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Linear Response Theory Around a Localized Impurity in the
Pseudogap Regime of an Anisotropic Superconductor
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We compare and contrast the polarizability of a d-wave superconductor in the pseudogap
regime, within the precursor pairing scenario (dPG), and of a d-density-wave (dDW) state,
characterized by a d-wave hidden order parameter, but no pairing. Our study is motivated
by STM imaging experiments around an isolated impurity, which may in principle distinguish
between precursor pairing and dDW order in the pseudogap regime of the high-Tc supercon-
ductors. In both cases, the q-dependence of the polarizability is characterized by an azimuthal
modulation, consistent with the d-wave symmetry of the underlying state. However, only the
dDW result shows the fingerprints of nesting, with nesting wave vector Q = (π, π), albeit im-
perfect, due to a nonzero value of the hopping ratio t′/t in the band dispersion relation. As
a consequence of nesting, the presence of hole pockets is also reflected by the (q, ω) depen-
dence of the retarded polarizability.

KEY WORDS: high-Tc superconductors; impurity effects; STM; pseudogap; hidden order; unconven-
tional density waves.

It has been recently proposed that direct imag-
ing of the local density of states (LDOS) around an
isolated impurity by means of scanning tunneling mi-
croscopy (STM) [1–4] could help understand the na-
ture of the ‘normal’ state in the pseudogap regime of
the high-Tc superconductors (HTS) [5–8]. The idea
that an anisotropic superconducting gap should give
rise to directly observable spatial features in the tun-
neling conductance near an impurity was suggested
by Byers et al. [9], whereas earlier studies [10] had
considered perturbations of the order parameter to
occur within a distance of the order of the coherence
length ξ around an impurity. Later, it was shown that
an isolated impurity in a d-wave superconductor pro-
duces virtual bound states close to the Fermi level,
in the nearly unitary limit [11]. Such a quasi-bound
state should appear as a pronounced peak near the
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Fermi level in the LDOS at the impurity site [12], as
is indeed observed in Bi-2212 [1] and YBCO [13].

In the underdoped regime of the HTS, various
models have been proposed to describe the pseu-
dogap state in the temperature range Tc < T < T∗

[14,15]. These include the precursor pairing scenario,
where the pseudogap is associated to phase fluctua-
tions of the order parameter above Tc [16]. Within
the precursor pairing scenario, the phase diagram of
the HTS can be described as a crossover from Bose–
Einstein condensation (in the underdoped regime)
to BCS superconductivity (in the overdoped regime)
[17–20].

Recently, it has been proposed that many prop-
erties of the pseudogap regime may be explained
within the framework of the so-called d-wave-density
scenario (dDW) [21–23]. This is based on the idea
that the pseudogap regime be characterized by a
fully developed order parameter, at variance with
the precursor pairing scenario, where a fluctuating
order parameter is postulated. The dDW state is
an ordered state of unconventional kind, and is
usually associated with staggered orbital currents in
the CuO2 square lattice of the HTS [24–27]. Much
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attention has been recently devoted to show the
consistency of the dDW scenario with several exper-
imental properties of the HTS [22]. These include
transport properties, such as the electrical and ther-
mal conductivities [28,29] and the Hall effect [30,31],
thermodynamic properties [32,33], time symmetry
breaking [34], and angular resolved photoemission
spectroscopy (ARPES) [35]. The possible occurrence
of a dDW state in microscopic models of correlated
electrons has been checked in ladder networks [36].

In the normal state, the frequency-dependent
LDOS at the nearest (NN) and next-nearest neigh-
bor (NNN) sites, with respect to the impurity site,
should contain fingerprints of whether the pseudo-
gap regime is characterized by precursor pairing [37]
or dDW order [6,7]. This is due to the fact that while
pairing above Tc without phase coherence is a pre-
cursor of cooper pairing, and therefore of sponta-
neous breaking of U(1) gauge invariance, the dDW
state can be thought as being characterized by the
spontaneous breaking of particle–hole symmetry, in
the same way as a charge density wave breaks pseu-
dospin SU(2) symmetry [38].

In this context, a complementary information is
that provided by the polarizability FR(q, ω) of the
system, which gives a measure of the linear response
of the charge density to an impurity potential. In the
case of d-wave superconductors (dSC), it has been
demonstrated that the anisotropic dependence of the
superconducting order parameter on the wave-vector
q gives rise to a clover-like azimuthal modulation of
FR(q, ω) along the Fermi line for a 2D system [39].
These patterns in the q dependence of FR(q, ω) are
here confirmed also for a more realistic band for the
cuprates. In addition to that, the dDW result also
shows fingerprints of the Q = (π, π) nesting proper-
ties of such a state.

Within linear response theory, the displaced
charge density δρ(r) by a scattering potential V(r) in
the Born approximation is given by [40,41]

δρ(r) =
∫

V(r′)FR(r − r′, EF)dr′, (1)

which implicitly defines the linear response function
FR(r, EF) at the Fermi energy EF. Here and in the
following, we set the elementary charge e = 1. In mo-
mentum space, Eq. (1) readily translates into δρ(q) =
V(q)FR(q, EF), showing that, for a highly localized
scattering potential in real space [V(r) = V0δ(r), say],
the Fourier transform δρ(q) of the displaced charge is
simply proportional to FR(q, EF).

