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Abstract. The classical preferential attachment model is sensitive to the choice of the initial configuration
of the network. As the number of initial nodes and their degree grow, so does the time needed for an
equilibrium degree distribution to be established. We study this phenomenon, provide estimates of the
equilibration time, and characterize the degree distribution cutoff observed at finite times. When the initial
network is dense and exceeds a certain small size, there is no equilibration and a suitable statistical test can
always discern the produced degree distribution from the equilibrium one. As a by-product, the weighted
Kolmogorov-Smirnov statistic is demonstrated to be more suitable for statistical analysis of power-law
distributions with cutoff when the data is ample.

1 Introduction

The preferential attachment (PA) model proposed by
Barabási and Albert is a network growth model where new
nodes gradually appear and connect to existing nodes with
probability proportional to the target node’s degree [1]
(other frequently-used synonyms for this mechanism are
rich-get-richer and cumulative advantage). Although not
the first of its kind [2], PA became popular for its sim-
plicity and for producing a stationary power-law degree
distribution which makes it a good candidate for model-
ing a wide range of real systems where heavy-tailed degree
distributions are often observed [3, Chap. 3]. The model
helped to initiate the young field of complex networks [3–5]
and it has been subsequently much studied and general-
ized (see in particular [6, Chap. 8] for an overview of an-
alytical approaches to its solution and generalizations).

Significant evidence for preferential attachment has
been found in various real datasets [7–9] but some im-
portant deviations have been reported too [10,11], mainly
in relation with the strong time bias of the model which
causes that high degree nodes (the heavy tail) are almost
exclusively those that were introduced in the early stage
of the network’s evolution. In the original PA model, if
the network growth starts with two connected nodes (a so-
called dyadic initial condition) and every new node creates
one link, a node introduced at time step i has at time t
expected degree

√
t/i which decreases fast with i (since

the distribution of nodes is uniform in i, this relation can
be used to derive the well-known 1/k3 degree distribution
in an especially simple way). The drawback of time bias
has been eliminated only recently by a model [12] where
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aging of nodes makes it possible also for late introduced
nodes to gain a significant number of links. Various other
models of growing networks with aging of nodes exist and
differ in their scope and behavior [13,14].

As networks rarely grow from a single starting node,
we investigate the influence of an initial network of nodes
on the original PA model. How is the stationary degree dis-
tribution formed and what is its functional form? To this
end, we first show that if the degree of nodes in the initial
network is greater than a certain threshold value (which
we find to be approximately 3), the initial nodes do not
become part of the eventual power-law degree distribution
of the network. To assess the approaching of the degree
distribution of newly added nodes to a power-law form,
we propose three quantities of interest and study their
evolution with time. This leads to estimates of the distri-
bution’s equilibration time which are then interpreted in
the context of the quantities used to obtain them.

When performing the goodness-of-fit of the network
degree distributions, we find a divergence between re-
sults obtained with the Kolmogorov-Smirnov statistic
used for statistical tests of power-law distributions in
reference [15] and those obtained with the weighted
Kolmogorov-Smirnov statistic introduced in reference [16].
We show that this difference is due to a cutoff of the
network degree distributions and investigate the behav-
ior and shape of this cutoff under various conditions. Our
results reveal high sensitivity of the PA model to the ini-
tial network configuration which, to our best knowledge,
has not been reported previously. Furthermore, significant
differences exist between the ability of the standard and
weighted Kolmogorov-Smirnov statistic to detect a power-
law cutoff in empirical data. Note that finite size effects
and sensitivity to the initial condition in the PA model
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have been studied already in reference [17] where however
no results were provided for the equilibration time and the
degree distribution cutoff.

2 PA model with multiple initial nodes

We study the PA model starting with an initial random
network of n0 nodes with mean degree μ0 where in every
time step one node is added and creates a link to an ex-
isting node selected according to preferential attachment.
The network thus consists of n0 + t nodes after time step t.
For the sake of clarity, nodes constituting the initial net-
work are referred to as initial nodes while all gradually
added nodes are referred to as new nodes.

