree 0 in the graph obtained from
GF by deleting the vertices Sρ,S1,S2, . . . ,Si−1 and their incident arcs. Since F is
acyclic, such an ordering always exists.

Although not explicitly stated in Baroni et al. (2005), one direction of Theorem 4.1
is essentially established by proving that, if N is a hybridization network on X that
displays T and T ′, then there is an acyclic-agreement forest F for T and T ′ such
that |F | ≤ h(N) + 1. Intuitively, one takes N and iteratively cuts off rooted sub-
trees by deleting hybridization vertices and their three incident arcs. By viewing the
root of N as a vertex at the end of a pendant arc adjoined to the original root, we
obtain an acyclic-agreement forest F of T and T ′, and so |F | − 1 ≤ h(N). Now,
if we extend their argument and suppose that N is temporal, then we can obtain an

123

Analyzing and reconstructing reticulation networks 731

acyclic-agreement forest for T and T ′ as follows. First, select a vertex v that either
(i) is a hybridization vertex and, except for v itself, its parents have no hybridization
vertex as a descendant or (ii) is a tree vertex whose parent is a tree vertex that has no
hybridization vertex as a descendant. Now delete v and its three incident arcs if v is a
hybridization vertex or delete the parent arc of v if v is a tree vertex, and contract any
non-root degree-2 vertex. Repeating this process so that every hybridization vertex is
selected, and then reversing the order of the selections, we eventually obtain an order-
ing of an acyclic-agreement forest for T and T ′. Given an ordering O of an arbitrary
acyclic-agreement forest F of two rooted binary phylogenetic X -trees, we say that a
temporal hybridization network N preserves O if O can be obtained from N in the
above way.

4.2 The algorithm TemporalHybrid

In this section, we present the algorithm TemporalHybrid. This algorithm takes two
rooted binary phylogenetic X -trees T and T ′, and an ordering O of an acyclic-agree-
ment forest F of T and T ′ as input, and outputs either

(i) a temporal hybridization network on X that displays T and T ′, and preserves
O, or

(ii) a statement indicating that there is no such network.

Baroni et al. (2006), have previously presented a similar algorithm. Called Hybrid-
Phylogeny, this algorithm has the same input as TemporalHybrid but without
an ordering O of F . The task for HybridPhylogeny is simply to construct one of
potentially many hybridization networks that display T and T ′. However, in doing
so, there is no guarantee that the resulting network is temporal. The correctness of
TemporalHybrid is established after some remarks following the description of the
algorithm.

Algorithm: TemporalHybrid(T , T ′,O)

Input: Two rooted binary phylogenetic X -trees T and T ′, and an ordering O =
(Sρ,S1,S2, . . . ,Sk) of an acyclic-agreement forest F for T and T ′.

Output: A temporal hybridization network on X with at most k hybridization vertices
that displays T and T ′ and preserves O, or a statement indicating that there is no such
network.

1. For each i ∈ {1, . . . , k}, regard ρi as the label of an extra vertex adjoined to the
original root of Si by an additional edge.

2. Set N0 = Sρ , and set i = 1.
3. Attach Si to Ni−1 via at most two new arcs. Each new arc joins the vertex labeled

ρi to a new vertex which subdivides an arc of Ni−1. The subdivided arcs e = (u, v)

and e′ = (u′, v′) are chosen so that
(i) the resulting network displays T |(L(Ni−1) ∪ L(Si)) and T ′|(L(Ni−1) ∪

L(Si)), where L(Ni−1) = L(Sρ) ∪ L(S1) ∪ · · · ∪ L(Si−1), and

123

732 S. Linz et al.

(ii) no element of {ρ1, ρ2, . . . , ρi−1} is a descendant of either v or v′ and, if
e �= e′, then e and e′ are not on the same path from the root of Ni−1 to one
of its leaves.

Set Ni to be the resulting network. If there is no such attachment for Si , then stop
and return there is no temporal hybridization network on X that displays T and
T ′, and preserves O.

