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Abstract Based on results from a field survey campaign
conducted in Switzerand, we show that occupants’ variations
in clothing choices, which are relatively unconstrained, are
best described by the daily mean outdoor temperature and that
major clothing adjustments occur rarely during the day. We
then develop an ordinal logistic model of the probability
distribution of discretised clothing levels, which results in a
concise and informative expression of occupants’ clothing
choices. Results from both cross-validation and independent
verification suggest that this model formulation may be used
with confidence. Furthermore, the form of the model is
readily generalisable, given the requisite calibration data,
to environments where dress codes are more specific. We
also observe that, for these building occupants, the
prevailing metabolic activity levels are mostly constant for
the whole range of surveyed environmental conditions, as
their activities are relatively constrained by the tasks in
hand. Occupants may compensate for this constraint,
however, through the consumption of cold and hot
drinks, with corresponding impacts on metabolic heat
production. Indeed, cold drink consumption was found to
be highly correlated with indoor thermal conditions,
whilst hot drink consumption is best described by a
seasonal variable. These variables can be used for
predictive purposes using binary logistic models.

Keywords Clothing .Metabolic activity . Drinks .

Adaptive actions . Behavioural modelling

Introduction

The deterministic features of building simulation programs
are now considered relatively mature. But their ability to
emulate reality is undermined by a poor representation of
non-deterministic variables, particularly relating to occupants’
presence, their interactions with environmental controls and
adaptations of their personal characteristics (such as clothing
and metabolic activity); which impact buildings’ heat gains
and occupants’ environmental comfort.

The prediction of clothing level, metabolic activity and
cold or hot drinks consumption is of indirect relevance to
building performance simulation. Unlike windows and
blinds, these variables have only a marginal influence on
the heat gains of a building, due to occupants’ metabolic
heat gains. However, their impact on occupants’ comfort is
significant and this may influence occupants’ actions to
adapt the building envelope. This article presents a new
approach for the prediction of occupants’ choices of
clothing level, together with occupants’ probable metabolic
activity and their consumption of cold and hot drinks. For
each of these topics we begin with a short review of
previously published research, but first we introduce the
field survey and the experimental design from which our
findings are developed.

Materials and methods

The Solar Energy and Building Physics Laboratory (LESO-
PB) experimental building (Fig. 1, left), located in the
suburbs of Lausanne, Switzerland (46°31′17″N, 6°34′02″E,
alt. 396 m.) was built in 1982 and renovated in 1999. Apart
from service rooms, it hosts on three floors 14 south-facing
offices, which have an area of 15.7 m2 and a height of
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2.8 m, equipped with anidolic systems that improve the
distribution of daylight. A typical office is shown in Fig. 1
(right). A detailed description of the building with an
exhaustive analysis of the building’s energy flows is
provided by Altherr and Gay (2002).

In every south-facing office, occupants have the possi-
bility to tilt or open up to any angle each of the two
windows (height 0.9 m, width 0.7 m). They also have the
possibility to control two external blinds (width 3.50 m): a
lower blind potentially covering the totality of the vision
window (height 1.00–1.85 m) and an upper blind covering
the anidolic system (height 2.10–2.70 m). Electrical
lighting may be dimmed to any desired level with a switch
located next to each office door.

Occupants of this building include senior researchers,
research assistants, technical staff and secretaries. They
mainly carry out office-related work and all use a computer.
There is no particular prevailing dress code. During the
surveyed period, between five and eight offices were
occupied by two persons, while between six and nine
offices accommodated single occupants who were able to
act on the two windows.

All 14 south-facing cellular offices of this building are
equipped with sensors whose real-time measurements are
archived by a centralised EIB data acquisition system.
Occupants’ presence (measured by infrared sensors in every
office), and local indoor (θin) and outdoor (θout) air
temperature (measured by Pt-100 resistance thermometers
in the offices and on the roof) have been continuously
recorded; likewise, a range of other variables.

An electronic questionnaire (Fig. 2) was activated on the
computers of all participating occupants on a rotation basis,
first from 13 June to 27 September 2006 and then from 13
February 2008 to 8 September 2009. Where possible, each
occupant was surveyed for at least three separate periods of
3 months in winter, in summer and during an inter-seasonal
period. The questionnaire typically appeared four times a
day, twice in the morning and in the afternoon, at intervals
of between 2 and 3 h (defined in agreement with each
occupant).

At every prompt, occupants were asked to provide the
following information:

Current clothing level (Icl) The surveyed occupants could
choose from amongst eight possibilities proposed in a drop-
down list (Table 1, upper), from which typical clothing
insulation values ranging from 0.3 to 0.95 (clo) could be
deduced from the ISO 7730 standard.

Activity level during the preceding 15 minutes (M) Six
possibilities were offered (Table 1, lower), also based on
the ISO 7730 standard. Respondents could also tick a “no
change” box, following from the first prompt of the day.

