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Abstract. In the Minority, Majority and Dollar Games (MG, MAJG, $G) agents compete for rewards,
acting in accord with the previously best-performing of their strategies. Different aspects/kinds of real-
world markets are modelled by these games. In the MG, agents compete for scarce resources; in the MAJG
agents imitate the group to exploit a trend; in the $G agents attempt to predict and benefit both from
trends and changes in the direction of a market. It has been previously shown that in the MG for a
reasonable number of preliminary time steps preceding equilibrium (Time Horizon MG, THMG), agents’
attempt to optimize their gains by active strategy selection is “illusory”: the hypothetical gains of their
strategies is greater on average than agents’ actual average gains. Furthermore, if a small proportion
of agents deliberately choose and act in accord with their seemingly worst performing strategy, these
outperform all other agents on average, and even attain mean positive gain, otherwise rare for agents in
the MG. This latter phenomenon raises the question as to how well the optimization procedure works in
the THMAJG and TH$G. We demonstrate that the illusion of control is absent in THMAJG and TH$G.
This provides further clarification of the kinds of situations subject to genuine control, and those not, in
set-ups a priori defined to emphasize the importance of optimization.

PACS. 89.75.-k Complex systems – 89.65.Gh Economics; econophysics, financial markets, business and
management – 02.50.Le Decision theory and game theory

1 Introduction

“Illusion of control” [1] describes the fact that individu-
als appear hard-wired to over-attribute success to skill,
and to underestimate the role of chance, when both are in
fact present. We have previously shown [2] that in one of
the most extensively-studied agent-based game-models of
markets, the minority game (MG), agents’ control is illu-
sory in the following sense: the mean actual performance
of all agents averaged over many different initial condi-
tions is poorer than the mean hypothetical performance
of all their given strategies. The finding is striking be-
cause at each time-step agents deploy that strategy with
the best hypothetical performance. This finding is most
generally true under the following conditions: the initial
state is iterated for a “reasonable” number of time-steps
(�2000 say) short of equilibrium (�5000 say) at which
point a rolling window of cumulative strategy scores is
maintained, which window distinguishes the Time Hori-
zon MG (THMG) from the MG proper. In the THMG, the
illusion is observed for all m (m is the number of bits of
binary history in agents’ memory and an “m-bit history”
consists of a string of 1’s and 0’s of length m. 1 indicates
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that a minority of agents have adopted action “−1”, 0
indicates that they have adopted action “+1”). The find-
ing is less generally true in the MG strictly speaking, in
which the system is always allowed to run to equilibrium.
In that case, it is true for all m, except at the so-called
critical point αc = 2mc

N = 0.34, where α ≡ 2m

N in general
and N is the number of agents. And even at αc the illu-
sion of control is just barely overturned. For example with
N = 31, 3 < mc = 3.4 < 4 (therefore integer mc ≡ 4).
However, equilibrium in the MG proper is only reached
after ∼100 × 2m+1 iterations away from αc and orders or
magnitude more near αc, therefore for N = 31 at mc = 4,
teq � 3200 iterations. Arguably, no real-world market is
sufficiently stationary to attain such an equilibrium state.

Another important finding presented in [2] is the sur-
prising fact that, if a small proportion of agents (�0.15,
e.g., 3 of 31) deploy their previously worst performing
strategy, these on average outperform all others. In fact
they relatively consistently attain average net positive
gain, otherwise rare in the MG as the mean gain for both
strategies and agents is in general negative due to the mi-
nority rule. Note that such an inversion of the selection
rule is a symmetric alteration with no privileging nor in-
crease in agent computational capacity (see Appendix).
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The success of “anti-optimizing” agents is a further
marker of the “illusory” nature of the standard optimiza-
tion rule. It also raises the following question: is an in-
verted rule equivalent to agents playing a Majority Game
(MAJG)? As they are not optimizing to be in the minor-
ity, it seems that agents must be optimizing to be in the
majority, but failing, and rather inadvertently succeed in
finding the minority remarkably often. By this reasoning it
seems to follow that in a game where all agents are striving
to be in the majority (MAJG), select agents that optimize
instead to be in the minority will likewise succeed dispro-
portionately. Does the MAJG thus also demonstrate an
“illusion of control”? Since agent gain in the $G also fol-
lows a majority rule, albeit time-lagged, would “illusion
of control” be found in it, too?

The goal of the present paper is to clarify these ques-
tions and demonstrate that agents who invert their opti-
mization rule in the MG are not actually playing a MAJG
and that no illusion of control is found in either the MAJG
or the $G. We discuss our results in terms of persistent ver-
sus anti-persistent characteristics of the time series gener-
ated by the various models. In a follow-up to this paper [3],
we relate these comparative results to different character-
istics of markets – or different phases they may enter – as
real-world agents alter their game-playing behavior.

Our main result with respect to the THMG is de-
tailed in [2] and Section 1. above: strategies’ mean hypo-
thetical performance exceeds agents’ mean actual perfor-
mance. Agents should thus behave in risk-averse fashion
by switching randomly between strategies rather than op-
timizing. Two conditions must hold for the statement to
be false: (1) m � mc; (2) the system must be allowed to
reach equilibrium (t � τeq). Condition (2) requires an ex-
ceedingly large number of preliminary steps before agent
selection begins, and orders of magnitude more steps if
m ≈ mc). In the MG proper the situation is more com-
plex and is discussed at length in [2].

In the MAJG and $G the reverse holds: optimization
greatly enhances agent over strategy gain, both being pos-
itive.

We first briefly review the formal structure of each of
the MG, MAJG and $G. We then present the results of
extensive numerical simulations. Finally we discuss the
differences that emerge in terms of persistent versus anti-
persistent time-series.

2 Minority, Majority and $ Games

2.1 Definition and overview of Minority Games (MG)
and Time-Horizon MG (THMG)

In the MG, those agents gain whose actions are in the
minority subset at each time-step. Agents in the comple-
mentary (majority) subset lose. As discussed in [2], the
MG is an agent-based model of financial markets that vi-
olates the “rational expectations” assumption of standard
economic theory [4]: when every agent behaves in accord
with its most rational expectation, the collective action of

all agents makes the expectation false. Common expecta-
tions cancel, leading to anti-persistent behavior both for
the collective and for individuals [5,6].

