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Abstract The Kraishte region of Bulgaria is located at
the junction of the Balkanides and Hellenides-Dinarides
tectonic belts. Fission-track analysis on both apatites and
zircons documents the Cenozoic exhumation of a Pre-
cambrian basement bounded by low-angle detachments.
Late Eocene–Oligocene extension began prior to 47 Ma
and was dominantly in a top-to-the-southwest direction,
confirmed by the sense of younging of apatite and zircon
ages. This crustal extension controlled the formation of
half-graben sedimentary basins on the hanging walls of
the detachments. Thermal modelling of these hanging
wall units provides evidence for heat transfer across the
detachments from a relatively warm rising footwall.
From 32 to 29 Ma, pervasive magmatic activity resulted
in the emplacement of rhyolitic to dacitic subvolcanic
bodies and dykes, along with intrusion of the Osogovo
granite. The results give evidence for extension in the
southern Balkan older than, and separated from, the
Miocene to Quaternary Aegean extension. This might
reflect transtension during northeastward extrusion and
rotation of continental fragments around the western
boundary of Moesia. Eocene–Oligocene extension seems
to have been controlled by the distribution of earlier
thickening all around the Carpatho-Balkanic orocline,
which is reflected by the Cretaceous emplacement of the
Morava Nappe in the Kraishte.

Keywords Fission track Æ Core complex Æ Heat
transfer Æ Extension Æ Bulgaria

Introduction

The Alpine Mediterranean mountain system results
from subduction and partial obduction of former
Mesozoic ocean basins during the collision of Africa,
Europe and a number of smaller intervening microplates
(Dewey et al. 1973; Boccaletti et al. 1974; Stampfli et al.
1991; Ricou 1994). One of the major remaining ques-
tions on this mountain system concerns the Balkan re-
gion where north- to east- (eastern Alps, Carpathians)
and south- to west-vergent (Dinarides, Hellenides) belts
merge and diverge around continental fragments
(Burchfiel 1980) previously considered to be ancient
microcontinents (Kober 1928) trapped within the Alpine
orogenic belt (Fig. 1). Of these fragments, the Rhodope
‘‘massif’’ of southern Bulgaria and northern Greece is
now portrayed as a complicated collage of reworked
continental and locally oceanic crust and sediments ac-
tively involved in several phases of Alpine deformation
and metamorphism (Ivanov 1988; Burg et al. 1990; Burg
et al. 1996; Liati and Gebauer 1999). The Rhodope also
appears to include rock units of the Serbo-Macedonian
high-grade metamorphic series (Ricou et al. 1998), so
that the tectonic significance of the Serbo-Macedonian
crystalline basement requires reassessment in order to
understand the orogenic history of this seismically still
very active region.

Ongoing research has demonstrated that, perhaps
more than collisional deformation, extension-related
exhumation of deep continental crust has shaped the
Balkan orogenic segments (Bonev et al. 1995; Burg et al.
1996; Kilias et al. 1997; Ricou et al. 1998; Schmid et al.
1998; Krohe and Mposkos 2002). It becomes crucial to
determine whether exhumation was a syn- to post-oro-
genic event or if it is a far-field expression of the supra-
subduction extension known farther south, in the
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Aegean realm (Lister et al. 1984; Gautier and Brun 1994;
Jolivet et al. 1999). The answer requires time constraints
and recognition of the exhumation processes involved.

The relationships between the European and the
Rhodope-Macedonian units can be studied in the
Kraishte area, in western Bulgaria (Fig. 1). In order to
determine the Alpine geological history of this part of
the Serbo-Macedonian massif and to clarify its original
tectonic position with respect to the surrounding rocks,
we applied fission-track analysis on the Vendian-early
Cambrian basement and the Oligocene Osogovo
intrusions, and to volcanic zircons and apatites of the
rhyolites and tuffites interlayered with sediments of the
middle Eocene–Oligocene basins. Some Paleozoic,
Mesozoic and Paleogene sediments were also analysed
in order to complete the regional picture. These new
results reveal the particular importance of the Tertiary
exhumation history of the Osogovo–Lisets Complex.
They constrain the rates of exhumation of the crystal-
line rocks and provide correlations between basement
exhumation, formation of sedimentary basins and vol-
canic activity. They also document a new example of
heat transfer across low-angle extensional normal faults
from a relatively warm footwall to the adjacent colder
hanging wall.

