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Background. Factor analysis (FA) is an established method for separating myocardium from
blood pool by use of oxygen 15–labeled water and positron emission tomography for analyzing
myocardial blood flow (MBF). Conventional FA methods generating images from sinograms
(sinoFA) are time-consuming, whereas FA can be performed on the reconstructed images
(reconFA) in a fraction of time. We validated the MBF values obtained by reconFA versus
sinoFA.

Methods and Results. In 23 volunteers (mean age, 26.6 � 3.4 years) MBF was calculated
from sinoFA and reconFA and blindly reanalyzed 1 month later by the same observer.
Intraobserver agreement and reconFA-versus-sinoFA agreement were assessed according to
Bland and Altman (BA). Reproducibility proved excellent for global sinoFA (r � 0.968; P <
.001; BA limits, �0.617 to 0.676 mL · min�1 · g�1) and slightly superior for reconFA (r � 0.979;
P < .001; BA limits, �0.538 to 0.558 mL · min�1 · g�1), with wider limits of agreement for
segmental MBF from sinoFA (r � 0.777; P < .001; BA limits, �1.676 to 1.656 mL · min�1 · g�1)
and reconFA (r � 0.844; P < .001; BA limits, �1.999 to 1.992 mL · min�1 · g�1). In addition,
sinoFA and reconFA showed excellent correlation (r � 0.975, P < .001) and agreement (BA
limits, �0.528 to 0.648 mL · min�1 · g�1) for global and segmental values (r � 0.955; P < .001;
BA limits, �1.371 to 1.491 mL · min�1 · g�1).

Conclusions. Use of reconFA allows rapid and reliable quantitative MBF assessment with
O-15–labeled water. (J Nucl Cardiol 2007;14:698-705.)
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Positron emission tomography (PET) with oxygen
15–labeled water is a noninvasive method for accurately
quantifying the regional myocardial blood flow (MBF),
because O-15–labeled water has the following major
advantages: free diffusion, kinetics independent of
changes in the myocardial metabolism, and a short
half-life (2.1 minutes), allowing sequential measure-

ments with a low radiation burden for patients.1-4 The
myocardial tissue cannot be directly distinguished from
blood pool on the dynamic O-15–labeled water images,
because O-15–labeled water is not trapped by the myo-
cardial cells. This limitation hinders the use of this tracer
in routine clinical practice. O-15–labeled carbon monox-
ide, which permits labeling of the vascular volume, has
been used in combination with O-15–labeled water for
delineation of the myocardial wall from other anatomic
structures to obtain tissue O-15–labeled water time-
activity curves (TACs) suitable for MBF measurement
via compartmental analysis.5 This method is standard in
several centers for the determination of myocardial
perfusion.6-8 Alternatively, processing of O-15–labeled
water PET dynamic image sequences with factor analy-
sis (FA) methods has been proposed and validated to
generate high-quality myocardial factor images from the
sinograms, avoiding the use for the O-15–labeled carbon
monoxide scan.9,10 This method is relatively time-con-
suming, because of the involved iterative reconstruc-
tions. Some investigators proposed another method that
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was close to FA and based on the linear reduction of
signal in the ventricular cavity.11 This method can
perform FA on the reconstructed images (reconFA), not
the sinograms, and therefore it can create factor images
more quickly than the conventional method. However,
the MBF values obtained from images by reconFA have
not been validated. The aim of this study, therefore, was
to validate the MBF values obtained by reconFA versus
those obtained from sinograms (sinoFA) and to docu-
ment their interchangeability.

