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Abstract We formulate a macroscopic description of the mechanics of damaged materials. To represent the
microstructure, the distribution of crack sizes is captured by way of the Minkowski functionals, or so-called
quermass integrals, while a second-rank tensor is used to describe the average orientation of the cracks. A
two phase-type approach is adopted to distinguish elastically strained material from unstrained regions in the
wake of the cracks. Using nonequilibrium thermodynamic techniques, the driving force for the growth of the
microcracks is naturally identified. In particular, Griffith’s law is generalized to assemblies of polydisperse
crack sizes. Due to the detailed characterization of the microstructure, we are also able to account for the
plastic zones at the rims of the cracks that are known to hamper the crack growth, and to discuss possible
forms of the damage parameter. The presented approach separates in a transparent fashion the incorporation
of fundamental thermodynamic and mechanic principles on one hand, from the specification of the material
and details of the crack formation and growth on the other hand.

1 Introduction

Continuum damage mechanics (CDM) is a relatively new branch of solid mechanics that bridges the fields
of continuum mechanics and fracture mechanics. It is an experimental fact that many materials experience
micro-crack formation as a prelude to macroscopic fracture, and one of the main objectives of CDM is to
capture the essentials of the nucleation and evolution of this micro-damage that often occurs during finite
deformation of both ductile and brittle materials.

A concise review of CDM was compiled by Krajcinovic [1]. Within CDM there is a broad distinction
between micromechanical models, that consider the detailed stress and strain fields around a microscopic
crack, and phenomenological models, that use internal variables to describe the influence of micro-damage on
the macroscopic deformation behavior. Focusing on the latter, many internal parameters have been proposed to
describe the evolution of damage in materials. Budiansky and O’Connell [2] used a self-consistent procedure
to arrive at a crack-density parameter to describe the reduction of the elastic constants that, in the case of
an isotropic distribution of penny-shaped cracks, equals the number density of cracks times the average of
the cube of the crack radius. Also vectors [3,4], second order tensors [5] and even eighth-order tensors [1]
have been used to describe the evolution and orientation distribution of damage in materials. One of the most
popular concepts in CDM is based on the notion of a so-called “effective stress” combined with the hypothesis
of strain equivalence [6–8]. In this approach, a damage parameter is defined that transforms the nominal stress
tensor into an effective stress tensor. For anisotropic damage, this damage parameter is a fourth order tensor
that reduces to a scalar in case of isotropic damage. The hypothesis of strain equivalence then states that the
effect of damage can be described by applying the constitutive equations for the undamaged material and
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replace the nominal stress tensor with the effective stress tensor. Using these concepts, for isotropic damage in
a given cross section through a material point, the damage parameter can be interpreted as the fraction of void
area to the total area, or, alternatively, as a loss of compliance, and can be measured simply by comparing the
stiffness of undamaged material with that of damaged material upon unloading.

In many theoretical expositions on CDM, the thermodynamics of hidden variables [9,10] has been applied
to ensure a correct constitutive description of damage. Typically, the usual balance laws of mass, momentum,
moment of momentum and energy, combined with a detailed expression of the Helmholtz free energy as a
function of all, including the hidden (damage) variables, are augmented with the Gibbs–Duhem inequality,
specifying the non-negative entropy production density [3,4,8,11,12]. Applied in this manner, the thermody-
namics of hidden variables to describe damage is formally analogous to the more well-known use of hidden
variables to describe finite plasticity [13]. However, in most cases, the free energy expression is not used to feed
detailed information about crack dimensions on the thermodynamic state of the material, but is merely selected
such that it coincides with the effective stress tensor assumption [6–8]. Also the representation theorem of
tensor functions [14–16] has been used to arrive at general expressions to describe damage [3,5], but this,
unfortunately, often leads to an abundant amount of material coefficients.

In many materials, damage is preceded by plastic deformation. However, most CDM treatments of this
so-called “ductile damage” associate damage solely with changes in the elastic properties of the material,
assuming additive contributions of damage and plastic deformation to the free energy expression [11,17],
although also more elaborate couplings between damage and plastic deformation have been considered [18].

The use of internal (“hidden”) variables to characterize the non-equilibrium thermodynamic state of a
system, also has a long tradition in the field of polymer rheology. The current most successful constitutive
equations that accurately describe the non-linear viscoelastic flow of polymer melts are based on evolution
equations for detailed microscopic variables such as the second moment of the end-to-end distance vector of
the polymer chains, or the distribution of orientation vectors along the primitive path [19,20]. A general two-
generator formalism, coined “GENERIC” (General Equation for the Nonequilibrium Reversible-Irreversible
Coupling), that can be used either in bracket or operator form, was shown to be particularly helpful in guiding a
correct description of the non-equilibrium thermodynamics of these complex fluids [21–23]. Recently, GENE-
RIC was successfully applied also in the field of solid mechanics to obtain an Eulerian representation of finite
non-isothermal anisotropic elastic and elasto-viscoplastic behavior of compressible solids, using the elastic
deformation gradient as structural variable [24,25]. It is the objective of this research to apply GENERIC to
obtain the full set of dynamic equations that describe continuum damage mechanics in finite, non-isothermal
anisotropic brittle materials, based on detailed crack parameters. Particular emphasis will be on the relation
between the emerging evolution equations for these crack parameters and Griffith’s law [26–28]. Also the
implications of coupling between tensorial internal variables on the symmetry of the stress tensor will be
discussed.

The manuscript is organized as follows. The GENERIC framework of nonequilibrium thermodynamics is
presented in Sect. 2 and applied to formulate the evolution equations for brittle damage mechanics in Sect. 3.
Finally, in Sect. 3.6, the model is compared to Griffith’s law and other existing models in CDM. The main
conclusions are then summarized in Sect. 4.