In the presence of superconducting pairing, the
generalization of the linear response function is given
by the density–density correlation function (polariz-
ability) [42]:

F(q, iων) = Tr
1
β

∑
ωn

1
N

∑
k

τ3G(k, iωn)

× τ3G(k − q, iωn − iων) (2)

where G(k, iωn) = [iωnτ0 + ξkτ3 + 	kτ1]/[(iωn)2 −
E2

k] is the dSC matrix Green’s function in Nambu
notation, β = T−1 is the inverse temperature,
ων = 2νπT is a bosonic Matsubara frequency, τi are
the Pauli matrices in spinor space, the summations
are performed over the N wave-vectors k of the first
Brillouin zone (1BZ) and all fermionic Matsubara
frequencies ωn = (2n + 1)πT, and the trace is over
the spin indices. (Units are such that � = kB = 1 and
lattice spacing a = 1.) Here, ξk = εk − µ, with εk the
single-particle dispersion relation:

εk = −2t(cos kx + cos ky) + 4t′ cos kx cos ky, (3)

where t = 0.3 eV, t′/t = 0.3 are tight binding hop-
ping parameters appropriate for the cuprate super-
conductors, and µ the chemical potential. For a d-
wave superconductor, we assume a mean-field gap
	k = 	◦gk, with gk = 1

2 (cos kx − cos ky) and Ek =
(ξ2

k + 	2
k)1/2. The retarded polarizability is then de-

fined as usual in terms of the analytic continuation
as FR(q, ω) = F(q, iων �→ ω + i0+). The polarizabil-
ity in the SC case has been originally studied by
Prange [42], later generalized in Ref. [39] for a dSC
with isotropic dispersion relation, and in Ref. [43]
for a dSC with the more realistic dispersion relation
Eq. (3).

In the pseudogap regime, for Tc < T < T∗,
within the precursor pairing scenario (dPG) [17], one
assumes the existence of cooper pairs characterized
by a ‘binding energy’ 	k having the same symme-
try of the true superconducting gap below Tc, but
no phase coherence. In other words, no true off-
diagonal long range order develops, and one rather
speaks of a ‘fluctuating’ order [16]. This means that
the quasiparticle spectrum Ek = (ξ2

k + 	2
k)1/2 is still

characterized by a pseudogap 	k = 	◦gk opening at
the Fermi energy with d-wave symmetry, but now
without phase coherence. Therefore, the diagonal el-
ements of the matrix Green’s function GdPG(k, iωn) =
[iωnτ0 + ξkτ3]/[(iωn)2 − E2

k] coincide with those of its
superconducting counterpart, while the off-diagonal,
anomalous elements are null. Within this precursor
pairing scenario, Eq. (2) in the pseudogap regime
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then evaluates to:

FdPG(q, iων) = 1
N

∑
k

[
(u2

ku2
k−q + v2

kv2
k−q)

×
(

f (Ek) − f (Ek−q)
Ek − Ek−q − iων

+ H.c.
)

+ (u2
k−qv2

k + u2
kv2

k−q)

×
(

f (Ek) + f (Ek−q) − 1
Ek + Ek−q − iων

+ H.c.
)]

.

(4)

As anticipated earlier, the dDW state [21] is
characterized by a broken symmetry and a well-
developed order parameter 〈c†k+Qscks′ 〉 = i�Qgkδss′ ,
at variance with the precursor pairing scenario of
the pseudogap regime. [Q = (π, π) is the dDW or-
dering wave-vector.] Such a state is associated to
staggered orbital currents circulating with alternating
sense in the neighboring plaquettes of the underlying
square lattice. As a result, the unit cell in real space
is doubled, and the Brillouin zone is correspondingly
halved. The mean-field Hamiltonian for the dDW
state can be conveniently rewritten as [28,29]:

HdDW =
∑

ks

′
�

†
ks[(ε

+
k − µ)τ0 + ε−

k τ3 + Dkτ1]�ks, (5)

where �
†
ks = (c†ks c†k+Qs), ε±

k = 1
2 (εk ± εk+Q), Dk =

D◦gk is the dDW ‘pseudogap’, and the prime re-
stricts the summation over wave-vectors k belong-
ing to the reduced (‘magnetic’) Brillouin zone only.
Correspondingly, the matrix Green’s function at the
imaginary time τ can be defined as GdDW(k, τ) =
−〈Tτ�ks(τ)�†

ks(0)〉, whose inverse reads [7,29]:

G−1
dDW(k, iωn) =

(
iωn − ξk iDk

−iDk iωn − ξk+Q

)
. (6)

The case of perfect nesting (t′ = 0) has been explicitly
studied in Ref. [29]. In the general case (t′ 	= 0), one
finds

GdDW(k, iωn) = 1
(iωn − E+

k )(iωn − E−
k )

×
(

iωn − ξk+Q −iDk

iDk iωn − ξk

)
, (7)

where E±
k = −µ + ε+

k ±
√

(ε−
k )2 + D2

k are the two
branches of the quasiparticle spectrum obtained by
diagonalizing Eq. (5) [28]. Notice that E±

k+Q = E±
k .