METHODS

Study population

We consecutively enrolled 23 healthy volunteers (17
men and 6 women; mean age, 26.6 � 3.4 years) in our
study. This group was chosen because the incidence of
coronary artery disease (CAD) increases sharply beyond
50 years of age.12 None of the volunteers had a history of
a prior cardiac event or elevated total or low-density
lipoprotein cholesterol levels, hypertension, or diabetes
mellitus. The inclusion criteria were normal resting
electrocardiogram, normal heart rate, normal blood pres-
sure, and unremarkable excursive cardiopulmonary ex-
amination. All female study participants had a negative
urine pregnancy test. The study protocol was approved
by the local institutional review board, and all subjects
gave written informed consent before enrollment in the
study.

PET

All subjects refrained from ingesting caffeinated
beverages or theophylline-containing medications for
24 hours before the PET study. The MBF at rest and
during continuous administration of adenosine, 0.140
mg · kg�1 · min�1, infused intravenously over a period
of at least 6 minutes (stress) was quantified noninva-
sively with O-15–labeled water and serial PET imag-
ing.13 Scanning was performed with an Advance PET
scanner (GE Healthcare Technologies, Waukesha,
Wis). This device records 35 image planes simulta-
neously in 2-dimensional mode. The axial field of
view was 14.5 cm. A 30-minute blank scan was
recorded as part of the daily routine practice. A
20-minute transmission scan via an external germa-
nium 68 source was performed for attenuation correc-
tion. Starting after the background frame, a dose of
500 to 700 MBq of O-15–labeled water was injected
as an intravenous bolus over a period of 20 seconds at
an infusion rate of 24 mL/min to assess MBF. Dy-
namic images were obtained for 4 minutes 40 seconds
(14 frames for 5 seconds each, 3 frames for 10

seconds, 3 frames for 20 seconds, and 4 frames for 30
seconds).

Image processing

Transaxial images of the O-15–labeled water distri-
bution over time were reconstructed via filtered back-
projection with an 8-mm Hanning filter and a zoom
factor of 1.72. The resulting image volumes had a matrix
of 128 � 128 � 35 and a pixel size of 2.34 � 2.34 �
4.25 mm3. Images of the transmission data were recon-
structed with the same geometry so that matched emis-
sion and transmission images were available. In addition,
sinograms were calculated from the raw emission data,
which were corrected for attenuation and scatter.

The FA approach developed by Hermansen et al9

was used to calculate anatomic images of the myocar-
dium and the ventricular blood volume. As a first step,
volumes of interest (VOIs) were outlined within the left
and right lungs by use of the anatomic information
available in the transmission images. These lung VOIs
were projected to the dynamic images for calculation of
the average lung TAC. Approximations of the activity in
the left ventricle (LV) and right ventricle (RV) were
derived by time-shifting the lung TAC (RV,�5 seconds;
LV, 5 seconds). A third curve representing myocardial
uptake was obtained by solving the 1-compartment water
model with the shifted lung TAC (8 seconds) as the input
curve, a mean MBF value of 1 mL · min�1 · g�1 tissue,
and a partition coefficient of 0.96. Two FA procedures
were applied to the TACs as described by Hermansen et
al. The first used the myocardium TAC as the variate and
the LV and RV TACs as the covariate, resulting in the
myocardium factors. The second used the lung TAC as
the variate and the myocardium TAC as the covariate,
resulting in the blood factors.

These factors were then applied to the emission data
in two different ways. (1) As described in the original
approach (sinoFA),9 the corrected sinograms were
weighted by the respective factors and added, resulting in
a set of myocardial factor sinograms and a set of blood
volume sinograms. The factor sinograms were then
reconstructed into factor images of the myocardium and
the blood volume via an ordered-subsets expectation
maximization algorithm with 4 iterations, 14 subsets, and
2 final expectation maximization iterations. (2) As a fast
alternative (reconFA), the factors were directly applied
to the dynamic emission images.

