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Abstract In endothelial cells, agonist-induced Ca”" entry
takes place via the store-operated Ca®" entry pathway and/
or via channel(s) gated by second messengers. As cell
stimulation leads to both a partial Ca®" store depletion as
well as the production of second messengers, these two
pathways are problematic to distinguish. We showed that
passive endoplasmic reticulum (ER) depletion by thapsi-
gargin or cell stimulation by histamine activated a similar
Ca*"-release-activated Ca®" current (CRAC)-like current
when 10 mM Ba?’/2 mM Ca®" was present in the
extracellular solution. Importantly, during voltage clamp
recordings, histamine stimulation largely depleted the ER
Ca*" store, explaining the activation of a CRAC-like
current (due to store depletion) upon histamine in Ba*"
medium. On the contrary, in the presence of 10 mM Ca®",
the ER Ca®" content remained elevated, and histamine
induced an outward rectifying current that was inhibited by
Ni?" and KB-R7943, two blockers of the Na'/Ca®*
exchanger (NCX). Both blockers also reduced histamine-
induced cytosolic Ca®" elevation. In addition, removing
extracellular Na" increased the current amplitude which is
in line with a current supported by the NCX. These data are
consistent with the involvement of the NCX working in
reverse mode (Na* out/Ca®" in) during agonist-induced Ca®"
entry in endothelial cells.
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Abbreviations used

SOCE Store-operated Ca®" entry

RACE  Receptor-activated Ca*" entry

IP; Inositol 1,4,5-trisphosphate

ER Endoplasmatic reticulum

SERCA  Sarco-endoplasmic reticulum Ca>" ATPase
TG Thapsigargin

NCX Na'/Ca®" exchanger

Dlgr ER-targeted cameleon

Introduction

Calcium signaling in non-excitable cells relies, for a large
part, on the Ca®" entry phase that occurs through non-
voltage-gated channel(s). Store-operated Ca’" entry
(SOCE), which is activated by the depletion of the
endoplasmic reticulum (ER), is the best-characterized and
most studied pathway leading to Ca®" influx. Initially, the
SOCE phenomenon was described in acinar cells [45], and
it was then extensively studied in T lymphocytes and mast
cells (review in [42]). While the mechanism coupling ER
Ca”" depletion to ion channel activation remained unre-
solved for more than 20 years, it was recently shown that
the ER transmembrane protein stromal interaction molecule
(STIM1) is the Ca®* sensor that aggregates and redistributes
toward the plasma membrane upon store depletion [29, 46,
64]. The Orail protein on the other side is postulated to be
the Ca®" entry channel that is getting activated by STIM1
clustering [9, 59, 63]. In most experiments, SOCE is
activated by a large ER Ca®" depletion achieved by, e.g.,
blocking the sarco-endoplasmic reticulum Ca®"-ATPases
(SERCA) with drugs like thapsigargin (TG). Besides
SOCE, other routes for Ca>" entry exist that are not linked
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to store depletion but require the production of second
messengers to be activated, a pathway that we called
receptor-activated Ca®" entry (RACE; [22]). For instance,
diacylglycerol [17], arachidonic acid [32, 51], or Ca*" itself
([3, 23]) are known activators of these store-independent
cation channels.

