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Abstract Rhythmic and discrete movements are frequently
considered separately in motor control, probably because dif-
ferent techniques are commonly used to study and model
them. Yet the increasing interest in finding a comprehensive
model for movement generation requires bridging the differ-
ent perspectives arising from the study of those two types of
movements. In this article, we consider discrete and rhythmic
movements within the framework of motor primitives, i.e.,
of modular generation of movements. In this way we hope
to gain an insight into the functional relationships between
discrete and rhythmic movements and thus into a suitable rep-
resentation for both of them. Within this framework we can
define four possible categories of modeling for discrete and
rhythmic movements depending on the required command
signals and on the spinal processes involved in the genera-
tion of the movements. These categories are first discussed in
terms of biological concepts such as force fields and central
pattern generators and then illustrated by several mathemat-
ical models based on dynamical system theory. A discussion
on the plausibility of theses models concludes the work.

Keywords Motor primitives · Discrete movements ·
Rhythmic movements · Dynamical systems ·
Central pattern generators · Force fields · Muscle synergies

1 Introduction

Humans are able to adapt their movements to almost any
new situation in a very robust, seemingly effortless way.
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EPFL—Ecole Polytechnique Fédérale de Lausanne,
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To explain both adaptivity and robustness, a very promising
perspective is the modular approach to movement generation:
movements result from combinations of a finite set of stable
motor primitives organized at the spinal level [see Bizzi et al.
2008 for a review]. In this article, a motor primitive is defined
as a network of spinal neurons that activates a set of mus-
cles (which we call a synergy) in a coordinated way in order
to execute a specific movement. Motor primitives are thus
defined relative to the movement they produce.

In terms of control, the modularity assumption is attrac-
tive because it drastically reduces the dimensionality of the
problem: instead of a complex stimulation of a vast num-
ber of muscles across the body, high-level commands can be
summed up as activation signals for a finite, discrete set of
motor primitives. Strong evidence, notably through the con-
cepts of central pattern generators (CPGs) and force fields
[see reviews by Grillner (2006) and Bizzi et al. (2008)], sup-
ports the existence of such functional modules at the spinal
level in vertebrate animals. For instance, Kargo and Giszter
(2000) have demonstrated how a finite set of spinal motor
primitives could account for the natural wiping reflex in the
frog, showing that the central nervous system (CNS) could
use such primitives to produce natural behaviors.

Assuming the existence of such motor primitives provides
an interesting framework for reflecting upon the potential dif-
ferences between discrete and rhythmic movements. It allows
us to reflect on these movements relative to a simplified view
of movement generation: a high-level command activates a
(set of) motor primitive(s) at the spinal level that generates
a given kinematic outcome. Given this scheme, we can con-
sider the potential differences between discrete and rhythmic
movements that are not related to sensory feedback or muscle
interaction but to the spinal processes underlying them and
to the high-level commands needed to activate these spinal
processes. We call this approach a functional approach to
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distinguish it from the many studies focusing on the kine-
matics of these types of movements such as, for instance, the
thorough analysis by Hogan and Sternad (2007).

Most of the studies on discrete and rhythmic movements
are either based on electromyographic (EMG) analyses of the
generated movements (Hogan and Sternad 2007; van Mourik
and Beek 2004) or on functional magnetic resonance imaging
(fMRI) analysis (Schaal et al. 2004), as will be reviewed in
Sect. 3. While those studies have provided insightful results
on the nature of discrete and rhythmic movements, we think
that adopting a functional perspective is a useful, comple-
mentary step toward understanding the differences between
the movements regarding the way they are generated, and
also to gain more understanding on how brain and EMG
studies can be bridged. Moreover, the generation of discrete
and rhythmic movements at the spinal level has been exten-
sively studied in vertebrates through the concepts of force
fields and CPGs, respectively, providing an interesting basis
for reflection.

We start by presenting a simplified model of the motor sys-
tem on which we will base our reflection (Sect. 2). We then
present several studies on the differences between discrete
and rhythmic movements (Sect. 3) and some of the literature
on the combination of these movements (Sect. 4). Although
we are well aware that movement generation is a dynamic
process involving the whole motor system, we discuss move-
ment execution and movement planning separately since we
think that in this way distinct properties pertaining to those
two phases of movement can be emphasized, as will be dis-
cussed in Sects. 5 and 6, respectively. Furthermore, we pres-
ent in Sect. 7 some existing mathematical models for the
generation of discrete and rhythmic movement since such
models provide important information on the generation of
these movements.

2 A simplified view on motor systems

In this section, we briefly present a simple model for move-
ment generation based on the concept of motor primitives.
We consider the processes underlying the generation of both
movements with an emphasis on the contribution of the spinal
component of the CNS. Such a simplified structure will pro-
vide us with a framework for discussion throughout this arti-
cle.

According to textbooks [see, e.g., Kandel et al. (2000)],
movement generation is achieved through three motor struc-
tures organized hierarchically and corresponding to different
levels of abstraction. These structures are (a) the cerebral
cortex, which is responsible for defining the motor task; (b)
the brain stem, which elaborates the motor plan to execute
the motor task; and (c) the spinal cord, which generates the
spatiotemporal sequence of muscle activation to execute the
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Fig. 1 The four different categories of models. a Two/Two, b One/
Two, c One/One, d Two/One

task. In addition, the cerebral cortex and the brain stem are
influenced by the cerebellum and the basal ganglia, which
can be considered as feedback circuits, the cerebellum being
connected to the spinal cord as well.

In order to consider the relationships between discrete and
rhythmic movements, we will mainly distinguish between the
planning (a) and the execution phase (b–c) of movements. By
planning we mean all the processes required to choose the
features of the movement (i.e., to represent the task) and by
execution the processes responsible for the spatiotemporal
activation of the muscles generating the corresponding tra-
jectories by the limbs. Within this framework, four different
possible structures for the generation of discrete and rhyth-
mic movements need to be considered (Fig. 1).

• Two/Two

Discrete and rhythmic movements are generated through two
totally different processes, at both the planning and the exe-
cution phase.

• One/Two

The planning processes involved in the generation of both
movements are the same, while their generation depends on
different structures.

• One/One

Discrete and rhythmic movements are two outcomes of
the same process, at both the planning and the execution
level.
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• Two/One

The two movements involve different types of representa-
tions, while the generator is shared.

These four simple categories provide us with basic
grounds for reflection on the possible differences between
discrete and rhythmic movements. We will refer to them
throughout this article.

3 Defining discrete and rhythmic movements

Mathematically, defining rhythmic and discrete movements
is an easy task. Rhythmic refers to periodic signals, discrete
to aperiodic signals. However, when considering movements
that we actually perform, the task becomes more complex, the
major problem being that movements are finite in time and
that the formal, mathematical definition of periodicity is thus
unusable. Moreover, the intrinsic variability of movements
and modulation by the environment (contacts for instance)
change the actual trajectory, so that it is impossible to perform
a perfectly periodic trajectory.

The attempt by Hogan and Sternad (2007) to develop a
taxonomy to classify discrete and rhythmic movements con-
firms the inherent difficulty of the task. A discrete movement
is defined as a movement that occurs between two postures,
where postures stand for a nonzero interval of time where
(almost) no movement occurs. Rhythmic movements are cat-
egorized in four subsets, going from strictly periodic move-
ments to movements with recurrent patterns. However, as
the authors point out in the article, these two definitions are
not exclusive. The so-called rhythmic movements occur in
between postures (and thus enter the definition of discrete),
and discrete movements can be repeated in order to become
periodic.

Another difficulty derives from the fact that rhythmic and
discrete movements have mainly been studied separately in
the literature, although some interesting (relatively recent)
articles on their combinations exist [as, for instance, Hogan
and Sternad (2007) or Sternad (2007)]. From our point of
view, this distinction is mainly due to two interlinked fac-
tors. First, rhythmic and discrete movements have not been
studied per se in general, but mainly as outcomes of some spe-
cific processes in trajectory generation, such as, for instance,
CPGs in locomotion and sensorimotor transformations in
reaching. Second, studies focusing on the low-level genera-
tion of movements often concentrate on rhythmic movements
such as locomotion, while those concerning high-level move-
ment generation typically address discrete movements such
as reaching or grasping. This implies different investigation
techniques; most of the studies on rhythmic movements have
focused on the spinal cord–brain stem system in deafferented
or spinalized subjects, whereas discrete movement is usually

studied using brain imaging techniques or kinematic data
on awake, behaving animals. Overcoming these differences
is a necessary step to understanding discrete and rhythmic
movements.

These two issues make a review of rhythmic and dis-
crete movements difficult in the sense that any comparison
between the numerous studies on the subject is laborious
since the methods, the point of view, and the physiological
level of investigation are different. It is an interesting question
whether, in terms of motor control, the apparent differences
between discrete and rhythmic movements are artifacts due
to different scientific approaches or if both types of move-
ments are in fact produced independently.