In brief, the MG proceeds as follows: at each time
step t, each agent i ∈ {1, 2, . . . , N} chooses one of two
alternative actions ai(t) ∈ {−1, 1}. This yields a value

A(t) =
N∑

i=1

ai(t), and binary series D(0) . . . D(t − 1), D(t)

with D(t) = 1/2 [Sgn (2A − N) + 1] ∈ {0, 1}. Each agent
is randomly endowed with S strategies (selected from 22m

possible strategies) assigned for always at the beginning
of the game (quenched disorder state Ω̂). Agents choose
their actions at each t based on a history μ(t) consist-
ing of the most recent m digits of D(t) in accord with
one of its S strategies sr

i , r ∈ {1, 2, . . . S}: a strategy sr
i

maps μ(t) → ai(t). Strategies accumulate +1 hypothetical
point each time they win, unboundedly, and –1 hypotheti-
cal point each time they lose. Agents whose strategies lead
to a win accumulate +1 real point, and those that lose ac-
cumulate –1 point. A running score table is kept for every
strategy and agent. The strategy chosen by each agent at t
is the one which would have been in the minority most fre-
quently until then. This is the key optimization step. If an
agent’s best strategy predicts D(t) = 1 (resp. 0), she will
take the action –1 (resp. +1) to try to be in the minority.
Ties are broken by a fair coin toss. If hypothetical points
are summed over a rolling window of bounded length τ
up to the last information available at t, the game is the
“Time Horizon MG”. For τ � τeq, the THMG is equiv-
alent to the MG, where τeq is the equilibrium time for
the MG.

The distinguishing characteristic of the MG is the
corresponding instantaneous payoff of agent I, given by
−ai(t)A(t) – the minus sign encodes the minority rule
(and similarly for each strategy for which it is added
to the τ − 1 previous payoffs. The payoff may also
be −Sgn[ai(t)A(t)] = −ai(t)D(t). This does not al-
ter the dynamics of the game. If −ai(t)A(t) < 0 ⇒
−Sgn[ai(t)A(t)] < 0, agent i is rewarded. Agents in the
MG and THMG thus try to be anti-imitative. For a range
of m (given N , S), agent performance is better than what
strategy performance would be in a game with no agents
optimizing, assuming that the system is first allowed to
reach equilibrium [5]. The phenomenon discussed in [2] is
that when optimizing, and averaged over all actual agents
and their component strategies in a given realization, and
then averaged over many such initial quenched disorder
states, agents in the TH variant of the MG nonetheless
underperform the mean of their own measured strategy
performance and do so for reasonable lengths of τ at all
m. (In the MG, the same statement holds true for “reason-
able” run lengths post initialization but pre-equilibrium.
It holds true post-equilibrium as well except for m at or
very near mc (where αc ≡ 2m/N), but in this region the
number of steps to equilibrium is extremely large [5]).

More specifically, for any given realization, a minor-
ity of agents outperform their strategies and the ma-
jority of other agents (some may also achieve net pos-
itive gain, if rarely). In the MG proper, however, τ is
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unbounded and a stationary state is reached at some very
large τeq � 2m × 200. At equilibrium, the largest possi-
ble number of agents “freeze” their choice of strategy: one
virtual strategy score attains a permanently higher value
than any other (the fraction of agents susceptible of freez-
ing is not only determined by N , m and S, but by the
specific initial allocation of strategies, i.e., the quenched
disorder tensor Ω̂). These frozen agents in general do out-
perform the mean of all strategies in a given realization
as well as the mean of their own S original strategies:
they perform exactly as well as their best. In [2] and here
we focus on the THMG with real-world markets in mind.
Such time series are non-stationary, and trading strategies
are weakened if they incorporate an unbounded history of
prior strategic success or failure. Furthermore, agents do
not take account of the impact of their choice on the prob-
able minority state. We refer to such agents as “standard”.

2.2 Definition and overview of the Majority Game
(MAJG)

A MAJG differs from the MG (and a THMAJG from
the THMG) only by a change in sign for the individ-
ual agent payoff function: i.e., gmin

i (t) = −ai(t)A(t) or
gmin

i (t) = −Sgn[ai(t)A(t)] whereas gmaj
i (t) = +ai(t)A(t)

or gmaj
i (t) = +Sgn[ai(t)A(t)]. The plus sign means that

agents are rewarded when they act with the majority of
agents. Thus, agents strive to be imitative rather than
anti-imitative. From the perspective of markets, agents
in the MG are “pessimistic” in assuming that resources
are limited so that there can be only a minority of win-
ners; they are “contrarian” in attempting to do what they
believe most others are not doing. Agents in the MAJG
are “optimistic” in assuming that resources are bound-
less, price (and value) potentially rising simply by virtue
of collective agreement, so that the majority wins; they are
“conformist” in attempting to do what they believe most
others are also doing. Agents in both types of games “be-
lieve” that their actions may be optimized by examining
the past paper-performance of their strategies.

As only a minority of agents win in the MG, mean

agent gain Ḡmin(t) =
1
N

N∑

i=1

gmin
i (t) < 0. Cumulative

wealth tends to decrease over time. In the MAJG, a ma-
jority of agents win so that mean agent gain Ḡmaj(t) =
1
N

N∑

i=1

gmaj
i (t) > 0. Cumulative wealth tends to increase

over time.
In the MG, A(t) is typically anti-persistent (as is D(t)),

paralleling the anti-imitative behavior of agents. In the
MAJG, A(t) is typically persistent, paralleling the imita-
tive behavior of agents.

2.3 Definition and overview of the Dollar Game ($G)

The $G [8]captures more accurately the changing actions
of traders, but in a framework as close as possible to the

MG. We wrote that agents in the MG are “contrarian” in
trying to do what most others are not. But this is not what
true contrarians do: They attempt to be in the minority
when a market falls, but also at a turning point. And they
attempt to be in the majority when the market rises. This
is what non-contrarian traders are also attempting. Indeed
every trader tries to do this. Contrarians differ from con-
formists in their reasoning about the immediate future.
They make predictions that typically differ from the ma-
jorities’ prediction – but they may or may not be correct.
Like all others, they will still hope that, if correct, it will
lead them to be in the majority in one instance and the
minority in the other. A similar correction to “conformist”
can be made.