The endothelium is a multifunctional “organ” involved
in multiple processes like the regulation of coagulation,
vessel permeability, angiogenesis, or the local control of the
vascular tone. Most, if not all, of these regulatory
mechanisms imply a cytosolic Ca*" signal that crucially
depends on the Ca”*' entry phase [15]. While SOCE is
frequently referred to as the main pathway for Ca>" entry
and thus essentially contributes to a proper function of
endothelial cells [1, 10], several channels from the transient
receptor potential (TRP) family are present on endothelial
cells and have been implicated in numerous functions
(review [61]). It is reasonable to postulate that during a
physiological cell stimulation, two major events take place
that account for Ca®" entry. On the one hand, the Ca*"
content of the ER decreases (to a level that is often
unknown), leading possibly to SOCE activation, and on the
other hand, second messengers are produced as a conse-
quence of mechanisms downstream to receptor activation
that eventually stimulate store-independent Ca** entry
channels. Recently, we showed that during endothelial cell
stimulation by histamine, the ER Ca*" depletion is very
minor [22], reaching about 15% of what is produced upon
SERCA inhibition with TG. Malli et al. obtained a similar
level of store depletion upon agonist stimulation [31]. Even
though these measurements reflected global ER Ca*"
changes, these findings strengthen our hypothesis that other
Ca”" entry pathways than SOCE are engaged during
agonist-induced cell activation that are of physiological
relevance. However, using cytosolic Ca>* measurements, it
is difficult to separate RACE from SOCE mainly due to the
lack of specific inhibitors for one or the other pathway [22].
In addition, it is more than likely that if the RACE pathway
is inhibited, the ER Ca®" depletion that would develop will
increase the SOCE pathway, and the resulting cytosolic
Ca”" signal would remain almost unaffected. Thus, the best
approach to separate both entries is to measure directly the
currents on intact cells using the patch-clamp technique. In
blood cells, the current supporting SOCE, known as Ca**-
release-activated Ca®" current (Icrac), is well-characterized
and presents some key features like a high selectivity for
Ca’", an inward rectification, a tiny unitary conductance, as
well as a complex regulation by Ca®" itself ([42]). For
blood cells, at least, it is now firmly established that Icrac
is supported by Orail channel [44, 58, 62]. Besides cells
from the immune system, a SOCE current with a similar
characteristic to Icgac Was also recorded in other cell types,
including endothelial cells. In this cell type, the current was
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of significantly smaller amplitude than on the “prototypi-
cal” rat basophil leukemia (RBL) cells [8] and less Ca”'-
selective than Icrac (review in [34]). Recently, a paper
reported a very small Icpac current on endothelial cells
supported by Orail and STIM1 [1]. The tiny current
amplitude and a peculiar kinetic of activation raised some
controversies about the exact nature of this CRAC current
in endothelial cells [4, 57], while the implication of STIM1
and Orail as SOCE components in endothelial cells was
firmly established by this study.

As already raised up [4, 33], the experimental conditions
used to record Icrac might prevent other events to take
place and thus preclude the recordings of current(s)
different from Icgrac. A major issue is the presence of a
high concentration of Ca*" chelator inside the patch pipette
that impedes Ca*"-activated current(s) to be stimulated. In
the present study, we wanted to determine what kind of
current involved in Ca®" entry is/are getting activated upon
agonist stimulation and whether this/these current(s) are
distinguishable from Icgac on a human endothelial cell
line. For this purpose, we used the perforated variant of the
whole-cell recordings and applied either TG to fully deplete
stores and activate SOCE or histamine to record other types
of current (RACE). We show that great caution is necessary
in order to prevent unexpected store depletion upon
histamine stimulation due to experimental conditions rather
than to physiological process. Hence, we demonstrated that
histamine activated a current that shares pharmacological
and biophysical properties with the Na'/Ca®" exchanger
(NCX) and that is implicated in the Ca®" entry process in
this particular cell type.

Materials and methods
Material

Dulbecco’s modified Eagle’s medium (DMEM), penicillin,
and streptomycin were obtained from Invitrogen. Fetal calf
serum (FCS) was from PPA Laboratories (Linz, Austria).
Histamine and thapsigargin were obtained from Sigma.
KB-R7943 was from Tocris. Acetoxymethyl ester form of
fura-2 (fura-2/AM) was from Invitrogen. The ER-targeted
cameleon probe (D1gr) was kindly provided by Drs Amy
Palmer and Roger Tsien.

Cell culture and transfection

Experiments were performed on the human umbilical vein
endothelial cells derived cell line EA.hy926 at passages >45.
Cells were grown in DMEM containing 10% FCS, 1% HAT
(5 mM hypoxanthin, 20 pM aminopterin, 0.8 mM thimidine),
50 U/ml penicillin, and 50 pg/ml streptomycin and were
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maintained at 37°C in 5% CO, atmosphere. For experiments,
cells were plated on 30 mm glass cover slips 2—4 days before
use. For the D1gr experiments, cells were grown until 70—
80% confluence and were transiently transfected with 2 g
¢DNA encoding the Dlgr construct, using TransFectin™
(BioRad).