Geological setting

The Kraishte zone of western Bulgaria is the tectonic
area located between the Serbo-Macedonian high-grade

metamorphic unit, to the SW, the Rhodope massif to the
S and the European margin (late Cretaceous Sredna
Gora volcanic arc) to the NE (Fig. 1).

Four major tectono-stratigraphic units are distin-
guished (Fig. 2):

– The Morava thrust nappe, which has a continental
basement and an Ordovician to Devonian sedimen-
tary cover (Spassov 1973; Zagorchev 1984; Zagorchev
1996). It was thrust over the Struma unit during the
early Cretaceous (Dimitrov 1931; Bonchev 1936;
Zagorchev and Ruseva 1982).

– The Struma unit, which consists of variably deformed
continent- and ocean-derived rocks of Vendian—early
Cambrian protolith age (Stephanov and Dimitrov
1936; Zagorchev and Ruseva 1982; Haydoutov et al.
1994; Graf 2001; Kounov 2003), unconformably
overlain by a Permian to lower Cretaceous sedimen-
tary cover (Zagorchev 1980).

– The Osogovo–Lisets Complex, on which we will
concentrate, includes a suite of calc-alkaline plutonic
rocks of Vendian—early Cambrian age (Graf 2001;
Kounov 2003) and an intrusion of undeformed
granite, the Osogovo Granite, dated at 31±2 Ma
(Graf 2001).

– The Paleogene basins in which sedimentation was first
continental with alluvial deposits (middle Eocene).
Late Eocene—early Oligocene turbidites (with inter-
calated layers of tephra) indicate a change to a deep-
water environment of deposition (Moskovski and
Shopov 1965; Moskovski 1968, 1969, 1971; Zagorchev
et al. 1989). Sedimentation ceased sometime towards
the end of the Oligocene. The amount of sediment
that was deposited is unknown because some of it has
been removed by erosion.

The Osogovo and Lisets Mountains (Fig. 2) form a
prominent NW–SE elongated topographic high cored by
lower amphibolite-facies (hornblende-garnet-andalusite)
metamorphic rocks (Dimitrova 1964). The dome struc-
ture was initially interpreted as an old Cadomian
(Cambrian) anticline covered by Permian and Triassic
sediments (Zagorchev and Ruseva 1982; Zagorchev
1984; Vardev 1987). According to these authors, the
supposedly Precambrian or Cambrian amphibolite-
facies metamorphic rocks were intruded by Cambrian
granitoids and Cambrian or older diorites and granites.
The exposure of this basement was attributed to late
Alpine extension and the formation of two horsts
bounded by steep normal faults in the Lisets and Oso-
govoMountains. An alternative interpretation linked the
Osogovo–Lisets dome to late Alpine extension accom-
modated by low-angle detachment faulting and accom-
panied by retrogression to greenschist facies (Graf 2001).

The Osogovo–Lisets dome is bounded by the Eles-
hnitsa detachment along its southwestern slope and the
Dragovishtitsa detachment on its northeastern side
(Fig. 2; Graf 2001). Structural, petrological and geo-
chemical data suggest that the Osogovo–Lisets gneisses

Fig. 1 Location of the study area (black square with K for
Kraishte) within its Alpine tectonic framework
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are parts of the Struma basement from which they were
separated by the Cenozoic extensional fault system
(Graf 2001; Petrov 2001). The Osogovo granite belongs
to the W–NW trending Oligocene magmatic belt traced
from Turkey through the Balkan Peninsula (Burchfiel
et al. 2000).

Cenozoic extension created the sedimentary basins in
the hanging wall of the detachments along which
structural data indicate generally top-to-the-SW normal
faulting. The basin-bounding faults are steep at the
surface and cut down into basement; their shape at
depth is unknown but they may merge into a low-angle
detachment system (Graf 2001). Eocene—Lower Oligo-
cene sediments and their basement are intruded by
rhyolitic to dacitic subvolcanic bodies and dykes; the

K/Ar radiometric ages on feldspar phenocrysts and
whole rock samples scatter from 30±1 to 32±1 Ma
(Harkovska and Pecskay 1997).

