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Abstract Understanding molecular recognition is one

major requirement for drug discovery and design. Physi-

cochemical and shape complementarity between two

binding partners is the driving force during complex for-

mation. In this study, the impact of shape within this

process is analyzed. Protein binding pockets and co-crys-

tallized ligands are represented by normalized principal

moments of inertia ratios (NPRs). The corresponding

descriptor space is triangular, with its corners occupied by

spherical, discoid, and elongated shapes. An analysis of a

selected set of sc-PDB complexes suggests that pockets and

bound ligands avoid spherical shapes, which are, however,

prevalent in small unoccupied pockets. Furthermore, a

direct shape comparison confirms previous studies that on

average only one third of a pocket is filled by its bound

ligand, supplemented by a 50 % subpocket coverage. In

this study, we found that shape complementary is expres-

sed by low pairwise shape distances in NPR space, short

distances between the centers-of-mass, and small devia-

tions in the angle between the first principal ellipsoid axes.

Furthermore, it is assessed how different binding pocket

parameters are related to bioactivity and binding efficiency

of the co-crystallized ligand. In addition, the performance

of different shape and size parameters of pockets and

ligands is evaluated in a virtual screening scenario per-

formed on four representative targets.
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Introduction

The identification of a small molecule that is able to

modulate or block specific protein functions is one major

goal in pharmaceutical research. Shape complementarity

between ligand and its binding site is a condition for

molecular recognition, but not alone sufficient. The binding

of a small molecule to a receptor requires additional

complementarity of electronic features [1]. However, even

if electrostatic attraction can be significant over large dis-

tances, steric repulsion can counter any such interaction

[2]. Therefore, one might rank the three properties size,

shape, and electrostatics in this exact order: A molecule

needs to have an appropriate size to enter the binding
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cavity, it needs to be able to exhibit a comparable shape

preventing clashes with the protein and to ensure optimal

positioning of its functional groups in the molecular

context to finally establish the necessary electrostatic

complementarity. Many computational drug discovery

approaches including molecular modeling and docking are

based on a correct representation of these mechanisms and

benefit from a better understanding of the recognition

driving forces. Several computational studies have already

been pursued to identify the importance of shape and

chemical complementary between two binding partners

[3–6]. Morris et al. [7], e.g., claimed that a large proportion

of recognition potency resides in a tight shape fit between the

two reaction partners. Many approaches exist that describe

the molecular shape of small molecules in different granu-

larities [8–10]. These abstractions are often used to virtually

screen through large compound collections, e.g., by calcu-

lating the similarity between a reference compound and other

chemical entities. A comprehensive perspective on the use of

molecular shape approaches in medicinal chemistry has been

published by Nicholls et al. [6].

Shape comparison methods, such as ROCS [11] and

SQW [12], calculate a similarity value based on 3D coor-

dinates between a query ligand and a database [9]. ROCS,

e.g., computes a volume overlap of the molecules being

compared and has been used successfully in many

screening experiments. Another such method is the Ultra

Fast Shape comparison (USR) [13], where molecules are

compared based on the moments of four distributions of

atomic distances. Due to its simple calculation, this method

outperforms other shape descriptions with respect to

computing time requirements. Another prominent approach

is using Normalized Principal Moments of Inertia Ratios

(NPRs) [14]. Besides not requiring a superposition of the

input molecules, NPRs are independent of size, show low

computational complexity, and allow the projection onto a

finite triangular space that can easily be visualized. Based

on the position of a data point in this NPR space, it can be

assigned as being rod-, disc-, or sphere-like. In the context

of multiple-scaffold versus single-scaffold combinatorial

compound libraries, the idea of a pocket-shape focused

space was introduced [14]. Akritopoulu-Zanze et al. [15]

used NPRs to compare distributions of rule-of-five com-

pliant compounds from the MDDR database and the cor-

porate compound collection of Abbott. A drug-like shape

space was derived and used to actively bias compound

selection for HTS screening as well as for compound

acquisition. In a recent study, the shape distribution in NPR

space of small molecules originating from various large

data sets was analyzed [16]. Globular ligand shapes were

very rarely observed over all data sets.

Equally to the analysis of small molecular shapes, sev-

eral studies explore the shapes of protein binding pockets.

Already in 1998, a study of the anatomy of protein pockets

revealed that the size and shape space of ligand binding

sites is manifold [17]. Found shapes spread from simple

spheres to more complicated shapes like curved grooves of

several interconnected subpockets. Sonavane and Chak-

rabarti [18] describe the shape of a pocket by an estimated

surface to volume ratio of a cavity relative to that of a

sphere having the same volume as the cavity. They report a

large number of globular pockets, but almost exclusively of

small size. Weisel et al. [19] provide an overview about

pocket architectures in a selected set of 623 co-crystallized

complexes. In their work, they identify recurrent pocket

topology patterns with the majority being elongated and

containing one or more subbranches.

In addition to performing ligand-based shape compari-

sons between reference ligands and potential active mole-

cules, if available, drug discovery projects can heavily

benefit from structural information of the targeted protein.