Thermal, visual and olfactory sensation (Sth, Svis, Solf) An
approximate French translation of the standard seven-point
ASHRAE scale for thermal sensation (itself used in the ISO
7730 standard) was proposed. A similar seven-point
bidirectional scale was chosen for visual sensation, whereas
a seven-point unidirectional scale was used for olfactory
sensation. Findings based on these scales are presented by
Haldi and Robinson (2010b).

Other activities during the preceding hour These include
the intake of hot and cold drinks, meals, and additions or
removals of clothing items.

The questionnaire produced 3,924 valid answers
obtained from 17 occupants (8 male, 9 female), Table 2
provides a statistical summary of the variables of interest.

Clothing

State of the art

The issue of clothing can be seen from different perspectives.
As pointed out byMorgan and DeDear (2003), clothing has an
ergonomic function; but it is also affected by cultural and
social contexts, by personality and by corporate identity, while

Fig. 1 View of the south façade
of the LESO building (left) and
typical cellular office (right)
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Table 1 Choices available in the electronic questionnaire for clothing and activity, with corresponding values from ISO-7730 Standard

Clothing ensemble (English translation) Clothing ensemble (original text) Insulation

(m2 K/W) (clo)

Jacket, shirt with long sleeves, trousers/dress, tie, shoes Veston, chemise manches longues, pantalons/robe, cravate,
chaussures

0.147 0.95

Jacket, open neck shirt, trousers/dress, shoes Veston, chemise à col ouvert, pantalons/robe, chaussures 0.140 0.90

Shirt with long sleeves, trousers/dress, tie, shoes Chemise manches longues, pantalons ou robe, cravate,
chaussures

0.124 0.80

Shirt with long sleeves, trousers/dress, shoes Chemise manches longues, pantalons/robe, chaussures 0.116 0.75

Sweater, shirt, trousers, shoes Pullover, chemise, pantalons, chaussures 0.109 0.70

Shirt with short sleeves, trousers, shoes Chemise manches courtes, pantalons/robe, chaussures 0.093 0.60

Shirt with short sleeves, trousers, sandals Chemise manches courtes, pantalons/robe, sandales 0.080 0.50

Shirt with short sleeves, short/skirt, shoes Chemise manches courtes, shorts/jupe, chaussures 0.062 0.40

Shirt with short sleeves, short/skirt, sandals Chemise manches courtes, shorts/jupe, sandales 0.047 0.30

Activity (English translation) Activity (original text) Metabolic rates

(W/m2) (met)

Seated, relaxed Assis, inactif 58 1.0

Sedentary activity Activité sédentaire 70 1.2

Standing, light activity Activité légère, debout 93 1.6

Standing, medium activity Travail debout 116 2.0

Walking Marche 140 2.4

Cycling, running Cyclisme, course 232 4.0

Fig. 2 Electronic questionnaire:
main survey window
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its primary function is to serve as a simple layer of thermal
insulation. Although in this work we are particularly interested
in the latter function, it is important to bear in mind other
factors which motivate our clothing choices.

Clothing has an important impact on the human heat
balance. As such, the reliable estimation of clothing level is
important for the estimation of thermal satisfaction, e.g.
using the ISO-7730 standard (ISO 2005), where clothing
level is a key variable. It is, however, difficult to perform
precise estimates from field surveys without invasive
methods. Methods thus far employed for the estimation of
clothing level are discussed by Olesen (1985).

A first field study on clothing behaviour was carried out
by Humphreys (1972, 1973) on secondary school children.
It was observed that the proportion of children stripped to
the minimum allowed clothing ensemble was significantly
correlated with the room temperature. An analytical
formulation of this proportion was proposed based on
probit analysis. Although within-day changes of clothing
also significantly correlated with room temperature, the
amplitude of this pattern was much smaller than day-to-day
variations.

Further observations were later carried out by Humphreys
(1977), but this time with a focus on clothing outdoors. In
this, a logistic function of air temperature for the probability
of wearing a light clothing ensemble was proposed. It was
found that age and sex were not determinant factors, that

humidity was not an important variable, and that sunshine
had a marginal effect.

Integrating and comparing the observations from these
surveys, Humphreys (1979) proposed to model clothing
level through an exponentially-weighted moving average of
the room temperature. The regression parameters governing
the influence of temperature and the exponential decay of
the running mean were found not to significantly differ
among the datasets.

Measurements performed by Nicol et al. (1996, 1999) in
offices in Pakistan showed, using linear regression, that the
number of items of clothing worn could be associated with
both indoor (R2=0.653) and outdoor (R2=0.666) temperature;
likewise with the comfort vote (R2=0.538), suggesting that
subjects adapt their clothing as a function of perceived
thermal comfort. Outside the interval 20–30°C, clothing
insulation was found to remain constant. By way of
explanation, Nicol et al. (1996, 1999) proposed that clothing
removal stops when the limits of acceptable clothing in office
environments have been reached. We also suggest that
heating systems tend to be used in preference to further
clothing additions so that temperatures below 20°C are
seldom encountered.