The degree distribution of the initial nodes, pk,t, can
be studied by the standard master-equation approach [18].
Denoting the mean degree of the initial nodes at time t
as μt, PA dictates that a link created at time step t
connects to one of the initial nodes with the probabil-
ity Qt = (n0μt)/(n0μ0 + 2t) where n0μ0 + 2t is the total
degree of all nodes at time t. The master equation for pk,t

follows in the form:

pk,t+1 − pk,t =
(k − 1)pk−1,t − kpk,t

n0μ0 + 2t
. (1)

By multiplying this with k or k2 and summing over all k,
we obtain a difference equation for 〈k(t)〉 or 〈k(t)2〉, re-
spectively. A continuous time approximation then yields
the average degree of the initial nodes, μt := 〈k(t)〉, and
their average standard deviation, σt := 〈k(t)2〉 − 〈k(t)〉2,
in the form:

μt =

√

μ0

(
μ0 +

2t

n0

)
, σt =

√
μ0 +

2t

n0
− μt. (2)

Separation of the initial nodes

We now examine whether the well-known stationary de-
gree distribution of the original PA model

f(k) =
4

k(k + 1)(k + 2)
(3)

can form in the presence of the initial nodes. To do that,
we compare the number of the initial nodes with degree μt

and the number of new nodes with this degree which, ac-
cording to equation (3), is 4t/[μt(μt + 1)(μt + 2)]. If the
former number is greater than the latter, contribution of
the initial nodes significantly distorts the expected form
of f(k) given above. Assuming that the degree distribu-
tion of the initial nodes is approximately Gaussian, there
are roughly n0/

√
2πσ2

t of them with degree μt. The initial
nodes thus separate from the equilibrium degree distribu-
tion f(k) when

n0√
2π σt

� 4t

μt(μt + 1)(μt + 2)
. (4)
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Fig. 1. Number of nodes of degree k, n(k), for simulated PA
networks with t = 2 × 105 added nodes: blue circles and red
diamonds correspond to the new and initial nodes, respectively.
Vertical lines mark the maximal degree of the new nodes (blue,
solid) and the mean degree of the initial nodes (red, dashed).
Separation of the initial nodes does not occur for μ0 = 3 (top)
but it is clearly visible for two distinct choices of n0 and μ0

where μ0 � 3 (down).

Letting t → ∞, we find that this inequality is always
fulfilled for

μ0 � 2 3
√

π ≈ 3. (5)

Hence regardless of the initial network size n0 and the
number of the new nodes t, the degree distribution of the
initial nodes separates from that of the new nodes as long
as μ0 � 3. Figure 1 shows cases of merging and separa-
tion of the degree distributions for various values of n0

and μ0. It confirms that when condition equation (5) is
met, the initial nodes remain well separated and visible
in the degree distribution regardless of the values of n0

and t. From now on, we thus focus on the degree distri-
bution of the new nodes only and verify whether at least
this can take the expected power-law form and when that
happens.

3 Equilibration time

The degree distribution of the new nodes can be solved by
master-equation in the large time limit. Despite the influ-
ence of the initial nodes at the beginning of the network’s
growth, the resulting distribution can be shown to be of
the same form as for the original PA model (see Eq. (3)).
To assess the time needed to achieve this equilibrium dis-
tribution, we employ three different approaches. For the
sake of simplicity, we assume a complete initial network
in this section, i.e., μ0 = n0 − 1.

3.1 Mean degree of the new nodes

In the early stage of the network’s evolution, links from the
new nodes initially frequently attach to the initial nodes.
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This causes the mean degree of the new nodes to be consid-
erably lower than the overall mean degree which is two.
Denoting the mean degree of the new nodes at time t
as Mt, the total number of links in the network, n0μ0 +2t
can be expressed as tMt + n0μt. We can therefore use the
previously obtained result for μt to obtain:

Mt = 2 − n0(μt − μ0)
t

(6)

which has the long time limit M∞ = 2. To characterize
the equilibration, we compute the time needed to reach
Mt = (1 − ε)M∞, which follows in the form:

teq =
(1 − 2ε)n0

2

2ε2
+ O(n0) ≈ n2

0

2ε2
(7)

for large n0 and small ε. The equilibration time given by
the mean degree of the new nodes thus grows quadratically
with n0. It is straightforward to verify that in the case of
a general initial network with μ0 < n0 − 1, this result
changes to teq ≈ n0μ0/(2ε2).

3.2 Maximal degree of the new nodes

We now consider the highest degree of a new node as
an equilibration criterion. When the maximal degree ob-
served in numerical simulations reaches the theoretically
expected value following from the stationary distribution
given by equation (3), we say that the degree distribution
has equilibrated.