2 Thermodynamic formalism

Nonequilibrium thermodynamics acts as a guard-rail, helping the modeler to cast the understanding of a
complex system with internal variables in a form that complies with certain principles of thermodynamics.
There is a wide variety of approaches to nonequilibrium thermodynamics modeling, and the relations between
many of them have been established [29,30]. Here, we choose the general equation for the nonequilibrium
reversible–irreversible coupling (GENERIC) framework by Grmela and Öttinger [21–23]. In regard to the
topic of this paper, this method seems to be the most suitable one, in particular owing to its large flexibility in
using structural variables and to its applicability to nonisothermal situations.

A decade ago, the GENERIC formalism has been developed for describing closed non-equilibrium systems
[21–23]. When trying to formulate a model in that framework, the first step is to choose the variables that
describe the situation of interest. Similar to the procedure in equilibrium thermodynamics, the choice of
variables must be such that they are independent and sufficient to capture the essential physics. Such a set of
variables shall here be denoted by x. Note that x may have both discrete as well as continuous indices (for
field variables). According to GENERIC, the time evolution of the variables x of an isolated system can be
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written in the form

∂x
∂t

= L(x) · δE

δx
+ M(x) · δS

δx
, (1)

where the two generators E and S are the total energy and entropy functionals in terms of the state variables x,
and L and M are certain matrices (operators). The two contributions to the time evolution of x generated by
the total energy E and the entropy S are called the reversible and irreversible contributions, respectively. The
operator L describes the kinematics, while the operator M accounts for a wealth of irreversible processes, and
hence contains material parameters such as diffusion coefficients, viscosities, relaxation times, and reaction
constants. The matrix multiplications (symbol ·) imply not only summations over discrete indices but may
also include integration over continuous variables, in particular for non-local field theories, and δ/δx typically
implies functional rather than partial derivatives (for more details see [21–23]).

The GENERIC structure also imposes certain conditions on the building blocks in (1). First, Eq. (1) is
supplemented by the mutual degeneracy requirements

L(x) · δS

δx
= 0, (2a)

M(x) · δE

δx
= 0. (2b)

The requirement that the functional derivative of the entropy lies in the null-space of L represents the fact
that the entropy is not affected by the operator generating the reversible dynamics. Conversely, the energy is
conserved by the irreversible contributions, according to (2b). In addition to these degeneracy requirements, L
must be anti-symmetric, whereas M needs to be positive-semidefinite and Onsager–Casimir symmetric. As a
result of all these conditions one may easily show that the GENERIC equation (1) implies both the conservation
of total energy as well as a nonnegative entropy production. Finally, the GENERIC structure requires that the
Poisson bracket associated to the operator L,

{A, B} =
〈
δA

δx
, L · δB

δx

〉
, (3)

with appropriate scalar product 〈 , 〉, fulfills the Jacobi identity

{A, {B,C}} + {B, {C, A}} + {C, {A, B}} = 0, (4)

for arbitrary functionals A, B and C . This identity expresses the time-structure invariance of the reversible
dynamics. Given the Poisson bracket (3) together with the antisymmetry and the Jacobi identity (4), the rever-
sible contributions to the evolution equations of the GENERIC take the well-structured form of Hamiltonian
dynamics in the geometrical setting of Poisson manifolds.

The complementary degeneracy requirements, the symmetry properties, and the Jacobi identity are essential
for formulating proper L- and M-matrices when modeling concrete nonequilibrium problems. Various appli-
cations have shown that the two-generator idea and the criteria on the two operators have strong implications
(e.g., see [22,23,31,32]).

3 Dynamic model for crack growth

3.1 Variables

As just discussed, a thoughtful choice of the microstructural variables is of paramount importance. Making
such a choice involves the important step of prioritizing versus neglecting features that are thought of as less
relevant. Therefore, the final full dynamic model can only be as successful as the starting point was chosen
carefully. Keeping this paradigm in mind, we proceed in due detail with the choice of the variables to describe
the assembly of microcracks.

In making a choice of variables, we are guided be two opposing requirements. On one hand, certain features
of the microstructure must be accounted for in order to give a fair description of the physics. On the other hand,
the model should still be tractable, in particular numerical simulations of macroscopic specimens under tensile
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Fig. 1 a Illustration of a random arrangement of flat microcracks with unit normals n. Cracks are assumed to have zero volume.
The finite thickness of the ellipses indicates that n has a nonvanishing component out of the drawing plane, i.e., the cracks are
tilted. b Under a tensile deformation along the direction of the dashed-dotted arrow, regions without elastic strain develop in the
wake of the cracks (light grey, bounded by dashed lines). Note that the amount of relaxed material, φ = ωψ3, depends on the
orientation of the crack with respect to the main tensile direction through ω. The dotted circles indicate the spheres of radius
R around each crack as used in the definition of ψ3

deformation must be feasible. In this study, we use a continuum formulation with field variables that have a
resolution much coarser than the crack size. The cracks are accounted for by measures such as the average
crack orientation and the average crack size of all cracks located within one representative volume element,
as discussed in the following.

As far as the shape of the cracks is concerned, we restrict our attention to flat, circular cracks of radius
R, for clarity. If one desires to discuss shapes other than circular disks, the reader is referred to the procedure
outlined in [33]. To proceed with the quantification of the microstructure, we point out the following: first,
the number density of cracks must be included in order to account adequately for crack initiation. Second, the
average radius of cracks is important for quantifying the region around the crack rims that experiences plastic
deformation upon crack growth (see Sect. 3.6). Third, the average surface area of cracks is relevant, because
in Griffith’s treatment of crack growth [26–28] the surface plays a prominent role. And last but not least, if
a tensile stress is exerted on the sample, the presence of cracks leads to regions in which the elastic stress is
relaxed. Certainly, the size of these regions is related to the size of the cracks, see the light grey domains in
Fig. 1b. Therefore, also a volume-type variable must be included in the dynamic model, although the cracks
themselves have zero volume. In summary, if the density of crack radii at spatial position r is denoted by
p(R, r), we propose to use the four variables

ψ0(r) =
∫

p(R, r) dR, (5a)

ψ1(r) =
∫

R p(R, r) dR, (5b)

ψ2(r) = 2π
∫

R2 p(R, r) dR, (5c)

ψ3(r) = 4π

3

∫
R3 p(R, r) dR, (5d)

with ψ0 the number density of cracks, and ψ1 and ψ2 the average crack radius and crack surface times the
number density of cracks. The quantity ψ3 quantifies the volume fraction when associating spheres of radius
R with the cracks of radius R. The volume fraction of unstrained regions, φ, can then be related to ψ3 by

φ = ωψ3, (6)

where 0 ≤ ω and ω depends on the loading conditions as illustrated in Fig. 1b. In particular, ω = 0 in
compression. Note that the four variables in Eqs. (5) are indeed independent since they capture different
moments of the distribution of crack radii.

