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Abstract Thigmomorphogenesis, the characteristic phenotypic changes by which plants

react to mechanical stress, is a widespread and probably adaptive type of phenotypic

plasticity. However, little is known about its genetic basis and population variation. Here,

we examine genetic variation for thigmomorphogenesis within and among natural popu-

lations of the model system Arabidopsis thaliana. Offspring from 17 field-collected

European populations was subjected to three levels of mechanical stress exerted by wind.

Overall, plants were remarkably tolerant to mechanical stress. Even high wind speed did

not significantly alter the correlation structure among phenotypic traits. However, wind

significantly affected plant growth and phenology, and there was genetic variation for some

aspects of plasticity to wind among A. thaliana populations. Our most interesting finding

was that phenotypic traits were organized into three distinct and to a large degree statis-

tically independent covariance modules associated with plant size, phenology, and growth

form, respectively. These phenotypic modules differed in their responsiveness to wind, in

the degree of genetic variability for plasticity, and in the extent to which plasticity affected

fitness. It is likely, therefore, that thigmomorphogenesis in this species evolves quasi-

independently in different phenotypic modules.

Keywords Genetic differentiation � Mechanical stimulation � Phenotypic integration �
Phenotypic plasticity � Thigmomorphogenesis

Introduction

In the life of a plant, mechanical stress, through direct contact with insects and neigh-

bouring plants or flexure caused by wind, water or snow, is a frequent phenomenon. Plants
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respond to these mechanical stimuli in a variety of ways (Biddington 1986; Braam 2005).

Some of these are very rapid, like the well-known responses of stinging nettles, mimosas

and carnivorous plants; others are slow and involve complex adjustments of plant form and

function during ontogeny. A familiar example of the latter is the extremely compact

growth of trees near the tree line in many mountainous areas, the so-called Krummholz

phenomenon. Slow, developmental responses to mechanical stimulation have been termed

thigmomorphogenesis (Jaffe 1973), and research has shown that mechanical stimulation

causes, among others, decreased elongation, increased stem thickness and tissue strength in

many plants (reviewed in Biddington 1986; Jaffe et al. 2002; Braam 2005). Because of its

potential relevance for horticulture and forestry (Ennos 1997; Latimer 1998), much of the

experimental work on thigmomorphogenesis has been done in crops (e.g., Biddington and

Dearman 1985; Garner and Björkman 1996) and trees (e.g., Lundqvist and Valinger 1996;

Kern et al. 2005).

Another avenue of research has been the study of the molecular basis of thigmomor-

phogenesis in the model system Arabidopsis thaliana, which led to the discovery of a set of

candidate genes—the TCH gene family (Braam and Davis 1990)—and begun to unravel

the complex mechanisms controlling TCH gene expression and the functions of TCH gene

products (e.g., Sistrunk et al. 1994; Xu et al. 1995; Braam et al. 1996; Johnson et al.

1998). A recent debate on whether visitation by scientists can affect the outcome of field

experiments (Cahill et al. 2001; Malakoff 2004) has even made plant ecologists familiar

with the idea that inadvertent mechanical stimulation can have profound effects on plants.

In spite of all this progress, we know virtually nothing about the evolutionary

biology of thigmomorphogenesis. Arguably, a thorough understanding requires to go

beyond the description of phenotypic patterns and physiological mechanisms, and to

ask questions about the origin, potential adaptive value, and evolutionary dynamics of

thigmomorphogenesis.

From an evolutionary ecological point of view, thigmomorphogenesis is develop-

mental phenotypic plasticity in response to mechanical stimulation. If this ability to

respond to environmental variation affects plant fitness, at least under some conditions,

and it has a genetic basis, then it will be (or has been) subject to natural selection, and

it is likely to have evolved as an adaptation for plants to cope with wind and other

forms of mechanical stress (Jaffe et al. 2002; Pigliucci 2002; Braam 2005). A rigorous

demonstration of the adaptive nature of thigmomorphogenesis, however, is not a trivial

task and requires the use of several tools from the conceptual and empirical arsenal of

evolutionary biology, including: (1) common garden studies that test for genetic vari-

ation in thigmomorphogenesis, i.e. its potential to evolve; (2) selection studies that

demonstrate a fitness advantage of thigmomorphogenesis under natural conditions; and

(3) comparative studies that explore the evolution of thigmomorphogenesis in a broader

phylogenetic context. While these methods have been successfully applied to the study

of other plasticity syndromes, in particular shade avoidance (e.g., Schmitt et al. 1999;

Pigliucci et al. 1999; Callahan and Pigliucci 2002), they have hardly been used to study

thigmomorphogenesis.

