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Abstract Uncertainties in the climate response to a dou-

bling of atmospheric CO2 concentrations are quantified in a

perturbed land surface parameter experiment. The ensemble

of 108 members is constructed by systematically perturbing

five poorly constrained land surface parameters of global

climate model individually and in all possible combina-

tions. The land surface parameters induce small uncertain-

ties at global scale, substantial uncertainties at regional and

seasonal scale and very large uncertainties in the tails of the

distribution, the climate extremes. Climate sensitivity varies

across the ensemble mainly due to the perturbation of the

snow albedo parameterization, which controls the snow

albedo feedback strength. The uncertainty range in the

global response is small relative to perturbed physics

experiments focusing on atmospheric parameters. However,

land surface parameters are revealed to control the response

not only of the mean but also of the variability of temper-

ature. Major uncertainties are identified in the response of

climate extremes to a doubling of CO2. During winter the

response both of temperature mean and daily variability

relates to fractional snow cover. Cold extremes over high

latitudes warm disproportionately in ensemble members

with strong snow albedo feedback and large snow cover

reduction. Reduced snow cover leads to more winter

warming and stronger variability decrease. As a result

uncertainties in mean and variability response line up, with

some members showing weak and others very strong

warming of the cold tail of the distribution, depending on

the snow albedo parametrization. The uncertainty across the

ensemble regionally exceeds the CMIP3 multi-model range.

Regarding summer hot extremes, the uncertainties are lar-

ger than for mean summer warming but smaller than in

multi-model experiments. The summer precipitation

response to a doubling of CO2 is not robust over many

regions. Land surface parameter perturbations and natural

variability alter the sign of the response even over sub-

tropical regions.
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1 Introduction

Changes in the frequency and intensity of climate extremes

have socio-economic impacts that reach far beyond the

effects of mean warming. Numerous studies have explored

changes in extreme temperature events during the obser-

vational period (e.g. Kunkel et al. 1999; Easterling et al.

2000; Meehl et al. 2000; Tebaldi et al. 2006). The most

robust changes include a significant trend towards fewer

cold nights and frost days and a tendency for more warm

nights and heat waves (e.g. Frich et al. 2002; Alexander

et al. 2006). Scenarios project an intensification of these

Electronic supplementary material The online version of this
article (doi:10.1007/s00382-010-0915-y) contains supplementary
material, which is available to authorized users.

E. M. Fischer (&) � D. M. Lawrence � B. M. Sanderson

National Center for Atmospheric Research,

P.O. Box 3000, Boulder, CO 80302, USA

e-mail: efischer@ucar.edu

D. M. Lawrence

e-mail: dlawren@ucar.edu

B. M. Sanderson

e-mail: bsander@ucar.edu

E. M. Fischer

Institute for Atmospheric and Climate Science,

ETH Zurich, Zurich 8092, Switzerland

123

Clim Dyn (2011) 37:1381–1398

DOI 10.1007/s00382-010-0915-y

http://dx.doi.org/10.1007/s00382-010-0915-y


trends leading to more frequent, intense and longer lasting

heat waves if atmospheric greenhouse gas concentrations

continue to rise (e.g. Meehl and Tebaldi 2004; Schär et al.

2004; Beniston 2004; Weisheimer and Palmer 2005;

Tebaldi et al. 2006; Kharin et al. 2007).

The magnitude of these projected changes in extremes,

however, involves large uncertainties, particularly at

regional scale. Uncertainties in climate projections arise

from three distinct sources: (1) uncertainties in emissions

of greenhouse gases and aerosols, and land use changes

(scenario uncertainties), (2) the resulting atmospheric

radiative forcing and the representation of the numerous

feedbacks on the climate system in models (model uncer-

tainties), and (3) natural variability (initial condition

uncertainties). The latter two sources of uncertainty have

mostly been addressed by considering the spread across an

ensemble of opportunity, e.g. a relatively small ensemble

of Global Climate Model (GCM) results (Tebaldi and

Knutti 2007). However, such multi-model ensembles may

substantially underestimate the actual uncertainty, since

they are not designed to sample the full range of possible

behaviours (Allen et al. 2000; Knutti et al. 2008; Hawkins

and Sutton 2009). Moreover, it is difficult to determine

whether differences identified in a multi-model ensemble

arise from different initial conditions, structural uncer-

tainties (such as grid resolution and the representation of

processes) or uncertainties in the parameterization of sub-

grid scale processes (such as cloud formation).

Parameter uncertainties can be systematically quantified

in perturbed physics ensembles (PPE), which are con-

structed by varying model parameters whose values cannot

be accurately constrained by observations (e.g. Allen et al.

2000; Murphy et al. 2004; Piani et al. 2005; Stainforth

et al. 2005). Using PPE it has been demonstrated that

uncertainty range of climate sensitivity (the equilibrium

response of global temperatures to a doubling of CO2)

induced by parameter choices in some GCMs is nearly as

large or even larger than it is for a multi-model ensemble

sampling across different GCMs (Murphy et al. 2004;

Stainforth et al. 2005). PPE have further been used to

quantify uncertainties in climate extremes, such as heat

waves (Clark et al. 2006; Barnett et al. 2006), wet days

(Barnett et al. 2006) and droughts (Burke and Brown

2008). While most of the available PPEs have been based

on HadSM3, Sanderson (2010) demonstrates that a corre-

sponding ensemble based on a different GCM (CCSM3.5)

may yield a substantially smaller uncertainty range.

While most of the existing PPEs emphasize the role of

atmospheric model parameterizations, we focus here on land

surface model parameterizations. To our knowledge this is

the first study systematically focusing on land surface

parameter uncertainties in a global coupled model frame-

work. Land surface parameter uncertainty analyses have

been carried out in single column model (e.g. Liu et al.

2005) and offline experiments. The PPE evaluated in this

study consists of 108 model versions (hereafter referred to as

members), which are generated by systematically perturbing

five land surface parameters in the land surface scheme of

the Community Climate System Model (CCSM 3.5). Most

of the land surface processes and their interactions with the

atmosphere act on subgrid scales and need to be parame-

terized. The land surface parameters are generally poorly

constrained by observations and represent an important

source of uncertainty, which to our knowledge has not yet

been systematically assessed in a coupled model framework.

Land surface parameterizations control the surface energy

and water budgets and are crucial for a realistic representa-

tion of the present-day climate. Feedback mechanisms

through snow albedo (e.g Qu and Hall 2006), soil moisture

(Koster et al. 2002; Seneviratne et al. 2006a; Vidale et al.

2007) or vegetation change may amplify or offset future

changes in mean temperature and its variability.

