
Form Methods Syst Des (2008) 33: 45–84
DOI 10.1007/s10703-008-0056-7

Robust safety of timed automata

Martin De Wulf · Laurent Doyen · Nicolas Markey ·
Jean-François Raskin

Published online: 13 September 2008
© Springer Science+Business Media, LLC 2008

Abstract Timed automata are governed by an idealized semantics that assumes a perfectly
precise behavior of the clocks. The traditional semantics is not robust because the slight-
est perturbation in the timing of actions may lead to completely different behaviors of the
automaton. Following several recent works, we consider a relaxation of this semantics, in
which guards on transitions are widened by � > 0 and clocks can drift by ε > 0. The relaxed
semantics encompasses the imprecisions that are inevitably present in an implementation of
a timed automaton, due to the finite precision of digital clocks.

We solve the safety verification problem for this robust semantics: given a timed au-
tomaton and a set of bad states, our algorithm decides if there exist positive values for the
parameters � and ε such that the timed automaton never enters the bad states under the
relaxed semantics.

Keywords Timed automaton · Robustness · Implementability · Perturbation · Drift

1 Introduction

Timed automata Timed and hybrid systems are dynamical systems with both discrete and
continuous components. A paradigmatic example of a hybrid system is a digital embedded

This research was supported by the Belgian FNRS grant 2.4530.02 of the FRFC project “Centre Fédéré
en Vérification” and by the project “MoVES”, an Interuniversity Attraction Poles Programme of the
Belgian Federal Government.

M. De Wulf · J.-F. Raskin
Dépt Informatique, Université Libre de Bruxelles (ULB), Campus de la Plaine,
Bd du Triomphe CP 212, 1050 Brussels, Belgium

L. Doyen (�)
École Polytechnique Fédérale de Lausanne (EPFL), Station 14, 1015 Lausanne, Switzerland
e-mail: ldoyen@ulb.ac.be

N. Markey
Laboratoire Spécification & Vérification (LSV), ENS Cachan & CNRS, 61 av. Pdt Wilson,
94230 Cachan, France

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159155805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ldoyen@ulb.ac.be

46 Form Methods Syst Des (2008) 33: 45–84

control program for an analog plant environment, like a furnace or an airplane: the con-
troller state moves discretely between control modes, and in each control mode, the plant
state evolves continuously according to physical laws. Behaviors of controllers for physical
systems are often subject to real-time constraints. A natural model for such controllers is
the timed automaton model introduced by Alur and Dill [4]. Timed automata extend finite
state automata with continuous variables called clocks. Those clocks take their values in the
nonnegative real numbers and count time; they can be reset and compared to other clocks or
constants in guards labeling edges and invariants labeling states of the automaton. Several
verification and control problems have been studied for timed automata, see for example
[19, 32, 35], and verification tools have been developed, e.g. [13].

When a high-level description of a controller has been proven correct it would be valu-
able to ensure that an implementation of that controller can be obtained in a systematic way
in order to ensure the preservation of correctness. This is often called program refinement:
given a high-level description P1 of a program, refine that description into another descrip-
tion P2 such that the “important” properties of P1 are maintained. Usually, P2 is obtained
from P1 by reducing non-determinism. To reason about the correctness of P2 w.r.t. P1, we
often use a notion of simulation [34] which is powerful enough to ensure conservation of
LTL properties for example.

Unfortunately, for timed automata this is often not possible for several fundamental and/
or technical reasons. First, the notion of time used in the traditional semantics of timed au-
tomata is continuous, defining perfect clocks with infinite precision, while implementations
can only access time through digital and finitely precise clocks. Second, timed automata
react instantaneously to events and timeouts while implementations can only react within
a given, usually small but non-zero, reaction delay. Third, timed automata may describe
control strategies that are unrealistic, such as Zeno-strategies or strategies that require the
controller to act faster and faster [19]. For those reasons, a model of a digital controller that
has been proven correct in the traditional semantics may not be implementable (at all) or
it may not be possible to turn it systematically into an implementation that is still correct.
correct w.r.t. this model.

Implementability of timed automata To overcome those problems, [23] proposed an al-
ternative semantics for timed automata, which takes into account the digital and imprecise
aspects of the hardware in which the automaton is being executed. The hardware is assumed
to repeatedly execute the following procedure: it first reads the value of the global clock,
then evaluates the guard of each transition, and executes one of the enabled transitions.
This procedure is assumed to run in at most �L time units. Moreover, the global (digital)
clock is updated at least every �P time units, and its value may drift by some value ε (i.e.,
the delay u between two updates of the clock is at most �P , and the clock is incremented
by some value c between u(1 − ε) and u(1 + ε)). The resulting set of executions is de-
noted by [[A]]Prg

�L,�P ,ε and called the program semantics. The automaton A is said to be
implementable w.r.t. a given property P iff there exists positive values for the parameters
�L, �P and ε for which all the executions of [[A]]Prg

�L,�P ,ε satisfy P . This model of an im-
plementation platform is clearly implementable by an hardware with bounded imprecision,
and the semantics of the implementation platform is kept deliberately simple: any platform
that ensures the minimal performances that are imposed by the program semantics ensures
compliance with the formal model (see [23] for more discussion and details).

In [23], a different semantics is also introduced for the purpose of verification. This new
semantics is called the Almost-ASAP semantics and is obtained by enlarging the guards of
A by a parameter � allowing the clocks to drift by ε. The set of executions of A under

Form Methods Syst Des (2008) 33: 45–84 47

this semantics is denoted by [[A]]AAsap
� . We say that A robustly satisfies a property P if

there exists positive values for the parameter � such that all the executions of [[A]]AAsap
�

satisfy P . It is shown in [23] that the Almost-ASAP semantics [[A]]AAsap
� over-approximates

the program semantics [[A]]Prg
�L,�P ,ε if � > 3�L + 4�P when ε = 0,1 and therefore a timed

automaton is implementable w.r.t. a property P if it robustly satisfies P . In the rest of this
paper, we denote by [[A]]ε� the semantics of A enlarged (or perturbed) by � and ε, i.e.,
whose guards are enlarged by � and whose clocks may drift by at most ε.

The robust semantics considered here differs from the Almost-ASAP semantics. First, the
Almost-ASAP semantics does not consider drifting clocks, but as we will see later, enlarge-
ments on guards only are sufficient in the sense that guard perturbations and drifts on clocks
give rise to the same reachable states. Second, in the Almost-ASAP semantics, we make a
distinction between the controller and the plant: only the controller is enlarged. Here we
consider enlargements of all the transitions, even those that belong to the plant. So, clearly,
the robust semantics that we consider here over-approximates the AASAP semantics, and
robust correctness considered here implies implementability in the sense of [23].

Robust verification of timed automata In this paper, we consider the robust safety veri-
fication problem which asks, given a timed automaton A and a set of Bad states to avoid
(i.e., a safety property), if there exist �,ε ∈ Q>0 such that Reach([[A]]ε�) ∩ Bad = ∅. The
main result of this paper is to show that the robust safety verification problem is decidable.2

To show this, we make a strong link with the robust semantics defined in [36, 37] where
Puri presents an algorithm to compute the set

⋂
ε>0 Reach([[A]]ε0). This is the set of states

that can be reached when the clocks drift by an infinitesimal amount. We show that Puri’s
algorithm can be used to compute the following sets (which are therefore equal):

⋂

ε>0

Reach([[A]]ε0) =
⋂

�>0

Reach([[A]]0
�) =

⋂

�>0

⋂

ε>0

Reach([[A]]ε�).

The proof of this result follows the general ideas of Puri’s proof and it is based on the
structure of limit cycles of timed automata (a fundamental notion introduced by Puri) but
we need new techniques to handle both the imprecisions on guards and the clock drifts. To
establish the decidability of the robust safety verification problem, we show that

⋂

�>0

⋂

ε>0

Reach([[A]]ε�) ∩ Bad = ∅ iff ∃� > 0, ε > 0, Reach([[A]]ε�) ∩ Bad = ∅.

Hence, to solve the robust safety verification problem, it suffices to compute the set⋂
�>0

⋂
ε>0 Reach([[A]]ε�) and check if it has an empty intersection with Bad. We give a

detailed proof of all intermediate results, some of which are useful by themselves to develop
the robust verification of timed automata for LTL and a fragment of MTL [15, 16]. This paper
is an extended and revised version of [22].

Related works The problem of designing controllers for embedded systems is an extremely
important subject and a very active area of research. This design problem has been addressed
by a large number of researchers in computer science but also in other research communi-
ties like control theory. Researchers in control theory have studied the general problem of

1For ε > 0, a general constraint of the form � > f (�L,�P , ε) is also established in [23], where f is a
simple function such that f (�L,�P , ε) → 0 when �L,�P , ε → 0.
2This holds under some assumption that is discussed in Sect. 2.

48 Form Methods Syst Des (2008) 33: 45–84

going from a continuous formulation of the control problem to a discrete solution which
is implementable by digital devices. Here, we focus on the particular nice mathematical
model of timed automata. Timed automata are important but by no means the only important
mathematical model in the context of the model-based design of embedded control systems
(see for instance Matlab-Simulink models, dynamical systems of control theory, etc.) Timed
automata are adequate for modeling a large variety of real-time constrained behaviors but
they abstract away other properties of systems, like power-consumption, distribution, con-
currency etc., properties that may be important for the correct physical realization of timed
controllers. Our paper thus focuses on an important aspect related to the implementation of
real-time behaviors but other important aspects must be tackled by other techniques and are
treated elsewhere (and should not be ignored in practice). In the rest of this paragraph, we
concentrate on other works that are related to the specific issue of the robustness of timed
models and their realization by digital devices.

One of the first attempts to make mathematical models of timed systems implementable
was done by Dierks for Programmable Logic Controllers (PLC) [24, 25]. The language used
to define the semantics of PLC-automata and to specify real-time constraints is the Duration
Calculus [18], which is a dense time interval-based temporal logics that allows to fix the
delays for the visibility of events, the computation times, the imprecision of the clocks, etc.
That logic is very expressive, but its major drawback is to be undecidable [20].

Other notions of robustness for timed systems have also been addressed in several works
for timed automata [8, 30] and hybrid automata [2, 10, 29], but none of these works make a
link between robustness and implementability.

In [31], Henzinger et al. introduce a programming model for real-time embedded con-
trollers called GIOTTO. GIOTTO is an embedded software model that can be used to specify
a solution to a given control problem independently of an execution platform but which
is closer to executable code than a mathematical model. So, GIOTTO can be seen as an
intermediary step between mathematical models like hybrid automata and real execution
platforms.

In [7], Alur et al. consider the more general problem of generating code from hybrid
automata, but they only sketch a solution and state interesting research questions. In [5, 6],
Yi et al. present a tool called TIMES, which generates executable code from timed automaton
models. However, they make the synchrony hypothesis and so they assume that the hardware
on which the code is executed is infinitely fast and precise.

In [11], Altisen and Tripakis tackle the problem of the implementability of timed au-
tomata specifications by considering an alternative direction to ours. By contrast with our
approach, they do consider the usual semantics of timed automata and propose to model
the execution platform within this formal semantics. For instance, they show how drifting
clocks or delays in synchronization can be modeled using parametrized widgets in the form
of timed automata. The resulting model is a network of timed automata composed of the
initial model of the controller and a bunch of timed automata that models the platform. On
the one hand, this approach is general in the sense that different implementation platforms
can be modeled accurately by timed automata models. On the other hand, one drawback of
their approach comes from the fact that models of specific platforms tend to be very large
and may impair the automatic verification step because of the state explosion problem. Also,
in early steps of the design of a timed controller, we may not know the exact platform that
will be used to implement the control strategy but we may already be interested to ver-
ify the robustness of the control strategy with regard to timing imprecisions. The use of a
robust semantics partially avoid those problems by leaving the details of the implementa-
tion unspecified: the proof of implementability makes reference to a naive implementation

Form Methods Syst Des (2008) 33: 45–84 49

schema which imposes very few constraints on the platform that is chosen for the actual
implementation and which is met by any reasonable implementation platform (see [23] for
more details). The price to pay in our setting is that we may be over-pessimistic and declare
some control strategies not to be implementable while a precise modeling of the execution
platform in the setting of Altisen and Tripakis might allow to establish implementability of
the control strategy.