Electrophysiological recordings

Cells were plated 1 day before the experiments to avoid
cell—cell contact. We performed whole-cell recording using
the perforated patch approach ([18]). Nystatin was included
in the patch pipette at a concentration of 350 pug/ml (300—
400 pg/ml). Borosilicate glass pipettes (Harvard Apparatus)
were pulled with a Sutter puller, fired polished, and had a
resistance between 3 and 6 MS). Patch-clamp recordings
were made using an Axopatch 200B amplifier, a Digidata
1440A, and a pClamp 8 software (Molecular Devices).
Voltage ramps (—120 to +80 mV, 500 ms) were
repeatedly applied in order to obtain the current—voltage
relationships. Cell capacitance (25-50 pF) was obtained
for each cell measured, and the current was normalized
to the cell capacitance. Average currents obtained before
the cell stimulation were subtracted from the activated
current. Pipette solution contained (in mM) 140 CsAsp,
10 NaCl, 1 MgCl,, 10 Hepes, pH 7.2 with CsOH. Bath
solutions contained (in mM) 125 NaCl, 10 BaCl,, 2
CaCl,, 1 MgCl,, 5 KCI, 10 Hepes, pH 7.45 with NaOH
(referred as 10 mM Ba®'/2 mM Ca®"), or 125 NaCl, 10
CaCl,, 1 MgCl,, 5 KCl, 10 Hepes pH 7.45 with NaOH
(referred as 10 mM Ca”"). For some experiments, NaCl
was substitute for N-methyl-D-glucamine (NMDG). The
junction potential of around 15 mV between the pipette
and the bath solution was corrected off-line.

Ca®" measurements

Cells were loaded with 2 uM fura-2 AM for 40 min in the
dark at room temperature in a medium containing (in mM)
135 NaCl, 5 KCl, 2 CaCl,, 1 MgCl,, 10 Hepes acid, 2.6
NaHCO3;, 0.44 KH,PO,, 10 glucose with 0.1% vitamins
and 0.2% amino acids, pH adjusted to 7.45 with NaOH.
After washing the cells, 10—15 min was needed to allow de-
esterification. For cytosolic Ca®>" measurements, cells were
alternatively illuminated at 340 nm (340AF15; Omega
Optical) and 380 nm (380AF15; Omega Optical) using a
Lambda DG4 illumination system (Sutter Instrument
Company, Novato, CA, USA), through a 415DCLP
dichroic mirror, and emission was collected through a
510WB40 filter (Omega Optical). Fluorescence images were
collected using a cooled, 12-bit CCD camera (CoolSnap HQ,
Ropper Scientific, Trenton, NJ, USA) operated by the
Metafluor 6.3 software (Universal Imaging, West Chester,

PA, USA). To measure the ER Ca?’, cells were illuminated
at 440 nm (440AF21; Omega Optical), and emission was
collected through a 455DRLP dichroic mirror, alterna-
tively at 480 nm (480AF30; Omega Optical) and 535 nm
(535AF26; Omega Optical). For cytosolic and ER Ca®"
measurements, the experiments were performed in Hepes-
buffered solution containing (in mM) 135 NacCl, 5 KCI, 1
MgCl,, 2 CaCl,, 10 Hepes, 10 Glucose, pH adjusted at
7.45 with NaOH. In solutions with various Na" concen-
trations, Na" was replaced by NMDG. All data are
expressed as R/Ro, Ro being the initial ratio value
obtained before cell stimulation.

Statistics

Experimental data are expressed as mean = SEM. Student’s
t test was used to compare results, with p<0.05 taken as the
level of significance.

Results

TG and histamine both activated a CRAC-like current
in the presence of extracellular Ba*"

In order to electrophysiologically characterize the currents
activated by TG and histamine in endothelial cells, we used
the perforated patch variant of the whole-cell configuration.
Using this approach, we expected to minimally alter the cell
machinery, especially upon agonist stimulation, and thus to
increase the chance to differentiate SOCE currents from
agonist-activated currents. In the first series of experiments,
10 mM BaCl, was added in the extracellular medium, as
many Ca®>" channels, including CRAC channels, conduct
Ba®" better than Ca®', at least at negative membrane
potentials [19, 42]. We previously showed that in the
absence of extracellular Ca®*, histamine leads to strong ER
Ca*" depletion ([22]); hence, 2 mM Ca>" was also added in
the bath solution to minimize store depletion. In these
conditions (10 mM Ba**/2 mM Ca*"), TG and histamine
activated inward rectifying currents, reaching a maximal
amplitude (measured at —115 mV) of —0.59 4+ 0.04 pA/pF
(n =30) for histamine and —0.48 + 0.07 pA/pF(n = 11)
for TG (Fig. la, b). The activation kinetic was similar for
both stimuli, and the current remained stable over time. As
shown in Fig. lc, d, 10 uM La’" inhibited both TG- and
histamine-activated currents. The reversal potential, E,.,, was
estimated around —11 mV for TG and +7 mV for histamine,
but due to the pronounced inward rectification, an accurate
measure of E., was problematic. The strong inward
rectification, the very small size of the current, and the block
with lanthanide are three characteristics of Icgrac. To confirm
that TG and histamine activated Icrac or a CRAC-like
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Fig. 1 TG and histamine both
activated a CRAC-like current
in presence of 10 mM Ba*"/