Various docking tools are available to algorithmically fit

small molecules into the protein context and to assess their

complementarity by scoring potential interactions. As this

approach is computationally expensive, especially in the

lead identification phase, a reduction of the search space

through wise filtering can be of great benefit. Here, a

detailed comparison of ligand and pocket sizes and shapes

could be helpful as a first filtering step with the aim to

reduce the size of the initial compound set to dock. In this

context, some recent effort towards a direct comparison of

ligand and pocket shape was promoted. Spherical har-

monics have been investigated as shape representation in a

work by Kahraman et al. [4], revealing that binding

pockets are more flexible in their shapes than their

respective ligands. Furthermore, the study showed that

binding pocket and ligand volumes differ on average by a

factor of three. Pérot et al. [20] observed in a case study on

56 complexes of the Astex set a correlation between pocket

and ligand volumes and highlighted several cases of tight

shape complementarity.

In this work, we present an analysis of ligand and pocket

shapes using selected data from the sc-PDB [21]. Pockets

and subpockets are predicted with DoGSite [22], followed by

the calculation of shape properties [23]. Ligand and pocket

shapes are approximated by ellipsoidal and moment of

inertia main axes. The present article consists of three

evaluation parts: First, an extensive analysis on pairwise

combinations of binding pocket and corresponding ligand

with respect to their shapes is performed. In accordance to

the lack of globular ligand shapes in nature [16], globular

ligand binding sites are found to be underrepresented. Shapes

of occupied binding pockets are generally observed to be

more globular than their containing ligand. When consider-

ing all cavities detected by DoGSite—including those

without bound ligand and disabling a minimum volume
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threshold for predicted pockets—globular shapes are

detected predominantly for small pockets. Furthermore, the

respective ligand and pocket shape overlap is analyzed;

pockets exhibit an average coverage of one third, while

subpockets are on average covered by one half. The second

part of this article addresses the relation between shape

complementarity and bioactivity. In addition, it is analyzed

whether information about the binding pocket of a particular

target can be used to give an insight into the maximal

achievable efficiency of a novel compound binding to this

pocket. Finally, we analyze the performance of shape and

size parameters retrieved from binding pocket and co-crys-

tallized ligand in a virtual screening context. It is assessed if

these parameters can be used to filter out compounds prior to

screening, while preserving highly ranked actives.

Data preparation

Shape analysis data set

Version 2011 of the sc-PDB [21] is used for the shape com-

parison study. This version contains 9,877 entries, for 9,867 of

which the original entry could be retrieved from the PDB [24].

Subsequently, several quality filters for both, small molecule

structures and protein crystal structures, are implemented

(Fig. 1). Ligand entries are checked for bad valences, inor-

ganic elements, and for their size as function of their number

of heavy atoms. Small molecule conformations, as given by

the sc-PDB data, are minimized using the MMFF94x force

field [25] implemented in MOE 2011.10. The energy differ-

ence of the sc-PDB conformation to the minimal energy

conformation is calculated and used as a filter criterion to

reject compounds in high energy conformations. These cri-

teria lead to a final data set of 7,751 ligands.

Retrieved crystal structure data are analyzed using the

Diffraction Precision Index (DPI) [26] calculator devel-

oped by Vainio et al. [27]. Entries are kept if the following

criteria are fulfilled: resolution B 2.5 Å, Rfree B 0.3, and

DPI B 0.5 Å. The intersection between the retained 7,258

protein structures and the 7,751 ligand entries yields the

final 5,755 protein-ligand pairs.

Subsequently, DoGSite [22] is used to identify binding

pockets of each ligand. Ligands may be only partially

contained in the predicted pocket with parts of it reaching

into the solvent or into a neighboring pocket. As such

examples bear a potential bias for the comparison between

ligand and pocket shape, only pockets with a ligand cov-

erage of 100 % are considered for this analysis, i.e. the

entire ligand occupies only one pocket. In total, 2,363

pocket-ligand pairs fulfill this criterion and are kept for the

following analyses.

Bioactivity data

Information on experimental ligand bioactivity is retrieved

from the PDBBind database [28]. Only entries annotated as

‘‘high quality’’ are considered for this analysis. Entries are

matched with data points of the ligand/pocket sc-PDB data

set by using the PDB identifier. Overall, 355 experimental

values could be matched to ligand/pocket pairs. The data

are categorized into three activity classes: highly active:

pKi or pKd C 8.5 (83 entries), moderately active: pKi or

pKd C 6.5 and\ 8.5 (120 entries), and weakly active: pKi

or pKd \ 6.5 (152 entries).

Virtual screening data set

Version 13 of the ChEMBL database [29] is used as basis

for the docking performance experiments. Data points are

Fig. 1 Overview of the sc-PDB

data preparation
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selected according to the following criteria: all compounds

with annotated assay data in IC50, EC50, Ki, or Kd, as

standardized by ChEMBL curators, are selected. In order to

keep only small molecules, compounds with a molecular

weight C 1,000 Da are filtered out. Entries are kept if a

curator of the ChEMBL database annotated the observed

effect in a particular assay as directly related to an inter-

action with a particular molecularly defined target (confi-

dence level 9). In case of obvious errors in their annotated

bioactivity data, data points are manually removed. Omega

2.4.6 [30] is used to calculate a minimal energy conformer

for each molecule. Compounds are rejected from the data

set if stereo-chemistry is not properly annotated. In total,

123,539 data points are used for the following analysis.