Finally, note that the algorithm presented in this paper to solve the robust safety verifica-
tion problem is not usable in practice as it relies on the construction of the region automaton.
Recent works have investigated the development of practical algorithms [28, 38] but, to the
best of our knowledge, no efficient implementation has been released yet.

2 Timed models

This section is devoted to the definitions of timed automata and their perturbed semantics,
and of several other important notions that will be used in this paper.

In the sequel, R≥0 is the set of nonnegative reals, and N is the set of nonnegative integers.

Definition 1 A timed transition system (TTS for short) T is a tuple 〈S, ι,�,→〉 where S is
a (possibly infinite) set of states, ι ∈ S is the initial state, � is a finite set of labels, and
→ ⊆ S × (� ∪ R≥0) × S is the transition relation. We write q

σ−→ q ′ if (q, σ, q ′) ∈ →.

A trajectory of a TTS T = 〈S, ι,�,→〉 is a finite sequence π = (s0, t0)
σ1−→ (s1, t1) · · · σk−→

(sk, tk) such that for all 0 ≤ i ≤ k, we have (si, ti) ∈ S × R≥0, and for all 0 ≤ i < k, we have

si

σi−→ si+1, and either σi ∈ � and ti+1 = ti , or σi ∈ R≥0 and ti+1 = ti + σi .

Let π = (s0, t0)
σ1−→ (s1, t1) · · · σk−→ (sk, tk) be a trajectory. The i + 1-st state in π , written

statei (π), is the state si . We denote by first(π) = state0(π) and last(π) = statek(π) the
initial and final states of π . We say that π is a trajectory from s0 to sk , and we sometimes

write π more briefly as s0
σ1−→ s1 · · · σk−→ sk . The length of π , written |π |, is k, and its duration

Duration(π) is tk − t0. The sequence of states s0 s1 . . . sk is called a path in T , and the trace
of π is the sequence trace(π) = λ1 . . . λk where for all 1 ≤ i ≤ k, λi = σi if σi ∈ �, and
λi = time if σi ∈ R≥0 (time is a special symbol not in �).

A trajectory is stutter-free iff its trace contains alternately a symbol in � and the symbol
time, i.e., it does not contain two consecutive symbols in � or two consecutive time’s.

A state s ′ of T is reachable from a state s if there exists a trajectory π of T such
that first(π) = s and last(π) = s ′. Given a set of states Q ⊆ S, we write Reach(T ,Q) for
the set of states that are reachable from some state in Q. We abusively write Reach(T)

for Reach(T , {ι}), the set of states that are reachable from the initial state of T .
Given a set Var = {x1, . . . , xn} of clocks, a clock valuation is a function v : Var → R≥0.

In the sequel, we often identify a clock valuation with a point in Rn
≥0. Given two valuations v

and v′ and two nonnegative reals t and λ, we write v+v′ for the valuation x �→ v(x)+v′(x),
v + t for the valuation x �→ v(x) + t and λv for x �→ λv(x). If R ⊆ Var, then v[R := 0]
denotes the valuation v′ such that v′(x) = 0 for all x ∈ R, and v′(x) = v(x) for all x �∈ R.

A closed rectangular guard g over Var is a set of inequalities of the form ai ≤ xi ≤ bi ,
one for each xi , where ai, bi ∈ Q≥0 ∪ {+∞} and ai ≤ bi . We write Rectc(Var) for the set of
closed rectangular guards over Var. For � ≥ 0, we define [[g]]� = {(x1, . . . , xn) | ai − � ≤
xi ≤ bi + �} ⊆ Rn

≥0. When � = 0, we write [[g]] instead of [[g]]0.
We now define timed automata. Our definition is a slightly modified version of the clas-

sical timed automata proposed by [4]. In particular, all clocks are assumed to be bounded by

50 Form Methods Syst Des (2008) 33: 45–84

some constant M , and guards on edges are rectangular and closed. The first requirement is
not restrictive (except w.r.t. the conciseness of the models [12]), the second one is discussed
below.

Definition 2 A (closed) timed automaton is a tuple A = 〈Loc,Var, q0,Lab,Edg〉 where

– Loc is a finite set of locations representing the discrete states of A.
– Var = {x1, . . . , xn} is a finite set of real-valued variables.
– q0 = (l0, v0), where l0 ∈ Loc, is the initial location and v0 is the initial clock valuation

such that for any x ∈ Var, v0(x) ∈ N ∧ v0(x) ≤ M .
– Lab is a finite alphabet of labels.
– Edg ⊆ Loc × Rectc(Var) × Lab × 2Var × Loc is the set of transitions. A transition

(l, g, σ,R, l′) represents a jump from location l to location l′ with guard g, event σ and a
subset R ⊆ Var of variables to be reset.

We now define a family of semantics for timed automata which is parametrized by
ε ∈ R≥0 (drift on clocks) and � ∈ R≥0 (imprecision on guards).

Definition 3 Given ε,� ∈ R≥0, the perturbed semantics of a timed automaton A =
〈Loc,Var, q0,Lab,Edg〉 is the TTS [[A]]ε� = 〈S, ι,�,→〉 where:

1. S = {(l, v) | l ∈ Loc ∧ v : Var → [0,M]};
2. ι = q0;
3. � = Lab;
4. The transition relation → is defined by

(a) For the discrete transitions: ((l, v), σ, (l′, v′)) ∈ → whenever there exists an edge
(l, g, σ,R, l′) ∈ Edg such that v ∈ [[g]]� and v′ = v[R := 0];

(b) For the continuous (or timed) transitions: ((l, v), t, (l′, v′)) ∈ → whenever l = l′
and v′(xi) − v(xi) ∈ [(1 − ε)t, (1 + ε)t] for i = 1, . . . , n.

The traditional semantics of A is [[A]]0
0. When ε > 0 or � > 0, we call [[A]]ε� the per-

turbed semantics of A. In the sequel, we often write [[A]], [[A]]�, and [[A]]ε instead of
respectively [[A]]0

0, [[A]]0
�, and [[A]]ε0.

Remark 1 Our definition of timed automata does not allow strict inequalities; This is not
restrictive in the presence of guard enlargement. Indeed, consider a timed automaton A
with (possibly open) rectangular guards and the closure automaton Â resulting from A by
replacing all strict inequalities by non-strict ones. It appears obviously that

Reach([[Â]]ε�
2
) ⊆ Reach([[A]]ε�) and Reach([[A]]ε�) ⊆ Reach([[Â]]ε�),

and hence the robust safety verification problem for A and Bad (“Do there exist �,ε ∈ R>0

such that Reach([[A]]ε�)∩ Bad = ∅?”) is equivalent to the robust safety verification problem
for Â and Bad. Note that this only holds thanks to guard enlargement, and the situation is
different when only clock drifts are allowed [27].

Remark 2 Notice that guard enlargement and clock drifts are monotone, in the sense that
for any � ≤ �′ and ε ≤ ε ′, we have Reach([[A]]ε�) ⊆ Reach([[A]]ε′

�′). Thanks to this obser-
vation, we can define the following sets:

Rε
�→0 =

⋂

�>0

Reach([[A]]ε�), Rε→0
� =

⋂

ε>0

Reach([[A]]ε�).

Form Methods Syst Des (2008) 33: 45–84 51

These sets are central in the sequel: we prove that, under some minor restriction, the sets
R0

�→0 and Rε→0
0 are equal, and they also coincide with

⋂
�>0 Rε→0

� and
⋂

ε>0 Rε
�→0. It fol-

lows from [36] that those sets are computable; we will reprove this result in the sequel.

We now recall some additional classical notions related to timed automata. In the se-
quel, �x� denotes the integer part of x (the greatest integer k ≤ x), and 〈x〉 denotes its
fractional part.

Definition 4 A clock region is an equivalence class of the relation ∼ defined over the clock
valuations in Var → [0,M]. We have v ∼ w iff the following three conditions hold:

– ∀x ∈ Var. �v(x)� = �w(x)�;
– ∀x ∈ Var. 〈v(x)〉 = 0 iff 〈w(x)〉 = 0.
– ∀x, y ∈ Var. 〈v(x)〉 ≤ 〈v(y)〉 iff 〈w(x)〉 ≤ 〈w(y)〉.

We denote by (v) the clock region containing v, and by [r] the topological closure of a
region r , which is then abusively called a closed clock region. The clock region (v) contains
the valuations that agree with v on the integer part of the variables, and on the ordering of
their fractional part and zero.

A clock region r ′ is a time-successor of a clock region r if r ′ �= r and for some v ∈ r and
t ∈ R>0, we have v + t ∈ r ′.

Definition 5 Given the TTS [[A]] = 〈S, s0,�,→A〉 of a timed automaton A, we define the
corresponding region graph G = 〈RA,→G〉 of A:

– RA = {(l, r) | ∃(l, v) ∈ S : r = (v)} is the set of regions;
– →G ⊆ RA × (� ∪ {time}) × RA where ((l, r), time, (l′, r)) ∈ →G if and only if l′ = l

and r ′ is a time-successor of r , and ((l, r), σ, (l′, r)) ∈ →G for σ ∈ � if and only if
(l, v)

σ−→A (l′, v′) for some v ∈ r and v′ ∈ r ′.

Notice that RA is finite (the total number W = |RA| of regions is exponential in the size
of A) and a region (l′, r ′) is reachable in G from a region (l, r) if and only if (l′, v′) is
reachable in [[A]] from a state (l, v) for some v ∈ r, v′ ∈ r ′ [4].

In the rest of the paper, we often abusively use operators that apply to valuations v or
clock regions r to pairs (, v) and (, r) where 	 is a location. For example, we write (, v)+
(, v′) to denote (, v + v′) and λ(, v) to denote (, λv), and similarly for distances, norms
and neighbourhoods. We write (, v) ∈ (, r) instead of v ∈ r , [(, v)] instead of (, [v]),
etc.

Since guards are closed, the successors of a closed region by a discrete transition or by
the passage of time is a union of closed regions. Since there are finitely many regions, the
next lemma follows.

Lemma 6 Let A be a (closed) timed automaton. The set Reach([[A]]) is a closed set.

Given a path p = p0 p1 · · · pN in the region graph of a timed automaton A, and a trajec-
tory π of [[A]], we say that π follows p if for all i, 0 ≤ i ≤ N , statei (π) ∈ [pi]. Note that,
since we consider closed regions, a trajectory could follow several paths of the region graph.

Definition 7 A zone Z ⊆ Rn
≥0 is a closed set defined by inequalities of the form

xi − xj ≤ mij , αi ≤ xi ≤ βi

52 Form Methods Syst Des (2008) 33: 45–84

where 1 ≤ i, j ≤ n and mij ,αi, βi ∈ Z. A set of states is called a zone-set if it is a finite
union of sets of the form {l} × Z where l is a location and Z is a zone.

Definition 8 A progress cycle in the region graph of a timed automaton is a cycle in which
each clock of the automaton is reset at least once.

The correctness of our algorithm (Theorem 11 below) heavily relies on the fact that timed
automata should not have weird behaviors, like cycles that do not let time elapse. However,
apart from Theorems 11, 39 and 47, all our intermediate results hold in the general case. We
thus formulate the following assumption, but we will always explicitly refer to it when it is
needed.