To compute the expected maximum degree value 〈km〉,
we study the extreme statistics for t draws from the equi-
librium distribution f(k). Following the steps described
in reference [19], the probability that the highest degree
value is km has the form:

p(km) = tf(km)

[
km−1∑

k=1

f(k)

]t−1

. (8)

Approximating (1 − x)t−1 ≈ e−x(t−1) for small x, we get

〈km〉 =
∞∑

km=1

4t

(km + 1)(km + 2)
exp

[
− 2(t − 1)

km(km + 1)

]
. (9)

This sum is easy to compute numerically but one can
also estimate its value by roughly approximating the ex-
ponential term e−ax with one for x ∈ [0, 1/a] and zero for
x ∈ (1/a,∞). This yields the expected value

〈km〉 ≈
√

8t. (10)

A comparison of this result with a numerical summation
of equation (8) shows that when t is large, the true value
of 〈km〉 is overestimated by less than 15%. While the av-
erage value of km following from simulations, km, is also
proportional to

√
t, it always holds that 〈km〉 > km and

the gap between the two quantities grows with the num-
ber of the initial nodes n0 (see Fig. 2). We can conclude
that no equilibration time can be defined here and the
extreme degree statistics suggests that the degree distri-
bution of the new nodes never reaches the stationary form
prescribed by equation (3).
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Fig. 2. Analytical results for the mean maximal degree
(showed with the dashed line) and simulation results for the
mean maximal degree at various values of n0 (assuming a com-
plete initial network, i.e., μ0 = n0 − 1). Results are averaged
over 1000 network realizations.

3.3 Fitting the network degree distributions

We finally study the agreement between functional forms
of the simulated and the equilibrium degree distribution,
respectively. The standard approach to this task is a so-
called goodness-of-fit test. Given a set of observed data
and an expected statistical distribution, it measures how
much the data fluctuates from the expected distribution
compared to artificial data drawn from this distribution.
In particular, we adopt a procedure presented in refer-
ence [15] especially for statistical analysis of power-law
distributions which goes as follows. For an input realiza-
tion of the network at time t (i.e., after adding t new
nodes), one computes the cumulative degree distribution
of the new nodes, R(k), and the cumulative degree distri-
bution of the expected distribution, T (k) :=

∑∞
k′=k f(k′).

The Kolmogorov-Smirnov statistic (KS) introduces the
distance between the two cumulative distributions

D0 = max
k

|T (k)− R(k)|. (11)

One then generates a large number of artificial datasets
following the expected distribution and having the same
size as the input data and computes the Kolmogorov-
Smirnov statistic D1 for them. The fraction of datasets
with D1 > D0 then gives p-value of the fit between the in-
put degree distribution R(k) and the expected degree dis-
tribution. By averaging this result over various realizations
of the network, we obtain the final p-values which are re-
ported here. We significantly speed up the computation by
using the same set of artificial datasets and their D1 val-
ues to evaluate each network realization at a given time t.
The hypothesis that the network degree data follows the
expected distribution equation (3) is then evaluated on the
basis of the resulting p-value. If p < 0.1, the hypothesis
is rejected. In other words, the hypothesis of agreement is
plausible as long as at least 10% of the the artificial data
agree less with the expected distribution than simulated
network data do. The same procedure can be carried out
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Fig. 3. Scaling of the p-value-based equilibration time teq with
the number of initial nodes n0 for the complete initial network
(μ0 = n0−1) and the initial network with fixed degree (μ0 = 9).
Numerical results and corresponding linear fits are shown with
symbols and dashed lines, respectively. The dashed lines have
slopes 4.18 and 2.13, respectively.

using the Anderson-Darling statistic [16] (which is referred
to as weighted Kolmogorov-Smirnov statistic (WKS) in
Ref. [15]),

D∗ = max
k

|T (k)− R(k)|
√

T (k)[1 − T (k)]
. (12)

The corresponding p-value is denoted p∗.
Equilibration time can be defined based on when p

reaches the threshold value of 0.1 and the stationary dis-
tribution f(k) therefore becomes a plausible hypothesis for
simulated networks. Figure 3 shows that teq scales with n0

as teq ∼ nβ
0 where β = 4.18 ± 0.02 for μ0 = n0 − 1 (ap-

plies for n0 ≥ 30) and β = 2.13 ± 0.01 for constant μ0

(applies for n0 ≥ 40). Note that similarly as before, we
have the scaling exponent for complete initial networks
twice as high as for initial networks with fixed μ0. What
is different from equilibration based on the average degree
of the new nodes is that for both fixed and growing μ0,
we observe much faster growth of teq with n0.