Schaal et al. (2004) and van Mourik and Beek (2004),
for instance, have defined three hypotheses that need to
be considered: (a) rhythmic movements are repeated dis-
crete movements (concatenation hypothesis), (b) discrete
movements correspond to interrupted cyclic movements
(half-cycle hypothesis), and (c) discrete and rhythmic move-
ments result from different processes (two-primitives hypoth-
esis). Note that these three hypotheses would correspond
to the One/One case defined above for (a) and (b) and to
the Two/Two case for (c). The mixed cases One/Two and
Two/One are not considered here as the planning and the
execution phase of the movements are not distinguished.

While hypotheses (b) and (c) are still untested, several
studies have shown that hypothesis (a) is unlikely to be true.
According to van Mourik and Beek (2004), the concatena-
tion hypothesis is mainly a consequence of trajectory plan-
ning theory where it is often supposed that discrete segments
are used as building blocks for a movement. This hypoth-
esis has been ruled out by several studies comparing dis-
crete and rhythmic movements (van Mourik and Beek 2004;
Hogan and Sternad 2007), where key kinematic features of
rhythmic movements are significantly different from those
of discrete movements. Schaal et al. (2004) obtained similar
results using fMRI techniques: some cortical areas activated
during discrete movements were not active during rhyth-
mic ones. In addition, as reported by van Mourik and Beek
(2004), Guiard (1993) argued that the concatenation assump-
tion would involve a waste of elastic energy (indeed at the
end of a reaching movement, the energy has to be dissipated,
whereas for rhythmic movement, the energy can be stored as
potential energy for the remaining half-cycle).

It is important, however, to point out that those compar-
isons are always made between a reaching movement and
its corresponding back-and-forth rhythmic movements. Thus
some of the differences observed may be due to the character-
istics of reaching itself (for instance, the control commands
required to characterize it) rather than to the fact that reach-
ing is a discrete movement. For instance, in the experiment
conducted by Schaal et al. (2004), the subjects had to either
cycle around a rest position at a self-chosen amplitude or to
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stop at a chosen position, to wait for a while, and then to
start again. fMRI recordings of this experiment have shown
that some cortical areas active during the discrete movements
were not activated during the rhythmic movements, leading
to the conclusion that rhythmic movements cannot be con-
catenated discrete movements. However, as has been pointed
out, notably by Miall and Ivry (2004), discrete movements
require more processing, namely, choosing where to stop and
when to start again, which could also explain the difference
observed in the fMRI recordings.

Another nonnegligible phenomenon is the onset and end-
ing of a rhythmic movement: indeed, boundary conditions
change the kinematic properties of the initial and final
cycles (compared to normal, in-between cycles), making
them closer to those of discrete movements. Indeed, when
a discrete movement is performed, the initial and final accel-
erations are zero, while this is not the case during in-between
cycles.

van Mourik and Beek (2004) have studied the in-between
cycles and first and last half-cycles separately. They came to
the conclusion that, whereas the in-between cycles were sig-
nificantly different from the discrete movements, the first and
last half-cycles were kinematically close to discrete move-
ments. Even if their results do not rule out the half-cycle
hypothesis conclusively, they give more support to the two-
primitives hypothesis: the cyclical movements performed
could in fact be a sequence in a discrete, onsetting movement,
followed by rhythmic movements, and terminated again by a
discrete movement. A model by Schöner and Santos (2001)
based on this latter hypothesis will be presented in the last
part of this review.

The questions on the nature of discrete and rhythmic
movements thus remain open, even if strong evidence seems
to rule out the concatenation hypothesis. In the next sec-
tion, we present some work on the interaction of discrete and
rhythmic movements in tasks involving their combination.

4 The combination of discrete and rhythmic movements

Most of the EMG and kinematic studies on the combina-
tion of rhythmic and discrete movements are built on the
same scheme: a particular joint (usually the finger or the
elbow) has to be moved from an initial to a target position
(discrete movement) while oscillating (rhythmic movement).
The oscillation is either physiological (Goodman and Kelso
1983; Adamovich et al. 1994; Michaels and Bongers 1994;
Sternad et al. 2000) or pathological (Wierzbicka et al. 1993;
Elble et al. 1994; Staude et al. 2002). The reader is referred
to Sternad (2007) for a thorough review.

In all these experiments, an entrainment effect is observed,
that is, the discrete movement is phase-coupled with the
rhythmic movement, in the sense that the onset of the
discrete movement occurs preferably (though not always)

during a specific phase window of the oscillations. Good-
man and Kelso (1983) showed that this phase window cor-
responds to the peak of momentum of the oscillations in the
direction of the discrete movement. Interestingly, it has been
shown that professional pistol shooters press the trigger in
phase with their involuntary tremor, while beginners try to
immobilize themselves before shooting (Tang et al. 2008).

In terms of EMG recordings, the burst initiating the dis-
crete movement occurs approximately at the time where the
EMG activity for the rhythmic movement would have been
expected without this perturbation. This effect is thus referred
to by De Rugy and Sternad (2003) as “burst synchroniza-
tion.” Performing the same experiment, although at differ-
ent frequencies [lower for De Rugy and Sternad (2003)],
Adamovich et al. (1994) and De Rugy and Sternad (2003)
came to different conclusions on movement combination.
Adamovich et al. (1994) observed the three following fea-
tures: (a) oscillations rapidly attenuate and disappear during
discrete movements and resume after the peak velocity of
discrete movements; (b) there is a phase resetting of the oscil-
lations after the completion of discrete movements; and (c)
the frequency tends to be higher after discrete movements. In
addition, they observed that (d) once a discrete movement is
initiated, it is performed independently of the rhythmic one,
in the sense that the discrete trajectory is not influenced by
the rhythmic movement. Based on the monotonic hypothe-
sis (St-Onge et al. 1993), according to which the command
of the discrete movement stops at the time of its peak veloc-
ity, they concluded that discrete and rhythmic movements are
excluding each other at the neural level, in the sense that they
cannot co-occur. However, their kinematic outcomes outlast
them and lead to overlap.

However, Sternad et al. (2000) came to a different
conclusion concerning the interdependence of the two move-
ments. Indeed, they observed a significant influence of rhyth-
mic movements on discrete movements (lower frequencies of
oscillations lead to longer discrete movements), which is in
contradiction with the result (d) obtained by Adamovich et al.
(1994). Moreover, the higher frequency observed by Adamo-
vich et al. after a discrete movement (observation c) appeared
to be a transient phenomenon. Following these observations,
Sternad et al. (2000) proposed that both movements co-occur
and that the attenuation of the oscillations during discrete
movements is due to inhibitory phenomena.

Note that co-occurrence of discrete and rhythmic move-
ments is supported by a study on whisker movements in rats
by Haiss and Schwarz (2005), where it was found that rhyth-
mic and nonrhythmic movements could be evoked through
two different areas of the primary motor cortex. It was shown
in addition that simultaneous activation of both areas resulted
in a shift of the offset of the whisker oscillations, that is, in
a combination of both movements. This experiment will be
discussed in more detail in Sect. 6.
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We now discuss more precisely the generation of discrete
and rhythmic movements, at both the execution and the plan-
ning levels.

5 Generation of discrete and rhythmic movements

We present movement generation through two fundamental
concepts, CPGs and force fields, that we develop in what
follows.

CPGs, that is, a spinal network involved in many behav-
iors in vertebrates and invertebrates, are a seminal concept
in the generation of (rhythmic) movements (Grillner 1985;
Delcomyn 1980). Although most work on CPGs was origi-
nally dedicated to rhythmic movements, Grillner (2006), for
instance, now extends it to discrete movements as well.

Another important discovery in movement generation is
the concept of force fields, which has been brought to light by
Bizzi’s group (Bizzi et al. 1991). As we will see, force fields
provide evidence for a modular organization of the spinal
cord circuitry in vertebrates.

In what follows we present these two notions in more
detail, as well as their relationship to discrete and rhythmic
movements.

5.1 Central pattern generators

Approximatively one century ago, there were two competing
explanations for the rhythmic pattern present in locomotion:
one suggested that sensory feedback was the main trigger
of the different phases of locomotion (Sherrington 1910),
and the other suggested the existence of central neural net-
works capable of generating rhythms without any sensory
input (Brown 1912); such neural networks are now called
CPGs. Brown (1912) showed that cats with transected spinal
cord and with cut dorsal roots showed rhythmic patterns of
muscle activation. Even if, in the initial experiments, the tran-
section of the dorsal roots did not exclude the influence of
sensory feedback as pointed out by Grillner and Zangger
(1984), there is now very clear evidence that rhythms can
be generated centrally without sensory information. Indeed,
experiments on lampreys (Cohen and Wallen 1980; Grillner
1985), on salamanders (Delvolvé et al. 1999), and on frog
embryos (Soffe and Roberts 1982) have shown that when the
spinal cord is isolated from the body, electrical or chemical
stimulations activate patterns of activity, called fictive loco-
motion, very similar to those observed during intact locomo-
tion. Since then, the CPG hypothesis has been strengthened
by experiments on both vertebrates and invertebrates [see
Stein et al. (1997) or Ijspeert (2008) for more comprehen-
sive reviews].