Assumption 9 We only consider timed automata whose cycles in the region graph are all
progress cycles.

This assumption was made by Puri in [36]. It is weaker than the classical non-Zeno
assumptions in the literature. For example in [9], the authors impose that “in every cycle in
the transition graph of the automaton, there is at least one transition which resets a clock
variable xi to zero, and at least one transition which can be taken only if xi ≥ 1”. Other
natural hypotheses would be to ask that every cycle in the region graph has a timed transition
(labeled by time), or that every cycle in the region graph contains a time-elapsing region, that
is, a region r such that ∃v ∈ r, ∃t > 0 : v + t ∈ r . Again, Assumption 9 is weaker.

Example Consider the timed automaton Aα of Fig. 1(a) where α ∈ {2,3}. The automaton
has two clocks x and y. There is one initial location 	1 with initial clock values x = 1 and
y = 0. For locations 	1 and 	2, the sets of reachable states in the classical semantics [[Aα]]
with ε = � = 0 are depicted in Fig. 1(b). The final states (or bad states) correspond to the
location err with any clock valuation. For both α = 2 and α = 3, the timed automaton Aα

does not reach the bad states.

Consider the perturbed semantics [[Aα]]0
� for ε = 0 and � > 0. In this semantics, guards

are enlarged by �. The edge from 	1 to 	2 has the guard x ≤ 2+� and the edge from 	2 to 	1

has the guard y ≥ 2 − �. From the initial state (1, x = 1, y = 0), the transition to 	2 can be
taken after � time units, reaching the states (2, x = 0, y ≤ 1 + �). Similarly, the transition
from 	2 back to 	1 is enabled � time units earlier than before and the states (1, x ≥ 1 −
2�,y = 0) are reachable. It is easy to show that after having taken k times the transitions
of the cycle, the states (1, x ≥ 1 − 2k�,y = 0) (provided x ≥ 0) and (2, x = 0, y ≤ 1 +
(2k − 1)�) (provided y ≤ 2) are reachable. Hence, for all � > 0 the states (1, x ≥ 0,

y = 0) and (2, x = 0, y ≤ 2) are reachable in [[Aα]]0
� and were not reachable in the classical

semantics [[A2]]0
0. Those states are represented in Fig. 1(a). The same situation occurs in the

perturbed semantics [[Aα]]ε0 for � = 0 and ε > 0, that is, Rε→0
� = Rε

�→0 �= Reach([[Aα]]).
This example shows that the classical semantics is not robust with respect to small per-

turbations in either the timing constraints or the clock rate. The effect of such perturbations,
no matter how small they are, may lead to dramatically different behaviours of the system.
In this case, the location err is reachable in the perturbed semantics [[A2]]0

� for any � > 0,
but not in the classical semantics [[A2]]0

0. We say that the safety property (to avoid the lo-
cation err) is not robustly satisfied by A2. Such non-robust systems cannot have a correct
implementation because their correctness relies on the mathematical idealization of the tra-
ditional semantics.

Form Methods Syst Des (2008) 33: 45–84 53

Fig. 1 Differences between standard and perturbed semantics

On the other hand, for α = 3 the safety property still holds in the limit of the perturbed
semantics. As we will show, this implies that there exists a strictly positive value of � for
which the perturbed semantics [[Aα]]0

� is safe. In fact, any � < 1
3 fits in our example.

3 The robust safety verification problem is decidable

The main result of this paper is a detailed proof that the robust safety verification problem
is decidable, for both perturbed guards and drifting clocks (Theorem 11).

Definition 10 The robust safety verification problem asks, given a timed automaton A and
a zone-set Bad, if there exist �,ε ∈ Q>0 such that Reach([[A]]ε�) ∩ Bad = ∅.

54 Form Methods Syst Des (2008) 33: 45–84

Theorem 11 Under Assumption 9, the robust safety verification problem is decidable.

The rest of the paper is devoted to the detailed proof of this result. The main argument is
based on an algorithm presented by Puri in [36, 37] to compute a robust semantics for timed
automata, namely the set Rε→0

0 . Puri gives a proof of correctness of his algorithm, using
innovative techniques for the analysis of cycles in timed automata. However, some of Puri’s
important results are proven in broad outline. For instance, Puri’s claim that Rε→0

0 = Rε→0
�→0

where Rε→0
�→0 = ⋂

�>0

⋂
ε>0 Reach([[A]]ε�) is not really justified [36, Theorem 9.1]. More-

over, several proofs of intermediate results that are used by Puri to establish the correctness
of his algorithm are quickly sketched, giving a rough idea of the proof scheme. For some of
them, we were not able to complete the proofs, in particular for [36, Lemma 6.4] where the
statement of the lemma itself is actually wrong.

Therefore, we give in the next sections a detailed proof of Theorem 11 and of the equal-
ity Rε→0

�→0 = Rε→0
0 . Moreover, we show that the same semantics is also obtained under guard

perturbations only, i.e., R0
�→0 = Rε→0

�→0 = Rε→0
0 . On the one hand, we exploit the new tech-

niques introduced by Puri and we clarify and reprove some of his lemmas, and on the other
hand, we also introduce new lemmas and proof techniques to bridge over some gaps of
Puri’s papers, and extend his results to the semantics with guard perturbations. We proceed
with the following steps:

1. in Sect. 4, we recall classical results about regions and zones for timed automata. We
essentially follow the work of Puri;

2. in Sect. 5, we show that the robust safety verification problem reduces to the computa-
tion of the set Rε→0

�→0 = ⋂
�>0

⋂
ε>0 Reach([[A]]ε�) (Theorem 15). This has no counter-

part in [36].
3. in Sect. 6, we show that Algorithm 1 below (due to Puri) computes Rε→0

�→0 = R0
�→0 =

Rε→0
0 :

(a) in Sect. 6.1, we study the structure of the cycles of timed automata and of their
region graph. This is important because cycles allow perturbations to accumulate
(see the example of Sect. 2). The material in this section is essentially due to Puri,
and the detailed proofs follow his ideas;

(b) in Sect. 6.2, we show that Algorithm 1 is sound, i.e., the set J ∗ it computes is
contained in R0

�→0 and in Rε→0
0 (Theorem 39). This part required 3 pages for

R0
�→0 and 5 pages for Rε→0

0 , to give a precise justification of the 5 lines in [37,
Lemma 7.11];

(a) in Sect. 6.3, we show that Algorithm 1 is complete, i.e., the set J ∗ it computes
contains Rε→0

�→0 (Theorem 46). Our approach to establish the key lemmas of [37,
Sect. 8.2] uses an original technique based on parametric DBMs, which allows to
extend Puri’s results to both guard perturbations and clock drifts;

4. in Sect. 7, we show that the safety verification problem is PSPACE -complete, as
claimed by Puri.

Several results in this paper are highly technical, and all proofs are given in details. To
help the reader, we give overviews of the main technical developments in the beginning of
Sects. 6, 6.2 and 6.3.

4 Properties of regions and zones

We review the important properties of the clock regions and zones of timed automata, for a
heavy use in the sequel.

Form Methods Syst Des (2008) 33: 45–84 55

Clock regions According to Definition 4, a clock region of a timed automaton contains a
set of valuations that agree on the integral part of the clocks and on the ordering of their
fractional parts. We make this characterization of clock regions more concrete with the fol-
lowing representation [36].

Definition 12 Given a timed automaton A with n clocks (Var = {x1, . . . , xn}) and largest
constant M , we represent a clock region of A by:

1. a tuple of (a1, . . . , an) of elements of {0,1, . . . ,M,⊥};
2. and a tuple (X0,X1, . . . ,Xk) of k + 1 (0 ≤ k ≤ n) sets of clocks that form a partition

of the clocks that have a value less than M . Those sets are required to be non-empty,
except X0. Formally, let Var≤M = {xi ∈ Var | ai �= ⊥}. We require that Var≤M = X0 ∪
· · · ∪ Xk , Xi ∩ Xj = ∅ if i �= j and Xi �= ∅ for all 1 ≤ i ≤ k.

The clock region characterized by a tuple (ai)1≤i≤n and (Xi)0≤i≤k is the set of all valua-
tions v : Var → R≥0 such that:

1. For all xi ∈ Var: v(xi) > M iff ai = ⊥, and if ai �= ⊥ then �v(xi)� = ai ;
2. for all x, y ∈ Var≤M : 〈v(x)〉 < 〈v(y)〉 iff for some i < j , x ∈ Xi and y ∈ Xj ;
3. and for all x ∈ Var≤M : 〈v(x)〉 = 0 iff x ∈ X0.

A more classical way to represent clock regions is by the set of constraints it satisfies. Our
representation of a clock region r is easily translated to a set of constraints that are satisfied
by (and only by) valuations of r . A valuation v belongs to the clock region represented by
(ai)1≤i≤n and (Xi)0≤i≤k if and only if v satisfies the following constraints [4]:

– xi > M for each xi such that ai = ⊥;
– xi = ai for each xi ∈ X0;
– ai < xi < ai + 1 for each xi ∈ Xl for some l > 0;
– xi − ai < xj − aj for each xi, xj such that xi ∈ Xl and xj ∈ Xm for some 0 < l < m;
– xi − ai = xj − aj for each xi, xj ∈ Xl for some l > 0.

Example In a timed automaton with 5 clocks and largest constant M = 8, a clock region r

represented by (1,3,5,⊥,2) and ({x1, x3}, {x2}, {x5}) satisfies the following constraints:

0 = x1 − 1 = x3 − 5 < x2 − 3 < x5 − 2 < 1 ∧ x4 > 8.

The closure [r] of r then satisfies:

0 = x1 − 1 = x3 − 5 ≤ x2 − 3 ≤ x5 − 2 ≤ 1 ∧ x4 ≥ 8.

Vertices of a clock region For a set S ⊆ Rn, let Conv(S) be the convex hull of S, i.e.,
the smallest convex set containing S. Since clock regions are bounded, they are convex
polytopes, and can also be defined as the convex hull of a finite set of points:

Definition 13 Let r be a clock region of a timed automaton. The set of vertices of r is the
smallest set of points S(r) such that [r] = Conv(S(r)).

Lemma 14 shows that the set S(r) is unique and the number of vertices is at most n + 1,
where n is the number of clocks of the automaton.

Lemma 14 The vertices of a clock region r are the integer vectors of its closure: S(r) =
[r] ∩ Nn.

56 Form Methods Syst Des (2008) 33: 45–84

Proof Let v ∈ [r]. Let the representation of r be given as (ai)1≤i≤n and (Xi)0≤i≤k . Then, for
all valuations w ∈ [r] we have:

∀0 ≤ i ≤ k, ∀x, y ∈ Xi, 〈w(x)〉 = 〈w(y)〉,
∀0 ≤ i < j ≤ k, ∀x ∈ Xi, y ∈ Xj, 〈w(x)〉 ≤ 〈w(y)〉,

∀x ∈ X0, 〈w(x)〉 = 0.