Here, we present a comprehensive study of the genetic variation for thigmomorpho-

genesis among and within natural populations of A. thaliana (L.) Heyhn. It is the first in a

series of papers that will examine the ecological and evolutionary genetics of thigmo-

morphogenesis in this model system. Because of the previous work on candidate genes for

thigmomorphogenesis, and because we have some evidence of genetic variation among

natural populations (Pigliucci 2002), A. thaliana should prove to be an ideal system for

integrating ecological and molecular approaches to thigmomorphogenesis.
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In a preliminary study, Pigliucci (2002) found significant genetic variation for thi-

gmomorphogenesis among 11 natural accessions of A. thaliana. Moreover, his results

suggested that mechanical stress exerted by wind alters phenotypic correlations in A.
thaliana, and that there might be a general difference between early- and late-flowering

populations in this respect. The purpose of the present study was to build on these findings

by using several maternal families from each of 17 natural populations that we collected

across a broad geographic gradient in Europe, where A. thaliana is native. Specifically, we

addressed the following questions: (1) How does mechanical stress through wind affect the

phenology, growth form and fitness of A. thaliana? (2) Is there genetic variation for

thigmomorphogenesis among natural populations of A. thaliana, and if so, how is it dis-

tributed among families, populations, and geographic regions? (3) Is there evidence for a

plasticity ‘‘syndrome’’, i.e. a consistent and significant effect of mechanical stimulation on

patterns of phenotypic integration in A. thaliana? (4) Is there a dichotomy between early-

and late-flowering ecotypes with regard to their plasticity to wind, as hinted at by previous

research? (5) What is the relationship between the degree of this plasticity and plant

fitness?

Materials and methods

Study species

Arabidopsis thaliana is a small annual weed in the mustard family (Brassicaceae). It is a

predominantly selfing species native to Eurasia but now widely naturalized in the USA and

elsewhere. A. thaliana typically occurs in open or disturbed habitats such as agricultural

fields, roadsides, river banks, rocky slopes, sand dunes, sparse meadows or waste places

(Mitchell-Olds 2001; Al-Shehbaz and O’Kane 2002) where mechanical stress through

wind should be a frequent phenomenon.

Initially, A. thaliana has been a model species for plant genetics and molecular biology

(Pang and Meyerowitz 1987; Meinke et al. 1998). However, the growing body of

knowledge about its development and molecular biology, coupled with the logistic

advantages it affords and the availability of a broad array of molecular tools, have also

made it a popular model species for addressing basic questions in ecology and evolutionary

biology (Mitchell-Olds 2001; Koornneef et al. 2004; Tonsor et al. 2005). Broad-scale

surveys of genetic variation in natural A. thaliana populations usually find substantial

variation among populations, and sometimes also within populations (e.g., Bergelson et al.

1998; Jørgensen and Mauricio 2004; Nordborg et al. 2005; Stenøien et al. 2005). While

there is often little geographic structuring in the distribution of neutral molecular variation

(but see Sharbel et al. 2000), genetic variation in quantitative traits is often non-random in

A. thaliana. For instance, variation in phenological traits correlates with latitude (e.g.

Stinchcombe et al. 2004), and Stenøien et al. (2005) found QST values to be significantly

lower than FST values in Northern European populations of A. thaliana, suggesting sta-

bilizing selection on quantitative traits. Taken together, natural populations of A. thaliana
seem to be characterized by both frequent gene flow and rapid local differentiation.

In this study we used plant material from 17 natural populations of A. thaliana that were

sampled across a broad geographic gradient in Europe. In the summer of 2001, mature

fruits from several mother plants were collected in four natural populations around Bar-

celona (Spain), five populations around Orsay and one outside Dijon (both France), six

populations around Wageningen (Netherlands), and two populations outside Uppsala
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(Sweden). To reduce the possibility of maternal environmental effects, all maternal lines

were propagated in a common environment for at least two generations prior to the

experiment.

Experimental design

In October 2004, seeds from three maternal families per population were placed on wet

filter paper and cold stratified for 1 week at 5�C. Germinated seeds were transferred to

planting trays filled with a standard potting soil (Pro-Mix BX, Premiere Horticulture,

Dorval, Canada). The plants were placed in an unheated greenhouse and eventually thinned

down to one seedling per cell. After 2 weeks, one seedling per maternal family was

transplanted into each of 24 96-cell trays filled with the same soil as above. Because of its

low germination success, one maternal family from a Swedish population was excluded, so

the eventual size of the experiment was 50 families times 24 trays = 1,200 plants. In each

tray, the locations of seedlings were assigned randomly. In December 2004, when all plants

had well established rosettes, the trays were transferred to a growth chamber where they

were kept at 5�C for another 4 weeks. Since there is genetic variation for vernalization

requirements in many natural populations of A. thaliana—some genotypes require a ver-

nalization period to flower, others do not (Lempe et al. 2005)—we used the growth

chamber to make sure all plants were phenologically synchronized and ready to flower.