Grillner (1985) proposed that CPGs are organized as cou-
pled unit-burst elements with at least one unit per articulation

(i.e., per degree of freedom) in the body. Cheng et al.
(1998) reported on experiments where these units could be
divided even further with independent oscillatory centers for
flexor and extensor muscles. Furthermore, several experi-
ments have shown that CPGs are distributed networks made
of multiple coupled oscillatory centers [for a review see
Ijspeert (2008)].

According to Marder and Bucher (2001), two types of
CPG networks can be distinguished: the so-called pace-
maker-driven networks and networks with emergent rhythms.
Pacemaker-driven networks, which are generally always
active, as in breathing, consist of a subnetwork of intrinsi-
cally oscillating neurons that drives nonbursting neurons into
a cyclic pattern, while in networks with emergent rhythms,
the oscillatory pattern comes from couplings between the
neurons, for instance by mutual inhibition of two reciprocal
neurons. A mathematical model by Matsuoka (1985) of such
a system will be presented in Sect. 7.

While sensory feedback is not needed for generating the
rhythms, it has been shown that some important features
of the actual motor pattern are not present in the fictive
motor pattern (Stein and Smith 2001). For instance, in the
cat scratching movement, the rhythmic alternation between
agonist and antagonist muscles is already present in the fic-
tive motor pattern, whereas the relative duration of extensor
activity observed during actual scratching is greater than that
observed in the immobilized preparation (fictive pattern). The
motor pattern generated by CPGs thus seems to be modulated
by the sensorimotor information so that it stays coordinated
with body movements.

According to Pearson (2000), sensory feedback is also
involved in the mechanisms underlying short-term and long-
term adaptation of CPGs. He postulates that the long-term
phenomena are driven by the body and limb proprioceptors
together with central commands and the action of neuromod-
ulators. Kawato (1996) also proposed that persistent errors
detected by proprioceptors are used to recalibrate the mag-
nitude of the feedforward command.

In summary, strong evidence exists for the existence of
CPGs in animals, as rhythmic patterns of activation were
observed both in decerebrated and in deafferented animals,
the observed pattern being thus reasonably imputed to the
spinal cord alone.

In humans, the activity of the isolated spinal cord is not
observable, making the generalization of the previous results
difficult: influences from higher cortical areas and from sen-
sory pathways can hardly be excluded (Capaday 2002). How-
ever, evidence suggesting that the spinal cord with intact
sensory afferents can generate rhythmic locomotorlike tonic
input is provided by different studies on patients with com-
plete spinal lesion (Dimitrijevic et al. 1998). In addition,
Hanna and Frank (1995) reported steppinglike movements in
patients before or after brain death, and stepping responses
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have been observed in anencephalic infants just after birth
(Peiper and Nagler 1963). It was shown that treadmill exer-
cises for patients with spinal cord injuries improved their
walking pattern (Barbeau and Rossignol 1994; Dietz and
Harkema 2004; Edgerton et al. 2004; Rossignol et al. 2007;
Wolpaw and Tennissen 2001), which may be accounted for
by the fact that CPGs can be trained to function independently
of descending signals (Stein 2008). Interestingly, Dietz et al.
(2002) showed that in a setting with 100% body unloading
(thus limiting the role of stretch reflexes), patterned leg move-
ments could be elicited in patients with para- and tetraplegia.
Moreover, studies of disabled patients have shown that in
the absence of sensory information, gross movement control
is preserved, even if peripheral information is necessary for
precise movement organization and control (Jeannerod 1988;
Gandevia and Burke 1992).

The neonatal stepping movements are an illustration of a
complex intra- and interlimb coordination of muscle activ-
ity, and, even though it lacks some of the unique features of
human locomotion, some of its characteristics remain with
the onset of real walking, suggesting that the innate pattern
could be transformed during ontogeny by neural circuits that
develop later to obtain mature locomotion (Forssberg 1985).1

Indeed, although the innate stepping response usually (but
not always) disappears, the pattern used by toddlers is simi-
lar in many aspects to patterns in newborns (Forssberg 1985;
Thelen and Cooke 1987). While Forssberg (1985) suggested
that the inactive period may be due to a change of excitabil-
ity in the CPG due to the developing descending locomotor
driving signals, Thelen and Cooke (1987) argued that the
innate CPGs evolved in a more task-specific pattern, nota-
bly through the maturation and experience of key subsys-
tems such as balance, posture control, and strength. However,
Ivanenko (2005) have shown that the differences between
infant and adult walking cannot be imputed to balance sup-
port, since the EMG and kinematic patterns of walking in
infants were unaffected by increased postural stability.

As mentioned above, most of the early work on CPGs
focused on rhythmic movements, but the discovery of func-
tional muscle synergies in the frog linked to discrete move-
ments has led to an extension of the term, as we will see in
the next section.

5.2 Motor primitives and force fields

The Bizzi group provided some evidence for the concept of
motor primitives. Indeed, they brought to light that move-
ments were generated in a modular way by the spinal cord in

1 It should, however, be pointed out that the role of transient neonatal
reflexes is still unclear, and in particular whether these reflexes are later
used to develop mature, voluntary movements or if they correspond to
different control levels.

frogs [for a comprehensive review, see Bizzi et al. (2008)].
More precisely, stimulating specific interneuronal areas of
the spinal cord, they observed that the limb was moved in
the direction of the same target posture (equilibrium point)
whatever the initial position of the limb was. They called the
set of the vectors corresponding to the directions obtained by
the stimulation force fields. Surprisingly, only three to four
directions, corresponding to different areas in the spinal cord,
were identified (Bizzi et al. 1991); furthermore, they were
sufficient to account for natural limb trajectories (Kargo and
Giszter 2000).

Indeed Mussa-Ivaldi et al. (1994) found that stimulating
two areas simultaneously was almost equivalent to a simple
linear combination of the vector of the force fields propor-
tional to the intensity of stimulation. 87.8% (36 of 41) of the
cases could be explained by the summation hypothesis, while
an alternative hypothesis, where the outcome corresponded
to only one of the fields (i.e., a winner-take-all approach), was
also tested and could explain 58.5% (24 of 41) of the cases.
Under the hypothesis that the fields can be summed, and
since the intensity of stimulation does not change the pattern
of force orientation (Giszter et al. 1993), the space of possi-
ble end-effector target positions could be spanned through the
weighted summation of a limited set of force fields. Note that
similar results were obtained with rats (Tresch et al. 1999)
and cats (Krouchev et al. 2006; Ting and Macpherson 2005).

The costimulation assumption supports the hypothesis
that movements are produced through the combination of
spinal motor primitives, which can be characterized by a
resulting force field acting on the end effector of the limb.
This seminal result could provide a powerful tool for explain-
ing how the CNS can easily control the many muscles
involved in any movement. Indeed, instead of having to acti-
vate and control the different muscles involved in the task, the
CNS only has to define the level of activation of a small num-
ber of synergies. Furthermore, the combination being almost
linear, it provides an efficient way of bypassing the inherent
nonlinearities present in movement control using direct mus-
cle activation. Tresch et al. (1999) have developed a variety of
computational methods to extract muscle synergies involved
in different movements. Identifying those synergies is a dif-
ficult task, mainly because muscles can belong to more than
one synergy at a time.

In an experiment using chemical stimulation2 (NMDA
iontophoresis) of interneurons in the spinal cord of the frog,
Saltiel et al. (1998) found that some regions were eliciting
rhythmic behaviors. Force measurements of the limb show

2 Although both electrical and chemical microstimulations give the
same overall picture for discrete movements (Saltiel et al. 1998), dif-
ferences in the typical responses are observed that are due to the fact
that electrical microstimulation excites mainly somas and axons, while
chemical microstimulation excites dendrites and somas.
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a finite number of synergies corresponding to the orienta-
tion of the oscillations. More precisely, in rhythmic activa-
tion, it seems that the equilibrium point changes periodically,
leading to an oscillatory behavior. It is thus believed that
by stimulating a particular area of the spinal cord, a whole
CPG network can be activated thanks to connectivity. Inter-
estingly, the different orientations of oscillation are very close
to the direction of the force fields for discrete movements
found with the same method. Furthermore, the areas of acti-
vation of the discrete and the rhythmic movements for a given
orientation were topographically close (Saltiel et al. 2005).
This result suggests that rhythms might arise from the tem-
poral combination of simpler discrete modules. According to
Saltiel et al. (1998), CPGs could be organized such that the
discrete modules provide the orientation of the oscillations
while the timing features come from the network.

It is not known yet if the concept of force fields can be
extended to higher vertebrates, but it has been shown that a
finite set of (time-variant) synergies of muscles could account
for the movement generation in humans during fast reach-
ing movements (d’Avella et al. 2006) as well as in primate
grasping (Overduin et al. 2008), providing evidence for the
existence of motor primitives.

The difference between discrete and rhythmic move-
ments, at least at the spinal level, may thus be due to dif-
ferences in the topology3 of the network of motor primitives
[CPGs, in the broad sense as in Grillner (2006)] rather than
to completely distinct pathways. Indeed, discrete networks
need to encode a target position and possibly a time of onset,
while rhythmic networks also need to be endowed with a
notion of frequency and phase. As reviewed by Marder and
Bucher (2001), such features seem to emerge naturally from
the intrinsic and synaptic properties of the neurons constitut-
ing these particular (rhythmic) CPGs.