Observations of clothing changes performed by Newsham
(1997) and Newsham and Tiller (1997), using a computer-
based questionnaire, revealed that 15% of subjects had
modified their clothing in the hour prior to the appearance of

Table 2 Statistical summary of the questionnaire items: occupant reference number, gender and class of age, number of completed entries, mean
reported clothing level and metabolic activity, proportion of answers reporting drink intake and clothing adjustments

Ref. Gender Age class No. of entries Icl (clo) M (met) Cold drinks Hot drinks Clothing additions Clothing removals

1 M 20–30 51 0.72 1.28 0.67 0.06 <0.001 0.235

2 F 20–30 186 0.66 1.38 0.09 0.01 <0.001 <0.001

3 F 20–30 120 0.56 1.60 0.07 0.01 <0.001 <0.001

4 F 50–65 441 0.74 1.34 0.16 0.37 <0.001 0.056

5 M 50–65 143 0.61 1.22 0.01 0.02 <0.001 0.010

6 M 30–40 263 0.61 1.26 0.73 0.12 <0.001 0.013

7 M 20–30 383 0.68 1.23 0.10 0.17 <0.001 <0.001

8 M 20–30 415 0.61 1.30 0.14 0.24 0.005 0.007

9 M 20–30 38 0.74 1.20 0.13 0.03 <0.001 0.026

10 F 20–30 138 0.66 1.58 0.12 0.01 <0.001 <0.001

11 F 30–40 312 0.66 1.32 0.02 0.06 <0.001 <0.001

12 F 20–30 409 0.68 1.28 0.18 0.16 0.007 0.011

13 M 50–65 372 0.37 1.28 0.60 0.05 0.005 0.072

14 F 30–40 35 0.86 1.21 0.03 0.09 <0.001 <0.001

15 M 50–65 272 0.65 1.49 0.01 0.04 <0.001 <0.001

16 F 50–65 115 0.67 1.22 0.03 0.03 <0.001 <0.001

17 F 50–65 231 0.87 1.20 0.04 0.23 <0.001 0.004

Total 3,924 0.65 1.32 0.19 0.14 0.002 0.019
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the questionnaire. Approximately twice more clothing
removals were recorded than clothing additions.

In a detailed field survey of clothing and activity of 144
subjects, Rowe (2001) observed a diurnal change in
clothing insulation value for 38% of participants, based on
detailed indications of garments worn by respondents.

De Dear and Brager (1998) observed that there was a
significant correlation (R2=0.25) between the mean cloth-
ing level and indoor temperature, but they found an even
stronger correlation with daily mean outdoor effective
temperature (R2=0.49). Morgan and De Dear (2003)
subsequently summarised these findings, together with a
comprehensive literature review completed by additional
research. They underline previous experimental evidence
that clothing levels worn indoors are affected by gender
(women tend to wear less in summer, but more than males
in winter), context, corporate dress codes, indoor climate
variability and outdoor weather. They go on to present a
model to predict the mean daily clothing value as a linear
function of the previous mean daily outdoor temperature
and the predicted maximum temperature for the current day.

In summary, the use of clothing in offices is well
documented by several field studies of variable size and
detail. However, improvements are desirable for the
following reasons:

& There is a recurrent problem of measurement reliability
for clothing level. Often, a computer-based electronic
questionnaire is used; but self-reported insulation levels
are approximate with this method.

& The significant variations due to different dress codes in
different office environments are appreciated, but not
well understood. Furthermore, there is no available
research relating to residential environments.

& The influence of indoor or outdoor temperature is
well documented. However, data are often analysed
with sub-optimal methods such as linear regression
on mean clothing values, with a poor quality of fit,
which undermines the utility of the models. A
comprehensive and validated modelling approach
therefore remains elusive.

In this paper, we focus on the latter two issues: we
develop a model for the prediction of clothing choices
based on rigorously selected predictors, whose formulation
should be directly generalisable, given the requisite data, to
particular dress codes.

Results of survey and development of model

General patterns A preliminary observation from our dataset
is that occupants rarely adjusted their clothing level during the
working day; they mostly choose a definite set of garments at
the start of the day (or adjust their clothing level upon arrival)

which they do not subsequently adjust prior to departure.
Among the surveyed periods, lowering clothing level was
mentioned for only 1.9% of the preceding hours, while this
fraction falls to 0.2% for clothing additions (Table 2).
However, only relatively coarse categories of clothing were
incorporated into our questionnaire, so that minor clothing
adjustments may have been neglected.