Here, we systematically quantify uncertainties induced

by land surface parameters. We specifically focus on

uncertainties in regional projections of temperature, pre-

cipitation and impact-relevant extremes. This controlled

exercise further allows us to disentangle the relevance of

individual land surface parameters. Particularly important

parameters can be identified, thereby isolating which

parameters need to be better constrained by observations to

ultimately reduce uncertainties in projections.

The paper is organized as follows: First, the experi-

mental setup, including the individual parameter pertur-

bations, is detailed and an analysis of the primary impacts

in single perturbation experiments is presented. Second,

uncertainties in simulated temperature mean and variability

are evaluated. Third, regional projections in temperature

extremes are explored and finally, the precipitation

response and related uncertainties are discussed.

2 CLMCUBE experiment

A 108-member perturbed parameter experiment (hereafter

CLMCUBE) is performed with the NCAR Community

Climate System Model (CCSM 3.5) (Gent et al. 2010)

version with a non-dynamic mixed layer (slab) ocean. The

finite volume model version used in this experiment has a

horizontal resolution of 2� latitude 9 2.5� longitude with

26 levels on hybrid vertical coordinates. The land surface

model component is the Community Land Model (CLM),

which is documented in detail in Oleson et al. (2004). The

modifications in the latest version CLM 3.5 used here and

its performance are described in Lawrence et al. (2007);

Oleson et al. (2008); Stöckli et al. (2008). Subgrid-scale

land surface heterogeneity is represented in CLM through
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different fractional coverage of bare soil, lake, glacier, and

vegetation. Vegetation cover is subdivided in 16 different

plant functional types (PFTs) and the soil consists of 10

layers, which extend to a total depth of 3.4 m.

The basic experimental setup of CLMCUBE is similar

to climateprediciton.net (Stainforth et al. 2005), the QUMP

experiments (Murphy et al. 2004) and CAMCUBE

(Sanderson 2010). Each CLMCUBE member simulation

consists of three stages: a calibration, a 1 9 CO2 and

2 9 CO2 stage. In the 15-year calibration stage the sea

surface temperatures are prescribed to diagnose heat con-

vergence fields, which can be applied during the two later

stages. Since the mixed layer ocean model does not

explicitly represent ocean dynamics, the ocean heat trans-

port has to be prescribed as heat convergence. The

1 9 CO2 simulations cover a 30-year period with con-

stant atmospheric CO2 concentrations of 355 ppm and the

2 9 CO2 cover 20 years, forced with atmospheric CO2

concentrations of 710 ppm.

In each ensemble member, land surface parameters were

perturbed to a high and low value relative to the standard

values used in CLM3.5. Standard parameters that are at the

low or high end of the parameter uncertainty range are only

perturbed to one side. The perturbations have been applied

to five poorly constrained land surface parameters

(described below) individually and in all possible combi-

nations to account for nonlinear interactions. In contrast to

previous experiments such as CAMCUBE, QUMP and

climateprediction.net, CLMCUBE focuses on uncertainties

induced by land surface parameters.

The five land surface parameters were selected in close

consultation with the CLM model development group.

They include two optical parameters that affect the surface

albedo (vegetation and snow reflectance), two parameters

that exert significant control on the partitioning of surface

turbulent fluxes (soil hydrology decay factor f and a pho-

tosynthetic parameter Vmax), and one parameter that affects

turbulent energy exchange (momentum roughness length).

The parameter perturbations are based on uncertainty ran-

ges found in the reference literature of the standard CLM

parameters and in the case of snow albedo and water table

on expert judgement.

The imposed perturbations to the five parameters and

their primary anticipated climate effects are illustrated in

Fig. 1 and discussed in detail in the following.

2.1 Snow albedo

Snow albedo in CLM 3.5 is calculated for the visible and

near-infrared radiative spectrum. The calculation is a

function of a prescribed fresh snow albedo and subsequent

snow aging, which accounts for dirt and soot effects as well

as for snow grain growth. The fresh snow albedo asno;^;0 is

comparatively well constrained by observations and is set

at 0.95 for visual and 0.65 for near-infrared radiation.

The actual snow albedo is calculated as

asno;^ ¼ ½1� C^Fage�asno;^;0; ð1Þ

where Fage is the snow age and C^ is a constant. In contrast

to the fresh snow albedo, C^ is a highly uncertain empirical
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Fig. 1 Illustration of land surface model parameter perturbations and first order effects of shortwave (SW), longwave (LW), latent heat (LE) and

sensible heat (H) fluxes (colored arrows) as described in Sect. 2
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quantity. Standard values used in CLM 3.5 and perturbed

values are given in Table 1 and S1.

As a primary effect this perturbation alters the short- and

longwave radiation absorbed by snow-covered surfaces. The

members with only this parameter perturbed, simulate an

albedo change over the Northern Hemisphere, which is

largest in mid-winter (January and February). The net radi-

ation change is largest in late winter and spring due to higher

insolation. The effect of the two-sided perturbation on all

sky albedo is non-symmetric. The surface net radiation

change is almost four times larger for the high than for the

low snow albedo perturbation. However, the resulting global

mean land temperature changes are very similar (±0.12 K).

Regional temperatures over seasonally snow-covered

regions are unsurprisingly much more sensitive (±2–4 K).

2.2 Vegetation albedo

The reflectance of vegetation is a combined measure of leaf

and stem reflectance and calculated for each PFT as

a^ ¼ aleaf
^ wleaf þ astem

^ wstem; ð2Þ

where wleaf = L/(L ? S) and wstem = S/(L ? S) with L and

S being the exposed leaf/stem area index. Even though

surface albedo can be measured from satellites, the actual

values for the different vegetation types include substantial

uncertainties. To account for these uncertainties the leaf

reflectance has been perturbed by ±20% to the values

listed in Table 1 and S2.

This perturbation of leaf albedo directly alters the

radiation absorbed by the vegetation covered land surface.

The individual perturbations of vegetation albedo alter the

global land surface net radiation by -2.0 W/m2 (vegetation

albedo ?20%) and ?2.4 W/m2 (vegetation albedo -20%),

respectively. This results in a global land temperature

change of ±0.16 K, which is substantially larger at regio-

nal scale and during specific seasons, especially over the

corresponding summer hemisphere (±1–2 K). The maxi-

mum sensitivity of net radiation and temperature is found

over Central and Eastern North America, which are pre-

dominantly covered by crop and broadleaf deciduous

temperate trees.