Data points are considered ‘‘active’’ for the analyzed target

if a bioactivity below 3.2 lM had been reported. If their

annotated bioactivity was above 10 lM or had not been

reported with an activity against the target of interest, they

were considered ‘‘inactive’’. Note that it cannot be pre-

sumed that all of these ‘‘inactives’’ are true negatives. Once

tested against the respective target, it is possible that a

wrongly assumed inactive may defect to the active set

impacting the perceived screening results. The docking

experiments are performed on four targets (see Table 1),

with the intent to broadly sample the binding pocket NPR

shape space (Fig. 11). Additionally, the selected targets are

required to hold a sufficient number of measured data

points in the extracted ChEMBL data.

Material and methods

Pocket calculation

Potential pockets—solvent exposed and buried ones—are

detected on the protein surface using DoGSite [22]. The

method maps the protein atoms onto a 3D grid with a

default spacing of 0.4 Å. Grid points are labeled as occu-

pied if they are covered by a protein atom; otherwise as

free. A difference of Gaussians (DoG) filter is applied to

find cavities on the protein surface. Grid points with cal-

culated DoG values below a defined threshold are clustered

to subpockets. Subsequently, neighboring subpockets can

be merged to pockets. Per default, only pockets and

subpockets with volumes larger than 100 and 50 Å3,

respectively, are considered. In this work, we lowered this

threshold to 20 Å3 (subpockets 10 Å3, respectively) to be

included in the pocket shape analysis; the number of

pockets per protein was limited to 100.

Note that ligand location is not taken into account for

pocket detection. Nevertheless, a ligand can be provided to

select the pocket of interest from the set of predicted

pockets. In this case, the overlap between ligand and

pocket can be calculated, based on the volume overlap of

ligand atoms and pocket grid points, resulting in a value

between zero and 100 % for pocket and ligand coverage,

respectively.

Since subpockets provide a more fine-granular descrip-

tion of the binding site, the experiments in this study are

performed on the subpocket level. To simplify the

nomenclature throughout this study, the term pocket has

been used to signify subpockets, except when both are

described in the same context.

Descriptor calculation

Several shape and physicochemical features can be calcu-

lated for the detected pockets [23]. In this study, we focus

on shape and size, i.e. volume, ellipsoidal shape, and

moments of inertia. The discrete pocket volume is calcu-

lated by multiplying the number of pocket grid points with

the cubic grid spacing. Pocket shape can be represented by

ellipsoidal main axes and principal moments of inertia

(PMIs). For both representations, pocket grid points are

used and weighted with 1 in the calculation. The ellipsoidal

pocket description is computed by determining the

covariance matrix over all pocket grid points and identi-

fying the corresponding eigenvalues and -vectors. Simi-

larly, PMIs are calculated by a diagonalization of the

moment of inertia tensor.

For each ligand the bioactive conformation as reported

in the sc-PDB data is chosen. In order to treat protein

pockets and corresponding ligands as similar as possible,

the atomic weight of each ligand heavy atom is likewise

replaced with 1 in the calculation of the inertial moments.

Hence, ellipsoids and moments of inertia are calculated

based on all ligand heavy atom centers. Hydrogen atoms

are not taken into account.

Table 1 Protein crystal

structures selected for the

virtual screening experiments

and their respective active and

inactive counts

Target PDB Actives (% total) Inactives

Mitogen-activated protein kinase 14 (p38) 3hrb 1,025 (0.83) 122,514

Androgen receptor (AR) 3g0w 423 (0.34) 123,116

Vascular endothelial growth factor II (VEGFR2) 2qu6 1,328 (1.07) 122,211

Proto-oncogene serine/threonine-protein kinase (PIM1) 3cy3 144 (0.12) 123,395
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Normalized principal moment of inertia ratios (NPRs)

Starting from a 3D structure described by either pocket grid

points or molecule atoms, the three PMIs are computed.

The NPR descriptor is then calculated by sorting the

resulting values I11, I22, and I33 in ascending order and

dividing the two smaller values by the largest. This causes

a normalization that eliminates size information and rep-

resents one of the major differences in comparison to other

molecular shape descriptors that often intrinsically include

a description of size. The NPR descriptor can be visualized

in a finite, triangular shape space whose corners are rep-

resenting the three geometrical objects rod, disc, and

sphere (Fig. 2). To directly compare the shape character of

ligands and pockets, NPR descriptors can be translated into

a ternary system describing globularity, disc-, and rod-

likeness. Sphericity can be expressed by (npr1 ? npr2 - 1).

Likewise, rod-likeness can be defined as (npr2 - npr1) and

disc-likeness as (2 - 2 * npr2), respectively.

The triangular NPR descriptor space is isosceles not

equilateral, i.e. only two of the sides are of equal length.

For the calculation of distances in this space it is therefore

required to transform the descriptor space into an equilat-

eral triangle. This is achieved by an a priori translation of

npr2 to npr02 ¼
ffiffiffi

3
p
� npr2 þ ð1�

ffiffiffi

3
p
Þ: The pairwise shape

distance between two objects A and B is then calculated by

the Euclidean distance between the two points

(npr1,A0 npr02;A) and (npr1,B0 npr02;B). Due to the underlying

finite triangular space, the maximal distance between two

points is limited to a value of one.