The variables (5) are closely related to the Minkowski functionals, also known as intrinsic volumes (or
quermass integrals, curvature integrals), that are used in integral geometry to characterize surfaces and shapes
[34–37]. Integral geometric measures in the form of Minkowski functionals find applications in various fields
of research, e.g., the study of chemical reaction–diffusion patterns, spinodal decomposition kinetics and the
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structural phase diagrams of emulsions [38,39], as well as to quantify higher order correlations of galaxy cluster
distributions in cosmology [40,41] and the heterogeneity of colloidal particle networks [42]. The application
of these measures also enters into continuum models for crystallization, assuming that the shape of the crystal
phase can be described as an assembly of impinging, randomly oriented and randomly positioned, convex
crystals. Quiescent as well as flow-induced crystallization of polymers has been modeled [43–48], and the
thermodynamic driving forces for nucleation and growth have been elaborated on [49,50].

The assumption of the cracks being flat allows one to talk in a well defined way about the orientation of
the cracks in terms of their surface normals n, each of which is unique up to a physically irrelevant sign, see
Fig. 1. The orientation of cracks can be modeled in different ways. For example, Muschik et al. [12,51–53]
have used the distribution function of the normal vectors as a dynamic variable. However, in view of arriving
at a model that is tractable (numerically) also for realistic, macroscopically inhomogeneous situations, we
follow a different avenue. In order to represent relevant aspects of the orientation distribution of the cracks in
a condensed form, we use as a dynamic variable N = 〈nn〉 with the property trN = 1, where the average is
taken over all cracks within one representative volume element with equal weight to all cracks, regardless of
differences in their respective size.

In addition to these variables, to model nonisothermal processes in a moving and compressible material,
we use the momentum density u, the temperature T , and the mass densities of the elastically strained and
relaxed material, ρs and ρr. The latter are both so-called “extrinsic” mass densities, i.e., they are given by the
ratio of the mass of the respective part divided by the total volume of the representative volume element, and
hence they add up to the total mass density of that volume element, ρ = ρs + ρr. The elastic deformation of
the material is accounted for by the normalized elastic deformation gradient F̃ with det F̃ = 1. For using the
F̃ to describe anisotropic finite elasticity and elasto-viscoplasticity in a thermodynamic setting, the reader is
referred to [24,25]. In summary, the full set of variables is given by

x = (u, T, ρs, ρr, {ψ}i=0,...,3, c, F̃), (7)

which are all functions of the spatial position r and of time t . Note that, for technical reasons, we use instead of
N an unconstrained tensor c, that will later be used to derive the evolution equation of N by way of N = c/trc.

3.2 Generating functionals

The static material properties are specified in terms of the functionals for the total energy and entropy, that
according to (1) drive the reversible and irreversible dynamics, respectively. For the time being, we write

E =
∫ (

u2

2(ρs + ρr)
+ e(T, ρs, ρr, {ψ}i=0,...,3, c/trc, F̃)

)
d3r, (8a)

S =
∫

s(T, ρs, ρr, {ψ}i=0,...,3, c/trc, F̃)d3r, (8b)

where we have only written the kinetic energy term in explicit form. This in turn leads to v = δE/δu for the
velocity field defined by v = u/(ρs + ρr). The static thermodynamic properties described by the local energy
density e and the entropy density s are still most general, given the set of variables x. Specific assumptions
about these two functions will only be made in the applications of the general model, see Sect. 3.6. Note that
both e and s depend on c only through the combination N = c/trc since only the latter is physically significant.
In this way, the constraint trN = 1 is taken into account properly when performing the functional derivatives
δE/δc and δS/δc [54]. As the only condition on e and s, we require that they be mutually consistent in the
sense T = e,T /s,T . Throughout the entire manuscript, we use the notation y(x),xi ≡ (∂y/∂xi )|xk �=i for partial
derivatives, where xk �=i denotes the remaining variables in Eq. (7) to be held constant upon differentiation.

3.3 Reversible dynamics

The reversible contributions to the time evolution equations of the variables x are given by the Poisson operator
L. The specific form of the latter can be inferred from the behavior of the variables x under space translations
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[23]. It can be shown that for our present choice of dynamic variables (7) only the momentum column and row
of the operator have non-zero entries, namely,

L(uu)
αγ = −∇γ uα − uγ∇α, (9a)

L(T u)
γ = −(∇γ T )−
γµ∇µ, (9b)

L(ρsu)
γ = −∇γ ρs, (9c)

L(ρru)
γ = −∇γ ρr, (9d)

L(ψi u)
γ = −∇γ ψi + aiψi∇γ , i = 0, . . . , 3, (9e)

L(cu)
αβγ = −(∇γ cαβ)− cγβ∇α − cαγ∇β, (9f)

L(F̃u)
αβγ = −(∇γ F̃αβ)+ F̃µβ∇µδαγ − 1

3
F̃αβ∇γ , (9g)

L(uT )
α = (∇αT )− ∇µ
αµ, (9h)

L(uρs)
α = −ρs∇α, (9i)

L(uρr)
α = −ρr∇α, (9j)

L(uψi )
α = −ψi∇α + ∇αaiψi , i = 0, . . . , 3, (9k)

L(uc)
αγ ε = (∇αcγ ε)− ∇γ cαε − ∇εcγα, (9l)

L(u F̃)
αγ ε = (∇α F̃γ ε)+ ∇µ F̃µεδαγ − 1

3
∇α F̃γ ε, (9m)

where we assume that the coefficients ai are absolute constants. Subscripts γ and (γ, ε) imply contraction with
a vector Aγ and matrix Aγ ε multiplied from the right, respectively. All derivative operators act on everything
to their right, also on functions multiplied to the right of L, except when placed inside of parentheses (. . .).
Since the focus of this manuscript is on the irreversible formation and growth of the microcracks, we refrain
from going into any details about the derivation of this expression for the Poisson operator. The interested
reader is referred to [23,24,49]. We only point out that c is assumed to behave as a lower convected tensor field
(in contrast to upper convected) as it can be shown that this leads to the correct contributions in the evolution
equation for N for flat disks [55–58], as shown in Sect. 3.5.