2.3 Maximum rate of carboxylation Vmax

The rates of photosynthesis in CLM 3.5 are calculated at

the leaf scale for sunlit and shaded canopy fractions. The

leaf photosynthesis is dependent on the leaf-scale maxi-

mum carboxylation capacity of Rubisco (Vmax, lmol

CO2m-2 s-1). Vmax is formulated as a function of the leaf

area based concentration of Rubisco and the enzyme

activity as follows

Vmax ¼
1

SLA� CNL
FLNR

1

FNR
aR; ð3Þ

where SLA is the specific leaf area, CNL the leaf car-

bon:nitrogen ratio gC gN-1, FLNR the fraction of leaf

nitrogen in Rubisco (unitless), FNR the mass ratio of

nitrogen in the Rubisco molecule to total molecular mass

(unitless) and aR the specific activity of Rubisco (lmol

CO2 gRubisco-1s-1) (Thornton and Zimmermann 2007).

Detailed observations of SLA and CNL are presented in

White et al. (2000) for different species. Measured values

differ strongly across species of the same CLM PFT. The

Table 1 Summary of land

surface model parameter

perturbations detailed in Sect. 2

Detailed values for each plant

functional type (denoted with

index i) are given in Tables

S1–S5

Parameter Lower Low Standard High Higher

Snow albedo

C^ (VIS) (empirical const., visual) 0.02 0.2 0.38

C^ (NIR) (empirical const., near-infrared) 0.05 0.5 0.85

Leaf albedo

aleaf
vis (leaf reflectance, visual) avis,i-20% ai avis,i?20%

aleaf
nir (leaf reflectance, near-infrared) anir,i-20% ai anir,i?20%

Water table

f [m-1] (decay factor) 1.0 1.75 2.5

qdrai,max [kg m-2 s-1]

(max. subsurface runoff)

8.5 9 10-4 6.5 9 10-4 4.5 9 10-4

Vmax

SLAi (specific leaf area index) SLAi SLAi ? r

CNL, i (leaf carbon:nitrogen ration) CNL, i CNL, i ? r

Momentum roughness length

Rz0m, i (ratio of momentum

roughness length)

Rz0m, i 2*Rz0m, i
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standard parameter used in CLM 3.5 is typically the mean

value for each PFT. Since photosynthesis in CLM 3.5 is

generally considered to be high (Stöckli et al., 2008), we

use a one-sided perturbation of SLA and CNL of one

standard deviation of the uncertainty given for each PFT in

White et al. (2000) (see Table 1 and S3), which gives a

smaller but still realistic Vmax.

The perturbation of Vmax directly affects photosynthesis

and thereby leaf stomatal resistance. In the single pertur-

bation simulation, modified Vmax regionally decreases the

ecosystem net photosynthesis by 50%. Note that here, due

to the absence of an interactive carbon cycle model, this

does not affect the atmospheric CO2 concentrations.

However, the higher stomatal resistance reduces plant

transpiration globally by 3.7 W/m2. This reduction is partly

offset (40–50%) by enhanced bare soil evaporation. As a

result, the global latent (sensible) heat flux over land is

reduced (enhanced) by about 2W/m2. Regionally the

change in partitioning of turbulent fluxes is substantially

larger, peaking at 15–20W/m2 over eastern North America

during summer (see map in Fig. S1a).

2.4 Water table depth and subsurface runoff

The surface and subsurface runoff are calculated with a

simple TOPMODEL-based runoff scheme (SIMTOP) (Niu

et al. 2005). The determination of the water table depth zO
is based on a simple groundwater model by Niu et al.

(2007). The groundwater solution is dependent on whether

the water table is within or below the soil column (3.4 m).

The water table depth affects subsurface and surface runoff

generation and thereby soil hydrology, which in turn con-

trols the surface energy and water budget.

The subsurface runoff or drainage qdrai in CLM 3.5 is

defined as follows:

qdrai ¼ ð1� fimpÞqdrai;max expð�fzOÞ; ð4Þ

where fimp is the fraction of impermeable area determined

from the ice content of the soil layers, qdrai,max(kg m-2 s-1)

is the maximum subsurface runoff when the grid-averaged

water table depth equals zero (i.e. is at the surface) and f is

a decay factor, which was determined through sensitivity

analysis and comparison against observed runoff data.

Both the decay factor f and qdrai,max are perturbed in

combination. Generally an increase in f decreases the water

table depth, which results in wetter soils and lower sub-

surface runoff, whereas larger qdrai,max results in drier soils.

Since the water table depth has been found to be generally

shallow with standard parameters of CLM 3.5 (Oleson et al.

2008), one-sided perturbations are applied. The standard

values and the perturbations are given in Table S4.

The primary effect of the one-sided perturbation of the

soil hydrological parameters f and qdrai,max is an increase of

the water table depth (average ?0.6 for moderate, and

?2.4 m for maximum perturbation, respectively) and lead

to higher subsurface and lower surface runoff. On average

the drier soils lead to slightly higher surface albedo. Latent

heat flux over land is reduced by 2.8 W/m2 in the member

with maximum perturbations, mainly due to reduced bare

soil evaporation (see spatial pattern of latent heat flux

anomaly in Fig. S1a). In response, global land precipitation

is slightly reduced and precipitation minus evaporation is

substantially lower. The enhanced sensible heat flux results

in a warming of mean land temperatures by 0.28 K, the

strongest temperature signal induced by a single parameter

perturbation. The spatial temperature anomaly pattern is

more uniform than in the case of the other perturbations.

2.5 Roughness length

The roughness lengths for momentum (z0m), heat (z0h) and

water vapor flux (z0w) are equal and calculated as follows

z0m ¼ z0h ¼ z0w ¼ ztopRz0m; ð5Þ

where ztop is the canopy top height for the plant functional

type and Rz0m the ratio of momentum roughness length.

While the canopy top height is relatively well constrained

by observations, the ratio of momentum roughness length

varies substantially across GCMs. For some PFTs the

actual roughness lengths used in CLM 3.5 is less than half

of the values used in the ECMWF land surface scheme

TESSEL (ECMWF 2007). To account for this uncer-

tainty, we double the standard ratio Rz0m for each PFT

(see Table S5).

The perturbation of roughness length primarily reduces

the near surface wind speed but has a negligible effect on

global land temperatures. Global land precipitation is

slightly reduced by about 1%.

3 Extreme indices

The uncertainties in the response of climate extremes to a

doubling of CO2 are explored based on widely used indi-

ces. Most of the indices used here are introduced and

defined in Frich et al. (2002) and also used in Tebaldi et al.

(2006); IPCC (2007). The extreme indices are briefly

defined in the following:

– Tropical nights (TR): Total number of tropical nights

(i.e. days with absolute minimum temperatures[20�C).

– Heat wave duration index (HWDI): maximum period of

at least 6 consecutive days (within summer months

May–September for Northern Hemisphere, and

November–March for Southern Hemisphere, respec-

tively) with maximum temperatures more than 5�C
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warmer than reference value. The reference value is a

centered mean of daily maximum temperatures over a

5-day time window derived from the corresponding

present-day (1 9 CO2) simulation.