2 mM Ca®*". Whole-cell record-
ings (perforated patch) of EA.
hy926 activated by 100 uM
histamine or 1 uM TG. a, b
Average current—voltage rela-
tionships obtained at the
maximal stimulation after
addition of TG (a; n=16) or
histamine (b; n=30) in the
presence of 10 mM Ba®" and

2 mM Ca®" in the bath. Traces
are mean + SEM. ¢, d Time
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current, we tested the behavior of the current in divalent-
free (DVF) extracellular medium. Removing the extra-
cellular divalent cations after stimulation with TG
(Fig. le) or histamine (Fig. 1f) led to a large Na" current
due to the removal of Ca®" block. This large Na™ current
exhibited a rapid depotentiation characteristic of Icrac
([52]). Because of the slow solution exchange of our
system, we probably missed the initial increase in the
current upon divalent removal, and the current amplitude
increased about three times in DVF medium. Another
known characteristic of Icrac is the rapid inactivation,
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which is due to a negative feedback of Ca’’ entering
through the CRAC channel itself [65]. To test this character-
istic, a step of voltage from 0 to —120 mV was applied once
the currents activated by histamine or TG were fully
developed. As shown in Fig. 1g, h, a fast inactivation was
clearly observed. Even though the current shared common
properties with the Icrac, the relatively negative E.., points
to a reduced Ca®" selectivity compared to the Icgac. In any
instance, the current activated by TG or histamine could not
be differentiated in these experimental conditions, with
10 mM Ba®"/2 mM Ca”" in the bath.
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TG and histamine activated different currents in presence
of extracellular Ca*"

In the second series of experiments, we added 10 mM Ca*"
instead of 10 mM Ba”" in the extracellular solution (10 mM
Ca”"). Ba®" (100 uM) was added to the medium to prevent
the activation of the inward rectifying K" channels (Kj,),
which were occasionally present on these cells (data not
shown). In these conditions, the current activated after
passive depletion of the ER Ca*' stores with TG was
inward rectifying with a reversed potential of +7.5+£6.5 mV,
(n=13) and an amplitude of —0.34 4 0.04 pA/pF(n = 13)
at =115 mV (Fig. 2a). Surprisingly, histamine evoked an
outward rectifying current that reversed at —37.5+

Fig. 2 Currents activated by TG
or histamine in the presence of
10 mM Ca®". a, b Current—
voltage relationships obtained at
the maximal stimulation after
addition of 1 puM TG (a; n=12)
or 100 uM histamine (b; n=13)
in the presence of 10 mM Ca*".
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1.9mV(n = 12) (Fig. 2b). The two currents can be
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rectifying current (Fig. 2¢, d). Both currents were inhibited
by 10 uM La>" (Fig. 2c).
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delay, an inward rectifying current developed (Fig. 2e, f).
The data confirm our assumptions that Ba>" prevents the
histamine-activated outward rectifying current, while under
these conditions, a distinct current substitutes for Ca®" entry
(the CRAC-like current). The same experiment was
performed during cell stimulation with TG. In that case,
the substitution of Ca’" by Ba®" increased the current
amplitude at negative potentials (Fig. 2g, h), in line with
previous Icrac recordings obtained on T lymphocytes [2].