Analytical methods and results

The fission-track (FT) analytical procedure is described
in the Appendix. Zircon and apatite mineral grains
contain the signatures of their cooling histories.
Approximate closure temperatures vary according to
such factors as chemical composition and rates of
cooling. When dealing just with the apparent ages, we
use 260±50�C for zircon and 110±10�C for apatite
(Green and Duddy 1989; Corrigan 1993; Yamada et al.

Fig. 2 Geological map of the
Kraishte area (SW Bulgaria)
modified from Moskovski
(1969), Zagorchev and Ruseva
(1993) and Zagorchev (1993).
Inset: geographical location
of the map (black area)
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1995). Because no chemical compositions were deter-
mined for the apatites, the modelled thermal histories
were based on the composition of Durango using the
Laslett model (Gallagher 1995). The geographical loca-
tion of the samples and the results are presented in
Fig. 3 and Tables 1 to 5.

Morava and Struma units

All samples from the Morava and Struma units yield
pre-Cenozoic zircon FT ages (119–69 Ma; Tables 1 and
2). Apatite FT ages from both units can be divided into
two groups: (a) 66–56 Ma for samples that have rela-
tively short mean track length (13.18–12.15 lm) and
standard deviations of 2.5–1.36 lm; and (b) 40–29 Ma
for samples with longer mean track length (14.7–
14.29 lm) and standard deviations of 1.54–0.86 lm.

Osogovo–Lisets Complex

Eleven samples from the Osogovo–Lisets Complex were
analysed. The majority of the samples cluster between 47
and 39 Ma for zircon and between 46 and 38 Ma for
apatite (Fig. 3, Table 3). Exceptions are apatite ages
from samples AK218, K1067a, and AK45, which are
between 30 and 27 Ma (Fig. 3, Table 3).

In general, samples from the Osogovo–Lisets Com-
plex have long mean track lengths (14.65–13.72 lm) and
yield similar zircon and apatite ages (Table 3). Compi-
lation of the modelled time-temperature (T–t) paths
(Gallagher 1995) reveals two groups with different
thermal histories (Fig. 4). One group underwent fast
cooling through both the zircon and apatite closure
temperatures from 47 to 38 Ma, while the other cooled
more slowly below 110�C after 30 Ma.

Fig. 3 Geological map of the
Kraishte area (Fig. 2) with
location and FT ages of the
analysed samples. Lines AB and
CD are the sections in Fig. 8
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Paleogene sediments

By applying the FT technique to apatites, the timing and
the temperature of burial of the sediments as well as the
final inversion of each basin can often be assessed.

Five volcanic ashes were dated both by FT and U/Pb
SHRIMP on zircons to better constrain the timing of
sedimentation in the basins (Table 4). The zircon FT
ages range between 35 and 32 Ma (AK72, AK125,
AK167, AK199, AK245; Table 4) in statistical agreement
with the U/Pb SHRIMP ages obtained from samples
AK199(33.46±0.22 Ma) and AK245(33.07±0.28 Ma)
(Fig. 5; Kounov 2003).

Three sandstone samples from the stratigraphically
deepest section of the Pianets basin (AK8, AK9, AK65;
Fig. 6) each contain only one apatite population, with
ages ranging between 48 and 40 Ma and with mean-
track lengths from 13 to 12 lm. These ages are very
close to the estimated age of deposition (middle
Eocene = Bartonian; Kounov 2003). Thermal model-
ling of these samples (Fig. 7) reveals that there has been
post-depositional heating to about 90�C. A similar
thermal history may be suggested for the granite clast
from a breccia at the base of the small basin N of
Kjustendil (AK106, Fig. 3). This sample yields an apatite
age of 65±9 Ma with a mean track length of
12.58±0.2 lm and a bimodal length distribution
(Fig. 7).