Let v0 be the valuation such that v0(xi) = ai for each 0 ≤ i ≤ k. We have v0 ∈ [r] and for
all 0 < j ≤ k, the valuation vj defined by

vj (x) = v0(x) if x ∈ Xi with i < j,

vj (x) = v0(x) + 1 if x ∈ Xi with i ≥ j,

belongs to [r].
We now prove that those valuations generate the whole closed clock region [r]. Let w be

a valuation in [r]. We define

w′ = (1 − 〈w(xk)〉) · v0 + (〈w(x1)〉 − 〈w(x0)〉) · v1 + · · · + (〈w(xk)〉 − 〈w(xk−1)〉) · vk

where each xi is a clock in the corresponding Xi for 1 ≤ i ≤ k, and w(x0) = 0 by convention.
We claim that w′ = w. To show this, let y be a clock in some Xj . Then

w′(y) = (1 − 〈w(xk)〉) · v0(y) + (〈w(x1)〉 − 〈w(x0)〉) · v1(y) + · · ·
+ (〈w(xk)〉 − 〈w(xk−1)〉) · vk(y)

= (1 − 〈w(xk)〉) · v0(y) + (〈w(x1)〉 − 〈w(x0)〉) · (v0(y) + 1) + · · ·
+ (〈w(xj)〉 − 〈w(xj−1)〉) · (v0(y) + 1)

+ (〈w(xj+1)〉 − 〈w(xj)〉) · (v0(y)) + · · ·
+ (〈w(xk)〉 − 〈w(xk−1)〉) · (v0(y))

= v0(y) + 〈w(xj)〉 = w(y)

since y ∈ Xj . Therefore [r] = Conv({v0, . . . , vk}). On the other hand, {v0, . . . , vk} is the
smallest set generating [r], since there is no valuation vi that is a convex combination of the
others. �

Lemma 14 entails that if a clock region r is a sub-region of a clock region r ′, then its set
of vertices S(r) is the intersection of [r] and the set S(r ′) of vertices of r ′.

Zones and DBMs Related to the algorithmic analysis of timed automata, an efficient data
structure has been introduced to represent zones: the difference bound matrices (DBM)
[14, 26]. We briefly introduce DBMs and show how the basic operations that are useful
for reachability analysis are computed.3

3In Sect. 6.3, we study in more details a parametric extension of DBMs, which we use for proving complete-
ness of our algorithm.

Form Methods Syst Des (2008) 33: 45–84 57

Let x1, . . . , xn be the clocks of a timed automaton. The idea of DBMs is to represent
all constraints uniformly, by constraints of the form xi − xj ≤ a with a ∈ Z ∪ {+∞} and
0 ≤ i, j ≤ n where x0 is the constant 0. For bounded zones, the range of a can be reduced to
Z ∩ [−M,M] where M is the largest constant of the timed automaton.

A DBM is a (n + 1) × (n + 1) matrix M = (mi,j)0≤i,j≤n where each mi,j is of the form
(ai,j ,≺i,j) where ≺i,j ∈ {<,≤} and ai,j ∈ Z is called a bound. In the sequel, we only con-
sider DBMs that represent closed sets, that is, DBMs where ≺i,j is always ≤. The set of
valuations represented by the DBM M = (mi,j)0≤i,j≤n is:

[[M]] = {(x1, . . . , xn) ∈ Rn | ∀0 ≤ i, j ≤ n : xi − xj ≤ mij ∧ x0 = 0}.

A DBM is associated with a complete directed graph with nodes 0,1, . . . , n and
edges (i, j) labeled by mij . In this graph, the length of a path is the sum of the labels of
the edges in the path. It is easy to see that the length of a path from node i to node j is an
upper bound of the difference xi − xj . The length of the shortest paths between nodes gives
the tightest bounds on the variables and difference of variables. This allows to define a nor-
mal form for DBMs that corresponds to the shortest path closure of the associated directed
graph. If the graph contains a cycle of negative length, the shortest path closure does not
exist and the DBM represents the empty set as a constraint of the form xi − xi ≤ m with
m < 0 is unsatisfiable. Hence, for nonempty DBMs in normal form, we have mi,i = 0 for all
0 ≤ i ≤ n.

Operations on sets represented by DBMs are executed by syntactic transformations on
the DBM. Some of those operations require the normal form. We present the operations
that will be useful in the sequel. Other operations like the difference of two DBMs and the
inclusion test are definable (see e.g. [3, 17, 39] for details).

– Intersection: given two DBMs M = (mi,j)0≤i,j≤n and M′ = (m′
i,j)0≤i,j≤n, let M′′ be the

DBM such that m′′
i,j = min{mi,j ,m

′
i,j }. Then, we have [[M′′]] = [[M]] ∩ [[M′]]. It is not

required that M and M′ are in normal form. In any case the result is not necessarily in
normal form.

– Time passing: given a DBM in normal form M = (mi,j)0≤i,j≤n, let M↗ be the DBM
(m′

i,j)0≤i,j≤n such that m′
i,0 = ∞ and m′

i,j = mi,j for all 0 ≤ i, j ≤ n with j �= 0. This
removes the upper bound on all the clocks. We have [[M↗]] = {v+ t | v ∈ [[M]]∧ t ∈ R≥0}
and M↗ is in normal form.

– Reset: given a DBM in normal form M = (mi,j)0≤i,j≤n and a clock x, let M[x := 0] be
the DBM (m′

i,j)0≤i,j≤n such that for all 0 ≤ i, j ≤ n with i �= j :

m′
i,j =

⎧
⎪⎨

⎪⎩

m0,j if x = xi,

mi,0 if x = xj ,

mi,j otherwise.

We have removed all the bounds involving x and set x to zero. We have [[M[x := 0]]] =
{v[x := 0] | v ∈ [[M]]}. We define similarly M[R := 0] for R ⊆ {x1, . . . , xn}. The result is
in normal form.

– Emptiness test: given a DBM M = (mi,j)0≤i,j≤n, we have [[M]] = ∅ if and only if there is
a cycle in the directed graph associated to M whose length is negative. The emptiness test
is realized by the shortest path algorithm used to put DBMs in normal form.

58 Form Methods Syst Des (2008) 33: 45–84

5 Removing existential quantification

This first part of the proof of Theorem 11 consists in removing the existential quantification
on � and ε. Given a timed automaton A, we let Rε→0

�→0 = ⋂
�>0

⋂
ε>0 Reach([[A]]ε�). We

then have the following result:

Theorem 15 For any timed automaton A, any zone-set Bad, the following equivalence
holds:

Rε→0
�→0 ∩ Bad = ∅ iff ∃� > 0, ε > 0 : Reach([[A]]ε�) ∩ Bad = ∅.

The proof of Theorem 15 is based on several intermediate lemmas. Lemma 16 corrects
a wrong claim of Puri about a lower bound on the distance between two zones with empty
intersection. This bound is claimed to be 1

2 in [36, Lemma 6.4]. We show that 1
n

is the
tightest bound, where n is the number of clocks.

We introduce the following classical distances over Rn:

d∞(x, y) = ‖x − y‖∞ = max
1≤i≤n

(|xi − yi |), d1(x, y) = ‖x − y‖1 =
∑

1≤i≤n

(|xi − yi |).

Lemma 16 Let Z1,Z2 ⊆ Rn be two zones such that Z1 ∩Z2 = ∅. For all x ∈ Z1 and y ∈ Z2,
we have d∞(x, y) ≥ 1

n
. This bound is tight.

Proof First, we show that 1
n

is a lower bound. Clearly, for all v ∈ Rn, ‖v‖1 ≤ n · ‖v‖∞. We
prove that ‖x − y‖1 ≥ 1, which entails the result.

We consider two zones given by two DBMs in normal form: Z1 ≡ [[(mi,j)]] and Z2 ≡
[[(m′

i,j)]]. Since Z1 ∩ Z2 = ∅, there must exist a “negative cycle”:

m
(′)
i1,i2

+ m
(′)
i2,i3

+ m
(′)
i3,i4

+ · · · + m
(′)
ip,i1

≤ −1

where each term m(′)
i,j of the sum can be taken either in the matrix of Z1 or in the matrix of Z2.

We may assume that at least one m(′)
i,j comes from Z1 and one from Z2 since otherwise Z1

(or Z2) would be empty and the result would hold vacuously.
Since for DBMs in normal form, we have ma,b + mb,c ≥ ma,c for all indices a, b, c, we

can merge any two consecutive mi,j into one while keeping the inequality. The same holds
for m′

i′,j ′ , and we can thus assume that mi,j and m′
i′,j ′ alternate in the sum above (starting

with mi1,i2 , say).
Pick x ∈ Z1 and y ∈ Z2. Then

(xi2 − xi1) + (yi3 − yi2) + (xi4 − xi3) + · · · + (yi1 − yip) ≤ −1.

Terms can be rearranged in this sum, yielding

(yi1 − xi1) − (yi2 − xi2) + (yi3 − xi3) − · · · − (yip − xip) ≤ −1.

If ik = 0 for some k, then xik − yik = 0. Thus, we assume that 1 ≤ ik ≤ n. We take the
absolute value, and apply the triangle inequality:

1 ≤ ∣
∣(yi1 − xi1) − (yi2 − xi2) + (yi3 − xi3) − · · · − (yip − xip)

∣
∣

≤ |(yi1 − xi1)| + |(yi2 − xi2)| + |(yi3 − xi3)| + · · · + |(yip − xip)|
≤ ‖x − y‖1.

Form Methods Syst Des (2008) 33: 45–84 59

Now, let us show that this bound is tight. Consider the zones Z1,Z2 ⊆ Rn defined by the
following equations:

– If n is odd

Z1 ≡
{

x1 = 1,

x2i − x2i+1 = 0 1 ≤ i ≤ n−1
2 ,

Z2 ≡
{

x2i−1 − x2i = 0 1 ≤ i ≤ n−1
2 ,

xn = 0.

– If n is even

Z1 ≡
⎧
⎨

⎩

x1 = 1,

x2i − x2i+1 = 0 1 ≤ i ≤ n
2 − 1,

xn = 0,

Z2 ≡ {
x2i−1 − x2i = 0 1 ≤ i ≤ n

2 .

We have Z1 ∩Z2 = ∅; indeed combining the equations of Z1 and Z2 yields xi = xj for all
0 ≤ i, j ≤ n, which leads to a contradiction since x1 = 1 and xn = 0. On the other hand, let
p = (1, n−2

n
, n−2

n
, n−4

n
, n−4

n
, . . .) and q = (n−1

n
, n−1

n
, n−3

n
, n−3

n
, n−5

n
, . . .) (take the first n coor-

dinates). It is easy to check that p ∈ Z1 and q ∈ Z2, while d∞(p, q) = max(1
n
, . . . , 1

n
) = 1

n
. �

In order to prove Lemma 16 in presence of both kinds of perturbation, we have to extend
the previous lemma to sequences of sets as follows:

Lemma 17 Let Aδ be a collection of sets such that Aδ1 ⊆ Aδ2 if δ1 ≤ δ2. Assume that
Z = ⋂

δ>0 Aδ is a nonempty zone-set. Also assume the existence of a zone-set Z′ such that
∃δ0 > 0, ∀δ ∈ (0, δ0), Aδ ∩ Z′ = ∅. Then there exists δ1 > 0 such that for all 0 < δ < δ1, we
have d∞(Aδ,Z

′) ≥ 1
2n

.

60 Form Methods Syst Des (2008) 33: 45–84

Proof We pick δ0 > 0 such that ∀0 < δ < δ0, Aδ ∩ Z′ = ∅, and δ′
0 > 0 such that

∀x ∈ Aδ′
0
, ∃z ∈ Z : d∞(x, z) <

1

2n
. (1)

Such a δ′
0 exists by definition of Z. Assume the lemma is wrong:

∀δ1 > 0, ∃0 < δ < δ1, ∃x ∈ Aδ, y ∈ Z′ : d∞(x, y) <
1

2n
.

Applying this result with δ1 = min(δ0, δ
′
0), we pick a δ′

1 > 0, and two points x ∈ Aδ′
1

and y ∈ Z′ such that d∞(x, y) < 1
2n

. From (1), and since Aδ′
1

⊆ Aδ′
0
, there exists z ∈ Z

such that d∞(x, z) < 1
2n

. Thus d∞(y, z) < 1
n

, and with Lemma 16, Z ∩ Z′ �= ∅. Then any Aδ

intersects Z′, since it contains Z. This contradicts our hypotheses. �

In the sequel, when a distance d or a norm ‖ · ‖ is used, we always refer to d∞ and ‖ · ‖∞.
The following two lemmas rely on the theory of real numbers and the basics of topology.