The degeneracy condition L · (δS/δx) = 0 imposes a condition on the tensor � in the elements L(T u) and
L(uT ). After some rearrangements one obtains

s,T � =
⎛
⎝s − ρss,ρs − ρrs,ρr +

∑
i=0,...,3

(ai − 1)ψi s,ψi

⎞
⎠ 1 − 2c · s,c + s

,F̃ · F̃T . (10)

In order to identify the expression for the stress tensor, one needs to write out the momentum balance, i.e.
[∂t u]rev = (L · (δE/δx))u, and identify the source term, ∇ · σ T . Inserting the expression for �, using the
identity T = e,T /s,T , and defining the Helmholtz free energy density as f = e − T s, one finds for the stress
tensor

σ = σ (iso) + σ (N) + σ (F̃), (11a)

with

σ (iso) =
⎡
⎣ f − ρs f,ρs − ρr f,ρr +

∑
i=0,...,3

(ai − 1)ψi f,ψi

⎤
⎦ 1, (11b)

σ (N) = −2c · f,c, (11c)

σ (F̃) = f
,F̃ · F̃T . (11d)
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The stress tensor contribution (11d) due elastic deformation is the well known general case for anisotropic
finite elasticity [9,24]. Since f

,F̃ is a constrained derivative due to the condition det F̃ = 1, it can be shown

that trσ (F̃) = 0 (see Appendix). The same holds true for the contribution due to the orientation of cracks, (11c),
i.e., trσ (N) = 0 as a result of the condition trN = 1 (see Appendix). Therefore, the splitting into isotropic and
anisotropic contributions is at the same time a splitting into isotropic bulk and deviatoric, traceless parts.

The Poisson operator L with non-zero elements (9) and (10) is antisymmetric and satisfies the degeneracy
condition by construction. In order to prove the Jacobi identity, it is useful to observe that the Jacobi identity is
invariant with respect to a transformation of variables from x to x′ [23]. Since it can be shown that ∂t s|rev =
−∇ · (sv) by the aid of the chain rule and the reversible contributions to the evolution equations given by
∂t x|rev = L ·δE/δx (see also Sect. 3.5), replacing T by s leads to a Poisson operator linear in all field variables.
In a straightforward, although lengthy, calculation, the latter Poisson operator can be shown to satisfy the Jacobi
identity (see [24] for further details).

3.4 Irreversible dynamics: formation and growth of microcracks

In the following, we restrict ourselves to the formation and growth of cracks in solids, i.e., explicit viscoplastic
effects and heat conduction are neglected as they have been dealt with elsewhere [23,25]. Since all these
effects are of distinct physical origin, such an isolated view on the subproblems is permitted in the absence
of cross-couplings, in which case the GENERIC conditions on the friction matrix M are satisfied if they are
satisfied for the individual additive contributions. Only in the presence of cross-couplings, not considered
here, an integrated treatment of all effects would be required. For the formulation of the formation and growth
of cracks (fgc), we proceed along the same lines as in [49], where crystal nucleation and growth have been
discussed. In view of the GENERIC equation (1), one must find the generalized friction matrix M. As a starting
point we write the corresponding contributions to the evolution of the microstructural variables in the form

[∂tψi ](fgc) = ϒi , (12a)

which defines the quantities ϒi . As a result of these changes in the microstructural variables, also the other
variables experience changes that can be written in the form

[∂t u](fgc) = 0, (12b)

[∂t T ](fgc) =
∑

i=0,...,3

T̂iϒi , (12c)

[∂tρs](fgc) = −
∑

i=0,...,3

ρ̂iϒi , (12d)

[∂tρr](fgc) =
∑

i=0,...,3

ρ̂iϒi , (12e)

[∂t c](fgc) =
∑

i=0,...,3

ĉiϒi , (12f)

[
∂t F̃

]
(fgc)

=
∑

i=0,...,3

F̂iϒi . (12g)

The quantities T̂i , ρ̂i , ĉi and F̂i are in general functions of x, and therefore significant physical insight can
be modeled upon specifying these functions. Some general statements can be made before that specification.
The formulations of (12d) and (12e) ensure conservation of the total mass. Furthermore, in order to comply
with the symmetry of c and the condition det F̃ = 1, all ĉi must be symmetric and tr(F̃−1,T · F̂i ) = 0. The
functions T̂i will be used to respect the conservation of the total energy of the system, as expressed by (2b). It
is important to note that in (12b)–(12g) only immediate, direct effects of the formation and growth of cracks
are represented. The change of the momentum density as a result of the formation and growth of cracks, for
example through changes in c and F̃ that in turn affect the stress tensor, is indirect and therefore [∂t u](fgc) = 0.
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For later convenience, Eq. (12) is written in the form [∂t x](fgc) = ∑
i=0,...,3 Diϒi , which defines the

quantities Di as

Di =
(

0, T̂i ,−ρ̂i , ρ̂i , {δi j }, ĉi , F̂i

)T
, (13)

with {δi j } representing a nonzero entry only in the ψi -component, which in turn leads to Di being linearly
independent. On this basis, it can be shown that the friction matrix must be of the form (see [49] for details)