Upwards in the section of the Pianets basin, the
apparent apatite ages, except for the uppermost sample
(AK234), are older than the depositional age. Attempts
to statistically split these into sub populations failed in
many cases. This was specifically a problem in some ash
layers (e.g. AK73 and AK76, Fig. 6) where the mean ages
are at least 10 million years older than the age of sedi-
mentation and hence it was suspected that older detrital
populations might be a contaminant. In sample AK76A,
the sandstone layer resting on tuff AK76 (Fig. 6), two
populations were present in the 50 dated apatite grains
(Table 4). The AFT age of the youngest population is
36±1 Ma, which corresponds to the age of the lower-
most ash layer AK72 (35.1±3.6) from the same section,
as well as to that of a pyroclastic flow AK125 (35.0±
3.0) from the Prekolnitsa basin (W of Kjustendil, Figs. 2
and 3). The second population has an age of 49±5 Ma,
an age which is slightly older than the oldest age from
the Osogovo–Lisets Complex.

All clastic horizons, as well as some of the pyroclas-
tics, contain zircons older than the age of sedimentation;
however, there is a general younging trend in these
detrital ages upwards in the section (Fig. 6).

Magmatic rocks

Three samples from Cenozoic granites and dykes were
dated (Table 5).

The FT analysis of the Osogovo granite yields iden-
tical apatite and zircon ages of 31±3 Ma and 31±2 MaT
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(AK50; Fig. 3), respectively. The mean track length in
apatite is 14.53±0.10 lm. These ages are concordant
with the U/Pb zircon single crystal ages of Graf (2001).
Rhyolitic dykes yield zircon FT ages of 32±3 and
29±2 Ma (AK308 and AK56; Fig. 3) and an apatite age
of 29±4 Ma (AK56) with a mean track length of
15.07±0.1 lm.

Interpretation

This discussion refers to the structural frame summar-
ised above, whereby the Osogovo–Lisets Dome repre-
sents the footwall of a Cenozoic extension system
characterised by the major Eleshnitsa detachment and
the Morava and Struma units forming, along with the
sedimentary basins, the hanging wall.

Thermal history of the footwall

Compilation of the modelled T–t paths from the Oso-
govo–Lisets Complex reveals two groups with different
thermal histories (Fig. 4). Group ‘‘a’’ had very rapid
cooling from 260 to 60�C between 47 and 38 Ma. This
rapid cooling is also confirmed by the almost identical

ages of the zircons and apatites. Samples from group
‘‘b’’ yielded similar zircon ages. We suggest that they
also followed path ‘‘a’’ until they reached 60�C and
afterwards they underwent a heating event prior to
30 Ma before cooling to the surface from that time on.
Rhyolitic dykes and small igneous bodies ubiquitously
intruded the detachments at 31 Ma and most likely
caused local heating to temperatures >110�C (K1067a,
AK45, AK218), resetting any previous apatite ages
(Fig. 4, path ‘‘b’’). Effects of such intrusions are by
chance of sampling. Thus the FT ages of group ‘‘b’’ are
considered to indicate such local thermal perturbations
on the overall general cooling pattern.

The cooling path ‘‘a’’ traces rapid exhumation of the
Osogovo–Lisets Complex, which reflects a major tec-
tonic event. Extension-related exhumation along the
Eleshnitsa detachment is the most likely interpretation,
and began before 47 Ma. Progressive southwestward
unroofing and cooling along this detachment is observed
through the decreasing zircon and apatite FT ages
(Fig. 8). A maximum extension rate may be derived,
using the width of the exhumed rocks along which the
younging trend is measured. This yields an average of
2 mm/year over 7 million year. We emphasise that this
value might be overestimated by as much as 40% (Ehlers
et al. 2001), yet is a reasonable figure in terms of tectonic
processes.

Thermal history of the hanging wall

Morava and Struma units

The two groups of apatite FT ages from the Morava and
Struma units are interpreted as follows:

– The modelled T–t paths of the 66–56 Ma samples
(path ‘‘c’’, Fig. 9) take into account that the sample
sites were just underneath the Paleogene sediments
and that clasts from the Morava and Struma units are
present in these sediments. Thus the Morava and
Struma units are assumed to have been at or very
close to the surface during the Paleogene. The thermal
histories reveal a period of heating to a maximum of
100�C between 48 and 35 Ma before cooling again to
the surface today.