From the above observations, it seems necessary to
distinguish between adaptation of clothing level between
days and the occurrence of such adaptations during the day.
By this, we mean that occupants may choose their attire at the
beginning of the day as a predictive strategy, based on historic
experience (e.g. it was warm yesterday and I expect it to be
warmer still today, therefore I will reduce my clothing level
today) and/or they may wear several layers of clothing and
remove these layers as a function of their thermal sensation
(e.g. it is cool at the moment, but I expect it to be warm this
afternoon, therefore I will provide myself with the possibility
to reduce my clothing level during the day). Our preliminary
observations indicate that this latter opportunity is seldom
exercised (or that it is mostly exercised at the time of arrival)
which tends to support the approach adopted by Morgan and
De Dear (2003) to predict a static mean daily clothing level.
By way of illustration, Fig. 3 (left) shows that seasonal
variations have a large amplitude compared to intra-day
variations (Fig. 3, right).

These observed proportions of clothing adaptation
should, however, be interpreted with caution, since it is
possible that small adjustments of clothing level (such as
shortening the sleeves or opening the collar of their shirts)
are also performed by occupants, whether consciously or
not. There may thus exist small but nevertheless significant
variations of clothing level of the order of 0.1 clo, which
may well occur more frequently than the relatively large
adjustments that we have observed.

Predicting daily clothing level To facilitate comparisons
with previous research, we perform linear regression between
observed clothing levels and thermal stimuli. Among outdoor
temperature and its derivatives, daily mean outdoor temper-
ature throughout the preceding 24 h (θout,dm) produces the
best model, far better than indoor temperature (θin):

Icl ¼ 0:929� 0:0184 qout;dm
�Cð Þ; R2 ¼ 0:405

� � ð1Þ

Icl ¼ 1:719� 0:0445 qin
�Cð Þ R2 ¼ 0:137

� � ð2Þ

Furthermore, a model including together θout,dm and θin
does not yield any significant improvement based on
analysis of variance (F=6.05, p=0.014) and the fact that
the R2 remains almost unchanged at 0.406. Despite the fact
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that mean outdoor temperature is a more effective predictor,
it is evident from Fig. 4 that this model is associated with
considerable dispersion, which suggests the need for a more
informative model formulation, i.e. explicitly modelling
clothing level distributions rather than considering decep-
tive unique values (such as mean clothing levels).

Although clothing level is a continuous variable, our
questionnaire was designed to only collect approximate
values, corresponding to the proposed list of items
displayed in Table 1. This was the result of a deliberate
compromise between our desire for detailed responses
and for numerous repeated responses, so that we did not
wish to fatigue our respondents with lengthy lists.
Therefore, this questionnaire recorded clothing level as
a categorical variable whose ordered discrete levels may
be seen as defined by cutpoints applied on an underlying
(not measured) continuous variable. An ordinal logistic
model is the appropriate tool to use with such data,
where the probability for the clothing level Icl to be
superior to a given threshold value Ij is expressed as a
logistic distribution:

p Icl � Ij
� � ¼ exp aj þ bq

� �
= 1þ exp aj þ bq

� �� �
; ð3Þ

where θ is selected as being the most relevant available
thermal variable, such as θin, θout or some time-moving
average or combination of them. As a candidate variable,
we also define the exponentially weighted running mean
of the daily mean air temperature as:

qrm; a ¼ 1� að Þqod�1 þ aqrm�1

¼ 1� að Þ qod�1 þ aqod�2 þ a2qod�3 þ :::
� �

; ð4Þ

with θod-i being the daily mean temperature i days before
and α a constant, usually set to α=0.8 in thermal comfort
studies.

We fit ordinal logistic models for each of these
predictors (Table 3), and observe that the daily mean
temperature θout,dm (as opposed to θout,rm,0.8) is once again
the variable with strongest association (Fig. 5, top left), θout,
rm,0.8 and the instantaneous temperature θout (Fig. 5, bottom
left) are the next best predictors. θin performs relatively
poorly (Fig. 5, bottom right). In general, the considered
averages on θout offer good performance, except for the
monthly mean θout,mm.