An agent with “real world” behaviors is one that tries
to join the majority when the market begins a rise; He
tries to join the minority when the market begins a de-
cline – i.e., at convex or concave inflection points respec-
tively. This behavior is captured by the following change
in the agent gain: g$

i (t) = +ai(t − 1)A(t) or g$
i (t) =

+Sgn[ai(t − 1)A(t)]. Action at t − 1 is interpreted as a
judgment about Sgn[A(t)], and determines whether an
agent gains or loses. Mean agent gain retains the same

form: Ḡ$(t) =
1
N

N∑

i=1

g$
i (t). We anticipate that Ḡ$(t) > 0

because in spite of the time-lagged ai(t − 1), the payoff
function is preceded by a + sign, so intuitively should
generate largely imitative behavior. This intuition is con-
firmed by the numerical simulations presented in refer-
ence [8].

3 Quantitative statement and tests

3.1 Analytic calculation versus numeric simulation

We use the Markov chain formalism for the THMG [7] and
extend it to both a THMAJG and a TH$G to obtain the-
oretical prediction for agent and strategy gains, ΔWAgent

and ΔWStrategy [10]:

〈
ΔW game

agent

〉
= ± 1

N

⇀

|AD| · ⇀
μ (1)

〈
ΔW game

strategy

〉
=

1
2N

(
ŝμ · ⇀

κ
)
· ⇀
μ. (2)

In equations (1) and (2), brackets denote a time aver-
age. The superscript “game” identifies the game type with
game ∈ {M, MAJ, $}. In equation (1), the minus sign is

needed for the MG, otherwise not;
⇀

|AD| is a (m + τ )-bit-
length vector of absolute values |AD(μ)|, one for each μ.
μ is a (m + τ)-bit “path history” [10] (sequence of 1-bit
states);

⇀
μ is the normalized steady-state probability vec-

tor for the history-dependent (m + τ ) (m + τ ) transition
matrix T̂, where a given element Tμt,μt−1 represents the

transition probability that μt−1 will be followed by μt;
⇀

AD

is a 2(m+τ)-element vector listing the particular sum of de-
cided values of A(t) associated with each path-history; ŝμ
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Table 1. Numeric and analytic results for a typical quenched initial disorder state in the THMG, -MAJG and -$G.

Numeric
〈
ΔW game

agent

〉 〈
ΔW game

strategy

〉
Analytic

〈
ΔW game

agent

〉 〈
ΔW game

strategy

〉

MG −0.21 −0.06 MG −0.21 −0.06
MAJG +0.43 +0.08 MAJG +0.43 +0.08

$G +0.39 +0.06 $G +0.40 +0.06

is the table of points accumulated by each strategy for each
path-history;

⇀
κ is a 2(m+τ)-element vector listing the total

number of times each strategy is represented in the col-
lection of N agents. As shown in reference [2], T̂ may be

derived from
⇀

AD, ŝμ and
⇀

NU , the number of undecided
agents associated with each path history. Thus agents’
mean gain is determined by the non-stochastic contribu-
tion to A(t) weighted by the probability of the possible
path histories. This is because the stochastic contribution
for each path history is binomially distributed about the
determined contribution. Strategies’ mean gain is deter-
mined by the change in points associated with each strat-
egy over each path-history weighted by the probability of
that path.

Agreement is excellent between numerical simulations
and the analytical predictions (1) and (2) for the THMG,
THMAJG and TH$G. For instance, for {m, S, N, τ} =
{2, 2, 31, 1}, for one identical quenched disorder state, Ta-
ble 1 shows the payoff per time-step averaged over time
and over all agents and all strategies for both analytic and
numerical methods. In this numerical example, the aver-
age payoff of individual agents is smaller than for strate-
gies by –0.15 units per time step in the THMG, but larger
by +0.35 units in the THMAJG and by +0.33 units in
the TH$G. Thus, in this example, optimization appears to
agents as genuine in the THMAJG and TH$G but would
seem illusory in the THMG.

The above results illustrate primarily the close align-
ment of analytic and numerical methods in generating re-
sults. Of greater interest is the comparison of agent versus
strategy gains among the MG, MAJG and $G at various
values of m below, at and above mc, and at various values
of τ 	 τeq and τ < τeq – all averaged over a large ensem-
ble of randomly selected quenched disorder states. The
computational resources required to evaluate the analytic
expressions grows for

〈
ΔW game

agent

〉
as ∝2m+τ . We therefore

report only the numerical results.

3.2 Illusory versus genuine control
for τ � τeq and for τ < τeq

Almost all results that hold for multiple values of τ 	 τeq

are illustrated for 1 � τ � 1000. In Figure 1 through
Figure 6 we present graphic representations of the ensem-
ble average of 50 runs comparable to Table 1 but over
many values of m, for all three games, at τ = 1 and
then at τ = 1000. At 1000, τ is close to equilibrium for
small m < mc, and as long or longer than real-world trad-
ing “lookbacks” for all but high-frequency data (e.g., for
m = 2, τeq ≈ 800).

Fig. 1. Agent versus Strategy mean per-step gain in the
THMG at various m with τ = 1. The phase transition expected
at m = 4 is absent with respect to the metrics presented here;
strategies outperform agents at all m as indicated by the black
squares: agent performance is always negative relative to strat-
egy performance. The optimization procedure employed by
agents yields worse performance than their component strate-
gies on the basis of which agents select wich strategies to deploy
at each time-step.

Fig. 2. Agent versus strategy mean per-step gain in the
THMAJG at various m with τ = 1. Agent performance is
always positive and greater than strategy performance. The
optimization procedure employed by agents yields better per-
formance than their component strategies.