Lemma 18 If d(A,B) > 0, then A ∩ B = ∅.

Lemma 19 If A ⊆ B , then d(A,C) ≥ d(B,C) for all C.

Our main tool for proving Theorem 15 can then be stated as follows:

Lemma 20 Let A�(� ∈ R>0) be a collection of closed sets such that A�1 ⊆ A�2 if
�1 ≤ �2. Assume that A = ⋂

�>0 A� is nonempty. Let B be a bounded set. If d(A,B) > 0,
then there exists � > 0 such that A� ∩ B = ∅.

Define N∞(X,η) = {x ∈ Rn | ∃x ′ ∈ X : d∞(x, x ′) ≤ η} and let N∞(x, η) = N∞({x}, η).

Proof For a contradiction, assume that for all � > 0, we have A� ∩ B �= ∅. Let δi = 1
i

(for each i ≥ 1). Then, we have:

∀i ≥ 1, ∃xi ∈ Aδi ∩ B.

Since B is bounded, so is the set {xi | i ≥ 1}. By Bolzano-Weierstrass Theorem, there exists
a point x such that:

∀ε > 0, ∀i ≥ 1, ∃j ≥ i : xj ∈ N∞(x, ε) ∩ Aδj .

Let us show that x is in the closure of Aδi for all i ≥ 1. Since Aδj ⊆ Aδi for all j ≥ i, we
have:

∀i ≥ 1, ∀ε > 0, ∃j : xj ∈ N∞(x, ε) ∩ Aδi ,

that is:

∀i ≥ 1, ∀ε > 0 : N∞(x, ε) ∩ Aδi �= ∅.

Hence, for all i ≥ 1 the point x is in the closure of the closed set Aδi , and thus x ∈ Aδi .
Since, for all � > 0 there exists i ≥ 1 such that δi ≤ � and thus Aδi ⊆ A�, we have ∀� ∈
R>0 : x ∈ A�. This entails that x ∈ A. Now observe that:

∀i ≥ 1 : d∞({x},B) ≤ d∞(x, xi) + d∞({xi},B).

Form Methods Syst Des (2008) 33: 45–84 61

Observe that d∞(x, xi) can be made arbitrarily small for sufficiently large i, and that for
all i ≥ 1, d∞({xi},B) = 0 since xi ∈ B . Therefore, we get:

∀ε > 0 : d∞({x},B) ≤ ε,

and d∞({x},B) = 0, which is a contradiction. �

We conclude this section by the proof of Theorem 15.

Proof of Theorem 15 Let Rε→0
� = ⋂

ε>0 Reach([[A]]ε�), for any � > 0. If Rε→0
�→0 ∩ Bad = ∅,

since Rε→0
�→0 and Bad are unions of sets of the form {l} × Zl where Zl is a zone,4 Lemma 16

applies and we have d(Rε→0
�→0,Bad) > 0. From Lemma 20, we obtain that there exists

� > 0 such that Rε→0
� ∩ Bad = ∅. Clearly, Rε→0

� satisfies the conditions of Lemma 17,
hence the existence of some �1 such that ∀� ∈ (0,�1), we have d(Rε→0

� ,Bad) > 0. We
pick such a �0 ∈ (0,�1). Applying Lemma 20 to Rε→0

�0
, we get the existence of ε0 such

that Reach([[A]]ε0
�0

) ∩ Bad = ∅.
Conversely, if there exists � > 0 and ε > 0 such that Reach([[A]]ε�) ∩ Bad = ∅, then

trivially Rε→0
�→0 ∩ Bad = ∅. �

It should be noted that a simpler proof could be achieved in the presence of only one
perturbation (for guard enlargement only, such a proof can be found in [22]).

6 An algorithm for computing R0
�→0, Rε→0

0 and Rε→0
�→0

In this section, we prove that R0
�→0 = Rε→0

0 = Rε→0
�→0, and that those sets are computed

by Algorithm 1 (originally proposed in [36] to compute Rε→0
0). The following example

illustrates the algorithm, and informally justifies its correctness. The rest of this section is
devoted to a formal proof of correctness.

Algorithm 1: Algorithm for computing the limit sets Rε→0
�→0, R0

�→0 and Rε→0
0 R∗

�, R∗
ε

and R∗
�,ε of a closed timed automaton A

4Assuming Algorithm 1 is correct, the set J ∗ = Rε→0
�→0 it computes is a union of closed regions.

62 Form Methods Syst Des (2008) 33: 45–84

Fig. 2 A progress cycle R1,R2,R3,R4 in the region graph of Aα of Fig. 1(a)

Example Consider the timed automaton Aα of Fig. 1(a) (the value of α does not matter
here). The reachable states of Aα in locations 	1 and 	2 are depicted on Fig. 1(b) and are
computed in J ∗ by the algorithm at line 3. Then, in the while-loop, the algorithm adds
to J ∗ the progress cycles of the region graph of Aα that “touch” the set J ∗, and performs
a reachability analysis from the new states in the classical semantics. In the example, the
progress cycle (1,R1), (1,R2), (1,R3), (2,R4) shown in Fig. 2 is added, and the set J ∗

computed by the algorithm is the set R0
�→0 shown in Fig. 1(c).

Observe that the algorithm manipulates only closed regions. In particular, the set J ∗ is
closed by Lemma 6. The condition J ∗ ∩ [p0] �= ∅ at line 4 implies that some points of J ∗

belong to the frontier of p0. It is clear that in the perturbed semantics of timed automata,
no matter the values of ε,� > 0, some states of p0 are reachable. Moreover, as we show in
the sequel, every state of p0 can actually be reached from every state of [p0] (and thus from
J ∗ ∩ [p0]), by repeating the cycle p = p0 p1 · · · pk sufficiently many times (the number of
iterations increases as ε and � tend to 0).

The main technique to prove that a state u ∈ [p0] can reach a state v ∈ [p0] in [[A]]0
� and

in [[A]]0
ε is the following. Assume that there is a trajectory in [[A]]0

0 that starts and ends in u

and follows the cycle p, called a limit cycle. We modify this trajectory using the perturbation
ε or � to reach a state u1 in the neighborhood of u. This is done in Theorem 29 for [[A]]0

�

and in Theorem 31 for [[A]]0
ε . By repeating this, we construct u2, . . . , uk = v such that ui

is reachable from ui−1 in [[A]]0
� (Theorem 28) and in [[A]]0

ε (Theorem 30). Unfortunately,
we cannot assume in general that u ∈ [p0] has a limit cycle in [[A]]0

0, even though p0 has a
cycle in the region graph of A [36]. We are saved by Theorem 23 which shows that (i) from
all states x ∈ [p0], there is a trajectory in [[A]]0

0 that reaches a state u ∈ [p0] that has a limit
cycle, and dually (ii) all states y ∈ [p0] are reachable in [[A]]0

0 from some state v ∈ [p0] that
has a limit cycle. Notice that Theorem 23 does not involve perturbations.

6.1 Limit cycles

Definition 21 (Limit Cycle) A limit cycle of a timed automaton A is a finite trajectory π

of [[A]] that contains at least one discrete transition and such that last(π) = first(π).

As suggested in [36], not all states of a progress cycle have a limit cycle.

Form Methods Syst Des (2008) 33: 45–84 63

Definition 22 Let p = p0p1 · · ·pN be a cycle in the region graph of a timed automaton A
(i.e., pN = p0). For Q0 ⊆ [p0], define the return map Rp(Q0) as follows:

Rp(Q0) =
{

q ∈ [p0] there exists a trajectory π of [[A]] that follows p

such that first(π) ∈ Q0 and last(π) = q

}

.

For i ≥ 2, define recursively Ri
p(Q0) = Rp(Ri−1

p (Q0)) and let Li,p be the set of states that
can return back to themselves after i cycles through p: Li,p = {q | q ∈ Ri

p({q})}. We write
Lp = ⋃

i∈N>0
Li,p the set of states having a limit cycle.

The following key property of Lp is central to the proof of correctness of Algorithm 1. It
states that Lp is both forward and backward reachable from all valuations in a cycle p.

Theorem 23 [36, Lemma 7.10] Let p = p0 · · ·pN be a cycle in the region graph of a timed
automaton. For all z ∈ [p0], there exists z′ and z′′ in Lp , and trajectories π and π ′ in [[A]],
such that:

– first(π) = z and last(π) = z′ and
– first(π ′) = z′′ and last(π ′) = z.

The proof proposed by Puri is quite sketchy. We develop here a full proof of this result,
following the same steps.

Lemma 24 [36, Lemma 7.1] Let p = p0p1 · · ·pN be a path in the region graph of a timed
automaton A, let π and π ′ be two trajectories of [[A]] that follow p. Then for all λ ∈ [0,1],
there exists a trajectory π ′′ of [[A]] that follows p and such that first(π ′′) = λ.first(π) +
(1 − λ).first(π ′) and last(π ′′) = λ.last(π) + (1 − λ).last(π ′).

Proof Let π = (q0, t0)σ1(q1, t1)σ2 · · ·σN(qN, tN) and π ′ = (q ′
0, t

′
0)σ

′
1 · · ·σ ′

N(q ′
N, t ′N). Con-

sider the sequence

π ′′ = (q ′′
0 , t ′′0) σ ′′

1 (q ′′
1 , t ′′1) σ ′′

2 · · · σ ′′
N (q ′′

N, t ′′N)

where for all 0 ≤ i ≤ N , q ′′
i = λ.qi + (1 − λ).q ′

i and t ′′i = λ.ti + (1 − λ).t ′i and for all
1 ≤ i ≤ N , σ ′′

i = λ.σi + (1 − λ).σ ′
i if σi ∈ R≥0 and σ ′′

i = σi otherwise. It is easy to show
that π ′′ is a trajectory in [[A]] since regions are convex sets. �

Lemma 25 [36, Lemma 7.3] Let p be a cycle in the region graph of a timed automaton.
Then Lp is convex.

Proof Let x, y ∈ Lp , and λ ∈ [0,1]. There exists natural numbers k and l such that x ∈ Lk,p

and y ∈ Ll,p . Then x, y ∈ Lk.l,p , and according to Lemma 24, we have λ.x + (1 − λ).y ∈
Lk·l,p ⊆ Lp . �

Definition 26 Let p = p0p1 · · ·pN be a cycle in the region graph of a timed automaton (i.e.
p0 = pN). The orbit graph of p is the graph �p = (V�,→�) such that V� = S(p0) is the
set of vertices of p0 and for all v,w ∈ V�, v →� w iff w ∈ Rp({v}). For m ∈ N and v ∈ V�,
we define

Succm(v) = {w ∈ V� | v →m
� w} and Predm(v) = {w ∈ V� | w →m

� v}.

64 Form Methods Syst Des (2008) 33: 45–84

Given a vertex v ∈ V�, the set Rp({v}) is a closed region according to Lemma 6, and thus
we have Rp({v}) = Conv({w ∈ V� | v →� w}) as a closed region contains all its vertices.
More generally, we have Rk

p({v}) = Conv({w ∈ V� | v →k
� w}) for all k ≥ 1.

Lemma 27 [36, Lemma 7.4] Let p = p0 · · ·pk be a path in the region graph of a timed
automaton A. For all vertices v ∈ S(p0) of p0, there exists a vertex v′ ∈ S(pk) of pk such
that there exists a trajectory of [[A]] from v to v′, and conversely, for all vertices v′ ∈ S(pk)

of pk , there exists a vertex v ∈ S(p0) of p0 such that there exists a trajectory of [[A]] from v

to v′.