In summary, there is strong evidence that basic build-
ing blocks of movements are present at the spinal level and
that they are used by the CNS to create behaviors by com-
bination. However, at this point it is still not clear if dis-
tinct motor primitives exist for the generation of discrete and
rhythmic movement (One/Two, Two/Two cases) or if dis-
crete and rhythmic movements are generated by the same
process (One/One, Two/One cases). It seems reasonable to
postulate that the same motor primitives could be involved in
the generation of both discrete and rhythmic movements (by
specifying target equilibrium points or orientations of oscil-
lations, respectively), while features pertaining to rhythmic
movements alone (such as frequency and phase) might arise

3 By network topology we mean the interconnections between the dif-
ferent elements of the network, including their direction and types (that
is, if the connection is excitatory or inhibitory in our case). Indeed, the
main point is to consider the behavior emerging from the interactions
between the elements (for instance, a tonic or an oscillatory output),
rather than the behavior of each element.

from the coupling properties of the network. In Sect. 7, we
present a unique dynamical system developed by Degallier
et al. (2008) that can switch between rhythmic and discrete
regimes depending on the input commands.

6 Planning of discrete and rhythmic movements

We now address the question of discrete and rhythmic move-
ment during planning. We start by presenting the possible
role of motor primitives in movement planning and then dis-
cuss movement encoding by the motor cortex.

6.1 Motor primitives in movement planning

A common hypothesis on how we choose to perform a given
action is that the CNS uses internal models, that is, represen-
tations of the sensorimotor system and the environment, to
select the next action that it is going to produce. An inverse
dynamic model is then required for movement initiation, that
is, to find the activation commands to be sent to the muscles
to fulfill the desired task.

The question of how the CNS actually computes the
inverse model remains open. Indeed, inverse dynamics prob-
lems are complex, in particular in systems with many degrees
of freedom, that is, with high redundancy. Additionally, the
dynamics of the body change with time, as do external
dynamics. According to some authors, the existence of motor
primitives might help the CNS to solve the inverse dynamics
problem (Bizzi et al. 1991; Mussa-Ivaldi 1999; Georgopou-
los 1996). Indeed, motor primitives could provide the CNS
with built-in links between muscles and movement direction
and hence facilitate the resolution of the inverse problem of
finding the muscle commands generating the desired trajec-
tory (Mussa-Ivaldi and Bizzi 2000).

More precisely, we have seen in Sect. 5 that motor prim-
itives, at least in frogs, can be combined linearly, bypassing
the high nonlinearity of muscles. Thus it can be imagined
that instead of solving an inverse problem to control each of
the muscles needed to follow the desired trajectory, the CNS
chooses a combination of motor primitives that best fits this
trajectory. In this case the only task of the CNS is to optimize
the activation of each motor primitive in order to minimize the
error between the desired and the actual trajectories. Accord-
ing to what was postulated in Sect. 5, such a hypothesis could
mean that discrete movements are represented during plan-
ning by the CNS by a (possibly time-varying) equilibrium
point in space, whereas rhythmic movements would be rep-
resented by a (possibly time-varying) direction and a param-
eter controlling the emerging frequency of oscillation of the
network. In both cases the specification of the speed of the
movement (or another, related command signal) would also
be required to fully determine the movement.
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Note that the existence of and need for internal models
is still debated. Basically, the opponents of internal mod-
els doubt that the brain is capable of imitating the laws of
nature, which seems to be required to solve the inverse prob-
lem of finding the motor command that gives the desired kine-
matic outcome (for instance, the torque needed to accelerate
the end effector of a limb). The reader is referred to articles
by Bridgeman (2007) and Feldman (2009) for more details.

We now present some results on movement encoding that
are relevant for the control of discrete and rhythmic move-
ments.

6.2 Movement encoding by the motor cortex

The motor cortex can be subdivided into two areas, the pri-
mary motor cortex and the premotor cortex. The latter is
formed by the lateral (dorsal and ventral) premotor areas
and by the supplementary motor area, which are involved in
learning sequences of movement, in timing, in the process-
ing of sensorimotor information, as well as in the selection
of actions.

The primary motor cortex is involved in the control of
movement parameters. According to a study by Graziano
et al. (2002), if the motor cortex is indeed organized somato-
topically, it seems that one of the key features that is encoded
in the primary cortex is the location in space toward which the
movement is directed. Indeed, in their experiments, regions
of the primary motor and premotor cortex of monkeys were
stimulated for 500 ms (the time scale of normal reaching
and grasping movements), this duration being longer than in
traditional studies. They found that these stimulations were
resulting in a complex movement ending in the same loca-
tion, for any initial position of the limb. They concluded that,
instead of encoding regions of the body, the motor cortex con-
tains a representation of different complex postures. Note,
however, that these results are still disputed, as reported in
Strick (2002); some authors argue that the length of the stim-
ulation and the high currents used do not ensure that only the
motor cortex is activated, and thus the resulting movement
may be mediated by areas other than the cortex itself.

The result of Graziano et al. (2002), if true, would support
the hypothesis according to which some primary motor cor-
tex neurons are connected in a one-to-one relationship with
spinal motor synergies (Ashe 2005). Georgopoulos (1996)
has proposed a model for movement control where levels of
activation of motor cortical neurons control the weights of
different motor primitives at the spinal level, that is, that cor-
tical neurons elicit combinations of preprogrammed basic
trajectories rather than encode the complexity of a partic-
ular desired trajectory. This could mean that the invariants
observed in movement execution are the result of the usage
by the CNS of a small set of motor primitives defined at

the spinal level rather than a kinematic plan or optimization
processes in the supraspinal structures.

In particular, Haiss and Schwarz (2005) have studied the
electric stimulation of different types of whisker movements
in the rat, namely, rhythmic movement (used for tactile explo-
ration) and whisker retraction (used to sense an object at a
specific location). They found that both movements, although
performed by the same set of muscles, were elicited by
different (but adjacent) regions of the primary motor cortex.
Such a result suggests different representations for discrete
and rhythmic movements (Two/One and Two/Two cases),
even though it is difficult to conclude at this point whether
this is due to the nature of movement (rhythmic or discrete)
or simply to the fact that the motor cortex encodes behaviors
[as postulated by Graziano et al. (2002)]. The extension of
such an experiment to a broader range of movements and
animals could possibly provide further insights on the differ-
ences between discrete and rhythmic movement generation.

In the same experiment, Haiss and Schwarz (2005) found
that stimulating both “discrete” and “rhythmic” areas of the
primary motor cortex resulted in a simple combination of the
two behaviors: the resulting movement was the oscillation
expected when only the rhythmic area is activated, but with
an offset corresponding to the discrete movement resulting
from the activation of the discrete area. This result is impor-
tant as it shows that, even if discrete and rhythmic motor
primitives result from different processes, which has not yet
been established, the combination of those primitives still
results in a coherent, meaningful behavior. Two models, by
De Rugy and Sternad (2003) and Degallier et al. (2008), rep-
resenting complex movements as oscillations around time-
varying offset will be presented in the next section.

7 Mathematical models for the generation of discrete
and rhythmic movements

In this section, we illustrate the four categories (i.e., Two/
Two, One/Two, One/One, Two/One) that were defined in
Sect. 2 with six mathematical systems for the generation of
discrete and rhythmic movements.4

All the mathematical models that we present here are
based on dynamical system theory, that is, on sets of dif-
ferential equations that define the evolution of a complex
system in time. As we will see, this is a powerful approach
to studying the qualitative time course of a system as well as
the interconnections between its parts.5

4 Note that the matlab code used to generate the figures is available at
http://biorob2.epfl.ch/users/degallie/bc_matlab.tar.
5 For an excellent introduction to dynamical systems, see Strogatz
(2001).
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Furthermore, dynamical systems are particularly well
suited for modeling discrete and rhythmic movements, as
among the existing types of stable solutions of a dynamical
system—that is, solutions robust against perturbations—two
of them correspond to discrete and rhythmic signals: point
attractors and limit cycles. Hence a natural solution to mod-
eling discrete and rhythmic motor primitives is to use these
stable solutions. Several examples of such modeling are pre-
sented in the following.

As a side note, combinations of stable modules are not nec-
essarily stable themselves. However, Slotine and Lohmiller
(2001) have shown that a certain form of stability, called con-
traction,6 ensures that any combination of such contracting
systems is also contracting.

7.1 Two/Two hypothesis

In the Two/Two hypothesis, it is assumed that two differ-
ent, independent processes are involved in the generation of
discrete and rhythmic movements. This hypothesis is conve-
nient for modeling because each process can be optimized in
order to finely reproduce the characteristics of both discrete
and rhythmic movements. Yet the question of the combina-
tion and of the mutual influence of movements is left open.

We start by presenting two independent models for dis-
crete and rhythmic generation, developed by Bullock and
Grossberg (1988) and by Matsuoka (1985), respectively.
These seminal models, or extensions of them, have been used
extensively in the literature [e.g., Schaal et al. (2000), De
Rugy and Sternad (2003), and Degallier et al. (2008)].