– The second group ‘‘d’’, reveals a period of cooling
through the apatite partial annealing zone over the
last 40 million year.

The timing of this heating phase in the hanging wall is
coincident with the extension phase that exhumed the
Osogovo–Lisets Complex. We suggest that this heating
event is most likely due to heat advecting from the rising
hot footwall rocks.

Basins

The syn-sedimentary volcanic rocks have zircon ages
between 35 and 32 Ma (Fig. 6). Therefore, the oldest

Fig. 4 Modelled T–t paths for footwall samples (crystalline rocks
of the Osogovo–Lisets Complex) of the detachment system. For
details of modelling see the Appendix. Group ‘‘a’’ shows fast
cooling from 47 to 38 Ma. Group ‘‘b’’ underwent relatively slower
cooling after 30 Ma. The apatite partial annealing zone is within
the temperature limits assigned by Laslett et al. (1987). The
modelled T–t paths are extended into the zircon partial annealing
zone (Yamada et al. 1995) where grey squares represent the zircon
FT ages of the modelled samples
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sediments must be older than 35 Ma. A straight line
extrapolation to the oldest units extends the age of sedi-
mentation to at the latest 40 Ma, (middle Eocene =

Bartonian) and puts an upper limit on the initiation of the
basins (Zagorchev 2001). This is at least 7 million years
after the beginning of extension as determined above.

Fig. 5 Tera-Wasserburg
diagrams (Tera and Wasserburg
1972) for sample AK245 and
sample AK199 (for locations see
Fig. 3). Filled ellipses on the
diagrams to the right are those
used for age calculations. Data-
point error ellipses: 68.3%
confidence for all diagrams

Fig. 6 Detrital and volcanic
ash population ages vs.
stratigraphic position from the
Paleogene sediments in the
Kraishte area. Different age
populations were separated
using the method of Sambridge
and Compston (1994). Bold
sample numbers are
pyroclastics. Time-scale of
Berggren et al. (1995).
Formation and member names
after Kounov (2003)
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Thermal history Thermal modelling of the apatite FT
data from four sedimentary horizons below the ashes
(Figs. 3, 6 and 7; samples AK8, AK9, AK65 and AK106)
supports the conclusion that the detrital apatites in the
lower layers of the basin were partially reset (to between
80 and 100�C) during the time period of 45–35 Ma. This
heating event took place almost immediately after sedi-
mentation and lasted until about 35 Ma, when cooling
began and lasted until today.

This then implies that the sediments younger than
35 Ma have not been reset. The first line of evidence for
lack of resetting in these sediments is the presence of
mixed apatite age populations. Secondly, the youngest
apatite population in sandstone sample AK76a has an
age of 36 Ma (Fig.6). This age is statistically coinci-
dent with the volcanic age of the ash AK72 (35 Ma)
about 300 m beneath sandstone AK76a. In addition, the

sedimentary overburden, which is estimated to be at
most 1,500 m (the thickness of sediments younger than
35 Ma), cannot explain the 80–100�C heating recorded
prior to 35 Ma in the bottom sediments.

Sediment source The older detrital zircon ages, domi-
nantly in the lower section but also partly represented
higher in the stratigraphic section (Fig. 6) are most likely
due to input from the Morava and Struma units, which
have older exhumation histories (Table 1).

Sample AK76a has three populations of apatites, 36,
49 and 79 Ma. The first corresponds to the age of the
ash immediately below, AK72. The second population
is slightly older than the oldest age from the Osogovo–
Lisets Complex at the surface today (compare Tables 3
and 4). Thus, it is probable that second population
grains are derived from the Osogovo–Lisets Complex.