After that, we brought the plants back to the greenhouse and started the mechanical

stimulation treatments.

Mechanical stress in our experiment was created by subjecting plants to simulated wind.

In Central Europe, the mean wind speed at 50 m above ground is 5–10 m/s, depending on

wind exposure (Troen and Petersen 1989). With a logarithmic profile of wind speeds (Oke

1987) this corresponds to an upper limit of approximately 2–3 m/s at a height of a few

decimetres, which would be relevant to a small plant like A. thaliana. We used high

velocity fans (Patton PX400-UC; The Holmes Group, Fontana, CA) to create three levels

of wind intensity: control, low wind, and strong wind. In the low wind treatment, the

average wind speed, measured with an anemometer, was approximately 2 m/s. Based on

the wind statistics mentioned above, we considered this to be a frequently experienced,

‘‘normal’’ amount of wind and mechanical stimulation. In this treatment, the plants were

significantly bent and shaken, but the stress was not extreme. In the strong wind treatment,

the average wind speed was approximately 5 m/s. Here, the plants were strongly bent and

thrown around, and the overall mechanical stress appeared to be rather intense.

The experiment had a block design with four spatial blocks in an unheated greenhouse

bay, three wind treatments per block, and two replicates per seed family (= two planting

trays) in each treatment. Within each block, the locations of wind treatments were assigned

randomly. The wind treatments were applied from 6–9 AM and 6–9 PM each day, i.e. for a

total duration of six hours per day. Since the fans produced a highly directed air stream,

there was very little interference with nearby treatments and the wind speed in the control

treatment, even when adjacent to strong wind, was close to zero, as measured by an

anemometer. The plants were bottom-watered frequently throughout the experiment. No

additional lighting was used, i.e. the plants were exposed to normal ambient light. To

ensure even exposure to wind, all trays were rotated weekly. The total duration of the

experimental treatments was 2–3 months, depending on the individual phenology of a

family. The plants were subjected to the wind treatments during the bolting, flowering, and

fruit ripening periods. There was very little indication that wind affected plants through
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direct damage such as stem rupture or uprooting. Only 2–3 times did we observe a side

branch that appeared to be broken due to wind action.

To characterize the phenotypic response of A. thaliana to mechanical stress, we mea-

sured a total of nine variables. For each of the 1,200 plants we recorded: (1) the time to

flowering (first white of petal visible), (2) the leaf number at flowering, and (3) the rosette

diameter at flowering. After that, one experimental block of 300 plants was used to take

samples for a gene expression study (J. Braam et al. in prep.), so the remaining traits were

measured on 900 plants. In each of the remaining plants we measured (4) the length of the

reproductive period (first flowering to first fruit dehiscence). Two weeks later we harvested

the plants, dried them at 80�C for at least 24 h, and measured (5) plant height,

(6) aboveground biomass, and (7) the total number of fruits produced. In addition, we

measured two architectural traits that were expected to be informative in this context

(Cipollini 1999; Pigliucci 2002): (8) stem diameter (2 cm above the base) and (9) the total

number of basal and lateral branches, as a description of overall growth form.

Statistical analyses

To improve normality of the data and homogeneity of variances prior to parametric

analyses, all variables were Box-Cox transformed. As a first inspection of the data, we ran

a principal components analysis on the correlations between transformed variables across

treatments. Next, each variable was analyzed separately with nested analysis of variance

using type III sum of squares. The standard ANOVA model included block, treatment, and

their interaction, as well as the nested effects of region, population within region, seed

family within population, and the interactions of these factors with the treatment. The main

effects of block and treatment were tested against the residual mean squares. We did not

use the block by treatment interaction as error term, as suggested by some authors (see

Newman et al. 1997), because in our experiment the blocks were best thought of as a fixed

effect set up to systematically capture the environmental heterogeneity of the greenhouse

space. Region effects were generally tested against the respective population effects, and

population effects were tested using the mean squares of the respective family effects as

error terms. Because this is a rather conservative way of testing a nested model, we

generally also considered region and population effects that were marginally significant

(0.1 \ P \ 0.05). To get a better idea of effect sizes and the relative importance of each

genetic and environmental effect in the ANOVA, we also calculated the % variance

explained (SSeffect/SStotal) by each model effect and interaction.