Screening experiments

Glide HTVS docking is performed using the Maestro

software 9.3 of Schroedinger [31]. All protein structures

are treated with the default Glide 5.8 settings. Water

molecules are removed and hydrogen bonding networks are

optimized before grid generation of the receptor by using

the Protein Preparation wizard [32]. The binding site is

defined by the co-crystallized ligand. Finally, prior to

docking, all small molecules from the extracted ChEMBL

data are prepared using LigPrep 2.5 and screened with

Glide 5.8. Compounds are sorted by ascending docking

score, and the best scoring pose is kept for further

enrichment analysis. If a compound could not be docked, it

is appended at the end of the sorted compound list.

Results and discussion

Pocket shape distribution

In a first analysis, pocket and ligand shapes are directly

compared with respect to their distributions in NPR shape

space. To do so, the pocket space has previously been

restricted to pockets binding a known ligand and exhibiting

a volume larger than the predefined cut-off. Due to the size

independence of the NPR descriptor, shapes of all kinds of

small molecules and binding pockets can be directly

compared to each other. The distribution of pocket and

corresponding ligands from the 2,363 sc-PDB entries is

illustrated in Fig. 3.

Descriptor values for binding pockets do not occupy the

western axis of the NPR shape space. While small mole-

cule conformations can be truly flat (e.g., a ligand with

conjugated aromatic system), this cannot hold for binding

pockets, as this contradicts the definition of a binding site

spanning a volume large enough to hold a ligand. The

majority of data points of both distributions are located in

the upper left corner of the NPR triangle, representing rod-

like shapes. The ligand shape distribution of the sc-PDB

data set exhibits a characteristic similar to what has been

observed for various small molecule data sets of different

origins [16]. Similarly, here, no truly globular pockets are

observed. While it is difficult to fully explain this behavior,

one can speculate about potential contributing factors.

First, protein binding pockets and their natural ligands co-

evolve. In this context, spherical symmetry of both—

pocket and ligand—is a very expensive property to pre-

serve without obvious advantages. Second, truly spherical

binding pockets have to be closed on all sides and would

need to provide a sort of entry mechanism for their ligands.

Such mechanisms are known, for example in the HIV-1

protease, but not common. Third, enzymes in particularFig. 2 Overview of the triangular NPR shape space
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need to incorporate not only the substrate but any reaction

partner, transition state and product(s). The lack of sym-

metry across these requirements further decreases the

likelihood for globular binding sites.

The distributions show that binding pockets tend to be

slightly more globular than their ligands (Fig. 3). For a

more detailed analysis, we investigate the shape difference

between corresponding pocket and ligand pairs. Spherical

difference, e.g, is calculated as ligand sphericity minus

pocket sphericity in percent (for details see methods sec-

tion). Figure 4 illustrates the pairwise sphere, rod, and disc

differences for pairs of ligands and pockets. A difference of

zero indicates that pocket and ligand have the same shape

character. The distributions within the rod- and disc-like-

ness difference plots are shifted to the right (Mean (stan-

dard error of the mean (SEM)): 0.05 (0.001), and

0.03 (0.001), respectively), while the sphericity peak is

shifted to the left (Mean (SEM): -0.08 (0.002). These

differences underline the slightly more globular shape

character of pockets also on the pairwise level. Only in rare

cases, large jumps in NPR space, e.g., rod-like pocket with

a discoid ligand, are observed, i.e., distances larger than 0.4

are found in 11.38, 1.18, and 10.16 % of the cases for rod-

likeness, sphericity, and disc-likeness, respectively.

In a subsequent study, the full set of detectable pockets

is investigated (restricted to a maximum of 100 pockets per

structure). For this purpose, the shape of all predicted

pockets—ligand-bound or empty—down to a volume of 10

Å3 is calculated. In contrast to the previously shown

ligand-bound pocket shape distribution (Fig. 3), a nearly

complete coverage of the NPR shape space can be

observed (Fig. 5, left). Interestingly, contrarily to the

analysis of occupied pockets, here, the shape distribution

center is shifted towards the globular region of the shape

space. Furthermore, amongst all detected pockets of a

protein, small pockets are observed significantly more

often than larger ones (Fig. 5, right).

In order to analyze the dependence of pocket size and

shape, the same analysis is repeated for volume ranges

encoded by 20 Å3 bins. The results demonstrate the loss of

globularity with increasing pocket volume (Fig. 6). Up to

volumes around 100 Å3 the distribution is dominated by

globular pocket shapes. Larger pockets tend to possess a

more rod-like shape, expressed by the shift of the shape

distribution center towards the upper left corner of the NPR

triangle.

The dominance of sphere-like pockets has been

described previously in the work of Sonavane and Chak-

rabarti [18]. Furthermore, Pérot et al. found in a case study

of 56 Astex complexes that small pockets are the least

compact ones and tend to be rougher, more spherical, and

more polar [20]. Two reasons may contribute to this

observation: First, frequently encountered ligands of that

size are in fact spherical (Na?, K?, NH4
?, Cl-, SO4

-) or

pseudo-spherical (H2O without orientation preference).