Fig. 4 Observed (points) and
fitted (black line) clothing
levels versus daily mean outdoor
(left) and indoor (right) temper-
ature. For each discrete clothing
level value, the corresponding
mean temperature is displayed as
a solid square

Fig. 3 Temporal distribution of
observed clothing levels (left
monthly evolution, right hourly
evolution)
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We have also attempted to add θin as a second variable,
but once again its inclusion is not significant according to
the likelihood ratio test (G=3.52, p=0.06); it also offers no
clear goodness-of-fit improvement (Table 3, last row). Further-

more other variables perform no better. We keep thus as a final
model for clothing choice Equation 3 with θ = θout,dm, where

I ¼ 0:4; 0:5; :::; 0:9; 0:95ð Þ cloð Þ; b ¼ �0:1946� 0:0049

a ¼ 5:40� 0:11; 4:68� 0:10; 4:04� 0:10; 3:14� 0:09; 2:07� 0:08; 1:69� 0:08; 1:35� 0:08; 1:17� 0:07ð Þ

Finally, we check the ordinality assumption by plotting
the means of θout,dm versus the levels of Icl (Fig. 5, top

right), together with the expected value of θout,dm for each
level of Icl (shown as a dotted line) under the proportional

Table 3 Goodness-of-fit estimators for logistic models including one or several variables: likelihood ratio statistic, area under the ROC curve,
Somer’s Dxy, Goodman and Kruskal’s Г, Kendall’s τa, Nagelkerke’s R

2 and Brier score (see Haldi and Robinson 2009 for further discussion of
these goodness-of-fit estimators)

Variable LR AUC Dxy Г τa RN
2 B

θout,dm 1,763.9 0.760 0.520 0.523 0.444 0.400 0.104

θout,rm,0.8 1,687.4 0.752 0.504 0.508 0.430 0.387 0.104

θout 1,677.8 0.748 0.497 0.499 0.424 0.386 0.108

θout,mm 1,485.1 0.731 0.461 0.466 0.394 0.355 0.105

θin 540.0 0.649 0.298 0.303 0.255 0.145 0.130

θout,dm, θin 1,767.5 0.757 0.514 0.515 0.439 0.402 0.112

Fig. 5 Ordinal logistic regres-
sion on clothing level. Observed
and fitted distributions of clothing
levels with respect to daily mean
outdoor (top left) outdoor (bottom
left) and indoor temperature
(bottom right). Observed preva-
lence of clothing levels may be
read along a vertical line for any
chosen temperature. We also
verify the proportional odds as-
sumption with daily mean out-
door temperature as a variable
(top right)
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odds assumption. The low observed discrepancy does not
show any evidence of violation of the ordinality assumption
in this situation.

This model formulation is more informative than
ordinary linear regression: it explicitly gives as a result
the distribution of predicted clothing levels rather than a
mere mean value (which is easily deduced if necessary) and
correctly treats the surveyed discrete clothing levels, this
being encompassed in a single mathematical expression.

Predicting clothing changes The very small number of
observed transitions in clothing level (57 clothing removals
and 5 additions) is problematic for the detection of trends
in clothing adaptation. We attempted to fit binary logistic
models to infer action probabilities and found that there
is no significant contribution of any available predictor
to explain the variation of the very small observed
probabilities.

The rare changes in clothing may be explained by the
high degree of general satisfaction with the thermal
conditions in the building, or by the availability of other
controls to adapt the environment. Indeed, previous studies
of occupants’ behaviour in the same building have shown
that actions on windows (2.40 opening actions per day;
Haldi and Robinson 2009) and shading devices (2.02
lowering actions and 1.73 raising actions per day; Haldi
and Robinson 2010a) are more frequent than clothing
adjustments. Another possible explanation may lie in errors
in judgement (occupants may have adapted to a cooler than
predicted temperature, so that they have erroneously under-
clothed themselves).

Further measurements with more precise clothing values
would thus be helpful to detect minor clothing adjustments,
and better understand occupants’ adaptation in clothing. We
may, however, hypothesise that determinant predictors
should include indoor temperature together with the
initial clothing level and its ability to be changed by
removing or adding a layer of clothing. This suggests the
use of transition probabilities between several clothing
states defined by the available clothing items, with pij=0
for levels Icl,j that cannot be reached with available
clothing Icl,i.

Validation and predictive accuracy

We propose in this section to evaluate the predictive
accuracy of our ordinal logistic model using two similar
methods. In order to perform an unbiased verification of the
predictive accuracy of a model, data used for calibration
should be separated from those for verification. Our first
approach satisfying this requirement is a cross-validation
procedure, in which predictions from a model calibrated

using a subset of our measurements (called the training set)
are tested on the remaining data (called the validation set).
Our second approach, generally considered as more robust,
is an independent verification procedure, where a fully
independent dataset (the SCATs database; Nicol and
McCartney, 2001) is used as validation set, in order to test
the capacity of the model to predict occupants’ chosen
clothing levels in other buildings.

For these two methods, we consider the mean absolute
error (MAE) and the root of the mean squared error
(RMSE) as predictive accuracy indicators, defined as:

MAE ¼ 1

n

Xn
i¼1

Icl; sim; i � Icl; obs; i
�� ��;

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

Icl; sim; i � Icl; obs; i
� �2

;

s

where n is the total number of predictions. Furthermore, we
also consider the proportion of correctly classifed clothing
levels, exact (rhit,0) and up to 0.2 clo (rhit,0.2). The results
from these indicators are displayed in Table 4.