M =
∑

i, j=0,...,3

Gi j Di DT
j , (14)

with a symmetric and positive semi-definite 4 × 4-matrix G. The degeneracy condition M · (δE/δx) = 0 then
assumes the form Di · (δE/δx) = 0 (i = 0, . . . , 3), leading to the conditions

T̂i = − 1

e,T

(
ρ̂i
(
e,ρr − e,ρs

) + e,ψi + ĉαβ,i e,cαβ + F̂αβ,i e,Fαβ
)
, i = 0, . . . , 3. (15)

In turn, one obtains for the partial driving forces Di for the formation of micro-cracks

Di ≡ Di · (δS/δx)

= − 1

T

(
ρ̂i
(

f,ρr − f,ρs

) + f,ψi + ĉαβ,i f,cαβ + F̂αβ,i f,Fαβ
)
, i = 0, . . . , 3,

(16)

with the free energy density f introduced earlier. The matrix G in (14) determines the kinetics of crack
formation and growth as can be seen from the evolutions equations

⎡
⎢⎣∂t

⎛
⎜⎝
ψ0
ψ1
ψ2
ψ3

⎞
⎟⎠
⎤
⎥⎦
(fgc)

= G ·
⎛
⎜⎝

D0
D1
D2
D3

⎞
⎟⎠ =

⎛
⎜⎝

N
g0Gψ0
g1Gψ1
g2Gψ2

⎞
⎟⎠ . (17)

The first equality is a direct consequence of writing the irreversible contributions to the evolution equations in
the GENERIC form M · (δS/δx). The second equality illustrates the physical interpretation of the individual
contributions with the nucleation and radial growth rates of the cracks denoted by N and G, respectively,
similar to Schneider’s rate equations in polymer crystallization [43,44]. In view of the definitions of ψi in (5),
one finds readily g0 = 1, g1 = 4π , and g2 = 2 for the geometrical prefactors. Given the general positivity and
symmetry conditions on G and in view of the second equality in Eq. (17), it can be shown that G can be put
in the form [49]

G = Ĝ

g2ψ2

⎛
⎜⎝

Q
g0ψ0
g1ψ1
g2ψ2

⎞
⎟⎠ ⊗

⎛
⎜⎝

Q
g0ψ0
g1ψ1
g2ψ2

⎞
⎟⎠ , (18)

with Ĝ ≥ 0 a kinetic prefactor. The only freedom, at least in principle, consists in including a positive additive
contribution in the upper left corner of the matrix G, that can not be determined within this formalism. Upon
setting that additional term to zero, the rank of G drops from two to one, representing the fact that only
one physical phenomenon is described. In other words, the formation and growth of cracks have the same
thermodynamic driving force. The form (18) can be used in turn to express the nucleation rate and the growth
rate as

N = Ĝ Q A, (19a)

G = Ĝ A, (19b)

with the full thermodynamic driving force

A = Q

g2ψ2
D0 + g0ψ0

g2ψ2
D1 + g1ψ1

g2ψ2
D2 + D3, (20)
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that will be discussed more explicitly below. The significance of the full driving force can be seen also from
the entropy production due to the formation and growth of cracks. Using the chain rule for the entropy density
s(x) with (12) and the expression T̂i in (15) expressing energy conservation, it can be shown that the change
in the entropy density at constant energy density is proportional to the change in the Helmholtz free energy
density at constant temperature. This result can be rewritten with the aid of Di defined in (16) to arrive at

[
∂t s|e

]
(fgc) = − 1

T

[
∂t f |T

]
(fgc) = Ĝg2ψ2 A2, (21)

which is quadratic in the full driving force. If one uses the relation Ĝg2ψ2 A2 = [
∂tψ3|e

]
(fgc) A, (21) represents

a generalization of the entropy production derived by Rice [59,60]. In Sect. 3.6, the relation to Rice’s expression
is illustrated for a specific example.

The kinetic prefactor Ĝ is in general a complicated function of the variables in x in order to represent
the physics of the kinetics of crack growth. Particularly, two aspects are mentioned here. First, the size of
cracks can only remain constant or grow under tension normal to the crack surface, however, the crack size
can not decrease upon compression. This fact can be represented in the function Ĝ if the latter vanishes under
conditions that represent a compression in the direction of the average crack surface normal, In other words,
Ĝ depends on both the stress tensor σ and the average crack orientation N . A second important effect that
impacts the kinetics is the plastic deformation that occurs at the crack tip and that hampers crack growth. The
implementation of this effect through Ĝ is discussed in Sect. 3.6.

3.5 Full set of time-evolution equations

Collecting the reversible and irreversible contributions to the evolution equations discussed in Sects. 3.3 and
3.4, one obtains by virtue of the GENERIC equation (1):

∂t u = −∇ ·
(
vu − σ T

)
, (22a)

∂t T = −v · ∇T − � : κT +
∑

i=0,...,3

T̂iϒi , (22b)

∂tρs = −∇ · (ρsv)−
∑

i=0,...,3

ρ̂iϒi , (22c)

∂tρr = −∇ · (ρrv)+
∑

i=0,...,3

ρ̂iϒi , (22d)

∂tψi = −∇ · (ψiv)+ aiψi (∇ · v)+ϒi , i = 0, . . . , 3, (22e)

∂t c = −v · ∇c − κT · c − c · κ +
∑

i=0,...,3

ĉiϒi , (22f)

∂t F̃ = −v · ∇ F̃ +
(

κ − 1

3
(trκ)1

)
· F̃ +

∑
i=0,...,3

F̂iϒi , (22g)

with σ the stress tensor (11), velocity field v = u/ρ, transpose velocity gradient κ = (∇v)T , � and T̂i given
by Eqs. (10) and (15), respectively, and

⎛
⎜⎝
ϒ0
ϒ1
ϒ2
ϒ3

⎞
⎟⎠ = Ĝ A

⎛
⎜⎝

Q
g0ψ0
g1ψ1
g2ψ2

⎞
⎟⎠ , (23)

with the full driving force A specified in Eq. (20), and geometrical coefficients discussed after Eq. (17).
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Let us recall that the tensor c was introduced for technical reasons only, while our physical interest was in
the orientation tensor N = c/trc. Using the chain rule and (22f), the evolution equation for N can be derived,