Fig. 7 Left column: modelled
thermal histories for the
terrigenous sediments of
Paleogene basins. The apatite
partial annealing zone is within
the temperature limits assigned
by Laslett et al. (1987). For
details of modelling see the
Appendix. Boxes constrain the
(T–t) space permitted for the
modelled paths. Grey arrows
represent potential paths of
cooling before sedimentation.
The shaded vertical area
represents the probable heating
event at 45–35 Ma. Right
column: apatite FT length
histograms. n number of track
lengths measured. Var is
percent variation from
pooled age
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These ages represent the time at which the sample was
at a temperature of approximately 110�C and was
exposed later after further erosion or tectonic denu-
dation, with a lag time of approximately 15 million
years. The third population was probably derived from
the Morava and Struma units because the age corre-
sponds to the ages obtained from these units at the
surface today.

Some sediment samples have single population AFT
ages at about 30 Ma (AK234, AK261c, AK167, AK302);
Table 1; Fig. 3). These ages are younger than the esti-
mated stratigraphic age of the enclosing sediments
(Kounov 2003) and may again reflect heat advection
from igneous activity, which was pervasive at that time
(Harkovska and Pecskay 1997).

Comparative cooling

A comparison of the temperature-time path of the
footwall with that of the hanging wall (Fig. 10) reveals
that heating in the hanging wall, i.e. the Morava and
Struma units as well as the sediments, is contempora-
neous with the fastest cooling in the footwall. This
clearly suggests that heat derived from the rising hot
footwall was conducted into the hanging wall as it has
been argued in other natural examples (e.g. Van Den
Driessche and Brun 1991–1992; Grasemann and Manc-
ktelow 1993; Ehlers et al. 2001).

Thermotectonic evolution

The Osogovo–Lisets Dome has the structural and ther-
mal characteristics of a core complex exhumed during
early Cenozoic extension. A retrogressive metamorphic
overprint of greenschist-facies (chlorite-ilmenite-clino-
zoisite) is related to hydrothermal activity during the
formation of extensional shear bands, crenulation
cleavage, cohesive breccias in which Pb–Zn-ores crys-
tallised (Vardev 1987), and gouges. This overprint
mostly affects the cataclastic part of the detachment
zone (top of the footwall). The old mineral assemblages
show little retrogressive overprint in the deepest struc-
tural levels. Probably part of the retrogressive meta-
morphism (chloritisation and epidotisation) is also
associated with the younger magmatic phase, when
hydrothermal activity was present.

Fission-track data document rapid cooling in the
Osogovo–Lisets Complex in the middle Eocene
(Fig. 11a). The younging direction of the FT ages fur-
ther indicates that the bulk movement along the
Eleshnitsa detachment was top-to-the-SW, which is
consistent with the relative displacement inferred from
slickenside lineations, secondary fractures and shear
bands. The Eleshnitsa detachment was the main
detachment. The younger Dragovishtitsa detachment
was the antithetic fault accommodating the dome for-
mation (Fig. 11b).T
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In the basins, formation of the alluvial fans was re-
lated to faulting along their borders, where large
olistoliths were shed from the fault scarps. Formation of
the half-graben basins in the hanging wall of the
detachments was related to the W–E to SW–NE exten-
sion and the resulting NW–SE trending faults control-
ling sedimentation. By the end of the Eocene, sediments
had sealed the inactive detachments. This inactivity may
actually correspond to a major change in extension
tectonics since it also was the time of marine transgres-
sion and volcanic activity (35–32 Ma; Fig. 11c). Fur-
thermore, this also correlates with the termination of the
heating phase in the hanging wall.

Extension may have been accompanied by ductile
flow and anatexis in the lower crust but these levels were
not exhumed in the Osogovo–Lisets core complex
(Fig. 11c, d). However, the emplacement of the 32–
29 Ma rhyolitic to dacitic subvolcanic bodies and dykes
into the Paleogene sediments and their basement, along
with intrusion of the Osogovo granite, are strong evi-
dence for melting of the lower crust during the Cenozoic

(Graf 2001). The dykes cut the detachments (Fig. 11d),
which also suggests a major change in extension tec-
tonics at about 30 Ma.

Post-Oligocene (Miocene?) brittle deformation
(Fig. 11d) was associated with the formation of NW–SE
and NNW–SSE sets of normal and strike-slip faults
(Bonchev et al. 1960; Moskovski 1969, 1971; Moskovski
and Harkovska 1973; Kounov 2003).