Very recently, a new goodness-of-fit test has been pro-
posed [20] which also relies on the KS statistic but circum-
vents the p-value testing. This approach is distribution-
free and focuses only on whether the KS statistic of a data
set is higher than a certain threshold value. In particular,
the hypothesis that the given data follows a power-law dis-
tribution can be discarded with 90% confidence when its
KS statistic D0 is higher than 1.224/

√
t for data size t (for

95% confidence level, the threshold would be 1.358/
√

t as
reported in Ref. [20]). Besides saving computational time
(no artificial data sets need to be generated here), this
method provides scaling exponents β that match well with
the ones derived above. We can conclude that a very long
time is needed to achieve network degree distributions that
are accepted to be compatible with the equilibrium degree
distribution by the standard Kolmogorov-Smirnov test.

While p-values follow the expected scenario and grow
with t, thus allowing a new equilibration time to be
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Fig. 4. The cumulative degree distribution of one network
realization for n0 = 30, μ0 = 29, and t = 106 (dashed line)
and the stationary distribution (solid line). In this case, the
two variants of the goodness-of-fit test provide contradictory
values p = 0.30 and p∗ = 0.01. Fits of the degree distribution
with exponential and normal cutoff (see Sect. 3.4) are also
shown here (the corresponding p and p∗ values, averaged over
multiple network realizations, can be found in Fig. 5).

introduced, simulations show that p∗-values based on the
WKS are essentially independent of t. As soon as μ0 � 10,
p∗ < 0.1 for any value of t (except for very low t where
however high values of p∗ are due to fluctuations of the
tiny evaluated data) (see the corresponding lines in Fig. 5).
To understand what causes this behavior, it is instruc-
tive to plot the cumulative network degree distribution
and compare it with the stationary distribution. This is
shown in Figure 4 where one can see that the tails of these
two distributions differ substantially with the network de-
gree distribution showing cutoff for degree greater than
approximately 30. Note that this cutoff is exactly the rea-
son why the observed km values reported in Figure 2 are
lower than expected. Despite the difference in CDFs, the
goodness-of-fit leads to a threshold-satisfying p-value 0.25
which suggests a high degree of agreement according to
the KS statistic. This inability of the KS to detect the
deviation between the distributions is because it is based
only on the differences between CDFs which are inevitably
small at the tail (distance |T (k) − R(k)| cannot exceed
max {T (k), R(k)}). By contrast, the WKS is weighted by
1/

√
T (k)[1 − T (k)], which makes it more sensitive to CDF

differences that occur in the tail where T (k) is small and
allows it to reject the hypothesis of the network degree
distribution being compatible with the stationary distri-
bution with p∗ ≈ 0.01. Note that the approach proposed
in reference [20] can be applied also to the WKS and again
agrees with the findings presented here.

3.4 Cutoff fitting

Given the sensitivity of the WKS to the tail behavior, it is
now natural to use it to study the cutoff type and position
as a function of n0 and t. In addition to the usual expo-
nential cutoff which is often seen in real data [15], we test
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Fig. 5. p-values, p∗-values, and cutoff values λ versus t for n0 = 10, μ0 = 9 (top row), n0 = 30, μ0 = 29 (middle row), and
n0 = 100, μ0 = 99 (bottom row) with different symbols corresponding to the fitting of different degree distributions: stationary
degree distribution of the PA model f(k) (red circles), f(k) with exponential cutoff (green squares), and f(k) with normal cutoff
(blue diamonds). Horizontal dashed lines mark the threshold p-value of 0.1. Results are averaged over 100 network realizations,
each of which is compared with 1000 draws from the reference distribution. Thick solid lines in the graphs of λ serve as guides
to the eye and have all slope 0.5.