ER Ca”" levels upon cell stimulation measured
during voltage clamp experiments

The inhibition of histamine-activated outward rectifying
current by Ba®" (Fig. 2¢) explains that we could not observe
this current in 10 mM Ba®"/2 mM Ca?" condition, but it
does not explain the activation of a CRAC-like current in
Ba”?" medium. For SOCE to get activated, a substantial ER
Ca*" depletion has to take place, which normally is not the
case upon histamine stimulation due to a sufficient ER Ca*"
replenishment. In our electrophysiological recording condi-
tion, however, the ER might get more depleted than normal,
as we clamped the potential at 0 mV between each ramp of
voltages, decreasing the driving force for Ca®" entry.
Hence, the presence of Ba®" and the clamp of voltage at
0 mV might possibly impact on the filling status of Ca*"
stores. To assess the effect of Ba** on ER Ca’’ levels
during cell stimulation with histamine, we transiently
transfected the cells with a cameleon-based Ca®" probe
targeted to the ER, DIgr [21, 31, 40]. The level of Ca*"
within the ER was then measured on cells clamped at 0 mV
under the same experimental conditions as used for Figs. 1
and 2. Cells were first stimulated with 100 pM histamine in
the presence of 10 mM Ca®" or 10 mM Ba*"/2 mM Ca*",
followed by 1 uM TG to maximally empty the stores. The
results presented in Fig. 3 clearly showed that, upon
histamine stimulation, the ER Ca*' level decreased more
in the presence of high Ba®" than in the presence of high
Ca®". In 10 mM Ca®’, histamine depleted the ER by
23.52 £4.67%(n = 6) of the depletion caused by TG,
while in 10 mM Ba®"/2 mM Ca®", the level of depletion
reached 58.34 £ 9.31%(n = 6) of the response due to TG.
Hence, even though 2 mM Ca®" was present in the high Ba>"
solution during whole-cell recordings, the Ca>" level within
the ER decreased to a level likely sufficient to activate SOCE
and might explain the activation of a CRAC-like current
upon histamine stimulation.

Pharmacological profile of histamine-activated Ca®" entry
We suspected that the NCX could be involved in the RACE

mainly based on two points: the similarity between the shape
of the IV curve of histamine-induced current compared to
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Fig. 3 Measurements of the ER Ca”" level during whole-cell

recordings. Cells were clamped at 0 mV under the same experimental
conditions as presented in Figs. 1 and 2. The cells were transiently
transfected with the ER-targeted cameleon probe D1gg. a Histamine
(100 pM) was applied in the presence of 10 mM Ca" (black dots) or
10 mM Ba>" /2 mM Ca*" (gray dots). After approximately 4 min of
histamine stimulation, 1 pM TG was added to obtain a total depletion
of the ER. b Statistics of the level of ER depletion after histamine and
TG addition in the two different bath solutions. Bars are mean + SEM
(n=6 in 10 mM Ca*"; n=6 in 10 mM Ba*’/2 mM Ca*"), *p<0.05

previous reports on NCX current [12, 30, 38] and reports
demonstrating the implication of the NCX in Ca”" entry [43,
48, 54]. Indeed, under certain conditions, the NCX can work
in the reverse mode and allow Ca®" to enter the cell. We thus
wanted to determine whether part of the RACE was due to
the reverse mode of the NCX on EA.hy926 cells. As a first
approach, we stimulated the cells with histamine and added
Ni*", a well-accepted blocker of the NCX (review [6]), on
top of the response. As shown in Fig. 4a, adding Ni** initially
completely blocked the response, and then about 50% of the
cells showed some level of recovery. On the contrary,
Ni*" minimally affected TG-induced Ca®" entry (Fig. 4b).
We also tried another known inhibitor of the NCX, KB-R7943
[20]. At 10 uM or below, KB-R7943 was reported to inhibit
preferentially the reverse mode of the NCX. However, it was
also reported to have some off-targets; in particular, KB-
R7943 activates BK¢, channels [28]. As these channels are
present on EA.hy926 cells and are activated by histamine
[11], we used 5 mM tetracthylammonium (TEA) to prevent
their activations. Adding 10 uM KB-R7943 during the
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plateau phase of histamine response severely decreased
Ca”" entry, but the effect was transient and followed by a
recovery phase (Fig. 4c). On the contrary, the response
upon TG stimulation was mildly affected by the addition of
KB-R7943 (Fig. 4d). The inhibition by Ni*" and KB-
R7943 thus suggested that the NCX is involved in
histamine-induced Ca®" entry.

Pharmacological profile of histamine-activated current

First, we wanted to ensure that the current activated by
histamine was dependent on the signaling pathway activated
by the agonist. For this purpose, we applied U73122, an
inhibitor of the PLC (phospholipase C) during histamine-
induced outward current, that fully blocked the response
(Fig. 5a). The inactive analogue of the PLC blocker, U73343,
did not inhibit the current activated by histamine (data not
shown). We then used the same inhibitors as those tested on
the cytosolic Ca>" response to confirm the role played by the
NCX. As shown on Fig. 5b, Ni*" significantly inhibited the
current activated by histamine by 61 £ 13%(n = 4). Simi-
larly, 10 pM KB-R7943 also reduced by 80 £ 10%(n = 4)
the current activated by histamine (Fig. 5c¢). In addition,
neither Ni*" nor KB-R7943 affected the current activated by

Time (min)