Proof Let v be a vertex of [p0]. Then {v} is a subregion of [p − 0], and the set of its
successors in [pk] is a closed subregion of [pk]. According to Lemma 14, a subregion of
[pk] necessarily contains a vertex.

The same argument can be applied backwardly, since the predecessor of a subregion
of pk is a closed subregion of p0. �

Proof of Theorem 23 Let �p = (V�,→�) be the orbit graph of p. Let V = {v ∈ V� | ∃m ∈
N. v ∈ Succm(v)}. Lemma 27 entails that every vertex in the orbit graph has an outgoing
edge. Thus for all v ∈ V�, there exists an integer mv such that for any m ≥ mv , the intersec-
tion Succm(v) ∩ V is non-empty, because V� is finite. Let M = max{mv | v ∈ V�} be the
largest such mv . Then SuccM(v) ∩ V �= ∅ for all v. A similar argument proves the existence
of M ′ such that PredM ′

(v) ∩ V �= ∅ for all v.
Since z ∈ [p0], we can write z = ∑

i λi vi , where λi ∈ [0,1], ∑
i λi = 1 and vi ∈ V�. For

each vi , let wi be an element of SuccM(vi) ∩ V . From Lemma 24, there is a path from z to
z′ = ∑

i λiwi and z′ ∈ Conv(V). By Lemma 25 we have Conv(V) ⊆ L and thus z′ ∈ L.
Conversely, if xi is a vertex in PredM ′

(vi) ∩ V , there is a path from z′′ = ∑
i λi xi ∈

Conv(V) ⊆ L to z. �

6.2 Soundness of Algorithm 1: J ∗ ⊆ R0
�→0 and J ∗ ⊆ Rε→0

0

We show that the set J ∗ computed by Algorithm 1 is reachable in the limit sets R0
�→0 and

Rε→0
0 . In particular, for all progress cycles that are added to J ∗ by the algorithm, we show

that every point of the cycle is reachable if either a drift on clocks or an enlargement of the
guards is allowed, no matter how small it is.

The proof is based on Theorem 23 and on the fact that for all progress cycles p, the set Lp

is a strongly connected component of both [[A]]0
� and [[A]]ε0 for all �,ε > 0. Hence in Lp ,

every state is reachable from every state for the perturbed semantics, and thus similarly, in
each region of the cycle p every state is reachable from every state by Theorem 23.

Apart from Theorem 39, all the results of this section apply to progress cycles but do not
require Assumption 9.

Imprecise guards: J ∗ ⊆ R0
�→0

Theorem 28 Let A be a timed automaton, let p = p0p1 · · ·pN be a progress cycle of the
region graph of A, and � ∈ R>0. For all states u,v ∈ Lp , there exists a trajectory π of [[A]]0

�

such that first(π) = u and last(π) = v.

This theorem results immediately from the following lemma.

Form Methods Syst Des (2008) 33: 45–84 65

Lemma 29 Let A be a timed automaton, let p = p0 p1 · · · pN be a progress cycle of the
region graph of A. For all � ∈ R>0, for all state u ∈ Lp and for all neighbour state
v ∈ [p0] ∩ N∞(u, �

2), there exists a trajectory π ′ of [[A]]0
� such that first(π ′) = u and

last(π ′) = v.

Proof Let A = 〈Loc,Var, q0,Lab,Edg〉. Since u ∈ Lp , there exists a trajectory π of [[A]]0
0

that follows p a certain number of times and such that first(π) = last(π) = u. We slightly
modify π to make it stutter-free (we insert a zero length timed transition between two con-
secutive discrete transitions, and we merge consecutive timed transitions). Assume that:5

π = (0, u0)
t0−→ (0, u

′
0)

σ0−→
R0

(1, u1)
t1−→ (1, u

′
1)

σ1−→
R1

· · ·
σm−2−−−→
Rm−2

(m−1, um−1)
tm−1−−→ (m−1, u

′
m−1)

σm−1−−−→
Rm−1

(m,um)
tm−→ (m,u′

m)

with u0 = u′
m = u. Each ti ∈ R≥0 and σi ∈ �. We annotate π with sets of clocks Ri ⊆ Var

that are reset by discrete transitions σi . Note that
⋃i=m−1

i=0 Ri = Var by Assumption 9.
Intuitively, we prove the lemma by modifying the length of the timed transitions of π so

that the clocks are reset slightly earlier or later than in π . We obtain a trajectory of [[A]]0
�

because the guards are enlarged and therefore they are enabled in the states of the new
trajectory.

Let the representation of p0 be given by (ax)x∈Var and (Xi)0≤i≤k . For all valuations
w ∈ p0, we have:

– for all x ∈ Var: �w(x)� = ax ;
– for all x ∈ X0: 〈w(x)〉 = 0;
– for all i and for all x, y ∈ Xi : 〈w(x)〉 = 〈w(y)〉;
– for all i < j and for all x ∈ Xi, y ∈ Xj : 〈w(x)〉 < 〈w(y)〉;

By hypothesis, p is a progress cycle and each clock is reset at least once along π . For
each clock x ∈ Var, let αx be the index of the last transition of π in which x is reset. Formally,
we have:

x ∈ Rαx ∀i > αx : x �∈ Ri. (2)

Then, for each clock x ∈ Var, we have:

u0(x) = u′
m(x) = u(x) =

m∑

i=αx+1

ti . (3)

Let v ∈ [p0] ∩ N∞(u, �
2) and for each x ∈ Var let δx = v(x) − u(x). Clearly, we have

|δx | ≤ �
2 . Moreover since v ∈ [p0], the closed version of the above inequalities defining p0

are satisfied by v. Let 〈〈v(x)〉〉 = v(x) − ax , we have:

– for all x ∈ Var: 0 ≤ 〈〈v(x)〉〉 ≤ 1;
– for all x ∈ X0: 〈〈v(x)〉〉 = 0;
– for all i and for all x, y ∈ Xi : 〈〈v(x)〉〉 = 〈〈v(y)〉〉;

5It is not restrictive to assume that π starts and ends with a timed transition as timed transitions of length zero
are allowed.

66 Form Methods Syst Des (2008) 33: 45–84

– for all i < j and for all x ∈ Xi, y ∈ Xj : 〈〈v(x)〉〉 ≤ 〈〈v(y)〉〉.
This entails that:

– for all i and for all x, y ∈ Xi : δx = 〈〈v(x)〉〉 − 〈u(x)〉 = 〈〈v(y)〉〉 − 〈u(y)〉 = δy ;
– for all x, y ∈ Var such that u(x) < u(y) (and hence αx > αy from (3)), we have v(x) ≤

v(y) and thus u(x) + δx ≤ u(y) + δy , that is:

δx − δy ≤ u(y) − u(x) =
αx∑

i=αy+1

ti . (4)

Let � = {αx | x ∈ Var} = {α1, . . . , αl} be the set of positions in π where a clock is reset
for the last time. Assume without loss of generality that α1 < α2 < · · · < αl and that for all
1 ≤ i ≤ l, the clock xi ∈ Var is such that αxi

= αi . Consider the time stamps in π as the
following block-sequence, and construct the sequence (t ′i)0≤i≤m by adding a shift given as
follows:

[
t0 . . . tα1

][
tα1+1 . . . tα2

]
. . .

[
tαj−1+1 . . . tαj

]
. . .

[
tαl−1+1 . . . tαl

][
tαl+1 . . . tm

]

+0 +δ1 − δ2 . . . +δj−1 − δj . . . +δl−1 − δl +δl

= [
t ′0 . . . t ′α1

][
t ′α1+1 . . . t ′α2

]
. . .

[
t ′αj−1+1 . . . t ′αj

]
. . .

[
t ′αl−1+1 . . . t ′αl

][
t ′αl+1 . . . t ′m

]

where each t ′i is obtained from ti by distributing the shift of each block over the time stamps
of the block. This can be done in such a way that each t ′i is nonnegative for all 0 ≤ i ≤ m

since for all i ≤ α1 we have t ′i = ti , for all 2 ≤ j ≤ l we have:

αj∑

i=αj−1+1

t ′i =
⎛

⎝
αj∑

i=αj−1+1

ti

⎞

⎠ + δj−1 − δj ≥ 0 by (4)

and finally for all i ≥ αl + 1 we have:

m∑

i=αl+1

t ′i =
m∑

i=αl+1

ti + δl = u(xl) + δl = v(xl) ≥ 0.

We now construct the trajectory π ′ from π by replacing each ti by t ′i :

π ′ = (0, v0)
t ′0−→ (0, v

′
0)

σ0−→
R0

(1, v1)
t ′1−→ (1, v

′
1)

σ1−→
R1

· · ·

σm−2−−−→
Rm−2

(m−1, vm−1)
t ′
m−1−−→ (m−1, v

′
m−1)

σm−1−−−→
Rm−1

(m, vm)
t ′m−→ (m, v′

m)

where v0 = u0 = u, for all 0 ≤ i ≤ m : v′
i = vi + t ′i and for all 1 ≤ i ≤ m : vi =

v′
i−1[Ri−1 := 0]. We claim that π ′ is a trajectory of [[A]]0

�. To show this, we must verify
that the guard (which is enlarged by � in [[A]]0

�) of each discrete transition σi is satisfied
by v′

i . Since π is a trajectory of [[A]], we know that each u′
i satisfies the corresponding

guard under the classical semantics. Therefore, it is sufficient to prove that the difference
|u′

i (x) − v′
i (x)| is bounded by � for all x ∈ Var. To do that, let j be the greatest index such

Form Methods Syst Des (2008) 33: 45–84 67

that j ≤ i and uj (x) = vj (x) (such an index exists because u0 = v0). Clearly, the difference
|u′

i (x) − v′
i (x)| is bounded by the sum of the shifts that we have introduced between index j

and i. For uniformity, let the first shift be δ0 − δ1 with δ0 = δ1 and the last shift be δl − δl+1

with δl+1 = 0. Notice that |δi | ≤ �
2 holds for all i = 0, . . . , l + 1. If a block [tαp−1+1 . . . tαp]

is such that j ≤ αp−1 + 1 and αp ≤ i, then the whole shift δp−1 − δp counts in the sum. On
the other hand, if i or j lies inside the block, then only a portion α(δp−1 − δp) of the shift
counts where α ∈ [0,1]. Accordingly, the sum of the shifts can take one of the three forms
(where α,β ∈ [0,1]):

s1 = α(δp − δp+1) (if i and j lie in the same block)

s2 = α(δp − δp+1) + β(δp+1 − δp+2) (if i and j lie in consecutive blocks)

s3 = α(δp − δp+1) + δp+1 − δq + β(δq − δq+1) (otherwise).

It is easy to show the following bounds:

|s1| ≤ α · 2 · �

2
≤ �,

|s2| = |α(δp − δp+2) + (β − α)(δp+1 − δp+2)| ≤ α · � + |β − α|�
|s2| = |(α − β)(δp − δp+1) + β(δp − δp+2)| ≤ |α − β|� + β · �

}

⇒|s2| ≤ �,

|s3| = |α(δp − δq+1) + (1 − β)(δp+1 − δq) + (β − α)(δp+1 − δq+1)|
|s3| = |(α − β)(δp − δq) + (1 − α)(δp+1 − δq) + β(δp − δq+1)|

}

⇒|s3| ≤ �

which shows that |u′
i (x) − v′

i (x)| ≤ � for all x ∈ Var.
Finally, since the sets of clocks Ri that are reset in π ′ are the same as in π , (3) applies

and we get for all x ∈ Var:

v′
m(x) =

m∑

i=αx+1

t ′i =
m∑

i=αx+1

ti + δx = u′
m(x) + δx = u(x) + δx.