– Heat index days warmer than 40.6�C/105�F (HI105F):

the average number of days with maximum humidity-

corrected heat index (apparent temperature) exceeding

40.6�C (105F). The heat index (Steadman 1984),

represents heat stress on the human body by accounting

for the effects of additional environmental factors

beyond temperature. Here we use an approximated

version of the heat index defined in detail in Fischer

and Schär (2010) that accounts for ambient humidity

under shaded conditions and that is commonly used by

NOAA in North America (see http://www.crh.noaa.

gov/pub/heat.php).

– Frost days (FD): Total number of frost days (i.e. days

with absolute minimum temperatures \0�C) per year.

– Growing season length (GSL): number of days between

the first occurrence of at least 6 days with mean

temperatures[5�C and the first occurrence (after July 1)

of at least 6 days with mean temperatures\5�C. GSL is

not defined and thus not shown for regions outside the

Northern extratropics.

All of the above indices are calculated on annual or

seasonal basis and then averaged over the entire 1 9 CO2

and 2 9 CO2 simulation period.

4 Land surface parameter effect on mean temperature

4.1 Sensitivity of present-day temperatures

Here, we evaluate the sensitivity of land temperatures in

present-day climate (1 9 CO2) to parameter perturbations.

The temperature range across CLMCUBE is depicted as

the local annual mean difference between the 95th and 5th

percentiles of all 108 ensemble members (Fig. 2a). The

sensitivity of present-day temperatures (annual, DJF and

JJA mean) to the perturbation is smallest in the tropics and

largest in the northern high latitudes and the Tibetan Pla-

teau. JJA temperatures are also highly sensitive over

northern mid-latitudes at about 40–50�N (not shown).

The sensitivity to each parameter is assessed by aver-

aging all members with high/low value for each parameter

(e.g. 36 low vs. 36 high vegetation albedo members). The

composite difference qualitatively agrees with the differ-

ence patterns of the individual parameter perturbations

runs. However, averaging over all members reduces the

internal variability and leads to a smoother difference field.

Composite temperature difference for each of the five

perturbed parameters are shown in Fig. S2. Snow albedo is

the dominant parameter explaining the annual mean tem-

perature differences in northern high latitudes (1–1.5 K

north of 60�N), and vegetation albedo in mid-latitudes

(0.6–1 K at 30–60�N). Vmax and water table depth have a

moderate effect on annual temperatures (*0.3–0.5 K) over

most of the continents.

The sensitivity of summer temperatures to the different

parameters is rather complex and varies across regions and

seasons. We calculate the relative variance explained by

each of the five parameters (predictor) for regional summer

temperature (predictand) based on a multiple linear

regression (see Table 2). The linearity assumption of this

approach is found to be well justified for the present-day

temperatures (in contrast to the response to 2 9 CO2, see

below).

Vegetation albedo explains the highest variance in

summer temperatures throughout northern mid-latitudes

through its control on net radiation. Summer temperatures

are also sensitive to Vmax over the Amazon Basin, and to

water table depth, particularly in dry regions (e.g. Central

Asia, the Mediterranean Basin, Western Africa and Aus-

tralia). Both these parameters control evapotranspiration,

modify the Bowen ratio and thereby affect the local sum-

mer temperatures.

Temperature range (1xCO2) Temperature response (2xCO2 vs.1xCO2) Range of response (2xCO2 vs.1xCO2)(a) (b) (c)

Fig. 2 CLMCUBE ensemble range of present-day annual mean

temperatures (left, displayed as the local difference between 5th and

95th percentile member). Ensemble mean annual temperature

response to doubling of CO2 (central) and corresponding ensemble

range (right, 5th-95th percentile)
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4.2 Uncertainty in response to a doubling of CO2

The ensemble mean global land temperature response

DTANN to a doubling of atmospheric CO2 concentrations

from 355 ppm to 710 ppm is 2.65 K. The full range of land

temperature response across the land surface parameter

perturbation experiments is 2.47 to 2.87 K. The uncertainty

range of climate sensitivity (including ocean areas) across

CLMCUBE is 2.04–2.33 K. This range is substantially

smaller than in CAMCUBE (equilibrium climate sensitivity

2.2–3.2 K), the corresponding PPE with the same model but

for perturbations across four atmospheric model parameters

(Sanderson 2010). This confirms that the uncertainty in

climate sensitivity induced by atmospheric parameters

(affecting water vapour, lapse rate and cloud feedbacks)

dominate over land surface parameter uncertainties.

We find that DTANN cannot be estimated by a linear

combination of the impacts of the individual land surface

parameter perturbations (e.g. same multiple linear regres-

sion as conducted above yields low explained variances).

Since the multiple linear regression fails to explain the

variance across the ensemble, we instead use a nonpara-

metric recursive partitioning and regression method (Brei-

man et al. 1984) to identify the most important land surface

parameter for DTANN. Snow albedo is found to explain the

largest partial variance (43%) in DTANN across CLMCUBE.

Members with a higher present-day snow albedo (and

higher snow cover fraction) simulate a stronger reduction

in spring albedo and annual snow cover fraction (Fig. 3),

which leads to a larger DTANN over northern extratropics

(30�–90�N). We find a significant correlation (r = 0.67)

between present-day all-sky albedo in the extratropics

Table 2 Role of different land surface parameters in explaining ensemble range of summer (JJA for Northern Hemisphere and DJF for

Australia) temperatures derived from multiple linear regression

Total expl. var. Veg. albedo Snow albedo Water table Vmax Roughn. length

Summer temp.

AUS 63.8 12.6 0.0 32.4 19.9 0.6

AMZ 92.0 23.6 0.0 15.1 46.6 7.0

WNA 97.1 53.6 4.2 17.0 20.5 1.9

CNA 97.0 60.1 1.3 13.5 21.9 0.3

ENA 97.0 50.0 2.1 7.7 37.3 0.0

MED 97.2 59.3 1.8 23.3 12.6 0.3

NEU 92.1 44.2 3.6 14.6 29.7 0.4

WAF 80.0 21.8 0.0 33.5 22.6 2.9

SAS 67.3 16.8 0.1 9.4 21.5 21.1

CAS 97.5 56.1 2.1 27.2 11.9 0.3

NAS 97.6 45.6 13.1 12.5 26.4 0.1

The total adjusted variance [%] is given in the first column and the partial variance [%] explained by each parameter in the following columns.