TG, showing that the NCX is not implicated in SOCE (data
not shown). Besides using inhibitors, we also investigated the
effect of Na" removal on the histamine-induced outward
current. As shown in Fig. 5d, in the absence of extracellular
Na“, the outward current strongly increased, which is in line
with an increased activity of the NCX working in the reverse
mode. Furthermore, the current recorded in 0 mM Na' was
blocked by the addition of KB-R7943, as shown on the time
course presented in Fig. Se, again pointing to a current
supported by the NCX. We also performed experiments
under conditions where the intracellular Na" was increased to
50 mM, instead of 10 mM. In these conditions, an outward
rectifying current was already present before the stimulation,
which is in line with a basal stimulation of the NCX due to
the high [Na']; conditions (Fig. 5f). Upon histamine
stimulation, both the outward and the inward currents
increased. This increase in the inward current (Fig. 5f),
similar to what we observed in the absence of extracellular
Na' (Fig. 5d), is not compatible with a current through the
NCX, as the Encx(Encx = 3Ena — 2Ec,) under these ionic
conditions is very negative and should lead exclusively to
the outward current. This suggests that the inward current, at
least in these experimental conditions, was unlikely due to
NCX activation.
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Fig. 5 Pharmacological profile of histamine-activated Ca>" current.
Whole-cell recordings (perforated patch) of EA.hy926 cells activated
by 100 uM histamine. a—c¢ Representative current—voltage relation-
ships at the maximal stimulation after activation with histamine (black
dots) and after addition of blockers (gray dots) in the presence of
10 mM Ca*" in the bath. The blockers were added directly on the top
of the histamine-activated current: 2 uM U731222 (a), 2.5 mM Ni**
(b), and 10 uM KB-R7943 (c). d Representative current—voltage
relationships obtained after stimulation with histamine in the presence
of 125 mM Na" (black dots) and after a switch in a 0 mM Na®

Discussion

The aim of the present study was to investigate whether it
is possible, using an electrophysiological approach, to
distinguish between current activated by passive store
depletion from current activated by the inositol 1,4,5-
trisphosphate (IP3)-generating agonist histamine on endo-
thelial cells. In other words, we intend to elucidate whether
histamine-induced Ca®" entry (the RACE) has an electro-
physiological signature different from the SOCE, which
would imply the activation of different channels. One of
our main concerns was to avoid important ER Ca®"
depletion upon histamine stimulation. Indeed, in our
previous papers [22, 31], we showed that in Ca*"
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an initial increase in the current, the extracellular Na™ was removed,
leading to an increase in the current amplitude, which was
subsequently inhibited by the addition of 10 uM KB-R7943. The
current value from each ramp was taken at =115 mV and at +60 mV. f
Representative current—voltage relationships obtained in basal condi-
tion with 50 mM Na" inside the patch pipette in basal condition (black
dots), and after histamine stimulation (gray dots)