Hence v′
m = v. It follows that first(π ′) = u and last(π ′) = v as required. �

Drifting clocks: J ∗ ⊆ Rε→0
0

We prove a result similar to Theorem 28 for drifting clocks.

Theorem 30 (See also [36, Lemma 7.11]) Let A be a timed automaton, let p = p0 p1 · · · pN

be a progress cycle of the region graph of A, and ε ∈ R>0. For all states u,v ∈ Lp , there
exists a trajectory π of [[A]]ε0 such that first(π) = u and last(π) = v.

The proof of Theorem 30 relies on the following lemma, implying that it is possible
to go from a state x0 = u ∈ Lp to a state xk = v ∈ Lp in [[A]]ε0 by successively reaching
x1, x2, . . . , xk where xi+1 is at bounded distance from xi . The key is that the bound depends
only on the extremal states u and v.

68 Form Methods Syst Des (2008) 33: 45–84

Lemma 31 Let A be a timed automaton and p = p0 p1 · · · pN be a progress cycle of the
region graph of A. For all u,v ∈ Lp , for all ε ∈ R>0, there exists δ > 0 such that for all x ∈
Conv({u,v}) and for all y ∈ Lp ∩ N∞(x, δ), there exists a trajectory π in [[A]]ε0 such that
first(π) = x and last(π) = y.

To prove Lemma 31, we apply a drift on a limit cycle trajectory starting in u. Since
the effect of drifts is proportional to the duration of the trajectory, we need a bound on the
minimal duration of such a trajectory, in order to guarantee a lower bound on the perturbation
that we can enforce. This is done in Lemma 32. Then, to show that every state in N∞(x, η)

is reachable from a state x, we need to establish the relationship between numbers δ and η

in the following statement:

∀x ′ ∈ [r ′] ∩ N∞(xi+1, δ), ∃x ∈ [r] ∩ N∞(xi, η) : x
τ−→ x ′ in [[A]]ε0 for some τ ∈ R≥0.

This statement can be used inductively to show that a neighborhood of xk = v (and thus
v itself) can be reached from x0 = u, as in Theorem 30. When ε = 0, we show in Lemma 33
that η = 2δ fits. To have a proof of Lemma 31, we would need that η = 0 while δ > 0. To
obtain this, we use the drifts on clocks. The proof is quite involved because Lemma 33 tends
to require a larger value of η to guarantee some δ, while the drifts help us to decrease η.

In the next lemma, we show that every limit-cycle trajectory of strictly positive duration
can be extended to a limit-cycle trajectory of duration at least 1

2 without increasing the size
of π more than twice. This last condition is important as otherwise, the lemma would be
trivially true.

Lemma 32 Let A be a timed automaton, let p = p0p1p2 · · ·pN be a progress cycle in
the region graph of A. If there exists a limit cycle π of [[A]] that follows p such that
Duration(π) > 0, then there exists a limit cycle π ′ of [[A]] with first(π ′) = first(π) and such
that |π ′| ≤ 2|π | and Duration(π ′) ≥ 1/2.

Proof The result is immediate if Duration(π) ≥ 1/2. Assume Duration(π) < 1/2, and let
k = |π | and u = first(π) = last(π). Let π2 be the trajectory obtained by repeating π twice.
We have |π2| = 2k and first(π2) = statek(π2) = last(π2) = u. Since all clocks are reset
along π , their value remain strictly less than 1/2 in every state of π and π2. By the fact
that Duration(π) > 0, there must be at least one timed transition in π with a strictly positive
time stamp. Consider the first such transition in π2, and let increase its length by 1/2 time
units, yielding a new trajectory π ′ in which each clock remains below 1. Therefore, the same
transitions as in π2 can be taken as the guards satisfied by a state of π are also satisfied by
the corresponding state in π ′. Observe that we keep in the second half of the trajectory π ′
the same sequence of transitions as in π , and since all clocks are reset along π , we obtain
last(π ′) = u = first(π ′), |π ′| = 2|π | and Duration(π ′) ≥ 1/2. �

Lemma 33 Let A be a timed automaton, let r and r ′ be two regions of A s.t. (, r)
time−−→

(, r ′) in the region graph of A. For all u ∈ r , v ∈ r ′ and τ ∈ R>0 such that (,u)
τ−→ (, v)

in [[A]]0
0, and for all δ ≥ 0, for all y ∈ N∞(v, δ) ∩ [r ′], there exists x ∈ N∞(u,2δ) ∩ [r]

and τ ′ ∈ R≥0 such that (, x)
τ ′−→ (, y) in [[A]]0

0.

Proof Let n be the number of clocks of A. Reminiscent of the normal form DBM represen-
tation of regions, let αi, βi,mi,j ∈ Z and α′

i , β
′
i ,m

′
i,j ∈ Z be the tightest constants such that

Form Methods Syst Des (2008) 33: 45–84 69

Fig. 3 Construction of a predecessor of y in the closed region [r]

for all valuations u,v, we have u ∈ [r] and v ∈ [r ′] if and only if for all 1 ≤ i, j ≤ n:

([r]) ui − uj ≤ mi,j αi ≤ ui ≤ βi,

([r ′]) vi − vj ≤ m′
i,j α′

i ≤ vi ≤ β ′
i .

In particular, this entails that −mj,i ≤ ui − uj ≤ βi − αj and −m′
j,i ≤ vi − vj ≤ β ′

i − α′
j for

all 1 ≤ i, j ≤ n, and since the constants are tight:

−mj,i ≤ mi,j ≤ βi − αj , −m′
j,i ≤ m′

i,j ≤ β ′
i − α′

j . (5)

Now, let u ∈ r , v ∈ r ′ and τ ∈ R>0 such that (,u)
τ−→ (, v) in [[A]]0

0, and let δ ≥ 0 and y ∈
N∞(v, δ)∩[r ′]. Since r ′ is a time successor of r and v = u+ τ , we have for all 1 ≤ i, j ≤ n:

mi,j = m′
i,j , vi − vj = ui − uj . (6)

We define the valuation D = y − v. Since y ∈ N∞(v, δ), we have ‖D‖∞ ≤ δ and since
y ∈ [r ′], we have for all 1 ≤ i, j ≤ n:

(vi + Di) − (vj + Dj) ≤ m′
i,j , α′

i ≤ vi + Di ≤ β ′
i . (7)

Now let z = u+D. As shown on Fig. 3, we might have z �∈ [r]. Thus, we have to construct a

neighbour x of z that belongs to [r] and such that x
τ ′−→ y for some τ ′ ∈ R≥0. By (6) and (7),

we have for all 1 ≤ i, j ≤ n:

zi − zj = (ui + Di) − (uj + Dj) = (vi + Di) − (vj + Dj) ≤ mi,j . (8)

1 First, assume that for some i0, we have αi0 = βi0 : This means that the interior of r is empty,
as on Fig. 3(a). Let t = −Di0 . Notice that the value of t is independent of the choice of i0.
Indeed, if for some j �= i0 we have αj = βj , then using (5) we get:

αi0 − βj ≤ −mj,i0 ≤ mi0,j ≤ βi0 − αj

and −mj,i0 = mi0,j since αi0 − βj = βi0 − αj . By (6), we have −m′
j,i0

= m′
i0,j and thus in

the region [r ′], we have vi0 − vj = −m′
j,i0

= m′
i0,j = yi0 − yj and thus Di0 = Dj .

70 Form Methods Syst Des (2008) 33: 45–84

Now, let x = z + t so that xi0 = ui0 . We show that x ∈ [r]. Clearly, by (8) we have:

xi − xj = zi − zj ≤ mi,j .

And in particular, for all 1 ≤ j ≤ n : −mi0,j ≤ xj − xi0 ≤ mj,i0 . Since xi0 = ui0 = αi0 = βi0

and by (5) we have:

αj ≤ βi0 − mi0,j ≤ xj ≤ mj,i0 + αi0 ≤ βj .

Now, we have ‖x − u‖∞ = ‖D + t‖∞ ≤ 2‖D‖∞ ≤ 2δ and thus x ∈ N∞(u,2δ) ∩ [r].
2 Second, assume that for all i, we have αi < βi : This means that the interior of r is not
empty, as on Fig. 3(b). We define the following sets:

I = {i | αi > zi}, I ′ = {i | zi > βi}.
– If I = ∅ and I ′ = ∅, then z ∈ [r] by (8) and we take x = z. We have ‖x − u‖∞ =

‖z − u‖∞ = ‖D‖∞ ≤ δ.
– If I �= ∅, then define t = max{αi − zi | i ∈ I } and let i0 be an index in I such that t =

αi0 − zi0 . Clearly t > 0 and since t = αi0 − ui0 − Di0 and αi0 ≤ ui0 , we have t ≤ −Di0 .
We take x = z + t so that xi0 = αi0 . We show that x ∈ [r]. Clearly, by (8) we have:

xi − xj = zi − zj ≤ mi,j .

In particular, for all 1 ≤ i ≤ n we have xj − xi0 ≤ mj,i0 ≤ βj −αi0 by (5). Since xi0 = αi0 ,
this yields xj ≤ βj . Moreover, for all i ∈ I we have xi = zi + t ≥ αi by definition of t ,
and for all i �∈ I we have xi = zi + t ≥ zi ≥ αi . Finally, we have ‖x − u‖∞ = ‖D + t‖∞ ≤
2‖D‖∞ ≤ 2δ.

– If I ′ �= ∅, then define t = min{βi − zi | i ∈ I ′} and let i0 be an index in I ′ such that t =
βi0 − zi0 . Clearly t < 0 and since t = βi0 − ui0 − Di0 and ui0 ≤ βi0 , we have t ≥ −Di0 .
We take x = z + t so that xi0 = βi0 . We show that x ∈ [r]. Clearly, by (8) we have:

xi − xj = zi − zj ≤ mi,j .

In particular, for all 1 ≤ j ≤ n we have xi0 −xj ≤ mi0,j ≤ βi0 −αj by (5). Since xi0 = βi0 ,
this yields xj ≥ αj . Moreover, for all i ∈ I ′ we have xi = zi + t ≤ βi by definition of t , and
for all i �∈ I ′ we have xi = zi + t ≤ zi ≤ βi . Finally, we have ‖x − u‖∞ = ‖D + t‖∞ ≤
2‖D‖∞ ≤ 2δ.

In each case, we have x ∈ N∞(u,2δ) ∩ [r] and (, x)
τ ′−→ (, y) in [[A]]0

0 for τ ′ = τ − t

(obviously we have τ ′ ≥ 0 because r ′ is a time successor of r). �

Lemma 34 Let A be a timed automaton. Let (, x) and (, y) be two states of [[A]], and
τ ∈ R≥0 such that (, x)

τ−→ (, y) in [[A]]. For all ε ∈ R>0, for all x ′ ∈ N∞(x, ετ) : (, x ′) τ−→
(, y) in [[A]]ε0.

Proof The result is immediate if τ = 0. Otherwise, it suffices to set the rate of each clock c

of A to 1 − (x ′(c) − x(c))/τ , which lies between 1 − ε and 1 + ε. �

Lemma 35 Let A be a timed automaton, let r and r ′ be two regions of A such that r→r ′ in
the region graph of A. For all u ∈ [r], v ∈ [r ′] and ε ∈ R>0:

Form Methods Syst Des (2008) 33: 45–84 71

– if there is a timed transition u
τ−→ v in [[A]], then for all η ∈ R≥0, we have:

∀y ∈ N∞
(

v,
η + ετ

2 + 3ε

)

∩ [r ′], ∃x ′ ∈ N∞(u, η) ∩ [r] : x ′ τ ′−→ y in [[A]]ε0;

– if there is an action transition u
σ−→ v in [[A]], then for all η ∈ R≥0, we have

∀y ∈ N∞(v, η) ∩ [r ′], ∃x ∈ N∞(u, η) ∩ [r] : x
σ−→ y in [[A]]ε0.