Values are regionally averaged over Australia (AUS), Amazon Basin (AMZ), Western North America (WNA), Central North America (CNA),

Eastern North America (ENA), Mediterranean Basin (MED), Northern Europe (NEU), Western Africa (WAF), South Asia (SAS), Central Asia

(CAS), North Asia (NAS). The exact coordinates defining the regions are given in (IPCC 2007)
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(30�–90�N in MAM) and DTANN across the ensemble. This

is consistent with Levis et al. (2007) who suggested that

models with a high (low) snow albedo bias have a strong

(weak) snow albedo feedback and also tend to have a

higher (lower) equilibrium climate sensitivity. Qu and Hall

(2007) suggested that the snow albedo feedback in models

with high present-day snow albedo is stronger as a result of

the higher contrast between snow-covered and snow-free

surfaces.

The uncertainty range of DTANN is largest ([2 K) over

the northernmost latitudes (where the ensemble mean

response DTANN is largest) and smallest over the tropics

(Fig. 2b, c). Magnitude of response and uncertainty are not

necessarily correlated, e.g. over Antarctica DTANN is large

and the corresponding uncertainty identified here, compar-

atively small. The response in members with low present-

day snow albedo is on average 0.5–1 K weaker than in

members with high albedo (Fig. S3, upper left). Interest-

ingly CLMCUBE also suggests comparatively weak high

latitude warming in members with low vegetation albedo

and deep water table (Fig. S3 upper middle and right panel).

The uncertainty range in winter warming (DTDJF) is

particularly high over Northern Europe (?1.9–5.0 K),

Northern Asia (?3.2–6.5 K) and Alaska (?2.3–6.9 K)

(Fig. 4a). This implies that simple land surface parameter

perturbations can more than double DTDJF, at least

regionally. When compared to equilibrium climate sensi-

tivity experiments performed with 10 CMIP3 models

(Meehl et al. 2007), the uncertainty range in CLMCUBE

regionally corresponds to about 50–80% of the multi-

model ensemble range. Note that some portion of the

uncertainty in the CLMCUBE arises from internal model

variability, which due to the relatively short simulation

length inflates the uncertainty range (Fig. S4b).

The uncertainty range of the JJA response (DTJJA) is

typically smaller (2.0–3.3 K over Central North America

and 2.2–3.3 K over Northern Asia), which is only about

20–40% of the CMIP3 uncertainty range (Fig. 4b).

5 Land surface effect on temperature variability

Land surface parameters not only affect the mean state

but also the variability of several climate variables at

interannual to intraseasonal time scales (e.g. Seneviratne

et al. 2006b; Fischer and Schär 2009). Such variability

changes may affect the intensity of climate extremes

beyond a simple shift in the mean climate (e.g. Katz and

Brown 1992; Schär et al. 2004). Here we define tem-

perature variability as the standard deviation of daily

JJA and DJF temperatures over the entire simulation

length.

Observed temperature variability (based on HadGHCND,

Caesar et al. 2006) is generally small over the tropics and

large over the high-latitudes (both in winter and summer)

and over the northern mid-latitudes around 40–50� (summer

only). CCSM 3.5 captures the observed latitudinal depen-

dence of temperature variability reasonably well (not

shown). The model somewhat overestimates the local var-

iability maxima north of 60�N in DJF and over the northern

subtropical regions in JJA.

Temperature variability is highly sensitive to parameter

perturbations in CLMCUBE. In JJA the variability spread

across CLMCUBE is largest over northernmost latitudes,

the central United States as well as central and southern

Europe (Fig. 5b). In the following we explore the dominant

parameters and underlying mechanisms for selected

regions of high variability.

Over mid-latitudes, vegetation albedo and water table

depth are the dominant parameters in explaining JJA var-

iability across CLMCUBE. Latent heat, which in this

experiment is largely controlled by the water table depth,
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Fig. 4 Response in mean (a) DJF and (b) JJA temperatures in

response to a doubling of CO2 for regions defined in Table 2. The

boxes indicate the 25th and 75th percentile of the ensemble range and

the whiskers the most extreme members. Green stars show the

corresponding response in ten CMIP3 models providing output for

this equilibrium sensitivity slab ocean experiment
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acts as a damping factor of daily temperature variability

(Fischer and Schär 2009).

Gregory and Mitchell (1995) suggested that daily tem-

perature variability is determined by the ratio of latent heat

flux to the sum of the outgoing turbulent and longwave

fluxes k, which is defined as

k ¼ LE

LE þ H þ LW
¼ LE

SW þ GH
;

where LE is latent heat flux, H is sensible heat flux, LW is

longwave surface net radiation, SW is shortwave surface

net radiation, and GH is ground heat flux. In CLMCUBE

we find a significant anticorrelation between k and JJA

variability over the Mediterranean and Central North

America (Fig. 6a). Reduced LE (e.g. due to dry soils) tends

to enhance daily summer temperature variability and

increased LE tends to dampen it.

Diurnal temperature range (DTR) and daily variability

share the same underlying mechanisms, which is substan-

tiated by their strong correlation across CLMCUBE

members (not shown). Relative humidity is highly anti-

correlated with JJA variability and DTR over dry regions

(Fig. 6b). Members with low relative humidity and high

JJA mean temperatures simulate high daily variability (see

also Fischer and Schär 2009). We suggest that variability

and DTR are mainly linked to relative humidity through

their dependence on cloudiness (see also Dai et al. 1999).

In response to 2 9 CO2, JJA variability tends to

increase mostly over dry regions including Central North

America and Mediterranean (Fig. 5a). Over the Mediter-

ranean region more than 90% of the CLMCUBE members

simulate enhanced variability. Temporal decomposition of

the variability response reveals that the annual cycle is

strongly enhanced due to a larger temperature contrast

between early summer and the warmest period in late July

and early August (see also Fischer and Schär 2009). Fur-

thermore, the soil drying substantially increases day-to-day

temperature variations through the mechanisms discussed

above. The variability increase over the Sahel and Arabian

Peninsula should not be overinterpreted as it occurs over an

(a) (b)

(d)(c)

Fig. 5 Daily temperature variability change in JJA (upper panels)

and DJF (lower panels) in response to a doubling of CO2. Ensemble

mean response (left panels) is shown along with respective ensemble

range (5th–95th ensemble percentile, right panels). Grid points where

the response is significant (F-test) at 95% confidence level in the

majority of members are stippled
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area of small present-day variability with a substantial wet

bias in precipitation.

During DJF the ensemble range of present-day variability

is largest at the edges of the area commonly covered by snow

during winter at around 45–60�N. Winter temperature var-

iability over these latitudes is significantly correlated with

snow albedo and fractional snow cover. Cold, snow-covered

regions characteristically have very low latent heat flux and

atmospheric humidity, which otherwise tend to damp vari-

ability. Thus, DJF variability in regions such as Northern

Asia is generally large in members with high albedo and low

mean temperatures (Fig. 6c and S7).