We see that the illusion of control in the THMG per-
sists at all values of m and whether τ = 1 or τ = 1000.
Simulations at various intermediate values of τ confirm a
smooth transition from Figures 1–3 to Figures 4–6 respec-
tively. Incidentally we note that the phase transition to be
expected at m = 4 is strongly suppressed for τ = 1 in the
sense that the present metric is not sensitive to it.

For both the THMAJG and the TH$G, the control
exerted by agents is non-illusory: agents outperform their
constituent strategies at all m. Because of the non time-
lagged implementation of a majority rule in the THMAJG,
strategies show consistent positive gain, even if less than
agents. Strategies’ gain tends toward a positive limit with
agents’ gain tending toward a greater value at all m.
However, in the TH$G, strategies on their own, in the
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Fig. 3. Agent versus strategy mean per-step gain in the TH$G
at various m with τ = 1. Agent performance is always greater
than strategy performance. The optimization procedure em-
ployed by agents yields better performance than their compo-
nent strategies, but the gain becomes asymptotically small for
large m.

Fig. 4. Agent versus strategy mean gain per-step in the THMG
at various m with τ = 1000. The phase transition expected
at m = 4 is clearly visible. Even with a very long lookback of
historical data, the optimization procedure employed by agents
yields worse performance than their component strategies.

Fig. 5. Agent versus strategy mean gain per-step in the
THMAJG at various m with τ = 1000. Agent performance
is always positive and greater than strategy performance. The
optimization procedure employed by agents yields better per-
formance than their component strategies.

aggregate, tend toward zero gain with increasing m, as
would be expected from a realistic model of a market.
Agents are superior to strategies at all m, but converge
to the zero limit of strategy gain with increasing m. In
other words, of the three variations, the TH$G with very
short τ shows the most satisfying convergence toward nei-
ther net positive nor net negative gain for both strategies
and agents as strategy complexity increases and begins to
approximate random selection, in line with what would
be expected from the efficient market hypothesis [12,13].

Fig. 6. Agent versus strategy mean gain per-step in the TH$G
at various m with τ = 1000. Agent performance is always
greater than strategy performance. The optimization proce-
dure employed by agents yields better performance than their
component strategies.

It is especially interesting that this is so, given that the
$G rule remains a majority one, albeit time-lagged by one
step to take into account the time lag between decision
and return realization [8].

In the MG proper, where τ grows without bound and
agent and strategy performance begins to be measured
only after τeq steps, agent performance will exceed strat-
egy performance – optimization succeeds – but only for
m � mc, as reported in the supplementary material for [2].
But even for a relatively small number of agents (e.g., 31,
as here), at m = 10 say, τeq ≈ 100×211 > 200 000 steps is
unrealistically large (for a comparison with standard tech-
nical investment strategies used for financial investments).
In the MAJG and $G, equilibrium is reached much sooner
and so there is no significant departures from the results
shown above for τ = 1000.

4 Interpretations: crowding-out,
anti-optimizing agents and persistence

4.1 Illusion of control and the crowding-out
mechanism

Illusion-of-control effects in the THMG result from the
fact that there is a larger probability for a strategy that
has performed well in the past to be chosen by an increas-
ing number of agents, which inevitably leads to its failing,
i.e., it becomes crowded out due to the minority rule for
winning [2]. Optimizing agents tend on average to adapt
to the past but not the present. They choose an action
a(t) that is on average out-of-phase with the collective ac-
tion A(t) or D(t). In contrast, non-optimizing (random-
or fixed-choice) agents average over all regimes for which
their strategy may be good or bad, and do not face the
crowding-out effect. The crowding-out effect also explains
simply why anti-optimizing agents over-perform [2]: choos-
ing their worst strategy ensures that it will likely be less
used by other agents in the next time step, which makes
it more probable that they will be in the minority. In ref-
erence [2], we consider generalizations of the MG in which
more clever agents use this insight to develop strategies
based on their awareness of prior-level effects: when agents
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use a boundless recursion scheme to learn and optimize
their strategy, the game converges to an equilibrium with
fully symmetric mixed strategies where agents randomize
their choice at each time step with unbiased coin tosses.
The crowding mechanism also predicts that the smaller
the parameter 2m/N , the larger the illusion-of-control ef-
fect. Indeed, as one considers larger and larger values of
2m/N , it becomes more and more probable that agents
have their strategies in different reduced strategy classes,
so that a strategy which is best for an agent tells noth-
ing about the strategies used by the other agents, and the
crowding out mechanism does not operate. Thus, regions
of successful optimization, if they occur at all, are more
likely at higher values of 2m/N (see Appendix to [2] for
further details.)

By contrast, in all of the MAJG, $G, THMAJG and
TH$G, with their variants of a majority mechanism for
agent gain, a strategy that has performed well in the
past is likely to do so again in the future. The domain
of successful optimization encompasses all m, but dimin-
ishing as m increases and strategies become widely dis-
persed in strategy space, approximating ever more closely
a collection of random decision makers. The optimization
procedure is most effective in the $G where the positive
bias present even for strategies alone in the MAJG ap-
pears neutralized by the time-delayed factor: on their own,
strategies show effectively neither gain nor loss. Gains are
therefore due solely to the optimization procedure. Given
this, we predict that anti-optimizing agents should show
no advantage over their optimizing counterparts in the
MAJG and $G and will rather underperform. The next
section presents results of simulations testing this predic-
tion.

4.2 Illusion of control and “anti-optimizing” agents

We select 3 of 31 agents to function “counteradaptively”
(“c agents”) and the remaining to function in the standard
fashion (“s agents”). c-agents “anti-optimize” – at each
time-step they deploy that strategy with the fewest vir-
tual points accumulated over τ , rather than the strategy
with the most points as do s-agents. In [2], we studied this
phenomenon in the “crowded regime” (m < mc, α < αc)
where crowd and anti-crowd formation is likely and the
minority mechanism causes the larger-sized crowds to lose.
In this regime, c-agents that choose their worst perform-
ing strategy consistently outperform s-agents that choose
their best. Here we display results obtained for a wide
range of m both less than, and greater than mc, for the
THMG, THMAJG and TH$G with τ = 100. τ is long
enough so that the phase transition in the MG is not sup-
pressed at mc(=4 for N = 31).