∂t N = −v · ∇N − κT · N − N · κ + N N : (κ + κT )+
∑

i=0,...,3

(
ĉi

trc
− N

tr ĉi

trc

)
ϒi . (24)

The terms on the right hand side proportional to the velocity gradient are well known for flat disks with the
approximation of Doi, in which the exact expression κ : 〈nnnn〉 is replaced by κ : 〈nn〉〈nn〉 [55–58]. In order
to arrive at a closed set of evolution equations using the variable N , without any explicit occurrence of c, it
can be shown that the following conditions must be satisfied. First, the functions for the energy density e and
entropy density s must depend on c only through the quantity c/trc, which has already been implemented in
(8). This leads to the stress tensor σ in Eq. (11) and � given by Eq. (10) being dependent on c only through N .
As a second requirement, also ρ̂i , F̂i , and ĉi/trc must depend on c only through N , which in turn also leads
to that desirable property for T̂i given by Eq. (15).

3.6 Discussion

3.6.1 Relation to Griffith’s law for crack growth

The advantage of the above procedure consists in formulating a closed set of thermodynamically admissible
evolution equations, without ever relying on a specific form of the generating functionals, i.e., without restriction
to special materials. In this section, we proceed to making specific ansatzes for the energy density e and
entropy density s used in the generating functionals (8), in order to provide an illustrative example. In addition,
important physical insight can be accounted for by appropriate choices for ρ̂i and, in particular, for ĉi and F̂i .
The ramifications in (22) of all these specifications is then discussed.

We make an ansatz for the Helmholtz free energy, from which both e and s can be derived by way of
−s = f,T and e = f + T s,

f = fs + fr + fi. (25a)

This free energy expression contains a bulk contribution fs that represents the strained material, a bulk contri-
bution fr that represents the relaxed material, and an interface contribution fi, for which we make the ansatz

fs = (1 − φ) F
(

T, ρs/(1 − φ), F̃, c
)
, (25b)

fr = φ F
(

T, ρr/φ, F̃ = 1, c
)
, (25c)

fi = ψ2γ (T ), (25d)

with γ the surface tension, and φ = ωψ3 the volume fraction of elastically unstrained material, introduced
in Eq. (6). While ω is in principle a general function of x, we make the simplifying assumption that, to first
order, the change in ω due to the formation and growth of cracks is negligible. In turn, this means that in
the calculation of the full driving force A, ω can be considered to be a constant. Note that we have used the
identical function F in both fs and fr, which is the Helmholtz free energy per unit volume of the respective
“phase”, since both the elastically strained and relaxed regions represent the same material. In addition to the
thermodynamic properties (25), we also specify

ρ̂i = 0, i = 0, . . . , 2, (26a)

ĉi = 0, i = 1, . . . , 3, (26b)

F̂i = 0, i = 0, . . . , 3, (26c)

i.e., mass is transferred between the relaxed and the strained regions only by way of a change in ψ3. As far as
the rate of change in ρr versus change in φ is concerned, ρ̂3/ω, its value must lie between the mass densities of
strained and relaxed material with respect to their respective volumes, ρs/(1 − φ) and ρr/φ, which however,
are also approximately equal, i.e.,

ρs

1 − φ

 ρr

φ

 ρ̂3

ω
. (27)
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In Eqs. (26) it is further assumed that crack growth does not have an immediate, first order effect on the elastic
strain F̃ in the strained material. Furthermore, Eq. (26b) states that the orientation of existing cracks does not
change as an immediate consequence of crack growth. However, ĉ0 may well be nonzero since the formation
of new cracks occurs with a preferred orientation that is related to the applied elastic strain. As a consequence,
the average orientation of all cracks, namely N = 〈nn〉 that includes both grown and freshly nucleated cracks,
experiences a distortion. Under these assumptions, the partial driving forces (16) can be calculated, which in
turn lead to

A = 1

T

[
ω
(
F(F̃)− F(1)

)
− g1ψ1

g2ψ2
γ − Q

g2ψ2
ĉαβ,0 f,cαβ

]
, (28)

for the full driving force A for crack formation and growth (20).
Let us first interpret this expression for Q = 0, i.e., in the absence of crack formation. This situation is

representative of the pre-existence of small defects in the material, which will grow into finite-size cracks
under appropriate stress conditions. The driving force shows a size-dependence through the ratio ψ1/ψ2.
Furthermore, the prefactor ω in front of the bulk terms illustrates the effect of the orientation of the cracks
with respect to the strain direction. If the crack normal is parallel to the main loading (tensile) direction, the
bulk contribution to the driving force is large. However, if the crack normal is oriented perpendicular the
bulk contribution becomes small and is over-compensated by the surface term. Therefore, the relation (28)
for Q = 0 is a generalization of Griffith’s law for crack growth in a twofold sense. First, it accounts for an
assembly of many cracks that are polydisperse in size. And second, it explicitly incorporates the orientation
dependence in a condensed fashion. With this form of A, the relation of (21) to the entropy production as
derived by Rice [59,60] becomes clear, where the bulk term in (28) is closely related to the so-called Irwin
energy release rate [61].

In the presence of crack nucleation, Q �= 0, an additional contribution to the driving force occurs due to the
anisotropic orientation of new cracks which leads to a change in the free energy. This effect can be discussed by
an analogy. In the case of crystallization, the change in the thermodynamic potential by a small virtual transfer
of mass, i.e., the difference in chemical potentials, enters into the driving force for the phase transformation
in such a way that the (free) energy of the system is lowered upon phase transformation. Similarly, in the
deformed system with cracks, the driving force is affected by a potential gain/loss in the free energy upon
changing the average orientational of the cracks by crack formation.