Because there was a pronounced bimodal distribution of flowering times, and we were

interested in the possible role of flowering ‘‘ecotype’’ in touch response, we classified

plants as either early- (\106 days) or late-flowering and included flowering type and its

treatment interaction in a separate set of ANOVAs.

Moreover, we investigated whether the correlation structure among phenotypic traits

was altered by the wind treatments, i.e. if there was a multivariate plasticity syndrome, by

calculating separate phenotypic correlation matrices for each treatment and testing for their

pairwise similarity with Mantel tests and, as there is no consensus on the best method for

matrix comparison (Steppan et al. 2002), also common principal components analysis.

Finally, we tested for selection on plasticity to wind by examining family-level genetic

correlations between plasticity and estimated average plant fitness across wind environ-

ments (Scheiner 1993; Via et al. 1995). Plasticity in response to wind was estimated in two

different ways: (1) as the coefficient of variation (CV) of a trait across all treatments, or

(2) as the percentage change of the trait mean from the control to the strong wind treatment
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(which is equivalent to the slope of the reaction norm across these two treatments).

Selection on plasticity was estimated by calculating the correlations between these plas-

ticity estimates and the average fitness of a family across environments.

However, in the case of a simple fitness average, all environments are given the same

weight, which assumes they are equally important in nature. This may not be a realistic

assumption, and we therefore explored the sensitivity of plasticity-fitness correlations to

different frequencies of wind environments. In particular, as A. thaliana commonly occurs

in open habitats, it probably rarely encounters windless environments. We therefore cal-

culated additional fitness averages in which either the low wind or the strong wind, or both,

were given a threefold weight, compared to the control treatment. We recalculated the

plasticity-fitness correlations with these modified fitness averages.

In addition, we tested for possible costs of plasticity (DeWitt et al. 1998) by correlating

the same plasticity indices as above with plant fitness in the control treatment.

Results

Principal components analysis indicated that there were three major axes of variation in our

data (Table 1). The first axis was mostly associated with traits (directly or allometrically)

related to plant size: plant height, biomass, and fruit number, as well as stem thickness and

diameter at flowering. The second axis was strongly associated with flowering time, leaves

at flowering, and length of the reproductive period, with the latter negatively correlated

with the other two. Both of these axes explained about one third of the total variation in the

data. Finally, a third axis was almost entirely associated with variation in the total number

of basal and lateral branches. Broadly speaking, these three axes may be taken to represent

phenotypic variation in size-related traits, in phenology, and in growth form, respectively.

Since the traits constituting each axis are at least partly independent from each other, so

might be their response to the wind treatments, and we therefore examine in the following

the traits in separate groups, as identified by the multivariate axes of variation.

There was a significant treatment main effect on all of the traits associated with the plant

size axis (Table 2). However, only in three traits the wind treatments explained a signif-

icant percentage of the total variance (Tables 3 and 4): on average, plants in the strong

Table 1 Results of a principal components analysis of all phenotypic traits pooled across wind treatments.
For each trait the highest factor loading is indicated in bold

PC 1
‘‘Plant size’’

PC 2
‘‘Phenology’’

PC 3
‘‘Growth form’’

(% variation explained) (36.4%) (33.4%) (12.4%)

Flowering time -0.1254 0.9657 0.0363

Reproductive period 0.1030 -0.9229 -0.0333

Leaves at flowering 0.3124 0.7769 0.0139

Diameter at flowering 0.8378 -0.2688 0.0486

Height 0.7017 0.5090 0.0148

Biomass 0.9036 0.1077 0.1084

Fruit number 0.8137 -0.1070 0.3949

Stem thickness 0.6648 0.5120 0.0827

Branch number 0.1928 0.0723 0.9653
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wind treatment, when compared to the control plants, had a reduced height (–13.2%),

biomass (-17.4%), and fruit number (-15.4%). The plants in the low wind treatment

consistently showed an intermediate level of reduction in these traits (Table 2). While

there was significant genetic variation at the family level for all of the size-related traits,

and significant population or region effects for some of them (Tables 3 and 4), none of the

treatment by origin interactions were significant, i.e. there was no evidence of genetic

variation for plasticity. In all of the ANOVAs of size-related traits there was a significant

block effect as well as a significant block by treatment interaction (Tables 3 and 4). The

overall explanatory power of the full ANOVA models for these traits was moderate,

leaving some 40–60% of the total variation unexplained (Tables 3 and 4).