In response to a doubling of CO2 DJF variability is

strongly reduced around 60�N (Fig. 5c), associated with

the strongest reduction in fractional snow cover. This is

consistent with changes at interannual scales (Gregory and

Mitchell 1995; Räisänen, 2002). Variance decomposition

reveals that DJF variability mostly changes at intraseasonal

rather than longer time scales. CLMCUBE reveals large

uncertainties in the response (Fig. 5d). Most members

show a strong variability decrease and a few members no

change or slightly enhanced variability. Members with

strong warming and snow melt, tend to simulate a stronger

variability reduction, which is consistent with the driving

processes identified above.

6 Uncertainties in temperature extremes

Per definition the extremes have an infrequent and irregular

nature and as a consequence long simulations are required

to quantify their changes. In order to increase the robust-

ness of our estimate, we here use moderate criteria. Note

that because of their still relatively coarse resolution,

GCMs may underestimate the intensity of extreme weather

events, particularly for precipitation-related events

(Räisänen and Joelsson 2001; Tebaldi et al. 2006). Here we

first explore the intensity of hot and cold extremes, and

second, changes in widely-used extreme indices.

6.1 Intensity of cold and hot extremes

Cold extremes are defined as 5th percentile of daily winter

temperatures (T5PDJF) and hot extremes as 95th percentile

of summer temperatures (T95PJJA). These represent two

extremely cold/hot thresholds, which on average occur on

4–5 days per winter and summer, respectively.

All CLMCUBE members simulate strong temperature

increases, DT95PJJA and DT5PDJF, in response to a dou-

bling of CO2 (Fig. 7). Due to the reduced DJF variability

over high latitudes, DT5PDJF exceeds the mean winter

warming regionally by up to a factor of 2. In Northern

Europe and Northern Asia the DT5PDJF is on average 60

and 20% larger, respectively, than the DJF mean warming.

Interestingly, we find that mean warming and variability

reduction are correlated across CLMCUBE, even though

they are statistically independent. Lower snow cover

fraction in response to a doubling CO2 tends to reduce

variability and amplify DT5PDJF. Thus, members showing

a large mean warming tend to simulate a stronger vari-

ability reduction over mid- to high-latitudes. As a result,

mean and variability uncertainties tend to line up, giving

rise to very large uncertainties in DT5PDJF. Fig. 8 illus-

trates that in northern extratropics (30–90�N), and in par-

ticular in Northern Europe, members with a high DTDJF,

tend to simulate a strongly amplified DT5PDJF. In Northern

Europe DT5PDJF ranges between 1.9–8.8 K and in North

Asia between 3.0–8.3 K (Fig. 7a). Thereby the CLMCUBE

uncertainty range exceeds the spread of the six CMIP3

models (green stars), which provide daily output for this

equilibrium sensitivity experiment.

Regarding summer hot extremes, DT95PJJA is typically

15–20% larger than the mean summer warming over sub-

tropical regions due to the enhanced JJA variability. This
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Fig. 6 a Correlation between present-day JJA daily temperature

variability and k in Central North America (CNA) and the Mediter-

ranean Basin (MED). k is defined as the ratio of latent heat to the sum

of longwave, sensible and latent heat (see Sect. 5 for details). b Same

as (a) but correlation between daily variability and relative humidity.

c Correlation between present-day DJF daily temperature variability

and mean temperature in North Asia. As in many other mid- to high-

latitudinal regions, DJF mean and variability are highly correlated

through snow cover
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difference in warming between highest percentile and

mean summer temperature is consistent though less pro-

nounced than in earlier PPE based on HadSM3 (Clark et al.

2006). Again, we find that the uncertainty range is larger

for DT95PJJA than DTJJA. While in present-day runs,

members with high mean temperatures tend to simulate

high JJA variability, we do not find a significant correlation

in their response. Over Central North America uncertainty

range of DT95PJJA is largest (1.6–3.6 K) (Fig. 7b), which

is still substantially smaller than the spread in the CMIP3

models (green stars).

In summary uncertainties both in cold and hot extremes

are substantially larger than the uncertainty in the mean. In

winter the CLMCUBE range regionally exceeds the

CMIP3 suite of models, whereas in summer it is substan-

tially smaller.

The extreme temperature range (ETR) expresses the

difference between hot and cold extremes discussed

above. Thus, ETR is basically an extremes measure of the

annual cycle and is highly correlated to the amplitude of

the annual cycle defined as the difference between mean

JJA and DJF temperatures. The CLMCUBE members

simulate a statistically significant decrease in ETR over

high-latitudes and a weak increase over subtropical

regions. The ensemble mean ETR response pattern is in

good agreement with the transient response of CCSM3.0

and CMIP3 multi-model mean at the end of the twenty-

first century (Tebaldi et al. 2006). Due to the high

uncertainties in both cold and hot extremes, ETR is highly

sensitive to the CLM parameter perturbations, showing

uncertainties even in the sign of the response over

numerous regions (Fig. 9b).
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Fig. 7 Regional change in intensity of cold extremes (DJF 5th

percentile) and hot extremes (JJA 95th percentile) in response to a

doubling of CO2 for regions defined in Table 2. The boxes indicate

the 25th and 75th percentile of the ensemble range and the whiskers

the most extreme members. Green stars show the corresponding

response in six CMIP3 models providing daily output for this

equilibrium sensitivity slab ocean experiment
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Fig. 8 Scatterplot of DJF mean temperature response versus DJF 5th

(blue) and 95th percentile (red). Each point marks one member of the

CLMCUBE ensemble. Temperatures are averaged over land grid

points in (left) Northern Europe (see definition in Table 2) (right)

northern extratropics (30–90�N)
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6.2 Heat waves and health indicators

In this section we discuss the response of three indices (see

Sect. 3), which reflect different aspects of heat impacts on

human discomfort and mortality: (1) high night-time tem-

peratures (2) extended duration of a heat wave, and (3)

relative humidity. Statistical studies (Hémon et al. 2003;

Grize et al. 2005) suggest that the mortality increases due

to very warm nights in which the human body cannot

recover from excessive day time heat. The critical mini-

mum temperature threshold differs across regions due to

different adaptation levels. We here use a threshold of Tmin

[20�C for tropical nights (TR), which is a well-established

indicator for human discomfort during heat wave episodes.

The TR response to a doubling of CO2 is largest over the

tropical regions due to the high baseline values in present-

day climate. Over northern mid-latitudes as well as in

Australia all members simulate a severe increase of about

20–40 TR per year (Fig. 10a). Night-time temperatures are

comparatively insensitive to land surface perturbations and

thus the uncertainties identified through CLMCUBE are

rather small (Fig. 10b).