Figure 7 shows c-agent minus s-agent mean per-step
change in wealth for 2 < m < 14, each averaged over
100 runs of 100 days post-τ = 400. In the THMG, in the
crowded regime, the illusion of control effect is so strong
that c-agents significantly outperform s-agents. Because
we know that, for all m at this τ , agents underperform
strategies, we see that the opposite is true for c-agents: in

2 4 6 8 10 12 14

-4

-3

-2

-1

0

Fig. 7. Difference between c-agent and s-agent mean per-step
change in wealth for 3 of 31 c-agents, averaged over 100 days
and 200 runs with τ = 400 in the THMG, THMAJG and
TH$G.

the act of “anti-optimizing”, they actually optimize. How-
ever, as the phase transition approaches, this becomes less
true. Indeed at mc and after mc – that is, in the non-
crowded regime – s-agents outperform c-agents, converg-
ing to zero difference with increasing m. We know however
that these s-agents for large m are nonetheless underper-
forming their strategies. Thus, while the illusion of control
effect remains present, it is not strong enough for c-agents
to outperform s-agents in this regime.

By contrast with the results for the THMG, c-agents
in the THMAJG and TH$G consistently underperform
s-agents as predicted from the success of the optimiza-
tion scheme at all m (again converging to zero difference
at large m). The size of this underperformance for anti-
optimizing agents is consistent with the large degree of
standard optimization success as shown in Figures 5 and 6.

4.3 Persistence versus anti-persistence in the THMG,
THMAJG and TH$G

As discussed in [2], in the MG and THMG, the degree
to which agents underperform their own strategies varies
with the phase as parameterized by α. As noted in [7], in
the crowded phase (α < αc, m < mc), the “crowd” of such
agents choosing an action at any given time-step acts like
a single “super-agent”; the remaining agents as a (non-
synchronized) “anti-crowd” whose actions will conform to
the minority choice. Thus, when a strategy is used, it is
probably used by more than one agent, often by many
agents. If used by enough, it becomes a losing strategy
with large probability – precisely because so many agents
“think” it’s the best choice and use it. This implies that at
the next time step, agents will not use it. The time-series

of determined choices
⇀

AD therefore does not show trends
(or persistence), but rather anti-persistence.

Anti-persistence is not equivalent to “random” and is
scale-dependent. Consider a binary time-series with an
m-bit μ(t) defined in the same way as we have in the
MG or THMG: μ(t) is a sliding window of 1-bit states
each of length m: s(t − m + 1), . . . s(t). A perfectly anti-
persistent binary series at scale m = 2, for example, is
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Fig. 8. Persistence (white)/Anti-Persistence (black) at various scales and memory lengths in the MG, MAJG
and $G. The grey scale between 0 and 1 given to the right of the checkerboards encodes the degree of
persistence at the chosen scale (abscissa) for different m values (ordinate), calculated as described in the text, using game-
generated binary histories of length 1000 over 100 different runs for each game type.

characterized as follows: select any one instance of the
four possible μ(t) ∈ {00, 01, 10, 11}. Identify the following
bit s(t + 1) ∈ {0, 1}. Now identify the next instance of the
selected μ(t). If the series is perfectly anti-persistent, the
following bit will always be 1 if the previous following bit
was 0, and 0 if the previous following bit was 1. A perfectly
anti-persistent series can be generated by two lookup ta-
bles indicating what bit follows which μ(t). Whatever bit
is indicated by the first table, the opposite bit is indi-
cated by the second. Whenever an entry in a table is used
for a given μ(t), the other table is used when μ(t) occurs
again [14]. These tables are identical to strategy pairs at
the maximum Hamming distance in the MG. No matter
which of the 2m+1 = 8 possible strategies is used for the
first table, and regardless of which of the 2m = 4 pos-
sible μ(t) are used to initiate it, the time series gener-
ated by these tables will rapidly settle into perfect anti-
persistence.

The “persistence” P of a given series at scale (defined
as) ms is thus simply the proportion of times that histories
of length ms + 1 end in bits 00 or 11; anti-persistence
(i.e., 1 − P) is the proportion they end in 01 or 10 (One
must examine strings of length ms + 1 to determine the
persistence as scale ms).

The process generating a given empirical series may be
unknown. This unknown process may itself be a memory-
related process such as in the games we are discussing; it
need not be (it could be, for example, completely random).
The process may likewise be Markovian and memory-
related as are the time-series generated by the TH games;
it may be memory-related but non-Markovian as the non-
TH version of these games. If the process is memory-
related, whether Markovian or not, we need to distinguish
between the unknown length m (or m+ τ) underlying the
process and a length we denote as ms indicating the scale
of our analysis. Intuitively, it would seem that choosing
ms = m or ms = m + τ , would yield the most robust
analysis of persistence versus anti-persistence. But if the
memory length of the process is unknown, this cannot be
done. In the case of a TH game, all paths of length m + τ
transition to other paths of equal length with known prob-
abilities as these games are Markovian. The scale m + τ
would seem even more natural since all quantities can

be determined exactly using analytic methods, at least
in principle. See [15,16] for an illuminating study on how
to determine the optimal coarse-grained scale in simple
cellular automata.

However, for m or τ large, the transition matrices
become intractably large as well, scaling as (m + τ)2.
We thus need to know whether the degree of persis-
tence/antipersistence may be approximated at a lower ef-
fective ms: i.e., given a binary time-series generated by
an unknown process, may we usefully characterize its per-
sistence by a small value of ms to replace its ‘actual’ m
or m + τ? Before analyzing the degree of persistence and
anti-persistence in the MG, MAJG and $G, we first show
that, in fact, relatively small values of ms do successfully
characterize persistence.