In contrast to the size-related traits, analyses of variance of phenological traits had much

smaller error components, and almost all of the variation was explained by the main effects

of genetic origin (Tables 3 and 4). For example, in the case of flowering time, the full

model explained almost 89% of the total variation, but 97% of this (86% of the total) was

Table 2 Traits means of A. thaliana plants grown at three different levels of wind intensity. The values are
LS means and their standard errors extracted from the analyses of variance

Variable Control Low wind (*2 m/s) Strong wind (*5 m/s)

Flowering time (d) 123.9 ± 0.3 124.4 ± 0.3 126.3 ± 0.4

Reproductive period (d) 30.1 ± 0.3 30.4 ± 0.3 29.5 ± 0.3

Leaves at flowering 34.0 ± 0.3 32.4 ± 0.3 32.1 ± 0.3

Diameter at flowering (cm) 4.81 ± 0.0 4.80 ± 0.0 4.60 ± 0.0

Height (cm) 36.5 ± 0.3 35.1 ± 0.3 31.7 ± 0.3

Biomass (mg) 93.0 ± 2.1 82.4 ± 2.1 76.8 ± 2.1

Fruit number 53.4 ± 1.1 49.2 ± 1.1 45.2 ± 1.1

Stem thickness (mm) 0.91 ± 0.0 0.88 ± 0.0 0.85 ± 0.0

Branch number 2.85 ± 0.1 2.85 ± 0.1 2.96 ± 0.1

Table 3 Analyses of variance for plant traits measured at the time of flowering

Source DF Flowering time Leaves at flowering Diameter at flowering

F-ratio %Var F-ratio %Var F-ratio %Var

Block 3 8.12*** 0.26 25.01*** 1.65 41.86*** 6.54

Treatment 2 14.31*** 0.31 12.11*** 0.53 6.98*** 0.73

B 9 T 6 1.12 0.07 7.61*** 1.00 21.09*** 6.59

Region 3 3.08(*) 18.51 3.22(*) 18.75 23.84*** 14.90

Population (R) 13 1.60 26.03 2.32* 25.24 0.65 2.71

Family (P, R) 33 115.92*** 41.37 38.12*** 27.60 6.19*** 10.64

R 9 T 6 1.17 0.24 0.29 0.05 1.63 0.27

P(R) 9 T 26 1.87* 0.87 0.97 0.71 0.54 0.71

F(P, R) 9 T 66 1.66*** 1.19 1.28 1.85 0.97 3.32

Error 1,031 11.15 22.62 53.61

*** Indicates effects significant at P \ 0.001; ** P \ 0.01; * P \ 0.05; (*) P \ 0.1

Significant effects are in bold

DF = degrees of freedom

%Var = Percent of the total variance explained by a particular effect
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due to the combined main effects of region, population and family of origin. There was a

significant main effect of the wind treatments on flowering time and the number of leaves

at flowering (Table 3). On average, plants in the strong wind treatment flowered 2.4 days

later than the control plants, and they had significantly fewer leaves at the time of flowering

(Table 2). In addition, there was significant genetic variation for plasticity in flowering

time at the population and family levels (Table 3, Fig. 1), as well as a marginally sig-

nificant population by treatment interaction on the length of the reproductive period

(Table 4). There were also significant block effects in all analyses of phenological traits.

However, compared to the main genetic effects, block and treatment effects and their

Fig. 1 The effect of mechanical stress through simulated wind on flowering time in 50 genotypes of A.
thaliana that were collected from natural populations across Europe

Fig. 2 The average response (± s.e.) of the total number of basal and lateral branches to mechanical stress
through simulated wind in natural A. thaliana genotypes from four different European regions
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interactions were not very important and together explained only a small percentage of the

total variation.

There was significant genetic variation in the total number of basal and lateral branches

among Arabidopsis populations and seed families (Table 4). In addition, while the treat-

ment and region main effects were not significant, we found a significant treatment by

region interaction with regard to branch number (Fig. 2): compared to the controls, plants

from Swedish and Spanish populations that were grown in the strong wind treatment had

18% and 25% more branches, respectively, whereas in plants from French populations

branch numbers remained relatively constant, and in plants from Dutch populations the

average number of branches decreased by 18% (Fig. 2). There was also a significant block

effect and block by treatment interaction with regard to branch number.

While the frequency distribution of flowering times across all plants was strongly

bimodal (Fig. 3a), early- and late-flowering ecotypes of A. thaliana did not respond dif-

ferently to the wind treatments (Fig. 3b). There was never a significant flowering type by

treatment interaction (all P [ 0.3) when the flowering type was included in the analyses of

variance of size and growth form traits.