4. If i = k, remove the arc incident with the vertex labeled ρ and remove all labels
in {ρ, ρ1, ρ2, . . . , ρk} from Nk , contract any resulting degree-0 and degree-2 ver-
tices apart from the root, and return the obtained network. If i < k, increment i
by 1 and return to Step 3.

Remarks 1. If N0 consists of an isolated vertex labeled ρ, a slight complication
arises in Step 3 of the algorithm since no arc can be subdivided by a new vertex.
In this case, S1 is adjoined to N0 by adding precisely one new arc that joins the
vertex labeled ρ1 with the vertex labeled ρ.

2. For all Si ∈ F , the algorithm TemporalHybrid potentially checks each arc
of Ni−1 to decide whether Si can be appropriately attached to Ni−1. Thus, the
running time of the algorithm is at most O(kn), where n = |X |.

3. If F is a maximum-acyclic-agreement forest, then the attachment of a new compo-
nent Si to Ni−1 always requires two new arcs in Step 3 of the algorithm; otherwise,
F is not optimal.

4. If TemporalHybrid returns a temporal hybridization network, then this is the
unique such network on X that displays T and T ′, and preserves O (see
Theorem 4.2).

We next prove the correctness of TemporalHybrid. In doing this, we additionally
show that if the algorithm returns a hybridization network, then this network is unique
relative to the ordering of O.

Theorem 4.2 Let T and T ′ be two rooted binary phylogenetic X-trees, and let O be
an ordering of an acyclic-agreement forest F for T and T ′ with |F | − 1 = k. Then

(i) TemporalHybrid returns a temporal hybridization network N that displays T
and T ′ with h(N) ≤ k and that preserves O if there exists such a network, or

(ii) TemporalHybrid returns a statement indicating that there is no such network.

Moreover, if TemporalHybrid returns a temporal hybridization network, then, up to
isomorphism, this is the unique network with the properties in (i).

Proof Without loss of generality, let O = (Sρ,S1,S2, . . . ,Sk). The proof is by induc-
tion on k. If k = 0, then Sρ

∼= T ∼= T ′ and the theorem trivially holds. Now assume
that k > 0 and that the theorem holds for all orderings of all acyclic-agreement for-
ests with at most k components of two rooted binary phylogenetic trees. Let T1 be
the rooted binary phylogenetic tree T |(X − L(Sk)), and let T ′

1 be the rooted binary
phylogenetic tree T ′|(X − L(Sk)). Since Sk is the last coordinate in O, the trees T1
and T ′

1 can also be obtained from T and T ′, respectively, by deleting a single edge and
contracting the resulting degree-2 vertex. Let F1 = F − {Sk}. As O is an ordering of
F , it follows that O1 = (Sρ,S1,S2, . . . ,Sk−1) is an ordering of F1. Now observe that

123

Analyzing and reconstructing reticulation networks 733

the workings of TemporalHybrid applied to (T1, T ′
1 ,O1) and applied to (T , T ′,O)

up to considering Sk are identical. This observation is used in the rest of the proof.
Since |O1| < |O|, it follows by the induction assumption that TemporalHybrid

(T1, T ′
1 ,O1) either returns, up to isomorphism, a unique temporal hybridization net-

work, Nk−1 say, that displays T1 and T ′
1 and preserves O1, or returns a statement indi-

cating that there is no such network. First suppose that TemporalHybrid(T1, T ′
1 ,O1)

returns the latter. If there is a temporal hybridization network that displays T and T ′,
and preserves O, let v be the vertex of N that corresponds to the root of Sk . Then
by deleting v and its incident arcs or the parent arc of v, depending on whether v

is a hybridization vertex or a tree vertex, respectively, and contracting any
resulting degree-2 vertices apart from the root, we have a temporal hybridiza-
tion network that displays T1 and T ′