We implement an algorithm to characterize the persis-
tence of a binary time series as described above. We find
sharp differences in the degree of persistence between the
time series generated by the MG on the one hand and the
time series generated by the MAJG and $G on the other.
A less sharp distinction also emerges between the MAJG
and the $G. We find as well that characteristic distinc-
tions arise at all reasonable m, attenuating as m grows
large and at all reasonable scales. This last point is im-
portant: While the degree of persistence is obviously best
captured for the TH variants of these games as the natural
scale m+ τ (since the TH games are Markovian), it is not
obvious that a small-m scale will effectively capture dis-
tinctions in the MG, MAJG and $G proper as the natural
scale is large and unbounded. It emerges that in general,
if a significant degree of persistence or antipersistence is
characteristic at a large-m scale, it may be approximated
by a low-m analysis. We demonstrate this, and the differ-
ential characteristics of the respective time series in the
following.

Figure 8 illustrates graphically the mean degree of
persistence or anti-persistence averaged over 25 different
initializations identically shared by each of the THMG,
THMAJG and TH$G with N = 31, S = 2, τ = 100 and
m ∈ {2, 3, ..., 10}, scale ∈ {2, 3, ...10}. The generally darker
shade in all squares of the grid representing the THMG
implies values closer to or consistent with anti-persistence
(<0.5, with 0.5 representing the equal degree of
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Fig. 9. Persistence/anti-persistence at various scales = mem-
ory lengths in the MG, MAJG and $G.

persistence and anti-persistence of a random sequence),
those in the THMAJG and TH$G with persistence (>0.5).

The fraction of persistent sequences up cells of in-
creasing m are roughly similar on a relative basis up the
columns of different scales, but shifted toward the random,
especially for the THMAJG and TH$G. The fraction of
persistent sequences up cells of increasing m in the THMG
shows a shifting transition point. This feature is seen most
sharply along the upward-and-to-the-right diagonal which
represents the relation scale = m. Figure 9 charts the de-
gree of persistence along this diagonal for all three games.

At the phase transition (mc = 4 for N = 31), the time-
series generated by the THMG when the scale equals m
undergoes a transition from anti-persistence to persistence
and then declines asymptotically to the random limit 0.5.
When ms �= m this transition occurs at either smaller or
larger values of m. Both the THMAJG and TH$G gener-
ate persistent time-series exclusively. The degree of per-
sistence declines monotonically to the random limit 0.5
with increasing m. Persistence in the THMAJG is always
greater than in the TH$G.

5 Conclusions

The “illusion of control” is an unfortunate confounding
effect that appears in many situations of “bounded ra-
tionality” where optimization occurs with limited (inade-
quate) information. However ubiquitous the illusion may
be, it is not universal. In reference [2], we note that the
illusion of control effect in the THMG is fundamentally
due to three ingredients: (i) the minority mechanism (an
agent or a strategy gains when in the minority and loses
otherwise); (ii) the selection of strategies by many agents
because they were previously in the minority, hence less
likely to be so in the present; and (iii) the crowding of
strategies (i.e., few strategies for many agents). We see in
the preceding analysis of persistence, that there is a close
relationship among these three characteristics, a high de-
gree of anti-persistence in the resulting time-series and the
illusion of control.

The fact that the illusion of control occurs in at least
one kind of market model under a wide range of condi-
tions is consistent with the tacitly adopted “rule” im-
plied by the fact that sophisticated academic investors
have learned not to employ widely-supported optimization

theories. I.e., Doran and Wright report that two-thirds of
all finance professors at accredited, four-year universities
and colleges in the U.S. (arguably among the most so-
phisticated and informed financial investors) are passive
investors who think that the traditional valuation tech-
niques are all unimportant in the decision of whether to
buy or sell a specific stock (in particular, the CAPM, APT
and Fama and French and Carhart models) [9]. Our anal-
yses of genuine and illusory control may be considered a
small step toward formalizing the conditions under which
optimization is likely to succeed and when not, conditions
which many sophisticated investors may learn to detect
from sheer experience and without necessarily being able
to reduce to quantitative form.

In another paper [3], we extend the preceding analysis
to the types of Hamiltonian cycles on graphs found associ-
ated with persistent and anti-persistent series, and employ
these methods for generating predictors of empirically gen-
erated time-series, both in models and in the real world,
identifying the circumstances under which such predictors
succeed and when they fail.

We are grateful to Damien Challet who initially posed the ques-
tion that resulted in this manuscript, as to whether an “illusion
of control” discussed in [2] for Minority Games would be found
in Majority Games as well.

Appendix A: Analytic methods for the THMG,
THMAJG and TH$G for choosing the best
strategy

To emphasize the relation of the THMG, THMAJG and
TH$G to market-games and to either genuine or illusory
optimization, we have transformed the fundamental re-
sults of the games from statements on the properties of
δ2/N to change in wealth, i.e., 〈ΔW/Δt〉 for agents and
〈ΔW/Δt〉 for strategies. We use the simplest possible for-
mulation – if an agent’s actual (or strategy’s hypotheti-
cal) vote places it in the winning group (minority in the
THMG, majority in the THMAJG and TH$G), it scores
+1 points, otherwise −1. Formally: at every discrete time-
step t, each agent independently re-selects one of its S
strategies. It “votes” as the selected strategy dictates by
taking one of two “actions,” designated by a binary value:

ai(t) ∈ {1, 0} , ∀i, t. (A.1)

In the simplest version of the MG, MAJG and $G with
N agents, every agent has S = 2 strategies and m = 2.
In the THMG, THMAJG and TH$G, the point (or score)
table associated with strategies is not maintained from
the beginning of the game and is not ever growing. It is
a rolling window of finite length τ (in the simplest case
τ = 1). The standard MG reaches an equilibrium state
after a finite number of steps tst. At this point, the dy-
namics and the behavior of individual agents for a given
initial quenched disorder in the MG are indistinguishable
from an otherwise identical THMG with τ � tst. The
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present formulation follows closely that presented in Ap-
pendix (A.1) of [2], applying it simultaneously to all three
games, the THMG, THMAJG and TH$G.