Cross-validation We perform a ten-fold cross-validation, in
which 90% of the data are used for regression while the
remaining 10% are retained for validation. Such a partition
is repeated ten times by permuting this data splitting, so
each observation is used nine times for calibration and once
for validation. This procedure is itself repeated ten times to
detect variations in the performance indicators.

The results of Table 4 indicate that on average the mean
absolute error MAE in clothing level prediction lies
between 0.180 (clo) and 0.186 (clo) and that the model is
able to predict clothing level to within 0.2 (clo) for 62–65%
of cases. Furthermore, detailed examinations show that the
signed deviations between predictions and observations are
symmetric (Fig. 6, left), suggesting that our predictions are
not biased. It is, however, evident that the mean absolute
error slightly increases with θout,dm, due to the relatively
large spread in observed clothing levels at higher temper-
atures (Fig. 6, top right).

By way of comparison, we have also completed this
procedure using θout,rm,0.8 as a variable. From this, we
observe a (barely) noticeable decrease in the accuracy
indicators, suggesting that this variable may also be used
without significant loss in precision.

Independent verification Application of the model to
predict the outcomes of a totally independent dataset shows
that there is a decrese in predictive accuracy, but only to a
very limited extent. For the SCATs longitudinal data, the
mean absolute error increases by 5.9% and the root mean
squared error stays almost constant (Table 4). Estimates are
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slightly less precise for the transverse data (increase in
MAE of 8.0%) but remain in close agreement. These results
would be significantly improved upon if some of the high
clothing insulations observed in the SCATs datasets (up to
1.62 clo) were accounted for in our predictions, which are
capped at 0.95 (clo). For information, we display observed

and fitted clothing levels from the SCATs longitudinal
database in Fig. 7 (left); the ordinal logistic model based on
θout,rm,0.8 yields:

I ¼ 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1:0; 1:1ð Þ cloð Þ;
b ¼ �0:1525� 0:0018

a ¼ 9:8� 0:2; 5:98� 0:05; 4:08� 0:04; 1:92� 0:03; 1:32� 0:03; 0:80� 0:03; �0:32� 0:03; �1:01� 0:03; �2:07� 0:05ð Þ

Optimal time lag of clothing choices The structure of the
SCATs data does not explicitly provide daily mean temper-
atures; however, the exponentially weighted running mean
of the daily mean air temperature is provided for nine
values of the weighting constant α between 0.33 and 0.99.
Fitting ordinal logistic models using sequentially all these
variables shows that the goodness-of-fit indicators reach a
maximum among the available values at α=0.7 for both
SCATs datasets (Fig.7, right), at which the model predic-
tions are relatively robust (as compared to α≥0.8). As
mentioned by Nicol and Humphreys (2010), this exponen-
tial weighting constant decays the weight of past temper-

atures with a half-life of 0.69/(1 – α) days. With predictive
accuracy being relatively similar within the range 0.45≤α≤
0.7, the corresponding half life is between 1.25 and
2.3 days. However, the optimal value of this weighting
constant may depend on the local climatic context.

Discussion of survey and model

Determinant predictors Based on our observations, there is
evidence that outdoor climate and season in general
primarily determine effective clothing levels in office

Fig. 6 Detailed examination
of cross-validation results.
Distribution of the obtained
signed differences between
observed and predicted clothing
(left). Mean absolute error
versus daily mean outdoor tem-
perature, with local weighted
polynomial regression (right)

Table 4 Validation indicators: range of mean absolute error, root mean squared error, proportion of correctly classified outcomes among the ten
validation replicates

Variable MAE RMSE rhit,0 rhit,0.2

Cross-validation (3,924 obs.)

θout,dm 0.180–0.186 0.238–0.242 20.7–22.9% 61.7–64.5%

θout,rm (α=0.8) 0.184–0.189 0.242–0.247 20.5–22.1% 61.4–63.2%

SCATs long. (27,816 obs.)

θout,rm (α=0.8) 0.196–0.199 0.243–0.246 2.4–2.9% 60.9–61.6%

SCATs trans. (4,339 obs.)

θout,rm (α=0.8) 0.198–0.205 0.250–0.257 0.4–0.9% 55.4–57.9%
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environments. In contrast with other adaptive actions
performed by building occupants, such as actions on
windows (see Haldi and Robinson, 2009) or blinds (Haldi
and Robinson, 2010a), which are consequences of local
indoor stimuli, the prevailing outdoor climatic conditions
appear to directly influence occupants’ clothing decisions.
The specific impact of daily mean outdoor temperature is
coherent, representing the influence of the recent past on
clothing decisions, in conjunction with the fact that changes
during the day are rare. It is because of this relative rarity
that a model predicting the removal or addition of layers of
clothing remains elusive. We may at best offer the
seemingly logical conclusion that occupants perform
changes (if available) based on local indoor stimuli.