1 , and preserves O1; a contradiction. Thus, if
TemporalHybrid(T , T ′,O) returns a statement that there is no such network prior to
considering Sk , then it returns correctly. Therefore, we may suppose that Temporal-

Hybrid(T1, T ′
1 ,O1) returns Nk−1. By the observation at the end of the last paragraph,

this means that Nk−1 is constructed immediately prior to considering Sk in Tempo-

ralHybrid(T , T ′,O).
If TemporalHybrid(T , T ′,O) returns a statement indicating that there is no

appropriate network, then, because of the uniqueness of Nk−1 and the fact that (i)
and (ii) in Step 3 of the algorithm are necessary conditions for the placement of Sk ,
the algorithm performs correctly. On the other hand, if TemporalHybrid(T , T ′,O)

returns a network N , it follows by (i) and (ii) in Step 3 that N displays T and T ′, and
N is temporal and preserves O. Furthermore, let e = (u, v) and e′ = (u′, v′) denote
the arcs of Nk−1 that are subdivided in the attachment of Sk . By (ii) in Step 3, no
hybridization vertex is a descendant of v or v′, so the choice of e and e′ is unique. By
the uniqueness of Nk−1, it follows that N is the unique temporal hybridization network
that displays T and T ′, and preserves O. Note that this argument also holds if e = e′
in which case Sk is attached by a single arc. This completes the proof of the theorem.

We saw earlier that, for two rooted binary phylogenetic X -trees, there may not exist
a temporal hybridization network on X that displays both trees. In general, how does
one decide such an outcome for two rooted binary phylogenetic X -trees T and T ′? Of
course, by considering all orderings of all acyclic-agreement forests for T and T ′, we
can repeatedly use TemporalHybrid to decide whether or not such a hybridization
network exists. While still exponential in time, we can do much better than this by only
considering certain orderings and certain forests, as shown in the next proposition.

For two rooted binary phylogenetic X -trees T and T ′, an acyclic-agreement forest
F = {Sρ,S1, . . . ,Sk} of T and T ′ is trivial if |L(Sρ)| = 3 and each of S1, . . . ,Sk

consists of an isolated vertex. Provided Sρ is the first coordinate, any (k + 1)−tuple
of F is an ordering of F . The next proposition shows that it is sufficient to consider
each such ordering of F to decide whether or not there exists a temporal hybridization
network that displays T and T ′.
Proposition 4.3 Let T and T ′ be two rooted binary phylogenetic X-trees, and let
|X | = n. Deciding whether there is a temporal hybridization network on X that dis-
plays T and T ′ takes at most time O(n! · p(a)), where p(a) is the polynomial running
time of the algorithm TemporalHybrid.

123

734 S. Linz et al.

Proof Suppose there is a temporal hybridization network N on X that displays T
and T ′. Let X = {a1, a2, . . . , an}. We next construct an ordering of a trivial forest of
T and T ′, that is preserved by N . Select an element of X so that its parent is a tree
vertex and does not have a hybridization vertex as a descendant. If this is not possible,
then, as N is acyclic, there exists a hybridization vertex whose child is an element of
X and whose parents have no hybridization vertex as a descendant. Without loss of
generality, we may assume that the selected element is an . If the parent of an is a tree
vertex, then delete the parent arc of an and contract the resulting degree-2 vertex. Since
the parent of an has no hybridization vertex as a descendant, the resulting network
is again a hybridization network. If the parent of an is a hybridization vertex, then
delete the parent vertex of an and its three incident arcs, and contract the resulting
degree-2 vertices. By property (iv) in the definition of a reticulation network, it is
easily checked that the arcs incident with the contracted degree-2 vertices are tree
arcs, and thus, the resulting network is again a hybridization network. Furthermore, in
both cases, the resulting hybridization network is temporal as N is temporal. Selecting
another vertex and continuing in this way, we eventually select (in order) the vertices
an, an−1, . . . , a3 say. This gives a trivial forest F of T and T ′, where the label set of the
root component is {ρ, a1, a2} and the remaining components consist of isolated verti-
ces labeled a3, a4, . . . , an . Furthermore, the tuple beginning with the root component
and followed (in order) by the components whose label sets are {a3}, {a4}, . . . , {an}
is an ordering O of F and, by construction, N preserves O. Now, by Theorem 4.2,
calling TemporalHybrid(T , T ′,O) returns N . Thus to decide whether or not there
is a temporal hybridization network on X that displays T and T ′, it suffices to con-
sider all possible acyclic-agreement forests of T and T ′ that are trivial. Since there
are