The correlation structure among phenotypic traits was remarkably constant across the

three wind treatments. Pairwise Mantel tests between the correlation matrices for plants

grown in the control, low wind and strong wind treatments (plants pooled across origins for

each matrix) indicated that all matrices were highly correlated, with matrix correlations

ranging between 0.965 and 0.974. A similar result was obtained using common principal

components analysis, which indicated that in all three pairwise comparisons the two

matrices had all principal components in common, i.e. a very similar structure of corre-

lations among phenotypic traits. We repeated the same analysis with genetic correlation

matrices (based on family means instead of individual plants in each environment) and

found qualitatively very similar results, with all pairwise matrix correlations [ 0.9.

There was a significant positive genetic correlation (r = 0.297, P = 0.036) between the

cross-environment (CV) of flowering time and average plant fitness across environments

(Fig. 4a). None of the other correlations between plasticity and overall fitness were

Fig. 3 (a) Early-flowering (left of dotted line) and late-flowering (right of dotted line) populations of A.
thaliana that were collected from across Europe, and (b) their fitness response to mechanical stress through
simulated wind in a controlled greenhouse experiment

678 Evol Ecol (2009) 23:669–685

123



significant. When we used the modified fitness averages with a different weighting of wind

environments, these results remained virtually identical (r = 0.297–0.313 for the corre-

lation above, depending on the weighting scheme).

There was a significant negative genetic correlation (r = -0.306, P = 0.031) between

the CV of branch number and plant fitness in the control treatment, as well as a significant

negative genetic correlation between plant fitness in the control treatment and plasticity

(calculated as percentage change in the mean expression of the trait from the control to the

strong wind treatment) with regard to diameter at flowering (r = -0.325, P = 0.021),

plant biomass (r = -0.418, P = 0.003; Fig. 4b), and branch number (r = -0.343,

P = 0.015; Fig. 4c).

Discussion

Thigmomorphogenesis refers to the phenotypic changes by which plants respond to

mechanical stimulation. However, in contrast to responses to other environmental factors

Fig. 4 Significant genetic correlations between plasticity to wind and components of plant fitness among
50 maternal families of A. thaliana that were collected from natural populations across Europe. Plasticity is
calculated either as the coefficient of variation across three wind treatments, or as the % change in the
average trait expression from the control to the strong wind treatment
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such as light, nutrients or water, we still know little about the genetics and evolution of this

type of phenotypic plasticity. Here, we studied genetic variation for thigmomorphogenesis

in response to wind within and among natural populations of A. thaliana.

Our experiment was conducted in an unheated greenhouse with ambient light. This

provided realistic growth conditions; the plants were naturally vernalized and they expe-

rienced normal fluctuations of light and temperature. The disadvantage of this set-up was

that environmental conditions were more heterogeneous in the greenhouse bay than they

would have been in a climate-controlled greenhouse, which is reflected in the large block

effects in all analyses of variance. However, we think that the blocking successfully

captured much of the heterogeneity in our experiment, and that the advantages of our

relatively uncontrolled set-up outweigh this disadvantage.

Overall response to wind

Mechanical stimulation through wind significantly delayed the flowering of plants, and it

reduced their overall growth and reproduction. While the general direction of these results

is in accordance with previous studies (e.g., Whitehead 1962; Henry and Thomas 2002;

Anten et al. 2005), the effect of wind was surprisingly small. Even strong wind had

relatively little effect on plant phenotypes, and, consequently, the wind treatments never

explained more than a few percent of the total phenotypic variation. One conclusion from

our experiment is that A. thaliana appears to be rather tolerant to the mechanical stress

imposed by wind.

Obviously, an alternative explanation would be that our wind treatments were not strong

enough. However, the visual impression of our experiment does not support this. In the

strong wind treatment, the plants were strongly bent and shaken, and we do not think it

would have been possible to increase the wind speed even further without causing sig-

nificant damage through uprooting or stem rupture. The wind speeds used in our

experiment were chosen on the basis of actual wind statistics, and compared to previous

studies (e.g. Whitehead 1962; Cipollini 1997, 1998; Henry and Thomas 2002; Pigliucci

2002; Murren and Pigliucci 2005) they were average. Whitehead (1962) used a range of

wind speeds from 1–15 m/s and found strong phenotypic effects already at 4 m/s. We

therefore think it reasonable to assume that our wind treatments were strong enough to

potentially trigger a thigmomorphogenetic response.

We found no evidence for some of the architectural changes that are often mentioned as

common aspects of thigmomorphogenesis in plants (Biddington 1986; Braam et al. 2005).

Stem thickness did not increase in response to wind but co-varied allometrically with plant

size and thus decreased in stimulated plants. We also found no general increase in branch

number. Instead, the effect of wind on branching depended on plant origin. While some of

these inconsistencies with the allegedly general plasticity syndrome in response to

mechanical stress may be due to specific developmental constraints in A. thaliana, we think

that the answer may lie in the common, but probably incorrect, assumption that from a

plant’s point of view wind and actual physical touch are the same.