3.6.2 Plastic deformation at the rim of cracks

It is well known that the growth of cracks is hampered by plastic deformation around the crack tip [26,27].
For cracks of spherical shape as studied in this contribution, the spatial region of plastic deformation is a ring
torus with radius from the center of the hole to the center of the torus tube R + Rp, and the radius of the tube
denoted by Rp (see Fig. 2). If we assume that Rp does not depend significantly on the crack radius, the volume
fraction of tori is given by

φt = 2π2 R2
pψ1. (29)

It must be noted that this relation is valid even for a polydisperse size distribution of cracks, since ψ1 correctly
captures the first moment of the crack size distribution. In other words, only due to the careful characterization
of the crack morphology it becomes possible to quantify the volume that undergoes plastic deformation at the
crack tips.

Since the plastic deformation dissipates energy and hence hampers crack growth, a first order approximation
to include this effect in our model consists in making the kinetic factor Ĝ in Eq. (23) depend on φt in
an appropriate way. Another, more advanced option is the following. The model discussed so far is a two-
component model in the sense that only relaxed and strained domains have been distinguished. This description
can be augmented by including a third component, representing the plastically deformed rim around the cracks.
Doing so requires the introduction of another deformation gradient, similar to F̃, which corresponding evolution
equations that include the plastic deformation. For clarity, we leave this extension for future work.
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2Rp

2Rp

R

R

Fig. 2 Illustration of the ring torus, in which plastic deformation occurs upon crack growth, for two cracks of different size R.
Although the cracks have different radius, R, the thickness 2Rp of the torus is independent of R

3.6.3 Damage parameter

The damage parameter is in general introduced to relate mechanical properties of the damaged and undamaged
material. This being said, there are different definitions of the damage parameter. In the following, we briefly
discuss two of the most prominent definitions in view of our modeling approach.

A common definition of a damage parameter is given as follows. After putting a test plane with surface
normal m through the damaged material, one measures the fraction of the “effective resisting area”, usually
denoted by D [6–8]. If the distribution of cracks is anisotropic, the quantity D depends on the orientation of
the test plane, i.e., on m. In order to account for anisotropy in the crack orientation when relating the stress σ
and the “effective stress” σ̄ , a fourth rank tensor M−1 is introduced [8],

σ̄αβ = M−1
αβγ ε : σγ ε, (30)

where M−1 depends on the anisotropic orientation distribution and on the size of the cracks. Due to our
detailed description of the microstructure, such effects can be accounted for in the following manner. In terms
of our variables, ψ2/(2ψ0) is the average surface area of a crack. In order to discuss failure of the material,
this quantity is to be related to the square of the average distance between cracks, i.e., to ψ−2/3

0 . Therefore, a

definition equivalent to D discussed above consists in our setting of D = ψ2ψ
−1/3
0 /2. Obviously, the critical

value of this parameter for the onset of material failure depends on the average orientation of the cracks with
respect to the main stress components. To express that fact, the tensor M−1

αβγ ε may be expressed in the form

M−1
αβγ ε = p(D/Dc1)Nαγ Nβε + p(D/Dc2)(δαγ − Nαγ )(δβε − Nβε). (31)

Doing so allows one to account for different critical values Dc1 and Dc2 of D depending on the relative
orientation between cracks and main stress components. In analogy to [8], the function p can be taken of the
form p(z) = (1 − z)−1.

A crucial point must be made in this discussion of damage parameters. While usually the damaged and
undamaged material are related on the basis of moduli or the stress tensor, in our approach the thermodynamic
potentials e and s in (8) play the key role. Only through these two functions are we allowed to incorporate our
physical understanding of the thermodynamic and mechanical behavior of the material, while the GENERIC
treatment merely shows the ramifications of these specifications in the constitutive relations and the evolution
equations. Although this may seem as a limitation of our approach on the first sight, it comes with the invaluable
benefit of respecting fundamental principles of mechanics and thermodynamics. In particular, the damage
parameter D = ψ2ψ

−1/3
0 /2 enters directly into e and s, possibly in an anisotropic manner in combination

with N . This in turn does not only affect the stress tensor (11), but also the driving force for the formation and
growth of cracks (20). For illustration of that point, we briefly discuss the stress tensor expression based on
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the free energy density (25), that has been introduced earlier to examine the driving force A. The ramification
of (25) for the elastic contribution (11d) to the stress tensor is given by

σ (F̃) = f
,F̃ · F̃T = (1 − φ) F(F̃)

,F̃ · F̃T + f,φψ3ω,F̃ · F̃T , (32)

where we have assumed that the elastic stress in regions with F̃ = 1 vanishes. In Eq. (32), the term that derives
from the dependence of ω on the state of deformation F̃ is usually not considered explicitly. If that term is
neglected, we get to interpret φ as a damage parameter since 1−φ relates the stress σ (F̃) to what is commonly
termed “effective stress”, i.e., to F(F̃)

,F̃ · F̃T . Such identification of the damage parameter is in line with
[2], where the effective moduli of the damaged material are related to the moduli of the undamaged material.
For an isotropic orientation distribution of circular cracks, the structural variable that enters into this relation
according to [2] is proportional to the variable ψ3 in our description.

3.6.4 Symmetry of stress tensor

While the isotropic contribution to the stress tensor (11a) is obviously symmetric, the symmetry of the other
two contributions, σ (N) and σ (F̃), must be discussed carefully. To analyze the problem, it is illustrative to
decompose the free energy into three additive contributions, one depending on c only (through N), another
depending on F̃ only, and a third coupling term that depends both on c and F̃,

f = f1(N)+ f2(F̃)+ f3(N, F̃). (33)

Since f1 can only depend on the orientation through the invariants of N , it is straightforward to show that the
corresponding contribution to σ (N) is symmetric. The effect of f2 on σ (F̃) can be discussed as in general finite
elasticity. In particular, the symmetry of σ (F̃) is guaranteed since the free energy depends on F̃ only through
the (constrained) right Cauchy–Green strain tensor, C̃ = F̃T · F̃ [9,24].