Second, unoccupied binding pockets represent empty space

in the protein that is energetically unfavourable. As the

sphere has the smallest surface area for a given volume,

this shape should be adopted in order to minimize physi-

cally unfavourable interactions.

When we split the ligand shape distribution by molec-

ular weight in bins of 100 Da, up to a maximum of 800 Da,

these ligand distributions do not exhibit a similar behavior

than what has been perceived for protein pockets (data not

shown). If any, a slight trend of medium sized ligands

towards a more globular shape can be observed.

When comparing ligand and detected pocket shapes,

two aspects have to be considered: a) the noise introduced

by the pocket boundary definition in the pocket prediction

step, and b) the degree to which the analyzed pockets are

filled by their ligands. As described in the data preparation

section, we have restricted the sc-PDB pocket/ligand shape

analysis to pairs for which the ligand is completely con-

tained in the predicted pocket and neglect cases in which

Fig. 3 Shape distribution in

NPR space of binding pockets

and their respective ligands.

Color code shows the maximal

number of data points per cell
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parts of the molecule are located outside the identified

pocket. However, the analysis, so far, has not taken pocket

coverage into account. Thus, molecules can be much

smaller than their complementary binding pocket and

occupy only a small part of it. Therefore, the shape

behavior in dependence of pocket coverage, split into 5

bins of equal size, is analyzed. In this experiment, pocket

and subpocket based performance is regarded explicitly.

When considering pockets, a clear peak is detected at the

20–40 % coverage bin, indicating that a ‘‘golden ratio’’

between ligand and pocket volume is prevalent in the data

set (Fig. 7).

This confirms the findings by Kahraman et al. [4] on 100

binding sites of 9 frequent ligands that generally only one

third of the pocket is covered by the ligand. Also, Pérot

et al. [20] stated that pockets generally tend to bind smaller

ligands. Nevertheless, analyzing the subpocket-based

behavior, coverages between 40 and 60 % are preferen-

tially observed. The tighter pocket boundary definition of

subpockets allows for a more fine-granular analysis and

indicates a higher shape complementary than previously

found.

The analysis of pairwise distances between ligand and

pocket shapes as a function of pocket coverage reveals that

ligand/pocket pairs are more similar in shape at higher

coverage values (Fig. 8a). For pairs with coverages

between 80 and 100 %, the distance in NPR space is on

average 0.15, compared to a baseline distance of 0.24

derived from all ligand shapes against all pocket shapes.

In addition to shape complementarity, the ligand’s

location and orientation in the pocket is analyzed. In

Fig. 8b the centers-of-mass distances of pockets and

ligands are compared with respect to coverage. Under-

standably, the distance of the centers-of-mass diminishes

with increasing pocket coverage.

The mean distance for poorly covered pockets lies at

7.13 Å, while the number decreases to 0.75 Å for perfectly

overlaying volumes. To quantify the orientation of ligand

and pocket to each other, the angle deviation between the

respective largest ellipsoidal main axes is calculated.

Again, angle deviations are analyzed with respect to pocket

coverage, yielding the conclusion that ellipsoidal align-

ment increases with pocket coverage. Figure 8c illustrates

that the median angle of pockets covered to 40–60 % lies at

28.79� and drops to 9.66� for almost completely covered

pockets. For all three discussed parameters, a clear gliding

correlation with increasing pocket coverage is observed.

Throughout these studies, a few outliers have been

observed, e.g., large center-of-mass distances or angle

deviations. These cases may originate from the pocket

prediction step, as large proteins, multimers, or generally

the large variety in binding site space make pocket detec-

tion with accurate boundary definitions difficult.

Ligand binding demands a decent amount of congruence

between the binding partners. Within this analysis, we

found that this required shape complementary can gener-

ally be quantified by a subpocket coverage above 50 %, a

shape distance in NPR space lower than 0.2, a center-of-
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Fig. 4 Pairwise pocket/ligand distance distributions for the three parameters: rod-likeness, sphericity, and disc-likeness, respectivly. Difference

values are calculated by subtracting pocket values from ligand values

Fig. 5 NPR shape distribution of all pockets detected by DoGSite

(with disabled 100 Å3 volume threshold). Color code shows the

maximal number of data points per cell. Histogram depicts the

volume distribution of these pockets
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mass distance lower than 2.4 Å and a main axis angle

deviation below 29�.

Bioactivity, ligand efficiency, and pocket parameters

A popular assumption in drug design is that binding affinity

is driven by shape complementarity of the ligand with the

protein [7], as the geometrical fit is a prerequisite of

binding. Matching pharmacophoric features within appro-

priate distance and correct directionality, as well as angles

of established hydrogen bonds, are other important driving

factors for molecular recognition. The relative importance

of electrostatic complementarity vs. shape complementarity

remains an open question. To understand to which degree

shape complementarity alone is responsible for activity, the

correlation between bioactivity, as extracted from the

PDBbind database for 355 examples, and different pocket

parameters is assessed in this study (Table 2). While no

strong correlations can be identified, the generally expected

trends are confirmed. Pocket coverage exhibits a moderate

Fig. 6 NPR shape distribution

by pocket volume bins. Color

code shows the maximal

number of data points per cell
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correlation to activity. Furthermore, distance in NPR shape

space, distance between the centers-of-mass of ligand and

pocket, as well as the angle between the first principal axes

of ligand and pocket ellipsoid show moderate negative

correlation to activity.