containing medium, histamine stimulation did not induce
an important ER Ca”" store depletion, leading us to
postulate that Ca®" entry upon agonist stimulation does
not essentially rely on SOCE but rather on RACE. For this
reason, a minimum of 2 mM Ca®" was present in all
electrophysiological experiments. The other point was to
let the intracellular signaling machinery as close as possible
to what is taking place in an intact cell, thereby increasing
the chance to record current different from the SOCE.
Hence, we were using the perforated patch configuration to
prevent dialysis of cytosolic compounds. We took these
precautions to avoid uncontrolled activation of the SOCE
in particular during experiments using an agonist to
stimulate Ca®" entry.
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The CRAC-like current we recorded in 10 mM Ba®"/
2 mM Ca*' extracellular medium shared many common
features with the prototypical Icrac measured in RBL cells.
For instance, it was strongly inward rectifying, was blocked
by micromoles of lanthanides, and displayed a fast Ca”*-
dependent inactivation. It also permeates monovalent ions
better when divalent ions are removed from the bath, a
phenomenon called anomalous mole fraction. The current
recorded in high Ba*' showed a marked increased in
amplitude at potentials below —40/—50 mV, a phenomenon
already reported when using Ba®" as a charge carrier in
RBL cells [2, 19]. However, in Jurkat T cells, the Ba**
permeability was reported to be lower than the Ca*"
permeability at all potentials [19]. A recent paper strength-
ened that the relative abundance of STIM1 compared to
Orail affected the Ba®" permeability of the Icrac [49],
possibly explaining the discrepancy regarding the perme-
ability of Ba®" versus Ca®". A peculiar aspect of the
CRAC-like current present on EA.hy926 cells was the
relative negative Ei.,, both in Ba®" as well as in Ca*"
medium. This points to the fact that the CRAC-like current
on EA.hy926 cells is less Ca®" selective than the “classical”
Icrac- Such a feature was often reported for SOCE currents
in endothelial cells [34]. On EA.hy926 cells, we do not
know whether it reflects a peculiar characteristic of SOCE
or whether the current is actually the sum of different
conductances, one being very similar to Icrac, With a high
Ca*" selectivity that displays the anomalous mole fraction
and the fast Ca”*'-dependent inactivation, and the other
being a nonselective cation current of unknown nature. A
complete characterization of the current(s) activated by
store depletion would require additional investigation, but
this was beyond the scope of the present study. Recently, a
CRAC-like current with a similar electrophysiological
signature was reported on endothelial cells from human
umbilical vein mediated by STIM1 and Orail proteins [1].
Hence, in our cellular system, we could not distinguish
between the current activated by histamine from the current
activated by TG, both sharing characteristics of the Icgrac.
This rather unexpected result prompted us to measure the
Ca?" level within the ER during electrophysiological
recordings, and we found out that in fact histamine induced
important Ca®" store depletion, even though caution was
taken to prevent it. The level of store depletion upon
histamine stimulation was smaller than upon TG addition
(about 60%; Fig. 3), but it was certainly strong enough to
activate the SOCE. The depletion of the ER even in the
presence of 2 mM Ca?" can be explained by the following
reasons: first, the presence of Ba®" that blocked the outward
rectifying current activated by histamine (see below) and,
second, the reduced driving force for Ca®" entry as the cells
were clamped at 0 mV between the voltage ramps. This
observation stressed the fact that ER Ca®" depletion occurs

easily and that great caution has to be taken in order to
avoid it and thus allow the recording of store-independent
agonist-induced current.

When Ba®" was absent from the bath solution and
replaced by 10 mM Ca”", the current activated by TG was
very similar to that in Ba** containing medium except the
E.., that was slightly more positive. On the contrary, the
current activated by histamine had a completely different
shape from the one recorded in 10 mM Ba®*/2 mM Ca*". In
10 mM Ca*', the current was outward rectifying with an
E.., around —40 mV. One should mention that this current
was activated in about 70-80% of the cells, whereas in
10 mM Ba®'/2 mM Ca**, almost 100% of the cells showed
a CRAC-like current. In the remaining patches, either no
detectable current was activated, or a current with a double
rectification could be recorded. Due to the very low
frequency of the later one, we could not further characterize
this particular current.