The resulting factor images of either approach
were used for the quantification process as follows.
First, the factor images were resliced into the standard
short-axis orientation (Figure 1). Next, the myocar-
dium centerline was traced in all slices from the apex
to the base (at least 12 consecutive slices). From this
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centerline definition, 16 segmental VOIs were gener-
ated, representing the segments as recommended by
the American Heart Association.14 All image pixels
within a range of � 1 pixel from the centerline were
included in the VOIs. By use of these VOIs, the
myocardial TACs in the 16 segments were calculated
from the dynamic O-15–labeled water images. Two
additional VOIs were outlined in the cavities of the
LV and RV on 6 consecutive slices to calculate the
blood LV and RV TACs.

The MBF in the segments was quantified by use of
a 1-tissue compartment model with the LV TAC as the
input curve and 2 spillover terms. Spillover from the LV
was considered in all segments, whereas spillover from
the RV was set to 0 for all non-septal segments. The
analysis resulted in segmental values of MBF in millili-
ters per minute per gram, and a global MBF value was
obtained by volume-weighted averaging of the segmen-
tal results. All post-processing was performed with
commercially available software (PMOD Technologies,
Adliswil, Switzerland) that includes the FA and the
modeling as a part of the myocardial quantification
module.

Statistical analysis

The MBF values are expressed as mean � SD at
rest, at stress, and as the average of both (all pooled).
Intraobserver reproducibility and comparison of MBF
values obtained by sinoFA versus reconFA was per-
formed by linear regression analysis and by the assess-
ment of the limits of agreement as proposed by Bland
and Altman15 for global and segmental MBF for rest and
stress values separately and for all values pooled. Coro-
nary flow reserve was calculated as the ratio of hyper-
emic over resting MBF (relative values).

RESULTS

All rest and adenosine stress procedures were well
tolerated, and no subjects were withdrawn from the
analysis. None of the subjects had any significant elec-
trocardiographic changes or intolerable alterations of
blood pressure.

Intraobserver reproducibility study

There were no significant differences between base-
line and repeat analysis for the resting (Table 1) and
stress MBF (Table 2) by use of sinoFA and reconFA on
global MBF. The percentage of reproducibility coeffi-
cient at stress was slightly lower than that at rest.
Intraobserver reproducibility of baseline and repeat
global MBF (rest, stress, and pooled) was excellent, as
evidenced by a high correlation coefficient and narrow
Bland-Altman (BA) limits of agreement for sinoFA (n�
46; r � 0.968; standard error of the estimate [SEE],
0.335 mL · min�1 · g�1; P � .001; BA limits, �0.617 to
0.676 mL · min�1 · g�1) and even slightly superior for
reconFA (n � 46; r � 0.979; SEE, 0.279
mL · min�1 · g�1; P � .001; BA limits, �0.538 to 0.558
mL · min�1 · g�1) (Figure 2). No significant differences
between baseline and repeat analysis for the resting and
stress MBF were observed by use of sinoFA and re-
conFA on segmental MBF. The reproducibility coeffi-
cient for segmental MBF was higher than that for global
MBF. However, good reproducibility was maintained for
segmental analysis with sinoFA (r � 0.777; SEE, 0.992
mL · min�1 · g�1; P � .001; BA limits, �1.676 to 1.656
mL · min�1 · g�1) and with reconFA (r � 0.844; SEE,
0.824 mL · min�1 · g�1; P � .001; BA limits, �1.999 to
1.992 mL · min�1 · g�1) (Figure 3).

Comparison of MBF from sinoFA versus reconFA

MBFby sinoFA and reconFA comparedwell at rest (1.08
� 0.16 mL · min�1 · g�1 vs 0.97 � 0.14 mL · min�1 · g�1)
and at stress (3.56 � 0.44 mL · min�1 · g�1 vs 3.54 � 0.47