In conclusion, clothing adaptation tends to be more a
predictive strategy—the level being set at the beginning of
the day, based on prior experience of thermal (especially
outdoor) conditions, with opportunities for adaptation
during the day being rarely exercised.

Dress codes and specificities In certain office environments,
particularly those in which formal attire is favoured, occupants
may be rather constrained from adjusting their clothing level.

Occupants of our relatively informal case study building,
however, were able to adjust their clothing level in a rather
unconstrained way.

A strict dress code implies a suppression of adaptive
opportunity (implying a narrower range of acceptable
temperatures). This can be modelled using a modified
version of Eq. 3 where low clothing levels are removed,
and thus merged with the lowest available level. In
residential environments on the other hand adaptation may
be relatively unconstrained, allowing for yet lower clothing
levels if necessary, requiring additional levels in Eq. 3.
Figure 8 summarises a possible formulation of these
environment-specific distributions.

Proposal for a model Based on these observations, we
propose a model formulated as follows:

1. The range of possible clothing levels is determined by
the type of environment to simulate.

2. At the start of each day, based on the mean outdoor
temperature of the preceding 24 h, a clothing level is
randomly drawn from the distribution of Eq. 3;
accounting for context-specific constraints.

Fig. 7 Observed and fitted
clothing levels versus running
mean outdoor temperature
for the SCATs longitudinal
dataset (left). Nagelkerke’s R2

for ordinal logistic models with
different values of the exponential
weighting constant of the
outdoor temperature (right)

Fig. 8 Hypothetical distributions for clothing in different environments
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3. For each time step where the occupant is present,
additions and removals of clothing are predicted using
transition probabilities whose explicit form is to be
defined.

For such a model, however, dedicated field survey data from
residential1 and a broader range of non-residential environ-
ments would be required. Furthermore, in the absence of data
to support the third step above, the relative rarity of this
observed form of adaptation would support an intermediate
model based on only the first two steps, which models day-to-
day transitions, the most important adaptation mechanism.

Metabolic activity

Like clothing, metabolic activity is a determinant variable
for thermal comfort and is therefore of interest in our
research. As with clothing, metabolic activity was self-
reported by respondents of our electronic questionnaire, in
which a choice from a limited set of metabolic activities
(seating, standing, etc.) was made, see Table 1.

State of the art

Research on observed variations of occupants’ metabolic
activity is very lacunar. A precise measure of this value is
also difficult, so that most thermal comfort surveys provide
an approximate value calculated from self-reported types of
activities. The question is, however, of interest, since this
too influences occupants’ thermal comfort and so may in
principle be used as a strategy to adapt to discomforting
thermal stimuli; provided of course that the occupants’
tasks permit such adaptations.

In his field survey, Rowe (2001) observed, twice a day,
six levels of office activities, using weighting factors for the
ongoing duration of this activity and for the consumption of
snacks, meals, beverages or cigarettes. Based on collected
values ranging between 1.0 and 1.9 met, from 20–27°C, it
was observed that 78% of respondents reported different
activities between morning and afternoon observations. A
weak relationship was found between activity rate and
indoor operative temperature, but no relationship was found
with outdoor temperature.

Using data from a field survey in Tunisia, Bouden and
Ghrab (2005) found that metabolic rate remained nearly
constant between 1.2 and 1.3 met, independent of temperature;
they were not able to survey occupants after 2pm, when they
were absent on siesta: which of course is of itself an adaptive
strategy.

Results and discussion

As with clothing, we attempted to fit an ordinal logistic
model for reported categories of metabolic activity levels.
But none of the measured variables could explain the very
small observed variations in activity levels (82.7% of
answers indicated sedentary activity, corresponding to M=
1.2 met). To illustrate the problem, Fig. 9 shows the
distribution of activity with respect to θout,rm,0.8 and θin.

As noted above, occupants may, in principle, adapt activity
levels in response to environmental stimuli, likewise their
clothing. But in contrast with residences, workplace activities
tend to be dictated by the tasks in hand. In offices, metabolic
activity may be particularly constrained, being essentially
sedentary (desk-based) in nature. It is, we suggest, due to its
constrained nature that we observe no discernible statistical
correlation between the adaptation of activity and any kind of
environmental stimulus.

It is however possible that, under extreme thermal
conditions, occupants vary the intensity of their desk-based
activity but our electronic questionnaire was not designed
to address this question. There would appear thus to be a
need for further field survey data addressing metabolic
activities and associated environmental stimuli in less
constrained working environments to support the develop-
ment of a predictive adaptive model.