Discussion

Our new FT ages indicate that Paleogene extension in the
Kraishte lasted between 47 and 30 Ma. This is consistent
with the late Eocene sedimentary cover on the detach-
ment and 30 Ma dykes that crosscut the detachment.
This extension is much younger than the Late Cretaceous
Sredna Gora back arc basin (Aiello et al. 1977) and
therefore is not related to the corresponding arc system.
On the other hand, such timing is similar to the extension
associated with Late Eocene to Late Oligocene magma-
tism reported in the Balkan and adjacent segments of the
Alpine orogenic system (Burchfiel et al. 2000) and oro-
gen-parallel extension in the southern Carpathians
(Schmid et al. 1998). It is also contemporaneous with and
has a similar trend to the early Cenozoic extension in the

Fig. 8 Sections AB and CD (Fig. 3) with apatite and zircon FT
ages. Lithological key as in Fig. 2

Fig. 9 Modelled T–t paths for the hanging wall samples of the
detachment system. Black squares represent the zircon FT ages of
the modelled samples. Dashed lines within the apatite partial
annealing zone represent the probable earlier T–t path for the
samples from group ‘‘d’’ fully reset during the extension by high
heat flow from the footwall or late magmatic activity respectively

Fig. 10 Modelled T–t paths for the samples from the footwall and
hanging wall of the detachment system including those of the
sedimentary basins and path ‘‘b’’ of the hanging wall samples
(dashed black line)
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Rhodope (Burg et al. 1996; Ricou et al. 1998). Accord-
ingly, Eocene–Oligocene SW–NE extension was active
all around the Carpatho-Balkanic orocline.

It is difficult to decide whether coeval events in the
Kraishte and the Rhodope have the same cause. In both
cases, early Cenozoic extension fits neither the trend nor
the age of the N–S Aegean extension, which dominated
the eastern Mediterranean realm since ca. 25 Ma (e.g.
Gautier et al. 1999; Burchfiel et al. 2000). It is an older
event that might reflect transtension during northeast-
ward drifting, lateral extrusion and rotation of conti-
nental fragments around the western boundary of
Moesia (Boccaletti et al. 1974; Tapponnier 1977; Bur-
chfiel 1980; Schmid et al. 1998). In the Osogovo–Lisets
Complex, the lack of Mesozoic, high-grade mylonitic
deformation documented throughout the Rhodope
(Burg et al. 1996; Krohe and Mposkos 2002) and the
absence of Paleozoic–Mesozoic cover in the Rhodope

lead us to suggest, following Gealey (1988), that the
continental fragments around western Moesia, found as
slivers in the eastern Carpathians, have a Serbo-Mace-
donian rather than a Rhodopian affinity.

While extension was taking place in the Kraishte,
convergence that dominated theMediterranean realm led
to the closure of the Vardar Ocean and further obduction
of its remnants onto the Pelagonian continental fragment
(Ricou et al. 1998). Owing to the dominantly rhyolitic and
very short-lived magmatism, we do not concur with
Burchfiel et al. (2000) that extension took place within a
subduction-related arc. Orogen-normal extension of a
thickened and thermallyweakened continental crust is the
most plausible explanation for the formation of the Os-
ogovo–Lisets Complex. This extension event may have
been triggered by the shift of the subduction from the
Vardar to its current position in the exterior of the Din-
aric–Hellenic Belt (Fig. 1).

Fig. 11 Proposed evolutionary
model of the Kraishte area from
middle Eocene to present times
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Conclusions

Examination of the Osogovo–Lisets core complex in the
Kraishte, western Bulgaria revealed:

1. Cenozoic extension began before 47 Ma, associated
with formation of low-angle detachment faults be-
tween the Morava and Struma units in the hanging
wall and the Osogovo–Lisets complex in the footwall.

2. Progressive southwestward unroofing and cooling of
the Osogovo–Lisets basement along the Eleshnitsa
detachment dominated crustal extension and con-
trolled the formation of half-graben sedimentary
basins filled initially with continental deposits.