• The VITE model: a neural command circuit for gen-
erating arm and articulator trajectories
D. Bullock and S. Grossberg,
in Dynamic Patterns in Complex Systems, 1988.

The VITE (V ector I ntegration To Endpoint) model was
originally developed by Bullock and Grossberg (1988) to
simulate planned and passive arm movements. The limb posi-
tion is controlled through a neural command that modifies the
respective lengths of a pair of agonist and antagonist muscles
according to the desired target position.

The model thus represents a motor primitive that, given
a volitional target position, controls in an automatic way a
synergy of muscles so that the limb moves to the desired end
state. More precisely, here the brain does not encode a trajec-
tory, but a desired final state; the actual trajectory emerges
from the dynamics of the motor primitive.

6 Contracting systems are defined as nonlinear dynamical systems in
which “initial conditions or temporary disturbances are forgotten expo-
nentially fast” (Slotine and Lohmiller 2001, p. 138).
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Fig. 2 VITE model. Trajectory for three different targets: T = 1 (plain
black line); T = 5 (dash-dotted red line); T = 7 (dotted blue line). It
can be seen that the three trajectories converge to their targets (hori-
zontal lines) at the same time (top graph) and that the velocity peak is
proportional to the displacement, i.e., to the difference vector (bottom
graph). Here, for all systems, G = 1 and α = 10

The target of the trajectory of each muscle is encoded
through a difference vector, i.e., a population of neurons rep-
resenting the difference between the desired length of the
muscle (T ) and its actual length (p). The movement is pro-
duced by modifying the length of the muscle at a rate v (called
the activity) that depends on the difference vector. The whole
process is gated by a go command (G) that is a function that
can modulate the speed of the movement. There are thus two
control parameters, the target length T and the go command
G, the output of the system being the muscle length p. Note
that the function G can be chosen to be equal to a constant,
a step function, or a more complex signal. We will show the
impact of the choice of the go command in Fig. 3.

Mathematical model. The following set of differential
equations generates, for each muscle, a trajectory converg-
ing to the target position T, at a speed determined by the
difference vector T − p and the go command G:{
v̇ = α (T − p − v)

ṗ = G max (0, v)
,

where α is a constant controlling the rate of convergence of
the auxiliary variable v.

As can be seen in the equations, the activity v of the pop-
ulation depends proportionally on the difference vector (the
bigger the distance, the higher the activity and, thus, the speed
of contraction of the muscle). In other words, the duration of
the movement does not depend on the amount of contraction
needed to reach the target length, but is constant, as shown
in Fig. 2. Such a feature is very interesting when doing syn-
chronized movements: indeed all the muscles automatically
converge to their target length at the same time, whatever the
difference between the target and the actual muscle length
was. Moreover, this system is consistent with the observa-
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Fig. 3 VITE model. Trajectory with three different go commands G :
G = 1 (plain black line); G = 2 (dash-dotted red line); G = 1 from
t = 1 s and 0 before (blue dotted line, top graph). For the three sys-
tems, the target is constant (T = 3). In the middle graph, it is shown
that the go command can be used to postpone the onset of the movement
and that the duration of the speed of convergence to the target can also
be modulated. In the bottom graph, it can be seen that increasing the
amplitude of the go command also increases the peak velocity. Here
α = 10

tion that human pointing movements tend to have the same
duration, independently of the distance that the hand has to
cover (Morasso 1981).

The go command G controls both the onset of the move-
ment and its speed profile. Indeed, once the target length T is
known, nothing prevents the movement from starting except
the go command (if it is set to zero). It thus allows movements
to be primed before being actually executed. In addition, the
amplitude of the go command G allows for a modulation of
the speed defined by the difference vector. Thus the CNS can
control not only the target of the movement but also its speed.
These features are illustrated in Fig. 3, with go commands
modeled by simple step functions. Note that more complex
functions can be chosen as go commands in order to modify
(and in particular smoothen) the velocity profile, as will be
shown when we present the model of Degallier et al. (2008).

In summary, the VITE model is a very simple model
for generating discrete movements with open target position
and speed that allows for synchronized and delayed control
of several degrees of freedom. It has been extended many
times to different applications, as, for instance, for visu-
ally guided reaching movements [AVITE model; see Gau-
diano and Grossberg (1992)] or for modeling the interaction
with the spinomuscular system to generate the torque needed
to follow a specific trajectory [VITE-FLETE model; see
Bullock and Grossberg (1989)].

• Sustained oscillations generated by mutually inhibit-
ing neurons with adaptation
K. Matsuoka,
in Biological Cybernetics, 1985.
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Fig. 4 Matsuoka oscillator. Three typical step responses of a single
neuron (i.e., Si = 1 in each case). Plain black line: fatigue parameter
b is set to zero (no adaptation) and the output converges monotonically
to the input value. Blue dash-dotted line: b = 2.5, the output rises
but decreases after a while, showing an adaptation effect. Dotted red
line: b = 10, and it can be seen that the firing rate almost returns to
zero (which is the case when b → ∞). In all cases, we used τ = 1,
θ = 0, and τ ′ = 12b/2.5 [this value was selected to prevent damped
oscillation; see Matsuoka (1985)]

In this article, Matsuoka (1985) proposes a model for
oscillating neural networks. As discussed in Sect. 5, it has
been observed that oscillatory behaviors can emerge from
networks of mutually inhibiting neurons [see, for instance,
Marder and Bucher (2001)].

In Matsuoka’s model, the activity of each neuron is mod-
eled by a simple continuous-variable neuron model originally
developed by Morishita and Yajima (1972). An input Si

7 to
the system increases the membrane potential xi ;. When the
membrane potential is higher than the threshold value θ, the
neuron starts to fire (with firing rate yi ).

Mathematical model. The equations for one neuron are:{
ẋi = τ (Si − xi )

ẏi = max (0, xi − θ)
,

where τ is a parameter controlling the rate of convergence
of xi and θ is the membrane threshold.

In this model, the firing rate increases monotonically and
converges to a stationary state, which is not observed in neu-
rons. Matsuoka (1985) thus extends the model to take into
account the adaptation x ′ (also called fatigue) of the neu-
rons: when the neuron receives a step input, the firing rate
increases rapidly at first and then gradually decreases, as
shown in Fig. 4. Adaptation has indeed been shown to be
essential for the generation of oscillations by Reiss (1962)
and Suzuki et al. (1971).

Mathematical model. The model becomes⎧⎨
⎩

ẋi = τ
(
Si − xi − bx ′

i

)
ẋ ′

i = τ ′ (yi − x ′
i

)
ẏi = max (0, xi − θ)

,

where τ ′(> 0) and b (≥ 0) control the time course of the
adaptation.

7 Note that while we take a single value Si as the input to the system,
it can be the weighted sum of different inputs.
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Fig. 5 Mastuoka oscillator. The firing rate for two neurons that inhibit
each other, with a constant input Si = 1. Parameters were set to a12 =
a21 = 2.5, τ = 1, θ = 0, b = 2.5, and τ ′ = 12b/2.5

The neurons are then coupled to form a network. Here
self-inhibition and excitation are not considered.

Mathematical model. The equations to couple one neu-
ron i with a neuron j are⎧⎨
⎩

ẋi = Si − xi − bx ′
i − ∑

j �=i ai j y j

ẋ ′
i = τ ′ (yi − x ′

i

)
ẏi = max (0, xi )

,

where ai j (≥ 0) is the coupling strength of the inhibitory
connections between neurons i and j and y j is the output
of neuron j. Note that here, without loss of generality, we
assume θ = 0 and τ = 1.

Matsuoka (1985) has derived sufficient conditions for an
oscillatory behavior to emerge for different types of net-
works. The output firing rates for two mutually inhibiting
neurons are shown in Fig. 5.

Figure 6 shows two possible oscillating networks of three
neurons: one where all the neurons mutually inhibit each
other and the other where the neurons unilaterally inhibit
each other, that is, neuron 1 is, for instance, only inhibited
by neuron 2 and inhibits only neuron 3.

The model offered by Matsuoka is thus a powerful tool
to model different oscillatory behaviors. Note that the model
can be extended to a muscle command instead of a firing rate
as output; we will see an example in the model of De Rugy
and Sternad (2003).

Interestingly in this model an oscillatory pattern emerges
from the combination of noncyclic units, thus reproducing
the emergent rhythms observed in the spinal cord (see Sect. 5
for more details).

7.2 One/Two hypothesis

In the One/Two hypothesis, a similar encoding is used for
both discrete and rhythmic movements, that is, there exists
a common basic representation for the two types of move-
ments. Such a hypothesis could reflect the analogy observed
by Haiss and Schwarz (2005) between the representation of
discrete and rhythmic movements in whisker movements in
rats (Sect. 6). In this model, mutual influences of movements
are supposed to occur at the muscle level rather than at the
spinal level, as discussed above for the Two/Two hypothesis.
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Fig. 6 Matsuoka oscillator. The firing rate for two networks of three
neurons for a constant input Si = 1.Upper graph: the neurons are inhib-
iting each other, i.e., ai j = 2.5 ∀i, j = 1, 2, 3. In the second case, the
neurons are only unilaterally inhibited, i.e., a12 = a23 = a30 = 2.5 and
a13 = a20 = a31 = 0.0. Other parameters were set to a21 = 2.5, τ =
1, θ = 0, b = 2.5, and τ ′ = 12b/2.5

We present here the model by Schaal et al. (2000), in which
both discrete and rhythmic movements are encoded relatively
to a difference vector: between the current and desired posi-
tions for the discrete movement and between the current and
desired amplitudes for the rhythmic movement.