For instance, Cipollini (1998) showed that, while wind and brushing elicited the same

kind of biochemical response in common bean, the plants appeared to be generally more

sensitive to brushing. Another very informative study in this context was carried out by

Smith and Ennos (2003), who showed that while flexing reduced the height of sunflowers

and increased the strength of their stems—which is in line with the common description of

thigmomorphogenesis—air flow had in fact the opposite effect: it increased plant height
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and decreased stem rigidity. Wind treatments as in our study have a flexing and an air flow

component, therefore experiments that use wind as mechanical stimulus should not be

expected to give the same results as those that use bending, brushing, or similar approa-

ches. Interestingly, most previous studies that found increased stem diameter subjected

plants to flexure (e.g., Cipollini 1999; Anten et al. 2005), whereas most studies that used

wind found no or even the opposite effect (Henry and Thomas 2002; Smith and Ennos

2003; this study). Altogether, there appears to be sufficient evidence to conclude that, while

there might be some commonalities in plant responses to different kinds of mechanical

stress, there is no universal thigmomorphogenetic response. Hence, the results of our study

should only be interpreted with regard to the effects of wind—which is probably the most

common form of mechanical stress in nature.

Phenotypic correlations

Typically, phenotypic traits are not independent from each other, but there are patterns of

trait covariation that reflect genetic, functional, or developmental relationships and affect

the magnitude and direction of evolutionary responses (Schlichting 1989; Arnold 1992;

Pigliucci and Preston 2004). Here, we found that phenotypic traits of A. thaliana were

organized into three distinct groups of correlated traits—or phenotypic modules (Wagner

and Altenberg 1996)—that represented variation in plant size, phenology, and growth

form. This modular correlation structure was extremely stable across environments. Thus,

we found no evidence for thigmomorphogenesis to be a multivariate ‘‘plasticity syndrome’’

(Smith and Whitelam 1997; Pigliucci 2002) with a characteristic shift in the phenotypic

correlation structure. This result was fairly robust and did not change when we used a

different method of matrix comparison, or when we examined genetic instead of pheno-

typic correlation matrices.

There are two major hypotheses typically advanced to explain stable phenotypic cor-

relations as the ones observed here (Armbruster and Schwaegerle 1996; Merilä and

Björklund 2004): First, phenotypic correlations may be the ‘‘inevitable’’ result of shared

genetic control (pleiotropy or linkage) of different traits. Second, since phenotypes evolve

as wholes, and phenotypic integration is likely to ensure coherence between different parts

of a phenotype, phenotypic correlations may have evolved by natural selection. More

specifically, a modular correlation structure, with strong correlations within but weak

correlations among modules, may be advantageous because it allows quasi-independence

of different parts of an organism (Wagner and Altenberg 1996). While the question of

phenotypic integration as a constraint versus adaptation cannot be answered with our data,

our findings have two important evolutionary implications: in our study system (1) traits

within the same module are bound to evolve together, at least in the short term, and

(2) there is a potential for the different modules to evolve independently, i.e. the response

of phenological traits to environmental challenges such as mechanical stimulation will be

largely independent of growth and size-related traits.

Potential for evolutionary change

The basic requirements for phenotypic evolution are: (1) heritable variation and (2) selection

acting on this variation. Here, we were interested in the potential for evolution of thigmo-

morphogenetic plasticity. We used the wind-by-origin interactions in the ANOVAs as a test

of genetic variation for plasticity to wind, and we estimated selection on plasticity by cal-

culating family-level correlations between the average degree of plasticity of a trait and the
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average fitness of a family across environments (Scheiner 1993; Via et al. 1995). In addition,

we estimated costs of plasticity (DeWitt et al. 1998) by calculating family-level correlations

between plasticity estimates and the average fitness of plants in the control treatment.

There appears to be little potential for evolutionary change in the thigmomorphogenetic

response of size-related traits in A. thaliana. While these traits were generally highly

plastic and genetically variable, we found no evidence of genetic variation for plasticity,

i.e. none of the wind by origin interactions in ANOVAs of size-related traits were sig-

nificant. Evolution of plasticity in this phenotypic module may thus be constrained by a

lack of raw material for selection to act upon. One explanation for this could be that strong

past selection has depleted genetic variation. Phenotypic traits closely related to fitness

often have lower levels of additive genetic variation than traits less closely related to

fitness (Mousseau and Roff 1987; Price and Schluter 1991). Another piece of evidence

comes from plasticity-fitness correlations, which show that the better a family is able to

maintain its biomass under strong wind, the lower is its fitness in the absence of wind.