These trends become more pronounced when pocket/

ligand pairs are binned into three categories based on their

bioactivity. Significant differences between the distribu-

tions for the previously mentioned pocket parameters—

pocket coverage, NPR distance, centers-of-mass distance,

and ellipsoid angle deviation—can be observed (Fig. 9).

The trends within these data points mirror the respectively

found correlations between the classifiers.

Work from Kuntz [33] and Reynolds [34] assesses the

maximal achievable binding affinity and efficiency of a small

molecule in dependence of its size. Their results show that

maximal binding efficiency flattens off for molecules of

large size which they attribute to enthalpic, entropic, and

geometric reasons. Similarly, we analyzed whether there

might be a possible limitation originating from the size of the

binding pocket. Such information could provide a better

understanding regarding what binding efficiency could be

maximally expected for a given pocket, and hence be an

additional parameter for target druggability assessments.

Here, we use NBEI (=pKi/Number of Heavy Atoms) [35] as

ligand efficiency index. Figure 10a shows for the 355

extracted PDBbind ligands a similar decline of maximal

efficiency with increasing size of the molecule, as has been

found by Kuntz and Reynolds. Figure 10b highlights the

distributions of NBEI with respect to the corresponding

binding pocket volume bins as an alternative size measure. A

similar decrease of efficiency with increasing volume of the

identified pocket can be seen. Above a volume of 1,200 Å3,

maximal NBEIs observed are significantly lower than in

smaller volume bins. Additionally, the data suggest that

targets containing a binding pocket with a volume between

300 and 700 Å3 have a higher probability for the identifica-

tion of a highly efficient binder. Focusing on volumes, Liang

et al. [17] describe a similar correlation between ligand and

pocket dimensions, predominately for pocket volumes with

less than 700 Å3. Generally, value comparisons between

studies are difficult due to differences in the computation.

Furthermore, even when considering several structures of the

same target bound to different ligands, predicted pockets and

their properties vary. In a previous study on druggable

pockets [23], the volumes of 40 p38 kinase ligand binding

sites in different activitation states, predicted with DoGSite,

were found to span a volume range from 450 Å3 to almost

1,800 Å3 (pocket, not subpocket values). This clearly shows

the impact of the ligand on pocket shape and volume.

Interestingly, no correlation (R = -0.01) between

NBEI and pocket coverage can be observed, while there

exists a moderate correlation between ligand size as num-

ber of heavy atoms and pocket coverage (R = 0.41).

Incorporating the information that activity has a moderate
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Fig. 8 Coverage-binned distributions of a pairwise ligand and pocket euclidean distance in NPR shape space, b distances between the centers-

of-mass, c angles between the first main ellipsoidal axes of pocket and ligand ellipsoid

Fig. 7 Pocket coverage distribution of pockets and subpockets in sc-

PDB data set

Table 2 Pearson correlation coefficient of activity versus other

pocket parameters

Correlation of activity versus R (Pearson)

Pocket coverage 0.39

Distance NPR ligand/pocket -0.32

Distance centers-of-mass ligand/pocket -0.34

Angle between first principal ellipsoid axes -0.29
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correlation to pocket coverage, it can be concluded that

with rising pocket coverage, activity is enhanced as binding

pocket and ligand complementarity increases. This seems

to be more prevalent for larger ligands, but as binding

efficiency is determined as the ratio between activity and

size, this has no effect on efficiency.

Protein/ligand shape and size comparison in virtual

screening

The capability of different parameters retrieved from per-

ceived binding pockets and corresponding co-crystallized

ligands to identify active molecules is analyzed using a

selected data set of 123,539 compounds from the ChEMBL

database. Four molecular targets [PIM1 (PDB code: 3CY3),

AR (PDB code: 3G0W), p38 (PDB code: 3HRB), VEGFR2

(PDB code: 2QU6)] have been chosen to broadly sample the

binding pocket NPR shape space (Fig. 11).

We compare the effects of five different parameters to

each other regarding early enrichment in virtual screening:

Euclidean distance in NPR shape space between ChEMBL

compounds and co-crystallized ligand or binding pocket,

respectively, absolute volume difference between ChEM-

BL compounds and co-crystallized ligand, absolute
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Fig. 9 Distributions of NPR

shape distances (a), centers-of-

mass distances (b), angles

between ellipsoidal main axes

(c) and pocket coverage (d) of

weakly, moderately, and highly

active compounds and their

respective pockets
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difference in number of heavy atoms between co-crystallized

ligand and ChEMBL compounds, and absolute compound to

pocket volume ratio distance from a predefined gold standard

value. The absolute volume ratio distance is calculated as

j0:4� compound volume=pocket volumej:The value 0.4 has

been chosen based on the mean values found during the

previous analysis of pocket and subpocket coverage. To

assess active retrieval performance in comparison to ran-

dom, the early enrichment factor (EEF) is determined as

EEFx% ¼ % Activesx%= % Datax%: Figure 12 illustrates the

respective enrichment results at x = 1, 2.5, 5, 7.5, and 10 %

of the data. Corresponding ROC curves and AUCs can be

found in the supplemental material (Figure S1). For the

evaluation of active retrieval performance, we favor EEFs

over AUCs, as in most experiments only a small percentage

of the full dataset will be selected and tested experimentally.