(n
2

) · (n − 2)! = 1
2 n! such forests, the proposition now follows.

While the above approach is not fast because of the number of orderings to consider,
we can do much better in practice if we restrict our attention to maximum-acyclic-
agreement forests. We do this in the next section.

4.3 Minimal temporal hybridization networks

To provide an indication of the significance of hybridization, biologists are often inter-
ested in reconstructing (temporal) hybridization networks that explain the ancestral
history of the species under consideration and simultaneously minimize the number
of hybridization events. This minimum number provides a lower bound on the number
of such events, thus it gives an indication of the role that hybridization has had on the
evolution of the present-day species. In this section, we consider an approach to this
task with the view of constructing hybridization networks that are temporal.

Let T and T ′ be two rooted binary phylogenetic X -trees. A (temporal) hybridiza-
tion network N that displays T and T ′ is minimal if h(N) = ma(T , T ′). Since we
are using a combinatorial framework to calculate the number of hybridization events,
it is likely that there exist several maximum-acyclic-agreement forests for T and T ′.
For example, for the grass (Poaceae) data set that has been analyzed in Bordewich
et al. (2007), the associated gene loci for 12 gene tree pairs, the minimum number
of hybridization events, and the number of maximum-acyclic-agreement forests are

123

Analyzing and reconstructing reticulation networks 735

Table 1 Results for the Poaceae data set

Pairwise combination Hybridization # MAAFs # MAAFs with a proper
number h(T ,T ′) root component

ndhF phyB 14 2,268 0

ndhF rbcL 13 48 0

ndhF rpoC2 12 27 0

ndhF waxy 9 396 18

phyB rbcL 4 4 4

phyB rpoC2 7 1 0

phyB waxy 3 6 6

phyB ITS 8 9 9

rbcL rpoC2 13 9 0

rbcL waxy 7 35 0

rpoC2 waxy 1 1 1

waxy ITS 8 18 0

MAAFs maximum-acyclic-agreement forests

given in Table 1. This data set was originally provided by the Grass Phylogeny Working
Group (2001) and contains DNA sequences for the six genetic loci ndhF, phyB, rbcL,
rpoC2, waxy, and ITS. For each locus, up to 65 taxa were sequenced and a maximum
likelihood gene tree was reconstructed (for details, see Bordewich et al. 2007 and
references therein).

A natural way to decide whether there exists a minimal temporal hybridization
network for two rooted binary phylogenetic X -trees T and T ′ is to apply Temporal-

Hybrid to all orderings of each maximum-acyclic-agreement forest for T and T ′.
However, since the number of maximum-acyclic-agreement forests can still be quite
large (see Table 1), we next establish a quick test that significantly reduces the number
of such forests that one needs to consider.

To describe the test, we need one further definition. Let F be an acyclic-agreement
forest for two rooted binary phylogenetic X -trees T and T ′, and let Sρ be the root
component of F . If the roots of T (Lρ − {ρ}) and T ′(Lρ − {ρ}) coincide with the
original roots of T and T ′, respectively, Sρ is said to be proper.