Figure 1. After FA, cardiac images were reoriented to short
axis (left column), vertical long axis (middle column), and
horizontal long axis (right column) for both sinoFA (A and B)
and reconFA (C and D) on which the regions of interest were
drawn. Both methods allow clear discrimination of myocar-
dium from blood pool.
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mL · min�1 · g�1), resulting in similar coronary flow reserve
values (3.34 � 0.5 vs 3.69 � 0.66) without a significant
difference (P(( � not significant for all comparisons). The
comparison of sinoFA and reconFA revealed excellent corre-
lation (n � 46, r � 0.978, P � .001) for global MBF values
with narrow BA limits of agreement (�0.528 to 0.648
mL · min�1 · g�1). The excellent correlation was preserved
also for segmental values (n� 736, r � 0.955,P � .001) with
narrow BA limits of agreement (�1.371 to 1.491
mL ·mm mimm n�1 · g�1) (Table 3 and Figurerr 4).

DISCUSSION

This study confirms an excellent agreement of
MBF assessed with O-15–labeled water and PET via
both methods for FA (ie, reconFA and sinoFA). The
validity and reliability of reconFA are further substan-
tiated by its high intraobserver reproducibility, which
was slightly superior than that for sinoFA. This
equally applies to global and segmental MBF esti-
mates.

The use of factor images has been introduced into
nuclear cardiology by Hermansen et al,9 and its
reproducibility for assessing MBF has been exten-
sively validated by use of various stimuli such as
adenosine, bicycle exercise stress, dobutamine, and
cold pressor test.16-19

The novelty of the present method lies in the fact
that the FA no longer needs to be performed on the
sinograms. With sinograms, there is usually a very
large data set, and therefore the processing is rather
cumbersome and time-consuming. With the new
method, the analysis can be performed on the recon-
structed images. As these have a much smaller size,
the FA on such data sets can now be done considerably
more quickly, shortening the processing time by about
1 order of magnitude. This, however, is not achieved
at the cost of any loss in the signal-to-noise ratio or
image quality, resulting in highly comparable MBF
values. A strength of our method, representing an
advantage over previously reported approaches by
other groups using regularized factor images,11 is that
we use lung regions of interest to determine lung
kinetics, which improves the signal-to-noise ratio.
Therefore, with our method, there was no loss in
image quality at stress compared with rest, as opposed
to the latter method reported by Frouin et al.11 A direct
comparison between the sinoFA and reconFA methods
by BA analysis revealed an excellent agreement of the
2 methods for global and segmental MBF over a wide
range of flow. In addition, the MBF values obtained in
our study with reconFA and sinoFA compare well
with the numbers in healthy volunteers reported in the
literature.17,19-21

Table 1. Intraobserver reproducibility at rest for global and segmental MBF (mL · min�1 · g�1)