The performance on target p38 is close to random; only for

the 1 and 2.5 % bins a few parameters, e.g., number of heavy

atoms and NPR pocket distance, show higher EEF values

than one. In the example of AR, all parameters, especially

those considering volume differences, show a better

enrichment than what could be expected by chance. For

PIM1, these two volume dependent filters are the only

parameters showing a good enrichment better than random.

In contrast, for VEGFR2, NPR distance to the co-crystallized

ligand clearly outperforms all other studied parameters.

The generally good performance of the ligand-based

filters suggests that shape and size similarity to a reference

ligand, if available, might be a more valuable parameter to

optimize for than a high similarity with the binding pocket,

especially considering NPR shape. Note, that the pocket-

based NPR shape filter performs better for targets with

binding site shapes closer to the center of ligand shape

distribution, e.g., for AR (see Fig. 11). The filter has a

higher probability to fail in cases where the binding site

shape has a large distance to this center of distribution, e.g.,

in the case of PIM1 whose binding pocket shape is located

close to the disc-like corner. While shape similarity based

on distance in NPR shape space is superior in p38 and

VEGFR2, results from PIM1 and AR show a better per-

formance when using the difference in volume instead.

Considering volume or volume ratio distance, the pocket

parameter performance is similar to the ligand-based filter.

This is due to the fact that this volume ratio, although

solely based on the pocket volume, describes the difference

in volume between an on average fitting reference mole-

cule and the compound of interest. Thus, this provides very

valuable information in cases where no reference molecule

is known.

Averaged enrichment factors over all analyzed early

enrichment bins (1, 2.5, 5, 7.5, and 10 %) and targets

showed similar results for absolute volume ratio distance of

compound and binding pocket, NPR distance and volume

difference based on comparison with the co-crystallized

ligand with a factor of 1.7 over random performance.

Difference in the number of heavy atoms and NPR distance

between binding pocket and screened compound perform

worse (average EEF of 1.3 and 1.1, respectively). Although

utilizing the selected parameters as ranking scheme for

compounds results in a better performance than what could

be expected by chance, it is clear that the achieved per-

formance is not sufficient for practical purposes; too many

of the known actives would be missed during experimental

testing. As a comparison, docking experiments against

crystal structures of the four chosen targets are performed

using the Glide HTVS docking engine [31]. By integrating

an elaborated scoring function, an increase in signal over

the previous experiment is to be expected. In general, the

introduction of Glide improves the achieved average EEF

from the average value of 1.5 of the discussed parameters

to 7.4 over all analyzed early enrichment bins (1, 2.5, 5,

7.5, and 10 %) and targets (Table 3).

Three of the selected targets, namely p38, AR, and

VEGFR2, are part of the Directory of useful Decoys

(DUD) [36] and have been analyzed in a benchmark study

by Cross et al. [37]. A mean enrichment factor for all DUD

targets between 13.3 (at 0.5 %) and 3.8 (at 10.0 %) was

reported by Cross et al., which closely resemble the mean

EEFs between 13.5 (at 0.5 %) and 4.1 (at 10.0 %) for the

four targets analyzed in this study.

However, placing and scoring several thousands of

compounds with high precision is a very time-consuming

process. The aim of this analysis is therefore to investigate

whether information on binding pocket and co-crystallized

ligand can be used to pre-filter the data set. Ideally, a filter

increases early retrieval rates of actives by removing

compounds that do not fulfill the requirements of the

molecular target. Generally, decreasing the number of

Fig. 11 Overview on NPR shape space location of the selected

binding pockets of the selected targets
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compounds to screen while achieving constant early

enrichment rates is equally important, as this speeds up the

docking process and requires less computational resources.

Exemplarily, we investigate a reduction of the data set by

one third based on the chosen parameters. When removing

33 % of the compounds based on the chosen parameters

(Fig. 13), early enrichment factors improve for PIM1. The

performance slightly decreases for the two targets, AR and

VEGFR2, when considering NPR shape filters. In contrast,

considering volume and molecular size-based filters, the

performance in AR remains constant, while it slightly

increases for VEGFR2. For p38, enrichment factors

decrease for all tested parameters, particularly for the NPR

based filters. As null hypothesis, we carry out a random

filtering that is removing 33 % of the data in 500 inde-

pendent runs. The resulting DEEFs in Fig. 13 show that all

filters perform better than random, except for target p38, in

which the NPR distance filter based on a reference ligand

does not show an improvement over a random removal of

compounds prior to the virtual screening experiment.

Corresponding ROC curves and AUCs can be found in the

supplemental material (Figure S2).