Impacts on human health relate to a heat episode of an

extended duration (several days) rather than a single

extreme day. The heat wave duration index (HWDI)

expresses the change in the longest heat wave per season.

Severely enhanced HWDI are found over western and

central North America, around the Mediterranean, in

western Australia, South Africa and parts of South America

(Fig. 10c). The increased duration is a very robust signal,

however the exact magnitude of the response differs typi-

cally by a factor of 2–3 across the ensemble (Fig. 10d).

Finally, we consider the role of humidity, a well-

established health factor during heat waves. Changes in

relative humidity may in principle either amplify or offset

the health effects of temperature extremes. The daily

maximum heat index (apparent, human-perceived tem-

perature) (Steadman 1984) accounts for the combined

effect of temperature and humidity stress under shaded

conditions.

Severe increases in dangerous heat index conditions

(heat index [105F) are found over subtropical regions in

both hemispheres. Large parts of Australia, the United

States, North Africa and South Asia experience more

dangerous health conditions in response to a doubling of

CO2 (increase by 10–40 days). Note that in the present-day

climate simulations such conditions occur only on five days

per year over most of these regions. While relative

humidity is constant or slightly reduced in some of the

above regions, the impact of the warming is not compen-

sated for. Since the same mean warming leads to a stronger

heat index increase over areas, which are humid and warm

in present-day climate (Fischer and Schär 2010), the

coastal areas experience the strongest heat index changes.

The heat index response involves substantial uncertainties,

however the uncertainties may still be regarded as sur-

prisingly low. The reason here is that members with higher

temperatures tend to simulate lower relative humidity and

vice versa (not shown). As a result their uncertainties tend

to counter each other and the uncertainty in heat index

response is smaller than if the two variables were

independent.

The above indices describe changes in the exceedance

frequency of fixed or relative (percentile-based) thresholds.

In contrast to changes in intensity, frequency changes are

comparatively insensitive to variability and mainly

dependent on mean changes (Barnett et al. 2006; Fischer

and Schär 2010).
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Fig. 9 Ensemble mean response in extreme temperature range to a doubling of CO2 (left) and regional uncertainties (right) for regions defined in

Table 2. Grid points where the response is significant at 95% confidence level in the majority of members are stippled
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Fig. 10 Ensemble mean change in number of tropical nights (TR),

heat wave duration index (HWDI) and number of days when the heat

index exceeds 40.6�C /105�F in response to a doubling of CO2 (left)

and regional uncertainties (right) for regions defined in Table 2. Grid

points where the response is significant at 95% confidence level in the

majority of members are stippled
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6.3 Frost days and growing season length

The number of frost days (FD) is relevant for impacts on

vegetation, snow melting and freezing/thawing of the soil.

The ensemble mean response to a doubling of CO2

(Fig 11a) is largest at around 60�N. The response further

north is smaller since the DJF temperatures do not exceed

freezing point despite stronger warming. The response

pattern here is consistent with transient simulations for the

twenty-first century (Tebaldi et al. 2006). CLMCUBE

reveals large uncertainties induced by the snow albedo

parametrization in particular in Western North America

and Northern Europe (Fig 11b).

Growing season length (GSL) is not an extreme index

per se. It provides a rough estimate on the length of the

period favorable for vegetation growth. Note that GSL is

temperature dependent and does not account for any

water limitation in vegetation growth. In contrast to the

other indices used here, GSL is most sensitive to spring

and autumn temperatures. Since GSL is only meaningful

for extratropical regions, we do not show any changes

between 30�N and 30�S. The entire northern mid-lati-

tudes experience a significant increase in GSL in

response to 2 9 CO2. Particularly over the western parts

of the continents the GSL is extended by more than

1.5 months. The GSL response involves large uncertain-

ties (more than 3 weeks) particularly due to the vegeta-

tion onset in spring, which is sensitive to the timing of

the snow melt and thus to the snow albedo perturbations.

Over Northern Europe the growing season under

2 9 CO2 starts 26–46 days earlier than in present-day

conditions.
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Fig. 11 Ensemble mean change in number of frost days (FD) and

growing season length (GSL) in response to a doubling of CO2 (left)
and corresponding regional uncertainties (right) for regions defined in

Table 2. Grid points where the response is significant at 95%

confidence level in the majority of members are stippled
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7 Sensitivity of present-day precipitation and response

Regarding precipitation, we only evaluate the ensemble

range for summer (Fig. 12a), which due to the important

role of convective processes is most sensitive to land sur-

face parameterizations. The relative ensemble range with

respect to the ensemble mean is largest over dry regions,

which to some extent is a result of the low baseline values.

Present-day summer precipitation is substantially reduced

in members with low Vmax (over vegetated mid-latitudes

e.g. Central North America) and in members with a deep

water table (over dry subtropical regions, e.g. Mediterra-

nean and Central Asia) (Fig. S5). Table 3 illustrates that

the role of the land surface parameter in explaining the

precipitation variance across CLMCUBE differs across

regions with Vmax, water table depth and vegetation albedo

being most important. The uncertainty of the mean induced

by internal variability accounts for approximately 5–30%

of the uncertainty range (Fig. S8a).

The global mean land precipitation response (DPANN) to

a doubling of CO2 ranges from ?5.4–8.4%. While present-

day precipitation and temperature are highly correlated, we

do not find a significant correlation between DPANN and

DTANN across CLMCUBE. The spatial pattern mean

response (Fig. 12b) compares well with the CMIP3

ensemble transient response. The CLMCUBE ensemble

mean is consistent in sign, wherever CMIP3 shows a highly

robust precipitation change (more than 90% agreement in

sign across models), except for some particularly dry

regions. For parts of north Africa and over south-central

Africa at about 10–20�S CLMCUBE simulates a tendency

to wetter conditions, which contrasts with the majority of

the CMIP3 models.

Note that the relative DP involves large uncertainties

particularly during JJA (Fig 12c). The range in the relative

precipitation response DPJJA is largest over the subtropical

regions of both hemispheres. Over very dry regions the

large relative range should not be overinterpreted as it is to

some extent a result of the small baseline present-day

values. However, even in many mid-latitudinal regions

parameter perturbations can change the sign of DPJJA.

DPJJA ranges between -14 and ?5% in Central North

America, -9 and ?20% in the Mediterranean region, or

-6 and ?36% in Central Asia.

Note that given the short length of the simulation

internal variability can induce large uncertainties in the

(a) (b) (c)

Fig. 12 a CLMCUBE ensemble range (95th–5th percentile member)

of present-day JJA precipitation. The range is shown as a relative

departure from the local climatology. b Ensemble mean JJA

precipitation response to doubling of CO2 and (c) corresponding

uncertainty range relative to ensemble mean response (5th–95th

percentile, right panel)

Table 3 Role of different land

surface parameter in explaining

ensemble range of summer (JJA

for Northern Hemisphere and

DJF for Australia) precipitation

derived from multiple linear

regression

The total adjusted variance [%]

is given in the first column and

the partial variance [%]

explained by each parameter in

the following columns

Total expl. var. Veg. albedo Snow albedo Water table Vmax Roughn. length

Summer precip.