Segment

Rest Rest

sinoFA
baseline

sinoFA
repeated abs %

reconFA
baseline

reconFA
repeated abs %

1 APEX_Septum 1.17 � 0.42 1.20 � 0.49 0.10 8 1.16 � 0.34 1.05 � 0.23 0.18 16
2 MID_Septum-Inferior 1.03 � 0.26 0.97 � 0.26 0.14 14 0.88 � 0.21 0.87 � 0.31 0.04 5
3 MID_Septum-Anterior 1.06 � 0.35 1.00 � 0.29 0.08 8 0.98 � 0.23 1.11 � 0.37 0.29 27
4 BASAL_Septum-Inferior 1.16 � 0.56 1.18 � 0.36 0.18 16 1.00 � 0.36 0.98 � 0.38 0.08 8
5 BASAL_Septum-Anterior 0.94 � 0.34 0.92 � 0.18 0.02 2 1.05 � 0.41 0.99 � 0.16 0.12 12
6 APEX_Anterior 1.02 � 0.29 1.01 � 0.42 0.02 2 1.03 � 0.28 1.09 � 0.38 0.16 15
7 MID_Anterior 1.17 � 0.34 1.07 � 0.24 0.22 20 1.11 � 0.36 0.99 � 0.22 0.25 24
8 BASAL_Anterior 1.25 � 0.54 1.1 � 0.23 0.45 39 1.04 � 0.27 0.94 � 0.21 0.18 18
9 APEX_Lateral 1.10 � 0.25 1.12 � 0.23 0.08 7 0.99 � 0.23 0.96 � 0.22 0.06 6
10 MID_Lateral 1.23 � 0.38 1.16 � 0.24 0.20 17 1.09 � 0.29 0.98 � 0.13 0.22 21
11 BASAL_Lateral 1.07 � 0.32 0.98 � 0.20 0.18 17 0.93 � 0.25 0.92 � 0.21 0.02 2
12 APEX_Inferior 1.05 � 0.37 1.13 � 0.39 0.16 15 0.97 � 0.35 0.84 � 0.35 0.25 27
13 MID_Inferior-Posterior 0.98 � 0.35 0.90 � 0.28 0.08 8 0.90 � 0.37 0.75 � 0.24 0.25 30
14 MID_Inferior-Inferior 1.12 � 0.73 1.13 � 0.53 0.02 2 0.93 � 0.29 0.8 � 0.27 0.25 29
15 BASAL_Inferior-Posterior 1.10 � 0.60 1.06 � 0.28 0.31 30 0.91 � 0.34 0.85 � 0.22 0.12 14
16 BASAL_Inferior-Inferior 1.16 � 0.66 1.10 � 0.34 0.37 35 0.87 � 0.29 0.91 � 0.29 0.02 2
Global 1.12 � 0.20 1.04 � 0.16 0.16 15 1.00 � 0.22 0.95 � 0.12 0.10 11

abs, Absolute value of reproducibility coefficient; %, percent of reproducibility coefficient.
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Reproducibility

As mentioned previously, reconFA tended to be
more reproducible as compared with sinoFA. This most
probably reflects that the improved signal-to-noise ratio
increased the validity of the analysis despite being faster.

The repeatability of PET O-15–labeled water resting
MBF measurement has been reported in 5 publications to
date. Four studies were conducted on human sub-
jects,16-19 whereas the last one was an experimental
animal study.22 Our method is different in several as-
pects. All of the previous studies investigated the agree-
ment of repeat MBF, whereas our study has assessed
purely intraobserver reproducibility of the same data
sets. By examining the resting and stress MBF, 1
observer calculated MBF using different methods (re-
conFA and sinoFA). One month later, the same data sets
were reanalyzed by the same observer. The reproducibil-
ity of the global MBF was excellent for both sinoFA and
reconFA methods in this study. In addition, we per-
formed segmental comparisons, as the LV was further
subdivided into a total of 16 segments. In most previous
studies the subsegments were grouped to obtain the mean
value of global wall perfusion. By contrast, we provide
segmental data, revealing a marked variation of repro-
ducibility among different segments. This dispersion,
however, was within the spatial heterogeneity of MBF as
previously reported both within the same individual and

between different individuals.23 Another study demon-
strated a good reproducibility of 16-segmental resting
MBF using an animal model.22 However, it did not
include hyperemic flow conditions.

Limitations

MBF measurements in this study were not assessed
independently from PET by another reference method
because no other noninvasive method was available by
which to quantitatively assess the myocardial perfusion.
The radioactive microsphere method, as the gold stan-
dard for measurement of MBF, requires postmortem
tissue samples and can only be used in animals, whereas
for humans, PET represents the established gold standard
for MBF measurement.24 A further limitation of the
study is that no CAD patients were included. However,
as the maximal MBF is typically higher in healthy
volunteers than in CAD patients, our study seems to
appropriately cover the whole range of values.

Finally, correlation between sinoFA and reconFA
revealed a markedly decreased correlation coefficient if
rest and stress were analyzed separately as compared
with pooled analysis. This, however, had little impact on
the agreement of the 2 methods, as reflected by the limits
of agreement (Table 3), which are very similar for resting
(30%), hyperemic (21%), and pooled data (26%).