Proposition 4.4 Let T and T ′ be two rooted binary phylogenetic X-trees, and let F
be a maximum-acyclic-agreement forest of T and T ′ with root component Sρ . Let O
be an ordering of F . If Sρ is not proper, then TemporalHybrid applied to (T , T ′,O)

returns a statement indicating that there is no temporal hybridization network on X
that displays T and T ′, and preserves O. In particular, there is no minimal temporal
hybridization network on X that displays T and T ′, and preserves O.

Proof Suppose that Sρ is not proper, and consider TemporalHybrid applied to
(T , T ′,O). If this application returns a hybridization network N , then, as F is max-
imum, N has exactly |F | − 1 hybridization vertices and so, at each iteration i , two
(distinct) new arcs are used to adjoin Si to Ni−1. Now, at some iteration i , the com-
ponent Si gets adjoined to Ni−1 via an arc that is incident with a new vertex that

123

736 S. Linz et al.

subdivides the arc leaving the vertex labeled ρ. But this means that wherever the
second new arc is placed to adjoin Si to Ni−1 we contradict (ii) in Step 3. Thus, by
Theorem 4.2, there is no temporal hybridization network on X that displays T and
T ′, and preserves O. The proposition now follows.

By checking which maximum-acyclic-agreement forests for a given pair of gene
trees have a proper root component, the number of such forests that can yield a min-
imal temporal hybridization network can be reduced significantly. For example, in
reference to Table 1, the highest number of maximum-acyclic-agreement forests for a
pair of trees is 2,268. However, as shown in the last column, none of these forests has a
proper root component. Hence, for the first pair of gene trees (ndhF and phyB) in this
table, there is no minimal temporal hybridization network that displays the two trees.
Moreover, for the 12 analyzed gene tree pairs of the grass data set, at most 18 max-
imum-acyclic-agreement forests need to be checked in order to determine whether
any associated ordering leads to a minimal temporal hybridization network for the
gene trees under consideration. In general, we can check in time O(rk! · p(a)) if a
minimal temporal hybridization network exists, where r is the number of maximum-
acyclic-agreement forests (with a proper root component) for a pair of trees, each such
forest consists of k + 1 components, and p(a) is the polynomial running time of the
algorithm TemporalHybrid. Note that k! is an upper bound on the number of order-
ings that are associated with a maximum-acyclic-agreement forest containing k + 1
components. Furthermore, we are assuming here that we have the list of maximum-
acyclic-agreement forests with a proper root component. Such a list can be found by
using the recently implemented extended version (unpublished) of the fixed-parameter
algorithm HybridInterleave (Collins 2009; Collins et al. 2009). Despite the theo-
retical exponential time of calculating this list, the practical running times presented
in Collins et al. (2009) essentially show that computing maximum-acyclic-agreement
forests is remarkably quick for many biological instances.

5 Summary

In the first part of this paper, we showed that AddTaxa—the decision problem asso-
ciated with determining the minimum number of taxa to add to a reticulation network
so that the resulting network has a temporal representation—is an NP-complete prob-
lem. However, in establishing the result, this determination comes down to finding the
minimum number of vertices to delete so that the associated critical graph is acyclic.
In practice, we expect this graph to be relatively small for many biological instances
and thus even brute-force algorithms might be feasible.

In the second part of this paper, we presented the polynomial-time algorithm
TemporalHybrid. This algorithm takes as input two rooted binary phylogenetic
X -trees T and T ′ and an ordering O of an associated acyclic-agreement forest, and
outputs a temporal hybridization network that displays T and T ′ and preserves O,
or the statement that no such network exists. As many biological studies consider
the reconstruction of minimal hybridization networks to provide an indication of the
significance of hybridization in evolution, we focused our attention to the potentially
exponential-time task of finding a temporal hybridization network whose number of

123

Analyzing and reconstructing reticulation networks 737

hybridization vertices is minimized in the last section. By using a simple and quick
check prior to the application of TemporalHybrid, we showed that—applied to a
grass data set—the number of maximum-acyclic-agreement forests that need to be con-
sidered for finding a minimal temporal hybridization network is significantly reduced
and that most inferred minimal hybridization networks are not temporal.