• Nonlinear dynamical systems as movement primi-
tives.
S. Schaal, S. Kotosaka, and D. Sternad,
in the Proceedings of the IEEE International Conference
on Humanoid Robotics, 2000

Schaal et al. (2000) have developed a model based on the
concept of programmable pattern generators (PPGs), that is,
generators of trajectories with some predefined characteris-
tics and with some open, task-specific control parameters.
Both discrete and rhythmic movements are triggered in a
similar way, but they are then generated through different
processes. At the end the discrete and the rhythmic output
are linearly added to obtain the final trajectory.

In this model, discrete and rhythmic movements are
encoded by the difference between the desired state (resp.
position T and amplitude A) and the actual state (resp. p and
θ ); the output of the system is the position of the limb
(α = p + θ ). This system is quite complex, having many
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Fig. 7 Model by Schaal et al. A typical discrete trajectory converging
to the target T = 1. Top panel: activation pattern (red dashed line) as
well as its smoothened version (blue dash-dotted line). The auxiliary
variable ri , which ensures that the velocity profile is roughly a symmet-
ric, bell-shaped curve, is denoted by the black plain line. Middle panel:
resulting speed zi for muscle; bottom panel: resulting limb trajectory
(black plain line) and its speed (red dashed line). Here av = 50.0,
ax = 1, ay = 1, ar = 50, az = 0.01, ap = 0.08, b = 10, and co = 60

variables and parameters, so that the final output trajectory
can be finely tuned to reproduce a desired movement.

The discrete system is a modified version of the VITE
model presented earlier. The movement of the limb is con-
trolled through the speed of contraction of a pair of ago-
nist/antagonist muscles. The difference vector represents the
positive difference �wi between the desired target position
of the limb T (−T for the antagonist muscle) and its actual
position p. �w is then transformed into an activation pat-
tern νi that resembles what is observed in the primate cortex
(Fig. 7, top panel).

Mathematical model. The difference vector for muscle
i,�wi , is transformed into an activation signal vi{ {� wi = max (0, T − p)
v̇i = av(−vi +�wi )

,

where av is a parameter controlling the rate of convergence
of vi .

The activation signal is then transformed into a veloc-
ity signal yi through a double smoothing. The speed of the
movement can be adjusted through the parameter c0.

Mathematical model.{
ẋi = −ax xi + (vi − xi ) co

ẏi = −ay yi + (xi − yi ) co
,

where ay and ax control the rate of convergence of the system
and co controls the speed of the movement.

Finally, the velocity yi is integrated in order to obtain the
final desired velocity zi for the muscle change (Fig. 7, middle
panel). An auxiliary variable ri is used to make zi roughly
symmetric and bell-shaped.
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Fig. 8 Model by Schaal et al. A typical rhythmic trajectory of ampli-
tude A = 0.6. Top panel: activation pattern ξi . Bottom panel: resulting
limb trajectory (plain black line) and its speed (dashed red line). Here
aξ = 50.0, aψ = 1.0, β = 2.5, w = 2.5, and cr = 20

Mathematical model.{
ṙi = −ar (−ri + (1 − ri ) bvi )

żi = −azzi + (yi − zi )(1 − ri ) co
,

where ap and b control the shape of the signal and are chosen
in order to obtain a bell-shaped velocity profile. az controls
the rate of convergence of zi .

The velocity commands of the agonist and antagonist mus-
cles (i and j) are finally integrated to obtain the limb move-
ment p (Fig. 7, bottom panel).

Mathematical model.

ṗ = ap
(
max (0, zi )− max

(
0, z j

))
co,

where ap controls the rate of convergence of the system and
co its speed.

As for the rhythmic movement, it is triggered in a similar
way by a difference vector�ωi between the actual amplitude
θ and the desired amplitude A.�ωi is turned into an activity
signal ξi (Fig. 8, top panel).

Mathematical model.{
�ωi = max (0, A − θ)

ξ̇i = aξ (−ξi +�ωi )
,

where aξ is a parameter controlling the rate of convergence
of ξi .

Then, a couple of mutually inhibiting Matsuoka oscilla-
tors are used to generate oscillatory velocity signals ψi and
ψ j . The oscillator is slightly modified to take into account
the fact that ψi represents a velocity and not a position.

Mathematical model.{
ψ̇i = −aψψi + (

ξi + ψi + βζi + wmax
(
0, ψ j

))
cr

ζ̇i = − aψ
5 ζi + (max (0, ψi )− ζi )

cr
5

,

where aψ controls the convergence rate of the oscillators and
cr the frequency of the oscillations; w controls the strength
of the inhibitory coupling.

Finally, the difference between the two oscillators (i, j) is
integrated to obtain the desired trajectory θ (Fig. 7, bottom
panel).
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Mathematical model.{
θ̇i = ψi

θr = cr
(
max (0, θi )− max

(
0, θ j

)) ,
where cr controls the frequency of the oscillations.

The movement of each degree of freedom is then defined
by the linear combination of the output of both signals (α =
p + θ ). This linearity allows for a simple, independent con-
trol of both movements, but it fails to reproduce the mutual
influence of the discrete and rhythmic movements observed
in humans.

Note that the primitives can also be coupled together in
order to synchronize several degrees of freedom during coor-
dinated movement [see Schaal et al. (2000) for more details].

The many variables of the model allow for the tuning of
desired basic building blocks of movements, yet also make
the system quite complex. They manage to reproduce move-
ments containing many features reminiscent of the human
generation of movement, such as a bell-shaped velocity pro-
file, for instance.

7.3 One/One hypothesis

The One/One hypothesis, which assumes that a unique motor
representation and generator are used to produce movements,
implies either that one of the movements is a particular case
of the other one (i.e., it corresponds, more or less, to the con-
catenation and half cycle hypotheses mentioned before) or
that discrete and rhythmic movement are themselves partic-
ular cases of a larger class of movements. The difficulty here
is that the model should be designed to reproduce the mutual
influences observed during movements that are both discrete
and rhythmic.

We first present a model that we developed (Degallier et al.
2008), where discrete and rhythmic movements are two par-
ticular cases of a larger class of movements. In the second
model, by Schöner and Santos (2001), discrete movements
are a particular case of rhythmic ones, i.e., discrete move-
ments are considered as truncated rhythmic movements.

• A modular bioinspired architecture for movement
generation forthe infantlike robot iCub.
S. Degallier, L. Righetti, L. Natale, F. Nori, G. Metta,
A.J. Ijspeert,
in Proceedings of the 2nd IEEE RAS / EMBS International
Conference on Biomedical Robotics and Biomechatron-
ics (BIOROB), 2008.

Degallier et al. (2008) present a system where both discrete
and rhythmic trajectories are generated through a unique set
of differential equations, which is designed to produce com-
plex movements modeled as periodic movements around
time-varying offsets. More precisely, the solution of the
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Fig. 9 Model by Degallier et al. Top panel: go function used in this
implementation, that is, a trajectory asymptotically converging to pi (=2
here), instead of the step functions presented in the VITE model. Such a
go command turns the velocity command into a symmetric, bell-shaped
curve (red dashed line). Bottom graph, plain black line: resulting limb
trajectory converging to target Ti = 2. Here d = 2 and b = 2.5

system can switch between a point attractor and a limit cycle
(Hopf bifurcation) depending on one single parameter, so
that a unique system can be used for generating both discrete
and rhythmic movements.

Here the input is a command specifying the target Ti of
the discrete movement, and the amplitude Mi and frequency
ωi of the rhythmic movement. A zero (or negative) ampli-
tude generates a purely discrete movement, and a constant
offset generates a purely rhythmic movement. The output of
the system is the trajectory of the limb.

The first set of equations controls the discrete movement
and is inspired by the VITE model presented above. The tra-
jectory converges toward a goal Ti and the go command Gi is
chosen to ensure a bell-shaped velocity profile, as illustrated
in Fig. 9. Similarly to the VITE model, all the joints converge
synchronously to the target Ti .

Mathematical model. The discrete primitive, which is
inspired from the VITE model, is modeled by the following
system of equations:

⎧⎨
⎩

ġi = d (p − Gi )

ẏi = G4
i vi

v̇i = p 4−b2

4 (yi − Ti )− b vi

.

The system is critically damped so that the output, y, con-
verges asymptotically and monotonically to a goal Ti with a
speed of convergence controlled by b, whereas the speed, v,
converges to zero. p and d are chosen to ensure a bell-shaped
velocity profile; hi converges to p and is reset to zero at the
end of each movement.