AUS 62.0 52.0 0.2 0.5 5.5 5.5

AMZ 65.8 59.0 2.5 3.7 1.2 1.0

WNA 86.3 4.3 2.7 50.5 29.3 0.1

CNA 90.3 14.6 1.2 25.0 48.3 1.8

ENA 83.3 60.5 1.0 0.0 22.5 0.1

MED 84.0 12.8 0.3 48.2 19.9 3.6

NEU 89.9 12.2 0.1 27.2 50.5 0.4

WAF 53.8 42.8 0.0 11.8 1.3 0.0

SAS 74.7 59.7 4.3 6.8 2.1 3.1

CAS 45.6 0.0 9.5 31.5 4.9 2.1

NAS 92.3 16.5 8.8 11.7 55.0 0.7
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mean response. We tested this by randomly sampling the

corresponding number of years for 1 9 CO2 and 2 9 CO2

with a Monte Carlo technique from a 50-year control

experiment performed with the unperturbed model. We

find that the majority of the uncertainty in DP at the grid

scale is induced by internal variability as demonstrated in

Fig. S8b. Internal variability dominates especially over the

tropics whereas over mid- to high-latitudes parameter

uncertainties play an important role. In general, the sensi-

tivity of DPJJA to the different parameters is highly

nonlinear.

8 Conclusions

We present a systematic analysis of uncertainties in the

climate response to a doubling of atmospheric CO2 con-

centrations based on CLMCUBE, a perturbed land surface

parameter experiment. CLMCUBE includes 108 versions

of CCSM 3.5 (mixed-layer ocean), in which five poorly

constrained land surface parameters are perturbed across

their nominal ranges, individually and in all possible

combinations of the the discrete parameter values sampled.

We find that land surface parameter induce small

uncertainties at global scale, substantial uncertainties at

regional and seasonal scale and very large uncertainties in

the tails of the distribution, the climate extremes. Land

surface parameters are revealed to control the response not

only of the mean but also of the variability of temperature.

– Global response: The global land temperature response

to a doubling of atmospheric CO2 concentrations ranges

between 2.47–2.87 K across CLMCUBE. Thereby the

range is substantially smaller than in equivalent ensem-

bles with perturbed atmospheric parameters. The dif-

ferences here are mainly a result of perturbations of an

empirical snow aging parameter, which controls the

snow albedo feedback. We find that members with high

present-day snow albedo show a stronger decrease in

albedo and snow cover fraction and thus a stronger

warming. This confirms an earlier hypothesis based on a

small set of GCMs (Levis et al. 2007).

– Cold extremes: The climate change signal of temper-

ature extremes varies strongly across CLMCUBE as a

result of land surface parameter and initial condition

uncertainties. The response in DJF 5th percentile, here

referred to as cold extremes, ranges between 1.9–8.8 K

in Northern Europe and 3.0–8.3 K in North Asia.

Thereby the CLMCUBE range exceeds the spread

across the CMIP3 multi-model ensemble over the two

regions. The large uncertainty range results from the

fact that the response in temperature mean and daily

variability tend to line up in winter. Both variability

and the mean response relate to the amount of snow

cover/surface albedo reduction. Members with strong

(weak) snow albedo feedback simulate strong (weak)

warming and strongly (weakly) reduced variability. As

a result mean and variability combine in some members

to a weak and in others to a very strong response of

cold extremes over northern mid- to high-latitudes.

Changes in cold extremes and frost days are highly

uncertain in these regions, where they have important

socio-economic and ecological impacts, e.g. on energy

demand (Hadley et al. 2006) or mortality of mountain

pine beetle (Stahl et al. 2006). Furthermore, the shift in

timing of spring snow melt, which affects the vegeta-

tion onset is highly sensitive to the choice of the snow

aging parameter. As are result the climate change

signal in growing season length is highly uncertain and

differs by a factor of almost 2 across CLMCUBE (i.e.

25–45 days increase).

– Hot extremes: The uncertainty in hot extremes (95th

percentile of summer temperatures) exceeds the uncer-

tainty in the mean summer warming by far. However, the

range here is smaller than the CMIP3 uncertainty range

for hot extremes. Again, variability plays an important

role, for instance, in the Mediterranean region and

central North America, where it increases in response to

2 9 CO2. More intense and frequent hot extremes may

have substantial effects on human health. Three specific

health indicators have been analysed here. Heat wave

duration and heat index response involve substantial

uncertainties (response varies by a factor 2–3), whereas

the response in tropical nights is relatively insensitive to

land surface parameter perturbations.

– Precipitation: For the precipitation response, the

CLMCUBE range is often larger than the mean signal,

especially in dry regions. Given the short simulation

length, a large portion of this precipitation uncertainty

is induced by natural variability. Over the Mediterra-

nean, Central North America and Australia even the

sign of the summer precipitation response to a doubling

of CO2 varies between ensemble members. This result

is interesting since it is not consistent with the transient

response of CCSM3.0 nor the majority of the CMIP3

models for the twenty-first century, in which robust

precipitation reductions are identified over the Medi-

terranean and parts of Australia. The uncertainty range

found here should not be overinterpreted since poten-

tially important changes in ocean circulation and SST

variability are not reflected in the mixed-layer ocean

model and the simulations are relatively short given the

natural variability of summer precipitation.

Note that this experiment only covers part of the actual

uncertainty range (i.e. uncertainties induced by land
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surface model parameters). First, because feedback uncer-

tainties in other components of the climate system, such as

atmosphere feedbacks (water vapour, cloud and lapse rate),

have not been accounted for. Joint perturbations in atmo-

spheric and land surface parameters may further lead to

non-linear effects, which are not sampled here. Second,

only a subset of the land surface parameter uncertainty has

been perturbed, excluding uncertainties in the biogeo-

chemical feedbacks, which are not interactively simulated

in this model version. Uncertainties in the carbon/nitrogen

cycle may be relevant for climate-carbon cycle feedbacks

and uncertainties in the carbon uptake by the land bio-

sphere. Third, potentially important structural uncertainties

in grid resolution and fundamental physical assumptions in

the model formulation have not been considered.

CLMCUBE provides extended insight in the global and

regional uncertainties related to land surface parameter-

izations. While uncertainties are large particularly in the

case of temperature extremes, the sign of the response is

very robust for temperature-related variables.
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