In order to determine what type of current was activated
by histamine, we used two different approaches: the
addition of blockers and the ion substitution. The results
we obtained all pointed to a current supported mainly by
the NCX. The NCX can operate in both directions, meaning
transporting Ca>* out of the cell (forward mode) or into the
cell (reverse mode). The direction of the ion exchange
depends on the concentration gradients of both Na® and
Ca®" and on the membrane potential (review in [6]). The
reverse mode of the NCX was reported to take place in,
e.g., smooth muscle cells [26, 27], NG2 glial cells [55], and
also in endothelial cells [41, 48, 54]. An important
condition leading to the reverse mode of the NCX is a
local Na' loading, a process that was suggested to
significantly contribute to Ca®" entry in endothelial cells
[14, 41]. This was shown to happen as a consequence of
nonselective cation channel opening that allows substantial
Na' entry, which in turn reverses the mode of the NCX.
Functional link between TRPC (canonical transient receptor
potential) channel activation and Ca®" entry through the
NCX was recently reported in different cell types [16, 27,
43, 47], and thus it is tempting to speculate that the same
mechanism is responsible for the Na" loading in EA.hy926
cells. We have to notice that we could not separate a current
responsible for the Na* loading from the current due to the
exchanger. In addition, we cannot exclude that histamine
activates the turnover rates of the NCX, favoring both the
forward and the reverse modes. To drive the reverse mode
activity of the exchanger, however, the intracellular Na*
concentration has to rise sufficiently to counteract the
intracellular Ca”" elevation that occurs during cell stimula-
tion, and thus the system very likely requires a Na" loading
process. To assess the role of the NCX in our cellular
system, we used Ni* and KB-R7943, which are both well-
accepted blockers of the NCX even though they are not
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considered as fully specific (review [6]). Indeed, KB-R7943
was shown to inhibit at least three different TRPC channels
[25], and Ni** was described blocking SOCE [5, 13] as
well as TRPC1 [53]. In our cellular system, both blockers
reduced the current by about 70%, which is in favor of a
role played by the NCX, while we cannot rule out that other
conductances are also part of the current activated by
histamine. Additionally, adding Ba®" to the bath fully
blocked the current, explaining why we did not record the
outward rectifying current in 10 mM Ba®*/2 mM Ca*"
medium. Previous studies that have investigated the ability
of the NCX to transport ions other than Na* and Ca®" have
shown that indeed the transport efficiency of the exchanger
was strongly reduced in the presence of Ba** [24, 50, 56],
which is in line with our findings. Other reports suggested
on the contrary that Ba®" can be transported by the NCX, in
particular extruded by the exchanger [7, 60]. The reasons
for the contradictory results regarding the transport of Ba*"
by the exchanger remain to be clarified. We also showed
that La®* fully blocked the current, which was reported in
previous studies [6, 24]. In the case of La’", it is more than
likely that this compound not only inhibits the NCX but
also other conductances, like TRPC channels that would be
responsible for the initial Na" loading process. Hence, and
even though no specific blockers exist for the NCX, all that
we tested strongly inhibited histamine-induced outward
current. The other approach we used was to change the
extracellular Na" concentration. Removing Na' significantly
increased the current amplitude, a behavior expected if the
outward current was due to NCX. The concomitant increase
in the inward current that we also observed when intracel-
lular Na" was elevated (Fig. 5f) cannot be due to the NCX,
as the Encx is very negative under these experimental
conditions. The inward current could be due to TRPC
channel activation, but the exact characterization of this current
remains to be determined. Regarding the outward current, and
as K currents were prevented by the presence of Cs' in the
patch pipette, the remaining possibility to explain the
histamine-induced current was chloride. A large implication
of a Cl' current appears very unlikely for several reasons: in
endothelial cells, the size of the CI™ current activated by an
agonist was in general much larger with a faster activation
kinetic than the one activated on EA.hy926 cells [36, 37, 39].
The inhibitory effect of La**, Ba**, Ni**, and KB-R7943 that
we observed on the outward rectifying current was, to our
knowledge, never reported for CI currents (review [35]).
Finally, the increase in current amplitude upon Na" removal
(Fig. 5d) was not compatible with a current due to CI” ions.
Altogether, our experimental evidence point to a current
supported for a large part by the NCX.

Our Ca®" imaging experiments further pointed to an
involvement of the NCX in the overall Ca** entry upon
histamine stimulation. The addition of 2.5 mM Ni*"
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strongly reduced the Ca®" entry (Fig. 4a), an inhibition
that was followed by a partial recovery of about half of the
cells. Using 1 mM Ni** similarly blocked the response but
with a more pronounced recovery phase (data not shown).
Using KB-R7943 to reveal the role of the NCX was more
problematic. Indeed, KB-R7943 alone hardly affected the
plateau phase of Ca®" entry (data not shown). Even though
KB-R7943 is a potent blocker of the exchanger, it has also
a rather long list of side effects. Among them, it was
reported to activate BKc, channels [28], an effect that
would increase Ca®" entry as it hyperpolarizes the cells.
Thus, to better reveal the action of KB-R7943 on the NCX, we
blocked the BK¢, channels with TEA. In these experimental
conditions, KB-R7943 induced a transient drop of the Ca*"
plateau followed by a recovery. This pattern of inhibition with
a recovery phase is a strong indication that agonist-induced
Ca®" influx is the result of several processes simultaneously
engaged. Blocking only one of these players (like the NCX)
is compensated possibly by other channels involved in the
RACE or by channels supporting the SOCE pathway.
Considering that EA.hy926 cells have a redundant system
to allow Ca" entry, it is surprising that we could not
consistently measure other types of currents on endothelial
cells. We do not have so far a clear explanation for that, but
we can propose three hypotheses: one, which is the most
likely, is that the current activated by histamine was not
purely supported by the NCX but that another conductance
was also activated. Another explanation would be that the
other currents supporting Ca®" entry are of very small
amplitude that makes their recording very challenging.
Finally, the experimental conditions we were using might
preclude the recording of additional currents. As a conse-
quence, the current supported by the NCX is so far the only
conductance involved in Ca®" entry besides the SOCE current
that we could characterize on EA.hy926 cells. The NCX
working in the reverse mode accounts for a significant part of
the Ca®" entry, but certainly other players are also involved
that would fully explain the RACE phenomenon.
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