Tolerance to wind may thus incur a fitness cost, and strong selection for high levels of

plasticity is therefore unlikely. It is conceivable that the observed intermediate level of

plasticity in size-related traits is a result of some form of balancing selection created

through a combination of antagonistic processes.

The situation is different when we look at the module of phenological traits. Here, we

found a great amount of genetic variation among plants of different origins—which is

typical in A. thaliana (e.g., Stinchcombe et al. 2004; Lempe et al. 2005)—but the plasticity

of these traits was rather limited. There was significant genetic variation for plasticity of

flowering time, which indicates a potential for plasticity in this trait (and module) to

evolve. Moreover, there was a significant positive relationship between the CV of flow-

ering time and the average fitness of families across environments: families that showed

greater plasticity in flowering time had a higher fitness across environments. This corre-

lation was very robust; it did not change when we assumed different frequencies of

environments in our calculation of fitness averages. Assuming our experimental set-up

successfully mimicked, at least to some extent, the environmental conditions in natural

populations of A. thaliana, the positive plasticity-fitness correlation indicates directional

selection for increased phenological plasticity (delayed flowering) in response to wind, and

therefore it suggests that this aspect of thigmomorphogenesis is adaptive.

Variation in total branch number, a trait that describes plant architecture in A. thaliana,

was largely independent from other phenotypic traits. While there was significant regional

variation in the degree of plasticity of this trait—wind strongly increased branch numbers

in genotypes from Spanish populations, but not in those from other European regions—we

found no evidence of genetic variation for plasticity among families. Moreover, plasticity

in branch numbers appeared to have a fitness cost: the greater the average increase of

branch number in response to wind, the lower was the average fitness of a family in the

absence of wind. Together, this suggest that—as in the plant size module—evolution of

plasticity may be constrained by a lack of genetic variation within populations, costs of

plasticity, or a combination of both. The observed regional variation in plasticity could be

the result of regional variation in antagonistic selection factors. It is conceivable, for

instance, that in the drier Spanish populations a branched growth form confers a fitness

advantage, because it reduces water losses through transpiration. This advantage may

counterbalance the intrinsic fitness costs of increased branching, so that natural selection

favours increased plasticity of branch numbers in this environment, while it may do the

opposite in other regions.
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We have used plasticity-fitness correlations as a test of the adaptive significance of

plasticity to wind. Admittedly, there is an inherent difficulty in the study of adaptive

plasticity through selection analyses in the greenhouse—even though this has been a

common approach (Scheiner 1993; Via et al. 1995)—as one may always question the

ecological relevance of controlled environments. Another approach, for instance, would be

to use phenotypic manipulation (Schmitt et al. 1999) for studying the performance of

differently induced phenotypes when transplanted into contrasting natural habitats. Still,

testing for adaptive plasticity is an inherently difficult problem (Sultan 2000; Pigliucci

2005), and every approach has its advantages and disadvantages. Ideally, a thorough

analysis of adaptive plasticity will combine several lines of evidence, and our selection

analyses should be regarded as a first step towards understanding the adaptive significance

of thigmomorphogenesis.

Conclusions

While thigmomorphogenesis, the phenotypic changes associated with mechanical stimula-

tion in plants, is a well-known phenomenon, we still know little about the genetics and

evolution of this type of phenotypic plasticity in natural populations. Here, we examined

genetic variation for thigmomorphogenesis in natural populations of A. thaliana. We found

that overall the plants were remarkably tolerant to the mechanical stress inflicted by wind. It is

possible that this reflects adaptation of A. thaliana to its open habitats. Nevertheless, wind did

have a significant effect on plant phenology, growth and reproduction, and we found that there

was natural genetic variation for this response and therefore a potential for it to evolve.

Finally, phenotypic traits were organized into distinct modules that showed different

responses to wind, and may therefore to some extent evolve independently from each other.

To elucidate the genetic basis and evolutionary implications of these findings, future

research should combine existing knowledge about the physiological and molecular

underpinnings of thigmomorphogenesis (Braam 2005) with phenotypic data obtained from

ecological experiments like the one described here. This should yield a more mechanistic

understanding of the observed phenotypic changes, and at the same time it would provide a

test of the ecological relevance of proposed key physiological processes and candidate

genes. Another avenue of future research should be the study of thigmomorphogenesis in a

comparative framework, i.e. in groups of related species (Murren and Pigliucci 2005), to

address macroevolutionary questions such as when and how often the thigmomorphoge-

netic response has evolved in plants.
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