Acknowledgments We thank two anonymous reviewers for their helpful comments. S.L. was supported
by NSF grants SEI-BIO 0513910 and IIS-0803564, and the New Zealand Marsden Fund. C.S. thanks the
New Zealand Marsden Fund for supporting this work. T.S. was funded by the Deutsche Forschungsgemeins-
chaft through the graduate program “Angewandte Algorithmische Mathematik” at the Munich University
of Technology. All authors thank the Allan Wilson Centre for Molecular Ecology and Evolution for its
support.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Baroni M, Grünewald S, Moulton V, Semple C (2005) Bounding the number of hybridization events for a
consistent evolutionary history. J Math Biol 51:171–182

Baroni M, Semple C, Steel M (2006) Hybrids in real time. Syst Biol 44:46–56
Bordewich M, Semple C (2007) Computing the minimum number of hybridization events for a consistent

evolutionary history. Discret Appl Math 155:914–928
Bordewich M, Linz S, John K, Semple C (2007) A reduction algorithm for computing the hybridization

number of two trees. Evol Bioinform 3:86–98
Cardona G, Rossello F, Valiente G (2009) Comparison of tree-child phylogenetic networks. IEEE/ACM

Trans Comput Biol Bioinform 6:552–569
Chen J, Liu Y, Lu S, O’Sullivan B, Razgon I (2008) A fixed-parameter algorithm for the directed feedback

vertex set problem. In: Proceedings of the fourtieth annual ACM symposium on theory of computing,
pp 177–186

Collins J (2009) Rekernelisation algorithms in hybrid phylogenies. MSc Thesis, University of Canterbury,
Christchurch, New Zealand

Collins J, Linz S, Semple C (2009) Quantifying hybridization in realistic time (submitted)
Grass Phylogeny Working Group (2001) Phylogeny and subfamilial classification of the grasses Poaceae.

Ann Mo Botanical Gard 88:373–457
Hein J, Jiang T, Wang L, Zhang K (1996) On the complexity of comparing evolutionary trees. Discret Appl

Math 71:153–169
Jin G, Nakhleh L, Snir S, Tuller T (2007) Efficient parsimony-based methods for phylogenetic network

reconstruction. Bioinformatics 23:e123–e128
Karp RM (1972) Reducibility among combinatorial problems. In: Complexity of computer computations.

Plenum Press, New York, pp 85–103
Maddison W (1997) Gene trees in species trees. Syst Biol 46:523–536
Makarenkov V, Kevorkov D, Legendre P (2006) Phylogenetic network construction approaches. In: Applied

mycology and biotechnology. International Elsevier Series 6, Bioinformatics. Elsevier, Amsterdam,
pp 61–97

Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237
Martinsen G, Whitham T, Turek R, Keim P (2001) Hybrid populations selectively filter gene introgression

between species. Evolution 55:1325–1335
Moret BME, Nakhleh L, Warnow T, Linder CR, Tholse A, Padolina A, Sun J, Timme R (2004) Phylogenetic

networks: modeling, reconstructibility, and accuracy. Trans Comput Biol Bioinform 1:13–23
Ochman H, Lawrence J, Groisman E (2000) Lateral gene transfer and the nature of bacterial innovation.

Nature 405:299–304
Wolf D, Takebayashi N, Rieseberg L (2001) Predicting the risk of extinction through hybridization. Conserv

Biol 15:1039–1053

123

	Analyzing and reconstructing reticulation networks under timing constraints
	Abstract
	1 Introduction
	2 Modeling reticulate evolution
	3 AddTaxa is NP-complete
	4 Constructing temporal hybridization networks for two trees
	4.1 The hybridization number
	4.1.1 Hybrid phylogenies and the hybridization number
	4.1.2 Agreement forests

	4.2 The algorithm TemporalHybrid
	4.3 Minimal temporal hybridization networks

	5 Summary
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