also a so-called normal cutoff of the form exp[−(k/λ)2]
which is a special case of the stretched exponential func-
tion (sometimes it is referred to as compressed exponen-
tial function because it decays faster than exponentially).
This choice is further supported by likelihood of the net-
work degree data: when the cutoff term is assumed in the
form exp[−(k/λ)γ ], likelihood of the data reaches its max-
imum for γ between 1.5 and 2.5 (as t grows, the maxi-
mum shifts to higher values). We thus have two candidate
distributions:

fe(k) =
A(λe) e−k/λe

k(k + 1)(k + 2)
, (13)

fn(k) =
B(λn) e−(k/λn)2

k(k + 1)(k + 2)
, (14)

where A(λe) and B(λn) are normalization factors. The
procedure is now as follows. For a particular network

realization, one chooses the cutoff parameter that max-
imizes likelihood of the data (taking only the new nodes
into account). p- and p∗-value are then computed with
respect to equations (13) and (14), as reference distribu-
tions. By averaging over various network realizations, we
obtain statistics for λe and λn as well as average values
of p and p∗ which measure the goodness of fit.

Figure 5 summarizes results of the cutoff analysis. First
of all, it shows the previously mentioned fact that while
p-values obtained for the stationary cutoff-free distribu-
tion increase fast with t, p∗-values of this fit are low and
insensitive to t. Fits with exponential cutoff perform bet-
ter than the original stationary distribution with respect
to both p and p∗ but both quantities gradually decrease
with t instead of increasing (which is an unexpected be-
havior because the fit is supposed to improve as the net-
work grows). Finally, the normal cutoff performs best
and its p and p∗ values do not decay with t. One may
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wonder how is it possible that distributions with cutoff
are able to achieve high p and p∗ values even when t is
very small and the core part of the degree distribution,
1/(k(k+1)(k+2)), has not yet had the time to form. The
reason lies in very small cutoff values inferred by likelihood
estimation in those cases (see the values shown in panels
in the last column in Fig. 5) which results in the distribu-
tion shape being dominated by the cutoff part instead of
the previously-mentioned core part. We finally note that
for normal cutoff, the cutoff parameter values are propor-
tional to t0.5. This is the same scaling as we found earlier
for 〈km〉. This is understandable: normal cutoff is sharp
and its position is mainly influenced by the highest degree
values occurring in the network.

3.5 Comparison with an analytical solution

After the original submission of our manuscript, an ana-
lytical work has been published where Z-transform is used
to find the degree distribution as a function of time for a
growing network with an arbitrary initial condition [21].
When the network growth obeys preferential attachment,
their final result given in equations (81) and (82) can be
adapted to our setting and yields the degree distribution
of the new nodes in the form

P (k, t) =
n0μ0 + 2t

t

(
1
k
− 2c

k + 1
+

c2

k + 2

)
ck (15)

where c = 1 − √
n0μ0/(n0μ0 + 2t) (the first term of

Eq. (81) in Ref. [21] does not appear here because it
describes the contribution of the initial nodes. The nor-
malization is changed from 1/(μ0 + t) to 1/t because our
P (k, t) covers t new nodes instead of all μ0 + t nodes as
in Ref. [21]). This result agrees well with our simulations.

When t → ∞, c = 1 and P (k, t) reduces to equation (3)
as it has to. However, one can write c = 1−√

x2/(1 + x2)
where x :=

√
n0μ0/(2t) and consequently find an expan-

sion of P (k, t) in powers of x. The leading order part of
the result,

P (k, t) =
4

(
1 − 1

6 (kx)3 + 1
8 (kx)4 + O

(
(kx)5

))

k(k + 1)(k + 2)
, (16)

contains the stationary solution and correction terms pro-
portional to kx and its powers. While x vanishes as t → ∞,
the growing network allows us to inspect P (k, t) at increas-
ing values of k. Assuming that the stationary distribution
eventually establishes itself over the whole range of rele-
vant degrees, the expected largest degree is 〈km〉 ≈ √

8t
(as shown in Sect. 3.2). This means that the correction
terms kmx are independent of t and thus do not vanish:
a deviation between the stationary distribution and the
“visible part” of P (k, t) persists. The analytical form of
P (k, t) given in equation (15) thus confirms the statistical
tests of model degree distributions reported above.

4 Conclusion

The lack of attention to the importance of initial con-
ditions in network models is best illustrated by thirteen
years separating the original publication of the preferen-
tial attachment model [1] and the analytical result for the
model’s degree distribution upon arbitrary analytical con-
ditions [21]. We studied the sensitivity of the Barabási-
Albert model of a growing network to the initial network
from which the growth starts. We found that the well-
known stationary distribution f(k) = 4/[k(k + 1)(k + 2)]
forms only when the number of the initial nodes are few
and they are sparsely interconnected. We demonstrated
that as soon as the starting degree of the initial nodes μ0

exceeds 3, this little advantage allows them to attract an
excessive number of links in the future so that they never
merge with the stationary degree distribution of the nodes
that are introduced later in the network’s evolution.