The state of the system as a whole at time t is a map-
ping of the sum of all the agents’ actions to the integer
set {2N1 − N}, where N1 is the number of 1 votes and
N0 = N − N1. This mapping is defined as:

A(t) = 2
N∑

i=1

ai(t) − N = N1 − N0 (A.2)

If A(t) > N
2 , then the minority of agents will have chosen

0 at time t (N0 < N1); if A(t) < N
2 , then the minority of

agents will have chosen 1 at time t (N1 < N0). In the MG
the minority choice is the “winning” decision for t. In both
the MAJG and $G the majority choice is the “winning”
decision for t. This choice is mapped back to {0, 1}:

Dsys(t) = −Sgn[A(t)] ∴ Dsys(t) ∈ {−1, +1} → {0, 1} .
(A.3)

For the non-TH version all three games, binary strings of
length m form histories μ(t), with m = dim [μ(t)]. For
the TH games, binary strings of length m + τ form paths
(or “path histories”), with m + τ = dim(μt), where we
define μ(t) as a history in the standard MG and μt as a
path in the THMG. Note that for memory m, there are
22m

possible strategies from which agents select S at ran-
dom. However as first detailed in reference [11], the space
of strategies can be minimally spanned by a subset of
all possible strategies. This reduced strategy space [RSS]
has dimension 2m+1. As in reference [10], we may repre-
sent this quenched disorder in the allocation of strategies

among agents (from the RSS) by a dim =
S∏

s=1
2m+1 ten-

sor, Ω̂ (or from the full strategy space by a dim =
S∏

s=1
22m

tensor). The 2m+1 (or 22m

) strategies are arranged in
numerical order along the edges of Ω̂. Each entry repre-
sents the number of agents with the set of strategies in-
dicated by the element’s position. Then as demonstrated
in [10], any THMG has a Markov chain formulation. For
{m, S, N} = {2, 2, 31} and using the RSS, the typical ini-
tial quenched disorder in the strategies attributed to each
of the N agents is represented by an 8 × 8 matrix Ω̂ and
its symmetrized equivalent Ψ̂ = 1/2

(
Ω̂ + Ω̂T

)
. Positions

along all S edges of Ω̂ represent an ordered listing of all
available strategies. The numerical values Ωij... in Ω̂ indi-
cate the number of times a specific strategy-tuple has been
selected (e.g., for two strategies per agent, S = 2, Ω2,5 = 3
means that there are 3 agents with strategy 2 and strat-
egy 5). Without loss of generality, we may express Ω̂ in
upper-triangular form since the order of strategies in an
agent has no meaning. The example (A.4) is a typical such

tensor Ω̂ for S = 2, N = 31.

Ω̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 0 0 1 1 0 0
0 0 0 0 3 3 1 1
0 0 2 0 1 0 0 0
0 0 0 1 1 0 0 1
0 0 0 0 1 0 2 1
0 0 0 0 0 2 2 1
0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A.4)

Actions are drawn from a reduced strategy space (RSS)
of dimension r = 2m+1. Each action is associated with a
strategy k and a history μ(t). There are 2m histories. To-
gether, all actions by history and strategy (converted for
convenience from {0, 1}) can be represented in table form
as a dim (RSS) × 2m binary matrix i.e., aμt

k ∈ {−1, +1}.
In this case, the table reads:

â ≡

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 −1 −1 −1
−1 −1 +1 +1
−1 +1 −1 +1
−1 +1 +1 −1
+1 −1 −1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 +1 +1 +1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A.5)

The change in wealth (point gain or loss) associated with
each of the r = 8 strategies for the 8 allowed transitions
among the 4 histories) at any time t for each of the three
games is then:

δ
⇀

S
min

μ(t),μ(t−1) = +
(
â

T
)

μ(t)
× {2Mod [μ(t − 1), 2] − 1}

(A.6)

δ
⇀

S
maj

μ(t),μ(t−1) = −
(
â

T
)

μ(t)
× {2Mod [μ(t − 1), 2] − 1}

(A.7)

δ
⇀

S
$

μ(t),μ(t−1) = −
(
â

T
)

μ(t−1)
×{2Mod [μ(t − 1), 2]−1} .

(A.8)

Mod[x, y] is “x modulo y”; μ(t) and μ(t − 1) label each of
the 4 histories {00, 01, 10, 11} hence take on one of values
{1, 2, 3, 4}. Equations (A.6), (A.7) and (A.8) pick out from
(A.5) the correct change in wealth over a single step since
the strategies are ordered in symmetrical sequence.

The change in points associated with each strategy for
each of the allowed transitions along all the τ histories
(i.e., along the path μt, accounting for the last τ time
steps used to score the strategies) is:

⇀
s

game

μt
=

τ−1∑

i=0

δ
⇀

S
game

μ(t−i),μ(t−i−1) (A.9)

(A.9) accounts for the change in points along path μt

by summing them over all transitions on the path, with
game ∈ {min, maj, $} for example, for m = 2 and τ = 1,
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Amin
D (μt) =

(
8∑

r=1

{[(
1 − Sgn

[
⇀
s

min

μt
� ⇀

s
min

μt

])
◦ Ψ̂

]
• â
}

r

)

(Mod[μt−1,2m]+1)

(A.16)

Amaj
D (μt) =

(
8∑

r=1

{[(
1 − Sgn

[
⇀
s

maj

μt
� ⇀

s
maj

μt

])
◦ Ψ̂

]
• (−â)

}

r

)

(Mod[μt−1,2m]+1)

(A.17)

A$
D (μt) =

(
8∑

r=1

{[(
1 − Sgn

[
⇀
s

$

μt
� ⇀

s
$

μt

])
◦ Ψ̂

]
• (−â)

}

r

)

(Mod[μt−1−1,2m]+1)

. (A.18)

the strategy scores are kept for only a single time-step
and τ − 1 = 0 so the sum vanishes. (A.9) in matrix form
therefore reduces to the score:

⇀
s

game

μt
= δ

⇀

S
game

μ(t),μ(t−1) (A.10)

or, listing the results for all 8 path histories:

ŝgame
μ = δŜgame (A.11)

δŜgame is an 8 × 8 matrix that can be read as a lookup
table. It denotes the change in points accumulated over
τ = 1 time steps for each of the 8 strategies over each of
the 8 path-histories.