Table 2. Intraobserver reproducibility at stress for global and segmental MBF (mL · min�1 · g�1)

Segment

Stress Stress

sinoFA
baseline

sinoFA
repeated abs %

reconFA
baseline

reconFA
repeated abs %

1 APEX_Septum 3.49 � 0.71 4.04 � 1.35 1.23 32 4.24 � 0.90 3.99 � 0.96 0.51 12
2 MID_Septum-Inferior 3.65 � 1.08 3.88 � 1.21 0.37 10 3.56 � 1.06 3.77 � 0.99 0.04 1
3 MID_Septum-Anterior 3.57 � 1.18 3.76 � 1.93 0.29 8 3.93 � 1.25 3.99 � 1.16 0.49 13
4 BASAL_Septum-Inferior 3.24 � 1.28 3.03 � 0.95 0.25 8 2.74 � 0.63 3.04 � 1.01 0.76 26
5 BASAL_Septum-Anterior 3.59 � 1.51 3.75 � 1.33 0.1 3 3.48 � 1.26 3.91 � 1.92 0.45 13
6 APEX_Anterior 3.57 � 1.17 3.61 � 1.06 0.1 3 3.55 � 0.79 3.86 � 0.91 0.59 16
7 MID_Anterior 3.51 � 0.99 3.66 � 1.05 0.12 3 3.55 � 0.92 3.64 � 0.61 0.06 2
8 BASAL_Anterior 3.70 � 0.99 3.43 � 0.72 0.98 28 3.41 � 1.04 3.33 � 1.18 0.29 9
9 APEX_Lateral 3.60 � 0.83 3.49 � 0.78 0.22 6 3.62 � 0.96 3.64 � 0.76 0.16 4
10 MID_Lateral 3.72 � 1.08 3.82 � 0.91 0.33 9 3.59 � 0.61 3.81 � 0.88 0.51 14
11 BASAL_Lateral 3.91 � 1.29 3.36 � 0.93 1.27 35 3.23 � 0.97 3.44 � 0.95 0.18 6
12 APEX_Inferior 3.47 � 0.91 3.59 � 1.26 0.43 12 3.23 � 0.96 3.25 � 0.86 0.25 8
13 MID_Inferior-Posterior 3.56 � 0.76 3.97 � 2.00 0.78 21 3.87 � 1.25 3.64 � 1.10 0.31 8
14 MID_Inferior-Inferior 3.44 � 0.89 3.47 � 1.05 0.16 5 3.73 � 1.01 3.76 � 1.18 0.22 6
15 BASAL_Inferior-Posterior 3.34 � 1.12 3.42 � 1.34 0.02 1 3.15 � 1.33 3.26 � 1.05 0.35 11
16 BASAL_Inferior-Inferior 3.20 � 1.35 3.75 � 1.42 1.22 35 3.70 � 1.54 3.38 � 1.12 0.69 20
Global 3.55 � 0.49 3.58 � 0.49 0.50 14 3.51 � 0.51 3.58 � 0.50 0.37 11

abs, absolute value of reproducibility coefficient; %, percent of reproducibility coefficient.
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Figure 2. Linear regression analysis and Bland-Altman plot comparing baseline and repeat global
MBF values documenting intraobserver reproducibility for sinoFA (A and B) and reconFA (C and
D), where 1.96 SD denotes reproducibility coefficient.

Figure 3. Linear regression analysis and Bland-Altman plot comparing baseline and repeat
segmental MBF values documenting intraobserver reproducibility for sinoFA (A and B) and
reconFA (C and D), where 1.96 SD denotes reproducibility coefficient.
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CONCLUSIONS

Our results suggest that reconFA should be used for
quantitative MBF measurement with O-15–labeled water
and PET, as it considerably shortens analysis time and
provides accurate values as compared with the validated
sinoFA method. Its reliability is further substantiated by
the excellent reproducibility, which is slightly superior to
that for sinoFA.
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