When focusing only on the newly added nodes and
their degree, we showed that their stationary degree dis-
tribution is the same as that of the original model regard-
less of the number of initial nodes n0 and their degree μ0.
There are various ways how to define the time needed
to approach this distribution. If we define the equilibra-
tion time simply on the basis of the average degree of the
new nodes, it is proportional to n2

0 in the case of the com-
plete initial network (and proportional to n0μ0 in general)
which suggests rather fast equilibration. On the basis of
the standard goodness-of-fit test with the Kolmogorov-
Smirnov statistic, the equilibration time grows with n0

much faster – the exponent is around 4.2 for the complete
initial network and 2.1 when μ0 is fixed.

However, no equilibration is found in two other cases
which are in fact closely related. In the first case, we
showed that when n0 � 10, the average maximal degree of
the new nodes is and stays significantly smaller than the
value predicted from the stationary distribution. In the
second case, we showed that when the usual Kolmogorov-
Smirnov statistic is replaced by the weighted Kolmogorov-
Smirnov statistic which puts more weight on the tail of a
distribution, the hypothesis that the network degree dis-
tributions are drawn from the stationary distribution of
the PA model is rejected for n0 � 10 (for complete initial
networks). The reason for these two observations lies in
a distribution cutoff which shifts to higher degree values
as the network grows (thus the eventual convergence to
f(k) in the functional form) but remains present and de-
tectable for any finite network size. One can conclude that
with respect to more sophisticated equilibration criteria,
degree distributions of the PA model equilibrate slowly
(with respect to the KS) or they do not equilibrate at all
(with respect to the WKS). These results are confirmed
by a recently published analytical form of the degree dis-
tribution of the PA model for an arbitrary initial condi-
tion. Note that models of network growth where aging of
nodes is considered [12–14] naturally depend less on the
initial network configuration. One can thus expect that
these models not only solve the problem of node degree
strongly biased by time (as is the case for PA) but also that
of the lack of equilibration. We studied also other common

http://www.epj.org
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Fig. 6. Data size n needed for the assumed power law k−m to
yield p or p∗ less than 0.1 (the hypothesis is rejected) when
the input data follows k−m exp[−(k/X)2]. Results obtained
for m = 3 with p and p∗ are shown with the thick solid and
dashed line, respectively. p∗ outperforms p in blue-shaded re-
gions (shown for m = 2.5, 3, 3.5, 4). For small n and X, there
are also regions where p outperforms p∗ (for clarity shown only
for m = 3 and marked with red stripes).

network characteristics, clustering coefficient and assorta-
tivity, and found that their overall behavior is not altered
by the presence of a non-trivial initial network. They both
vanish in the limit of t → ∞, albeit at rates which depend
on n0 and μ0.

We finally stress that there is a more general lesson to
be learned here. Despite the conventional wisdom [15], the
standard and weighted Kolmogorov-Smirnov statistic may
perform very differently on power-law data with cutoff.
When the cutoff is located at large values of a variable,
it may remain invisible to the standard Kolmogorov-
Smirnov statistic which then accepts data as being
plausibly generated by a given distribution. By contrast,
sensitivity of the WKS statistic is distributed more evenly
over the range of possible values which improves its ability
to detect cutoffs and estimate their parameters (such as
position and shape, for example). This is demonstrated in
Figures 6 where the data size needed to reject the power
law hypothesis for a data generated by a power law with
normal cutoff is shown as a function of the cutoff posi-
tion. When the data is big enough, the p∗-value test can
“detect” higher cutoff values than the p-value test which
makes it a preferable choice in a wide range of parameters.

Regions where p∗ outperform p are smaller when the ac-
tual cutoff has an exponential form. When the data are
small (n � 1000) or the power-law exponent is high
(four or more), it is still advisable to use the standard
Kolmogorov-Smirnov statistic.

This work was supported by the EU FET-Open Grant
No. 231200 (project QLectives) and by the Swiss National Sci-
ence Foundation Grant No. 200020-132253 (project Evolving
and adaptive networks).
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