Instead of computing Agame(t), we compute
Agame(μt). Then for each of the 2m+τ = 8 possible
μt, A(μt) is composed of a subset of wholly determined
agent votes and a subset of undetermined agents whose
votes must be determined by a coin toss:

Agame(μt) = Agame
D (μt) + Agame

U (μt). (A.12)

Some agents are undetermined at time t because their
strategies have the same score and the tie has to be bro-
ken with a coin toss. Agame

U (μt) is a random variable char-
acterized by the binomial distribution. Its actual value
varies with the number of undetermined agents Ngame

U .
This number can be explicated (using an extension to the
method employed in [10] for the THMG) as:

Nmin
U (μt) =
{(

1 −
[(

âT
)
(Mod[μt−1,4]+1)

⊗δ

(
âT
)
(Mod[μt−1,4]+1)

])

◦
(

⇀
s

min

μt
⊗δ

⇀
s

min

μt

)
◦ Ω̂
}

(Mod[μt−1,2m]+1)
(A.13)

Nmaj
U (μt) =
{(

1 −
[(

âT
)
(Mod[μt−1,4]+1)

⊗δ

(
âT
)
(Mod[μt−1,4]+1)

])

◦
(

⇀
s

maj

μt
⊗δ

⇀
s

maj

μt

)
◦ Ω̂
}

(Mod[μt−1,2m]+1)
(A.14)

N$
U (μt) =
{(

1−
[(

âT
)
(Mod[μt−1−1,4]+1)

⊗δ

(
âT
)
(Mod[μt−1−1,4]+1)

])

◦
(

⇀
s

$

μt
⊗δ

⇀
s

$

μt

)

◦ Ω̂
}

(Mod[μt−1−1,2m]+1)

(A.15)

“⊗δ” is a generalized outer product, with the product be-

ing the Kronecker delta.
⇀

NU constitutes a vector of such
values. The summed value of all undetermined decisions
for a given μt is distributed binomially. Note that (A.13)
and (A.14) are structurally identical while (A.15) differs
from these in that the indices on

(
âT
)

and on the entire
expression reference path-histories μt−1 rather than μt,
reflecting the one-step time-lag in the payoff for the $G.
Similarly:

see equations (A.16–A.18) above
Details of the derivation as applying to the THMG may

also be found in reference [17]. We define
⇀

AD as a vector
of the determined contributions to A(t) for each path μt.
In expressions (A.11) and (A.12) μt numbers paths from
1 to 8 and is therefore here an index.

⇀
s μt is the “μth

t ” vec-
tor of net point gains or losses for each strategy when at
tthe system has traversed the path μt (i.e., it is the “μth

t ”
element of the matrix ŝμ = δŜ in (A.11)). “�”is a general-
ized outer product of two vectors with subtraction as the
product. The two vectors in this instance are the same,
i.e.,

⇀
s μt . “◦” is Hadamard (element-by-element) multipli-

cation and “•” the standard inner product. The index r
refers to strategies in the RSS. Summation over r trans-
forms the base-ten code for μt into {1, 2, 3, 4, 1, 2, 3, 4}. Se-
lection of the proper number is indicated by the subscript
expression on the entire right-hand side of (A.13). This ex-
pression yields an index number, i.e., selection takes place
1 + Modulo 4 with respect to the value of (μt − 1) for the
THMG and with respect to the value of (μt−1 − 1) for the
THMAJG and TH$G.

To obtain the transition matrix for the system as a
whole, we require the 2m+τ ×2m+τ adjacency matrix that
filters out disallowed transitions. Its elements are Γμt,μt−1

Γ̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A.19)

Equations (A.13), (A.14) and (A.15) yield the history-
dependent (m + τ) by (m + τ ) matrix T̂ with elements
Tμt,μt−1 , representing the 16 allowed probabilities of tran-
sitions between the two sets of 8 path-histories μt and
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μt−1 (the game-type superscripts on AD and NU are un-
derstood in context):

T game
μt,μt−1

= Γ game
μt,μt−1

Ngame
U (μt)∑

x=0

{
Ngame

U (μt)

C
x

(
1
2

)Ngame
U (μt)

× δ

[

Sgn(Agame
D (μt) + 2x − Ngame

U (μt))

+ (2Mod {μt−1, 2} − 1)
]}

. (A.20)

The expression
Ngame

U (μt)

C
x

(
1
2

)Ngame
U (μt) in (A.20) represents

the binomial distribution of undetermined outcomes un-
der a fair coin-toss with mean = Agame

D (μt). Given a spe-
cific Ω̂,

〈Agame(μt)〉 = Agame
D (μt)∀μt. (A.21)

We now tabulate the number of times each strategy is rep-
resented in Ω̂, regardless of coupling (i.e., of which strate-
gies are associated in forming agent S-tuples), a value
which is the same across all games (hence we drop the
“game” superscript):

⇀
κ ≡

2m+τ
∑

k=1

(
Ω̂ + ΩT

)

k
=2

2m+τ
∑

k=1

Ψ̂k

= {n(σ1), n(σ2), . . . n (σ2m+τ )} (A.22)

where σk is the kth strategy in the RSS, Ω̂k, Ω̂T
k and Ψ̂k

are the kth element (vector) in each tensor and n(σk) rep-
resents the number of times σk is present across all strat-
egy tuples. Therefore

〈ΔWAgent〉 = ± 1
N Abs

(
⇀

AD

)

· ⇀
μ (A.23)

(with the minus sign for the MG, otherwise not, i.e., the
awarding of points is the negative of the direction of the
vote imbalance for the MG, and in the direction of the
imbalance in the MAJG and $G.) and

〈ΔWStrategy〉 = 1
2N

(
ŝμ · ⇀

κ
)
· ⇀
μ (A.24)

with
⇀
μ the normalized steady-state probability vector for

T̂. Expression (A.23) states that the mean per-step change
in wealth for agents equals ±1 times the probability-

weighted sum of the (absolute value of the) determined
vote imbalance associated with a given history, with a mi-
nus sign for the THMG. Expression (A.24) states that the
mean per-step change in wealth for individual strategies
equals the probability-weighted sum of the representation
of each strategy (in a given Ω̂) times the sum over the
per-step wealth change associated with every history.
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