The polarizability in the dDW state has been de-
rived in Ref. [43], and can be cast in compact matrix
notation as:

FdDW(q, iων) = Tr
1
β

∑
ωn

1
N

∑
k

′
κGdDW(k, iωn)

× κGdDW(k − q, iωn − iων), (8)

where now κ = τ0 + τ1, and GdDW is the matrix
Green’s function for the dDW state, Eq. (7). Per-
forming the frequency summation, one eventually
finds:

FdDW(q, iων) = 1
N

∑
k

′ ∑
i,j =±

f (Ei
k) − f (Ej

k−q)

Ei
k − Ej

k−q − iων

. (9)

The case of competition between dSC and dDW or-
ders has been also considered in Ref. [43], where the
polarizability is shown to have an expression similar
to Eq. 9 (see also Ref. [44] for a discussion on dSC
and dDW).

We have evaluated numerically the polarizabil-
ity for the dPG and the dDW cases, Eqs. (4) and
(9), as a function of the relevant variables. Our nu-
merical results for the wave-vector dependence of
the static polarizability F(q, 0) over the 1BZ in the
dPG and in the pure dDW cases are shown in Fig. 1.
As a result of the d-wave symmetry of both the
pseudogap within the precursor pairing scenario, and
of the dDW order parameter, F(q, 0) is character-
ized by a four-lobed pattern or azimuthal modulation
[39]. However, the dDW case is also characterized
by the presence of ‘hole pockets,’ centered around
Q/2 = (π/2, π/2) and symmetry-related points, due
to the (albeit imperfect) nesting properties of the
dDW state, with nesting vector Q = (π, π) (Fig. 1,
right). Such a feature is reflected in the q dependence
of FdDW(q, 0), which is characterized by local maxima
at the hole pockets.

As a result, the Fourier transform in real space
of the polarizability, F(r, 0), is characterized by
Friedel-like oscillations as |r| increases from the im-
purity site, as expected [39,45]. These radial, damped
oscillations are then superimposed by an azimuthal
modulation, due to the d-wave symmetry of the nor-
mal state, both in the dPG and in the dDW cases
[39]. One finds a checkerboard pattern, closely re-
flecting the symmetry of the underlying lattice, with
local maxima on the NN and local minima on the
NNN sites. Since these features are common to both
the dPG and dDW cases, the spatial dependence of
the charge density oscillations is not directly helpful
in distinguishing between the dPG and dDW states.
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Fig. 1. Static polarizability F(q, 0) [eV−1] in the 1BZ for the dPG (left) and dDW states (right). Nu-
merical parameters are t = 0.3 eV, t′/t = 0.3, µ = −t, corresponding to a hole-like Fermi line and a hole
doping ∼14.3 %, 	◦ = D◦ = 0.06 eV in the dPG and in the dDW cases, respectively [35], and T = 100 K.
Thick solid lines are the Fermi line ξk = 0 (dPG, left), and the locus E−

k = 0 (dDW, right), the latter en-
closing four ‘hole pockets’ around the point Q/2, and symmetry-related points.

However, the r and q dependences of several quan-
tities of interest for STM studies can be easily con-
nected by means of Fourier transform scanning tun-
neling microscopy (FT-STM) techniques (see, e.g.,
Ref. [46], and references therein, and Ref. [47] for the
relevance of FT-STM in detecting fluctuating stripes
in the HTS).

In summary, motivated by recent STM experi-
ments around a localized impurity in the HTS, we
have derived the polarizability F(q, ω) for the pseu-
dogap phase, both in the precursor pairing scenario
and in the dDW scenario.

In the static limit, the q dependence of F(q, 0)
reflects the d-wave symmetry of the precursor pair-
ing ‘pseudogap’ or of the dDW order parameter, with
an azimuthal modulation consistent with a clover-
like pattern, as expected also for a superconductor
with an isotropic band [39]. However, at variance to
the dPG case, the q dependence of the static polariz-
ability in the dDW state clearly exhibits the presence
of hole pockets, due to the (albeit imperfect) nesting
properties of the dDW state, with nesting vector Q =
(π, π). Qualitatively similar results to the pure dDW
case are obtained also in the mixed dSC + dDW, thus
showing that hole pockets are a distinctive feature
of dDW order [43]. Such a behavior is confirmed by
the r dependence of the static polarizability in real

space. An analysis of the frequency dependence of
the retarded polarizability FR(q, ω) reveals that the
q evolution of the features (local maxima or shoul-
ders) in the ω dependence of this function is closely
connected with the relative position of wave-vector q
with respect to the Fermi line, and is therefore sensi-
tive to the possible presence of hole pockets, as is the
case for the dDW state [43].
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