3. During rapid cooling of the hot Osogovo–Lisets
footwall, heat was transferred to the hanging wall.

4. Rhyolitic magmatism accompanied syn-extension
sedimentation between 35 and 32 Ma.

5. Segments of the detachments were no longer active by
the latest Eocene, when sedimentation became mar-
ine. Inactivation of the detachment system preceded
the emplacement of rhyolitic dykes and magmatic
bodies such as the Osogovo granite (31–30 Ma),
which caused local heating in the region.

6. Crustal thinning led to the denudation and exhuma-
tion of the Precambrian-early Cambrian base-
ment rocks exposed in high-altitude culminations
(Osogovo and Lisets Mountains) between low-
altitude basins.

We conclude that the Kraishte region underwent a
major extensional event in the middle Eocene-early Oli-
gocene. This extension in the southern Balkan is older
than, and separated from, the Miocene to Quaternary
Aegean extension. Eocene–Oligocene extension was
controlled by the distribution of earlier crustal thickening
all around the Carpatho-Balkanic orocline, earlier
thickening being represented by the Cretaceous
emplacement of the Morava Nappe in the Kraishte. The
presence of a thickened crust is consistent with the mas-
sive rhyolitic volcanism that sealed extension structures
in the Kraishte as in the Rhodope. This rhyolitic
magmatism reveals voluminous crustal melting in deep
root zones and subsequent mass and heat transfer in the
crust.
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Appendix

Sample preparation followed the routine technique de-
scribed in Seward (1989). Etching of the apatite grains

was done with 7% HNO3 at 21�C for 50 s. Zircon
grains were etched in a eutectic mixture of KOH and
NaOH at 220�C for between 4 and 40 h. Irradiation
was carried out at the ANSTO facility, Lucas Heights,
Australia.

Microscopic analysis was completed using an optical
microscope with a computer driven stage (Dumitru
1995). All ages were determined using the zeta approach
(Hurford and Green 1983) with a zeta value of 372±13
for CN5 and 132±3 (1998–2000) and 122±2 (2001–
2002) for CN1 (see Table 1). They are reported as cen-
tral ages (Galbraith and Laslett 1993) with a 2r error
(Table 1). The magnification used was 1,250· for apatite
and 1,600· (dry) for zircon. Horizontal confined track
lengths were measured at 1,250·.

Modelling of the apatite age and track length data
was completed with the Monte Trax program of
Gallagher (1995), using an initial track length of
15.5 lm (for discussion see Seward et al. 2004). A
composition of Durango apatite was used with the
Laslett model in this program. Samples were forced to
the surface at the time of deposition. Because their
previous thermal history is unknown the various path-
ways are marked by arrows on Fig. 7. We assume an
effective closure temperature for apatite of 110±10�C
with a partial annealing zone from 110–60�C (Green and
Duddy 1989; Corrigan 1993). For zircon, the closure
temperature is taken as 260±50�C with a partial
annealing zone from 210–310�C (Yamada et al. 1995).

References

Aiello E, Bartolini C, Boccaletti M, Gocev P, Karagjuleva J,
Kostadinov V, Manetti P (1977) Sedimentary features of the
Srednogorie zone (Bulgaria): an upper Cretaceous intra-arc
basin. Sediment Geol 19:39–68

Berggren WA, Kent DV, Swisher CCI, Aubry MP (1995) A revised
Cenozoic geochronology and chronostratigraphy. Geochro-
nology, time scales and global stratigraphic correlation. In:
Berggren WA, Kent DV, Aubry M-P, Hardenbol J (eds) Geo-
chronology, time scales and global stratigraphic correlation
special publication. SEPM (Soc Sediment Geol) Spec. Publ.
54:129–212

Boccaletti M, Manetti P, Peccerillo A (1974) Hypothesis on the
plate tectonic evolution of the Carpatho-Balkan Arcs. Earth
Planetary Sci Lett 23(2):193–198

Bonchev E (1936) Versuch einer tektonischen Synthese Westbul-
gariens. Geologica Balcanica 2(3):5–48

Bonchev E, Karagiuleva J, Kostadinov V, Manolov Z, Kamenova
J, Dinkov E, Bakalova D, Manolova R (1960) Grundlagen der
Tektonik von Kraiste mit den angrenzenden Gebieten. Travaux
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