To summarize, the results show that the introduction of

filters based on molecular or pocket shape and size

properties can aid in decreasing the number of compounds

to screen without distinctly diminishing performance in

active retrieval. The results furthermore suggest that a

molecular size-based pre-filter might be more effective

than a shape-based pre-filter in structure-based virtual

screening. It is a known effect that docking scores can be

correlated with molecular size [38]. We cannot exclude

that this might be the reason for the observed effect in the

performed study. The tested parameters based on ligand

information appear to be more valuable for the pre-filter

application. Nevertheless, a pocket-based filter can be very

useful in screening scenarios, in which no bound reference

ligand is known beforehand. The calculated compound to

pocket volume ratio distance, e.g., mimics the volume

distance of a compound from a potentially binding ligand

under the assumption that the most prominent volume ratio

between bound ligand and pocket lies at 0.4. While this

value has been derived from the previous analysis, it holds

for the four studied targets, in which pocket and ligand

volume ratios evaluate exactly to this value. Also, while we

describe observations for different parameters, it is unclear

whether these results can be extrapolated to other data sets,

targets, pocket prediction algorithms or docking programs.

We are nevertheless convinced that this study gives an idea

on how filters could be usefully integrated into a virtual

screening process.

Conclusion

In this study, a comparison between shapes of protein

binding pockets and their corresponding ligands using the

NPR shape description is presented. The experiments

within this study are performed on predicted subpockets

Fig. 12 Early Enrichment (%Actives against %Data screened) for

p38 (3HRB), Androgen receptor (3G0W), PIM1 (3CY3) and VEG-

FR2 (2QU6). Volume ratio difference between pocket and screened

compound (turquoise). NPR distance between pocket (red)/reference

ligand (blue) and screened compound. Volume difference between

reference ligand (green) and screened compound. Difference in

Number of Heavy Atoms between reference ligand and screened

compound (purple)

Table 3 Early enrichment factors (EEF) by glide for the selected

targets

Target EEF1% EEF2.5% EEF5% EEF7.5% EEF10%

p38 [3HRB] 19.9 10.6 6.6 4.9 4

AR [3G0W] 19.6 11.4 7.7 5.6 4.5

VEGFR2 [2QU6] 8.9 5.6 3.8 3.1 2.8

PIM1 [3CY3] 5.6 6.7 6.0 5.4 5.0
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(although the term pocket is used throughout the study),

which provide a finer description of a cavity. Similarly to

what has been reported for small molecule data sets of

various origins, we observe an absence of truly spherical

ligand and binding pockets in our stringently selected data

set of 2,363 pocket/ligand pairs from the sc-PDB. Con-

trarily, globular pockets are prevalent when considering all

detectable pockets within protein structures, particularly

for pockets of small volume. Furthermore, when consid-

ering pockets (not subpockets), it could be seen that on

average the ligand covers one third of the pocket. This is in

accordance with findings from Kahraman et al. [4] on a less

diverse data set. Subpockets show on average a higher

coverage (50 %), underlining the information gain due to

the more fine-granular description. Thus, this study

broadens the knowledge about the importance of shape

complementary for complex formation. A clear decrease of

three analyzed parameters with increasing pocket coverage

can be observed: The average shape distance is found to be

below 0.2 in NPR space, the centers-of-mass distance of

the respective ellipsoids is below 2.4 Å, and the angle

between the largest ellipsoidal main axes deviates less than

29�. While it is difficult to provide gold standard values,

due to different implementations of pocket detection

algorithms and ways to compute features thereof, in our

opinion, these results provide a very valuable starting point

for further research.

With respect to exhibited bioactivity, tested on a PDB-

Bind subset, only a moderate correlation with pocket

coverage is observed, which illustrates the importance of

other complementing factors. However, when binning

active compounds into three classes by their strength of

interaction, it was found that high affine binders tend to

possess a higher shape complementarity and cover on

average more than two thirds of the binding pocket. Also,

their corresponding molecular shapes are significantly

more strongly aligned. Contrarily, low-affine binders

exhibit a larger flexibility in their shape congruence to the

binding site. With respect to ligand efficiency, this article

discusses to which extent pocket size influences the max-

imal achievable ligand efficiency. The data suggest that

pockets with a volume smaller than 700 Å3 have an

increased probability of fitting a highly efficient binder.

Although these findings need to be investigated further and

the value is dependent on the pocket identification method

used, this provides a very interesting starting point into the

investigation of pocket druggability. Clearly, maximal

achievable binding efficiency cannot only be related to the

size of a small molecule but also to features present in the

corresponding binding site.

This article furthermore investigates whether it is possible

to use information on binding pocket volume and shape to

filter out compounds a priori in a large-scale virtual screen-

ing campaign. The hypothesis is that such a step might

increase the hit rate of the screen by preferentially removing

inactive compounds and simultaneously decreasing the

number of compounds to be screened. With regards to the

ever-increasing number of compounds available for virtual

Fig. 13 Differences for p38 (3HRB), Androgen receptor (3G0W),

PIM1 (3CY3), and VEGFR2 (2QU6), respectively, in early enrich-

ment factors to the original Glide enrichment factor (Table 3) when

filtering 33 % of the data based on the given parameters. For

comparison, results of a random 33 % filter are presented. Bars

represent the mean, lines the standard deviation of results from 500

independent runs
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screening and with the introduction of more sophisticated

calculations, the reduction of compound sets is of high

interest. As can be seen on the four selected examples, using

the provided filters reduces the number of compounds by one

third, while achieving mostly stable early enrichment rates.

Filters making use of information extracted from known

reference molecules show generally a good performance.

Nevertheless, using pocket information, especially if no

reference ligand is known, enables a new set of filters

applicable in structure-based virtual screening.
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