Outside the working environment, occupants have in
principle the freedom to adapt their activities according to
their personal preferences (which may or may not be decided
in response to environmental stimuli). An obvious and well-
known example is the siesta, which is common to several
Mediterranean countries, where activities are slowed down
during the peak temperatures of the day (as experienced by
Bouden and Ghrab (2005). However, this kind of adaptation
is probably a last resort in the range of adaptations to restore
thermal comfort. It seems then that there is only marginal
interest in modelling variations in metabolic activity as an
adaptation response to restore thermal comfort.

Use of drinks

Taking a cold drink was reported for 18.9% of hours
preceding the questionnaire (13.5% for hot drinks); it is
thus a relatively prevalent activity. We have performed
logistic regressions for the probability of these events and

1 Note that our model is developed from a field survey of the
behaviours and preferences of a relatively esoteric group of academics
accommodated in a relatively atypical passive solar building (which is
warmer than average in winter and may induce correspondingly lower
than average clothing levels. The generality of the calibration
parameters presented in association with Eq. 3 may thus be placed
under scrutiny. We would, however, contest that the form of the model
is generalisable (following the above steps and data permitting).
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found that indoor temperature is the best predictor for the
consumption of cold drinks, while this is the exponentially

weighted running mean of the outdoor temperature
θout,rm,0.8 in the case of hot drinks. We obtain then:

pcdðqinÞ ¼ exp acd þ bcd qinð Þ= 1þ exp acd þ bcd qinð Þð Þ; R2
N ¼ 0:037; AUC ¼ 0:608

� � ð5Þ

phd qout; rm; 0:8

� � ¼ exp ahd þ bhd qout; rm; 0:8

� �
= 1þ exp ahd þ bhd qout; rm; 0:8

� �� �
; R2

N ¼ 0:017; AUC ¼ 0:586
� � ð6Þ

with acd ¼ �6:7� 0:6; bcd ¼ 0:21� 0:02; ahd ¼ �1:32� 0:09; bhd ¼ �0:037� 0:006:

Cold drink consumption is also modelled with similar
accuracy by outdoor temperature, perhaps suggesting the

presence of some form of seasonal adaptation, rather than
being influenced solely by internal conditions. The observed

Fig. 10 Observed and fitted
probabilities for cold
(top) and hot (bottom) drinks to
be consumed during the
previous hour with 95% level
confidence intervals

Fig. 9 Observed distribution
of activity levels versus
exponentially weighted running
mean outdoor temperature (left)
and indoor temperature (right).
Observed prevalence of activity
levels may be read along a
vertical line for any chosen
temperature
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and fitted probabilities are shown in Fig. 10. From this, it
seems that building occupants consume cold drinks with
greater frequency, relative to a basic minimum (temperature
invariant) consumption, when the indoor thermal conditions
are warmer; hot drinks are more clearly related with a
variable expressing seasonal variations, implying no signif-
icant variations during the day.

In conclusion, office occupants seem to adapt their
internal heat production in response to thermal stimuli
through the use of drinks, which is an unconstrained means
of adaptation in a working environment, as opposed to
adjustments of metabolic activity.

Conclusions

Based on careful variable selection, we have presented a
predictive model for occupants’ daily choices of clothing in
naturally ventilated buildings. Its formulation is together:

& Informative: it provides for a probability distribution of
occupants’ clothing choices;

& Rigorous: the surveyed discrete clothing levels are
explicitly modelled;

& Convenient to use and implement: the probability of a
given clothing interval is easily deduced, likewise the
mean and standard deviation of the clothing level;

& General: application to specific environments with
particular dress codes is straightforward, given the
corresponding data with which to calibrate the model.

We have also proposed a framework for simulating
occupants’ clothing adjustments during the day, but are not
as yet able to propose a definitive model; this would require
considerably more data, ideally from a range of climate
types. We have also been unable to develop a meaningful
model of variations of metabolic activity in offices. This is
because of the relative intransience of this variable in the
office context, where activities are relatively constrained. In
less constrained environments, metabolic activity may well
be a useful adaptive mechanism in response to discomfort-
ing thermal stimuli. More data in other types of workplace
would be required to investigate this; likewise in respect of
adaptations of metabolic activity in residential environ-
ments. We have, however, observed a significant impact of
thermal conditions on the intake of cold and hot drinks in
office environments, which indicates that occupants regu-
late their internal heat production in this way.

Practical implications

This study identifies outdoor temperature values in the near
past as the key driving variable for building occupants’
clothing choices. A detailed statistical analysis of field

survey data allow for the formulation of an informative
predictive model for the probability distribution of clothing
levels in buildings, for application in thermal comfort
analysis and building simulation programs. The model is
shown to predict clothing insulation values to a 0.2 (clo)
precision at a frequency higher than 60%. This research
also shows that occupants adapt their metabolic activity
through the intake of cold and hot drinks, whose relationship
with thermal conditions is demonstrated and can be predicted
using binary logistic models.
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