The effect of f1 and f2 being discussed, we can concentrate in the following on the mixed contribution
in (33), i.e., f3. We point out that such a nontrivial coupling term occurs, e.g., in the ansatz (25), in which
φ = ωψ3 in (6) depends on both c and F̃ by way of ω. One can show that if f3 assumes the form f3(N, F̃) =
f ′
3(N) f ′′

3 (F̃) with two scalar-valued functions f ′ and f ′′, the corresponding contribution to the stress tensor
will be symmetric, the argument being identical to the ones for f1 and f2 above. Therefore, we only need
to consider cases for f3 in which N and F̃ are coupled tensorially. Physically reasonable ansatzes for such
tensorial coupling must account for the following fact. The left and right index of the deformation gradient
F̃ refer to the current (deformed) and reference (undeformed) state, respectively [9,24]. Since N describes
the orientation of the cracks in the deformed state, N must be contracted only with the left index of F̃. In the
following paragraph, two specific couplings of this type are considered.

As a first example of proper coupling between N and F̃, we study the case in which f3 depends on N and
F̃ only through the (symmetric) tensorial quantity A = F̃T · N · F̃. Using the chain rule, one can show that
the corresponding contributions (11c) and (11d) in the stress tensor read

σ
(N)
[ f3] = − 2

[
N · F̃ · ∂ f3

∂A
· F̃T − tr

(
N · F̃ · ∂ f3

∂A
· F̃T

)
N
]
, (34a)

σ
(F̃)
[ f3] = 2

[
N · F̃ · ∂ f3

∂A
· F̃T − 1

3
tr

(
N · F̃ · ∂ f3

∂A
· F̃T

)
1
]
. (34b)

One observes immediately that the first, potentially nonsymmetric, terms in Eqs. (34a) and (34b) cancel out
in the full stress tensor (11a), while the second terms in Eqs. (34a) and (34b) are manifestly symmetric. As a
second example, we consider a function f3 that depends on N and F̃ only through A′ = F̃T · N · N · F̃. For
this case, the corresponding contributions in the stress tensor assume the form

σ
(N)
[ f3] = − 2

[
N · N · F̃ · ∂ f3

∂A′ · F̃T + N · F̃ · ∂ f3

∂A′ · F̃T · N
]

+ 4tr

(
N · F̃ · ∂ f3

∂A′ · F̃T · N
)

N, (35a)

σ
(F̃)
[ f3] = + 2

[
N · N · F̃ · ∂ f3

∂A′ · F̃T − 1

3
tr

(
N · N · F̃ · ∂ f3

∂A′ · F̃T
)

1
]
, (35b)
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which again leads to a total stress tensor (11a) that is manifestly symmetric. Obviously, a coupling in terms of
both A and A′, i.e. f3(N, F̃) = f̃3(A, A′), also leads to a symmetric stress tensor (11a).

For more general expressions for the coupling term f3 in the free energy, the reader is referred to the
literature on the representation theorem of tensor functions [14–16]. It may be seen as part of our model
that the form of the (N, F̃)-coupling must guarantee the symmetry of the stress tensor (11). If a free energy
expression is used that leads to antisymmetric contributions in the stress tensor, all possible ramifications must
be explored carefully, e.g., the conservation of the angular momentum.

4 Summary

Using GENERIC, a general formalism for non-equilibrium thermodynamics, a new set of dynamic equations
for the continuum description of microscopic damage during non-isothermal finite deformation in anisotropic
brittle materials is presented. As internal variables to describe microscopic cracks, the first four moments of
the distribution function for crack radii and the second moment of the orientation distribution function of crack
normal vectors are selected. The state of elastic deformation is captured by the elastic part of the deformation
gradient. The dynamic equations describing the evolution of damage during deformation are depicted in an
Eulerian setting, and an expression of the stress tensor is obtained, that details the contributions of cracks due
to their number density and size distribution as well as due to their orientation.

Assuming that the Helmholtz free energy of the system consists of three contributions, related to strained
and unstrained material and the surface energy of the cracks, respectively, a driving force for crack growth
emerges that is a generalization of Griffith’s law. In addition, it is shown that this assumption for the Helmholtz
free energy leads to an elastic contribution of the stress tensor that is reminiscent to an “effective stress tensor”
approach, utilizing the Budiansky–O’Connell damage parameter.

Alternatively, the framework presented here with its detailed description of the microstructure is also
capable of capturing damage parameters that are commonly based on the concept of the effective resisting
area, even for anisotropic materials.

Special attention is given to allowable couplings between the two tensorial parameters that are involved in
the constitutive description of the damaged material, the elastic deformation gradient and the second moment
of the orientation distribution function of crack normal vectors, to ensure symmetry of the stress tensor.

The benefit of the presented modeling efforts are a general, thermodynamically correct, approach to conti-
nuum damage mechanics, based on a detailed microscopic description of crack nucleation and growth, that
can be extended in a straightforward manner to include cross-effects between damage processes and plastic
deformation.

Appendix: Constrained derivatives and stress tensor expression

If the free energy density f depends on the tensor c only through N = c/trc, the partial derivative can be
written as

f,cαβ = {
f,Nγ ε

} ∂Nγ ε
∂cαβ

= {
f,Nγ ε

}( 1

trc
δαγ δβε − cγ ε

(trc)2
δαβ

)
, (36)

where the expression in the brackets {. . .} is understood as an unconstrained derivative. It follows immediately
that the stress tensor contribution σ (N) defined in Eq. (11c) is traceless.

If the free energy density f depends on the constrained deformation gradient F̃ = F/ 3
√

det F, and with
the aid of the chain rule and (∂ det F/∂F) = (det F)(FT )−1, the partial derivative can be written as

f
,F̃αβ

=
{

f
,F̃γ ε

}
3
√

det F
∂ F̃γ ε
∂Fαβ

=
{

f
,F̃γ ε

}(
δαγ δβε − 1

3
Fγ εF−1

βα

)
, (37)

where the expression in the brackets {. . .} is understood as an unconstrained derivative. It follows immediately
that the stress tensor contribution σ (F̃) defined in Eq. (11d) is traceless.
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