The rhythmic primitive is modeled as a modified Hopf
oscillator, which is a simple model that allows for the gen-
eration of sinusoidal movements of amplitude

√
Mi (when

Mi > 0) and frequency ωi (defined as a combination of the
ascending and descending frequencies ωup and ωdown ; see
below). These oscillations can be switched on and off easily
through the parameters controlling the amplitude, more

123



332 Biol Cybern (2010) 103:319–338

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
5

10

15

20
Frequency (ω)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

0

2
Limb Trajectory

Fig. 10 Model by Degallier et al. Top panel: value of frequency ωi
modulated through parameters ωup and ωdown . Dashed red line: ωup =
ωdown , and the resulting movement (bottom panel) is a normal sinusoi-
dal movement. Black, plain line: ωdown > ωup and the resulting trajec-
tory is a distorted sinusoidal. Note that only ωdown is controlled, ωup
being calculated so that ωi is constant. Here ωi = 2π and ωdown = 4π
for the red curve andωdown = 6π for the black curve. Other parameters
are set to ai = 100,Mi = 1 and fi = 100

precisely, by bifurcation between a limit cycle behavior and
a single point attractor.

In this model the expression for the frequencyωi is slightly
modified to allow independent control of the duration of the
ascending (ωup) and descending (ωdown) part of the sinu-
soidal movement, as illustrated in Fig. 10. This feature is
particularly useful for independent control of the swing and
the stance duration in locomotion.

Mathematical model. The oscillator is governed by the
following set of equations:⎧⎨
⎩

ẋi = a(Mi − r2
i )xi − ωi zi

żi = a(Mi − r2
i )zi + ωi xi

ωi = ωdown

e− f zi +1
+ ωup

e f zi +1

,

where ri = x2
i + z2

i . a controls the rate of convergence to
the limit cycle and f the rapidity of the switching between
swing and stance.

The two primitives are then combined together by embed-
ding the discrete movement yi into the rhythmic one as an
offset. The system output xi is now an oscillatory movement
around a time-varying offset.

Mathematical model. The oscillator is governed by the
following set of equations:{

ẋi = a(Mi − r2
i ) (xi − yi )− ωi zi

żi = a(Mi − r2
i )zi + ωi (xi − yi )

,

where now ri =
√
(xi − yi )

2 + z2
i .

Qualitatively, by simply modifying on the fly the param-
eters Ti and Mi , the system can switch between purely dis-
crete movements (Mi < 0, Ti �= const), purely rhythmic
movements (Mi > 0, Ti = const), and combinations of both
(Mi > 0, Ti �= const), as illustrated in Fig. 11.

This system allows for a simple modeling of discrete and
rhythmic movements. Both dynamics influence each other,
and when the movements co-occur, the discrete movement
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Fig. 11 Model by Degallier et al. Top panel: target Ti for discrete
movement; the resulting trajectory is shown in bottom panel (dashed
blue line). Red dash-dotted line: amplitude control parameter Mi (top
panel) and resulting trajectory (bottom panel). Bottom panel, plain black
line: combined trajectory. Note that it is not a simple linear combina-
tion of the discrete and rhythmic trajectories, which shows the influence
of the embedding of the two dynamics. Here ωi = 4π, pi = 2, di =
2, bi = 2.5, ai = 100, and fi = 100

inhibits the rhythmic one, as observed in humans [see Sternad
et al. (2000), and Sect. 4].

• Control of movement time and sequential action
through attractor dynamics: a simulation study
demonstrating object interception and coordination.
G. Schoner and C. Santos,
in Proceedings of the 9th Intelligent Symposium on Intel-
ligent Robotic Systems, 2001.

The model developed by Schöner and Santos (2001) was
built to generate discrete movements, but it is based on limit
cycles, which makes it easy to extend to the generation of
rhythmic movements. Here the input is the target position T
of the limb and the output is its trajectory.

In this model, discrete and rhythmic movements are both
modeled using limit cycles, i.e., discrete movements are
interrupted rhythmic movements. More precisely, here the
attractor is a whole trajectory going from the initial position to
the target position (contrarily, for instance, to the VITE model
where the trajectory is a transient phenomenon and only the
target position is a stable attractor). This model can thus suc-
cessfully explain the observation by Bizzi et al. (1984) and
Won and Hogan (1995) that when a limb is perturbed during
movement execution, it has a tendency to resume the original
trajectory, that is, it seems that not only the target position
matters, but also the trajectory leading to it.

A two-layer system is used consisting of a layer capable
of generating both oscillations and stationary states (“timing
layer”) and another layer controlling the switching between
those states (“neural dynamics control”). The timing layer
consists of three terms: the first one is an attractor toward the
initial state xi , the second is a Hopf oscillator of amplitude
1, and the third is an attractor toward the target position X f .
All these terms are multiplied by the activity level of three
“neurons” that are never fully active simultaneously.
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Fig. 12 Model by Schöner and Santos. Top panel: activity of three
neurons (ui , plain black line; uh , dash-dotted red line; u f , dashed blue
line) during a typical discrete movement can be observed. Only one neu-
ron is active at a time, corresponding to three stages of the movement:
rest at initial position, move to the target, and rest at the target position.
Bottom panel: obtained trajectory xi is shown (plain black line) as well
as the auxiliary variable yi . Here a = 5, b = 1, ω = 2, c = 2.1, and
α = 0.02

Mathematical model. The equations of the timing layer
are given by

⎧⎨
⎩

ẋ = −a |ui| (x − xi )+ |uh|
(

b
(

1 − r2
)

x − ωy
)

− a |uf | (x − Xf )

ẏ = −a |ui| y +
∣∣∣uh

(
b

(
1 − r2

)
y − ωx

)
− a |uf | y

∣∣∣ ,

where x is the output of the system and y an auxiliary var-
iable, and a and b control the speed of convergence of the
system. In this system, |ui | (i = i , h, f) represents neurons
that are never active (i.e., ui = 1) simultaneously.

The sequence of movements is controlled by the neural
layer, and more precisely through three neuron activities ui ,
uh , and u f activating the first attractor, the Hopf oscillator,
and the target attractor, respectively. At rest position only the
first attractor is active (ui = 1, uh = 0, u f = 0), so that even if
perturbations occur, the limb stays at the same position. Then,
when a command is received, the Hopf oscillator is activated
(uh = 1) and the first attractor is deactivated (ui = 0), so that
the trajectory follows the limit cycle until it is close enough
to the final target. At this moment the Hopf neuron activity
uh is set to zero and the final attractor is activated (u f = 1) so
that the trajectory converges to the target position X f . This
sequence of actions is illustrated in Fig. 12.

Mathematical model. The timing of activation of the
three “neurons” is controlled by the neuronal dynamics,
which are given by the following equations:⎧⎨
⎩
αu̇i = μi ui − |μi| u3

i − c
(
u2

h + u2
f

)
ui

αu̇h = μhuh − |μh| u3
h − c

(
u2

i + u2
f

)
uh

αu̇f = μf uf − |μf | u3
f − c

(
u2

i + u2
h

)
uf

.

Each equation corresponds to the normal form of a degener-
ate pitchfork bifurcation controlled by parameters8 μi , with

8 That is, the system has one stable solution (u = 0) whenμi is negative
and two stable ones (ui = 1 and ui = −1) when μi is positive.

an extra term to ensure that only one neuron is active, i.e., that
any solution with more than one neuron active is destabilized.
The parameters μi are given by

⎧⎨
⎩
μi = 1.5 + 2bi

μh = 1.5 + 2 (1 − bi )
(
1 − b f

)
μ f = 1.5 + 2b f

,

where bi = 1 is equal to 1 when no movement occurs and is
set to 0 to activate the movement, and

br = 1 − tanh
(
10

(
0.7X f − xr (i)

)) + 1) /2.

Movements can thus be shaped through the neuronal
dynamics that qualitatively change the space of solutions
of the timing layer. The trajectory in three parts produced
by this model (i.e., discrete, rhythmic, discrete) is analogous
to the observation by van Mourik and Beek (2004) that the
first and last half-cycles of a rhythmic movement resemble a
discrete movement. In systems with multiple degrees of free-
dom, coordination can be obtained through the coupling of
rhythmic parts of the system [see Schöner and Santos (2001)
for more details]. Synchronized discrete movements can be
obtained through coupling.

7.4 Two/One hypothesis

In the Two/One hypothesis, two different motor commands
are sent to the same generator. An open question is then how
the two motor commands are combined. We present here a
model developed by De Rugy and Sternad (2003), initially to
explain the phase entrainment effect, where both commands
are simply summed.

• Interaction between discrete and rhythmic movem-
ents: reaction time and phase of discrete movement
initiation during oscillatory movements.
A. de Rugy and D. Sternad,
in Brain Research, 2003

This model was originally developed to explain the phase
entrainment effect observed in humans (see Sect. 4 for more
details). Here a motor command S, composed of the sum of
a discrete Sd and a rhythmic Sr command inputs, is sent to a
two-neuron Matsuoka oscillator to generate two firing rates
(xi , x j ). These firing rates are then transformed into muscle
commands

(
Ti ,T j

)
for a pair of agonist–antagonist muscles

and finally to a limb trajectory θ .
The discrete command is modeled as a pulse followed

by an exponential decay, resulting in a damped oscillation
that, with well-tuned parameters, will later generate a dis-
crete movement. The rhythmic command is simply a constant
signal.
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Mathematical model. The input command is given by

S = Sr + Sd ,

where Sr = const, and

Ṡd = τs (−Sd + Pd) ,

where Pd is the peak value of the pulse and τs a time constant.
A network of two mutually inhibiting Matsuoka oscilla-

tors is then used to transform this neural command S into the
firing rates (xi , x j ) of two motoneurons controlling a pair of
agonist–antagonist muscles.

Mathematical model. The network is governed by the
following equations (for one neuron):

{
ẋi = τ1

(−xi − βx ′
i + S − ωmax

(
0, x j

))
x ′

i = τ ′ (−x ′
i + max (0, xi )

) ,

where τ and τ ′ are two parameters controlling the time course
of, respectively, the firing rate xi and the fatigue (or self-
inhibition) x ′

i , β is the gain of the fatigue component, and x j

is the output of the second neuron.
The firing rates of the neurons (xi , x j ) are then trans-

formed into torques
(
Ti ,T j

)
exerted by a pair of agonist–

antagonist muscles.
Mathematical model. The torques are obtained through

the following equations:

{
Ti = hT max (0, xi )

Ti = −hT max
(
0, x j

) ,
where hT is the gain of the torques.

Finally, the action of the torques on the movement of the
joint θ is deduced from the dynamics of the limb.
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Fig. 13 Model by De Rugy and Sternad. A purely rhythmic command
S = Sr = 1 (top panel) leads to oscillations of the coupled neurons
(middle panel) and the limb (bottom panel). Here γ = 0.5, I = 0.08,
h = 5, τ = 0.05, τ ′ = 0.125, τs = 0.2, β = 2.5, and ω = 2.5
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Fig. 14 Model by De Rugy and Sternad. A purely discrete command
S = Sd of peak Pd = 1 (top panel) leads to strongly damped oscilla-
tions of the neurons (middle panel), resulting in a discrete movement
of the limb (bottom panel). Here γ = 0.5, I = 0.08, h = 5, τ = 0.05,
τ ′ = 0.125, τs = 0.2, β = 2.5, and ω = 2.5
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Fig. 15 Model by De Rugy and Sternad. A combined command S =
Sr + Sd with Sr = 1 and Pd = 1 (top panel) leads to a perturbed
oscillatory behavior of the neurons (middle panel), resulting in a rhyth-
mic movement around a varying offset (bottom panel). Here γ = 0.5,
I = 0.08, h = 5, τ = 0.05, τ ′ = 0.125, τs = 0.2, β = 2.5, and
ω = 2.5

Mathematical model. The dynamics of the limb is gov-
erned by the following equation:

1θ̈ + γ θ̇ − (
Ti + Tj

) = 0,

where I is the inertia of the limb and γ is its damping.
Figure 13 illustrates the output of the model for a rhyth-

mic command (that is, a constant input). The oscillating fir-
ing rates are transformed into a smooth, sinusoidal trajectory
through the dynamics of the limb. In Fig. 14, it is shown that
a purely discrete movement can be obtained using a peak
motor command. Finally, in Fig. 15, the combination of both
command signals and the resulting, combined trajectories are
shown.

In this model, there is an entrainment effect that emerges
from synchronization effects between the two Matsuoka neu-
rons. The distribution of the offset, as well as the phase lag

123



Biol Cybern (2010) 103:319–338 335

observed in human subjects, was successfully reproduced
by this model [De Rugy and Sternad (2003)]. Note that this
model has been extended by Ronsse et al. (2009) to integrate
reafferent signals, and thus to capture bimanual features.

7.5 Discussion of the models

We have presented different mathematical models whose
principal characteristics are summarized in Table 1. All these
models are based on the concept of motor primitives, that is,
simple, nonpatterned commands from the brain are turned
into complex output trajectories governed by the dynamics
of the system. So even though the outputs of the models
are not at the same representation level, they can easily be
modified to account for another level of representation [for
instance, De Rugy and Sternad (2003) apply the model of
firing rates of neurons of Matsuoka (1985) to limb control by
extending the system to the muscles and the limb dynamics].

All these models are successful in producing more or less
complex discrete and rhythmic trajectories (except for the
models of Matsuoka and Bullock,which only model one type
of movement). However, in order to be plausible, these mod-
els should also be able to reproduce the interaction observed
in humans between discrete and rhythmic movements men-
tioned in Sect. 4. As stated earlier, there are two main studies
on the subject by Adamovich et al. (1994) and Sternad et al.
(2000), and they come to different conclusions. While they
both agree that the rhythmic movement is inhibited by the
discrete one, the phase of the rhythmic movement is reset
after the discrete one, and the frequency tends to be higher
after the discrete movement [transient phenomenon accord-
ing to Sternad et al. (2000)], Adamovich et al. (1994) con-
clude that (d1) the discrete trajectory is not influenced by
the rhythmic movement, which is refuted by Sternad et al.
(2000), who observe that (d2) the rhythmic movement influ-
ences the discrete one, or, more precisely, lower frequencies
of oscillations lead to longer discrete movements.

To rule out either the Two/Two–One/Two or the One/Two–
One/One categories, an efficient way to proceed would be to
determine whether the mutual influence between discrete and
rhythmic movements appears at the spinal or at the muscular
level, i.e., if the discrete and the rhythmic dynamics influence
each other because there is a unique spinal motor primitive
generating them or if it is an artifact due to overlaps during
the actual production of the movement. More precisely:

• In both the Two/Two and One/Two hypotheses, the ques-
tion of the combination of the two movements is left
open; more precisely, the interaction has to happen at a
lower level of the generation process, that is, at the mus-
cular level, as proposed, for instance, by Adamovich et al.
(1994) or by Staude et al. (2002). Adamovich et al. (1994)
postulate that discrete and rhythmic movement cannot co-
occur, i.e., that any movement can be seen as a sequence of
discrete or rhythmic movements. According to them, the
mutual influence observed is due to the overlapping of the
kinematic outcome of the two movements: they postulate
that the kinematic outcome of a movement lasts longer
than its generation. Note that this view is not shared by
Sternad et al. (2000), as discussed earlier (Sect. 4). Staude
et al. (2002), for their part, propose that complex move-
ments arise from the summation of the two movements
subject to a threshold-linear mechanism; it is interest-
ing to note that this simple model manages to model the
entrainment effect presented in Sect. 4 [see Staude et al.
(2002) for more details].

• In the One/One hypothesis, the distinction between dis-
crete and rhythmic movements is assumed to be an artifact
of movement categorizations, both movements being in
fact generated through the same process. In these mod-
els,the notion of interaction of the two movements is an
ill-posed problem, as they indeed are produced by the
same process. In this model, the mechanisms listed above
should thus emerge from the dynamics of the system.

Table 1 Main properties of the different models

Model Category Type Ctrl Var Param

Bullock et al. Two/Two D 2 2 1

Matsuoka Two/Two R n 3n 3n + n(n − 1)

Schaal et al. One/Two D+R 2 26 13

Degallier et al. One/One DR 3 5 5

Schöner et al. One/One D⊂R 2 7 8

De Rugy et al. Two/One DR 1 5 6

Type refers to the type of movements and their relationship: D discrete only, R rhythmic only, D + R discrete and rhythmic as a linear combination
of the generator outputs, DR discrete and rhythmic as a unique generator output, D ⊂ R discrete as truncated rhythmic. Ctrl is the number of
high-level commands needed to specify the movement, Var is the number of variables, and Param is the number of parameters of the system. For
the Matsuoka model, n refers to the number of neurons involved in the network
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• In the Two/One hypothesis, only the representation of
the movements is different, the process generating them
being the same. In this case, as in the One/One hypoth-
esis, the observed mutual influence should emerge from
the dynamics of the motor primitives, as, for instance, the
entrainment effect in the model by De Rugy and Sternad
(2003).

8 Conclusion

In this review, we have shown that the concept of motor prim-
itives is an interesting approach to the question of the gener-
ation of discrete and rhythmic movements and its modeling,
notably through the definition of four categories of models
for movement generation illustrated by mathematical models
found in the literature. Such categories provide a framework
for the analysis of different approaches to the generation of
discrete and rhythmic movements and thus to discard or cor-
roborate these approaches.

Since we have chosen to take a functional approach, most
of the results that we have presented come from animal stud-
ies. Even if these results cannot necessarily be generalized
to humans in a straightforward way, we believe that they can
provide insights into the processes underlying discrete and
rhythmic movement generation in humans.

Synergies of muscles have been observed in vertebrates
(as reviewed in Sect. 5), which indicates that movement may
be built through the combination of spinal building blocks of
movements that we call motor primitives. Such an assump-
tion has strong implications for the analysis of discrete and
rhythmic movements, in the sense that the intrinsic differ-
ence between them may lie at the spinal level rather than
in the high-level commands used to encode them. Indeed,
evidence has been presented that both discrete and rhythmic
movements could result from spinal motor primitives elic-
ited by simple, nonpatterned brain commands, suggesting
that the two types of movements may simply emerge from a
difference in the topologies (oscillatory or not) of the spinal
network underlying them.
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