Proof We only prove the first part of the lemma, the second part being quite obvious. We
have v = u + τ . Let δ = (η + ετ)/(2 + 3ε) and let y ∈ N∞(v, δ) ∩ [r ′]. From Lemma 33,

there exists x ∈ N∞(u,2δ) ∩ [r] such that x
τ ′−→ y in [[A]] for some τ ′ ∈ R≥0. So we have

y = x + τ ′. Using the triangle inequalities, we have:

τ ′ = ‖y − x‖∞ = ‖(v − u) − [(x − u) + (v − y)]‖∞ ≥ τ − 3δ. (9)

Consider the set S = N∞(x, ετ ′) ∩ Conv({u,x}). Since d∞(u, x) ≤ 2δ, there exists x ′ ∈ S

such that:
{

d∞(u, x ′) = 0 if d∞(u, x) ≤ ετ ′ (take x ′ = u),

d∞(u, x ′) ≤ 2δ − ετ ′ if d∞(u, x) > ετ ′.

Since [r] is convex and x,u ∈ [r], we have x ′ ∈ [r], and since x
τ ′−→ y in [[A]], Lemma 34

entails that x ′ τ ′−→ y in [[A]]ε0. To complete the proof, we have to show that x ′ ∈ N∞(u, η),
that is d∞(u, x ′) ≤ η. Starting from (9), we have:

ε(τ − τ ′) ≤ 3εδ = (2 + 3ε)δ − 2δ = η + ετ − 2δ

and thus 2δ − ετ ′ ≤ η which entails d∞(u, x ′) ≤ η. �

Lemma 36 Let A be a timed automaton, let ε ∈ R>0 and Kε = 1/(2 + 3ε). Let p =
p0 p1 · · · pN be a path in the region graph of A. Let π be a trajectory of [[A]] that fol-
lows p and let u = first(π), v = last(π) and T = Duration(π). For all y ∈ N∞(v,KN

ε εT) ∩
[pN], there exists a trajectory π ′ in [[A]]ε0 that follows p and such that first(π ′) = u

and last(π ′) = y.

Proof Let π = (q0, t0)σ1(q1, t1)σ2 . . . σN(qN, tN) with t0 = 0 and tN = T . Define εi =
Ki

εεti . We show that for all 0 ≤ i < N , for all y ∈ N∞(qi+1, εi+1) ∩ [ri+1], there ex-
ists x ∈ N∞(qi, εi) ∩ [ri] such that there exists a transition from x to y in [[A]]ε0:

– if qi

σi+1−−→ qi+1 is a discrete transition, then we have εi+1 ≤ εi because ti+1 = ti and Kε ≤ 1.
The claims follows then directly from Lemma 35.

– otherwise, we have a timed transition qi

τ−→ qi+1 and ti+1 = ti +τ . By Lemma 35 with η =
εi , we have:

∀y ∈ N∞(qi+1,Kε(εi + ετ)) ∩ [ri+1], ∃x ′ ∈ N∞(qi, εi) ∩ [ri] : x ′ τ ′−→ y in [[A]]ε0.
Since Kε ≤ 1, we have:

Kε(εi + ετ) = Ki+1
ε εti + Kεετ ≥ Ki+1

ε ε(ti + τ) = Ki+1
ε εti+1 = εi+1.

72 Form Methods Syst Des (2008) 33: 45–84

Hence, N∞(qi+1, εi+1) ⊆ N∞(qi+1,Kε(εi + ετ)) and we have:

∀y ∈ N∞(qi+1, εi+1) ∩ [ri+1], ∃x ′ ∈ N∞(qi, εi) ∩ [ri] : x ′ τ ′−→ y in [[A]]ε0.
Applying this result for each 0 ≤ i < N , we obtain immediately that for all y ∈

N∞(qN , εN) ∩ [rN], there exists x ∈ N∞(q0, ε0) ∩ [r0] such that there exists a trajectory π ′
in [[A]]ε0 that follows p with first(π ′) = x and last(π ′) = y. Finally, we have qN = last(π)

and q0 = first(π) so that x = u since ε0 = 0 and N∞(q0,0) = {q0}. �

Lemma 37 Let A be a timed automaton and p be a progress cycle of the region graph of A.
For all u,v ∈ Lp , there exists an n ∈ N such that Conv({u,v}) ⊆ Ln,p .

Proof Let k and l be such that u ∈ Lk,p and v ∈ Ll,p . Take n = kl. The result follows from
Lemma 24. �

We proceed with the proofs of Lemma 31 and Theorem 30.

Proof of Lemma 31 If p is not a time-elapsing progress cycle, then Lp is a singleton that
contains the valuation in which all clocks are equal to zero. In this case, the result is imme-
diate.

Assume that p contains a time-elapsing region. For u,v ∈ Lp , let n ∈ N be given by
Lemma 37. We are in the conditions of Lemma 32: for all x ∈ Conv({u,v}) there exists a
limit cycle π on x with Duration(π) > 0 and |π | ≤ nW where W is the number of regions
of A. Therefore, there exists a limit cycle π ′ on x with Duration(π ′) ≥ 1/2 and |π ′| ≤ 2nW .
Let N = 2nW and take δ = 1

2εKN
ε . By Lemma 36, for all y ∈ N∞(x, δ)∩ [p0] there exists a

trajectory π in [[A]]ε0 such that first(π) = x and last(π) = y. Finally, the result follows from
the fact that Lp ⊆ [p0]. �

Proof of Theorem 30 For u,v ∈ Lp , let δ as given by Lemma 31 and let k = � 1
δ
�. Consider

the points x0 = u, xk = v, and xi = u + iδ(v − u) for i = 1, . . . , k − 1. It is easy to see that
d∞(xi, xi+1) ≤ δ ·d∞(u, v) ≤ δ (because the ∞-distance between two points of a region is at
most 1). Thus from Lemma 31, for all 0 ≤ i ≤ k − 1 there exists a trajectory from xi to xi+1

in [[A]]ε0, and thus a trajectory π such that first(π) = u and last(π) = v. �

6.2.1 Soundness of Algorithm 1

The second part of the next theorem corresponds to [36, Theorem 7.3].

Theorem 38 Let A be a timed automaton. Let p = p0p1 · · ·pN be a progress cycle of the
region graph of A. For all x, y ∈ [p0], we have:

– For all � ∈ R>0, there exists a trajectory π in [[A]]0
� such that first(π) = x and last(π) =

y;
– For all ε ∈ R>0, there exists a trajectory π ′ in [[A]]ε0 such that first(π ′) = x and

last(π ′) = y.

Proof From Theorem 23, there exist u,v ∈ Lp and two trajectories π1 and π3 of [[A]] such
that first(π1) = x and last(π1) = u, and first(π3) = v and last(π3) = y. By Theorem 28, there
exists a trajectory π2 of [[A]]0

� such that first(π2) = u and last(π2) = v. We construct π

Form Methods Syst Des (2008) 33: 45–84 73

by concatenating the three trajectories π1, π2 and π3. The proof is similar for the second
part of the theorem, based on Theorem 30. �

As a consequence, we get the following extension of [36, Theorem 5.1].

Theorem 39 Let A be a timed automaton satisfying Assumption 9. Let J ∗ be the set com-
puted by Algorithm 1. Then J ∗ ⊆ R0

�→0 and J ∗ ⊆ Rε→0
0 .

Proof For all � > 0, if a set of regions J ∗ is reachable in [[A]]0
�, then:

– so is the set Reach(G,J ∗) of regions reachable from J ∗ in the region graph G of A;
– any cycle p is a progress cycle, so that Theorem 38 applies: if p0 is a region in p such

that [p0] ∩ J ∗ �= ∅, then the set J ∗ ∪ [p0] is reachable in [[A]]0
�.

Since J ∗ is obtained by iterating the above two operations (lines 3, 5 and 6 of the algorithm)
from the set of initial states [q0], this ensures that J ∗ ⊆ Reach([[A]]0

�). This holds for all
� > 0, and hence J ∗ ⊆ R0

�→0.
The proof for drifts on clocks is similar. �

6.3 Completeness of Algorithm 1: Rε→0
�→0 ⊆ J ∗

To prove the completeness of Algorithm 1, we have to show that any state that is reachable
in the semantics [[A]]ε� no matter how small are ε and �, lies in the set J ∗ computed by
Algorithm 1. First, we show that if the number of transitions in trajectories is fixed, then there
is a bound on the distance between a state reachable in [[A]]ε� and the set of reachable states
Reach([[A]]) in the classical semantics (Theorem 44). This bound vanishes when ε → 0
and � → 0. This shows that a state x ∈ Rε→0

�→0 that is reachable in a fixed number of steps
from the initial states in [[A]]ε� for all ε,� > 0 is at distance zero from the reachable states
in the classical semantics. An argument related to topologically closed sets then shows that
x ∈ Reach([[A]]). Second, to extend the result to the whole set Rε→0

�→0, we roughly use the
fact that longer trajectories necessarily contain a cycle that is added to J ∗ by the algorithm.
Therefore, only a bounded part of those trajectories can take the state far from J ∗. By a
similar argument as above, this distance to J ∗ is shown to vanish when ε → 0 and � → 0
(Theorem 45). The proofs of the theorems are based on a detailed study of the reachability
properties of the perturbed semantics, for which we need parametric DBM, an extension of
DBM (that we have presented in Sect. 4).

A parametric DBM (PDBM) in Rn is a matrix M = (mi,j)0≤i,j≤n where mi,j ∈ Z × N is
called a parametric bound. In a PDBM, each mi,j is a couple (a, b) of integers with b ≥ 0.
Given a number � ∈ R≥0, the value of mi,j is [[m]]� = a + b�. The set represented by M
is:

[[M]]� = {(x1, . . . , xn) ∈ Rn | ∀ 0 ≤ i, j ≤ n : xi − xj ≤ [[mij]]� ∧ x0 = 0}.
As usual, we often write [[M]] for [[M]]0. More general definitions of PDBM have been
introduced in [1, 33], with implementations. Here, we use PDBM for purely theoretical
purposes, so we keep the definition as simple as possible.

For a PDBM M = (mij)0≤i,j≤n with mij = (aij , bij), we define the width of M by
w(M) = max{bij | 0 ≤ i, j ≤ n}. Thus a DBM is a zero-width PDBM. Any closed rectangu-
lar guard g can be represented by a PDBM Mg with w(Mg) = 2 such that for all � ∈ R≥0

we have [[Mg]]� = N∞([[g]],�). In particular, [[g]] = [[Mg]].

74 Form Methods Syst Des (2008) 33: 45–84

Example Let g ≡ x = 4 ∧ 1 ≤ y ≤ 3. Then,

Mg =
⎛

⎝

0 x y

0 (0,0) (−4,1) (−1,1)

x (4,1) (0,0) (3,2)

y (3,1) (−1,2) (0,0)

⎞

⎠.

When the reachable states in the perturbed semantics of a timed automaton A are com-
puted parametrically using PDBM, it would be nice that the classical semantics [[M]] gives
exactly the reachable states in [[A]] and that the perturbed semantics [[M]]� gives the reach-
able states in [[A]]ε�. This can be obtained when ε = 0 by taking � = �. For the general
case ε > 0, the set [[M]]� over-approximates the reachable states, provided ε is sufficiently
small. We are more precise in Lemma 42 and Lemma 43.

In that context, the width of PDBM records the accumulation of the deviations allowed
by the perturbed semantics. This is useful to bound the distance between states that are
reachable in the perturbed semantics and states that are reachable in the classical semantics.
The following lemma gives such a bound.

Lemma 40 (See also [36, Lemma 7.4]) Let M be a PDBM in Rn and let � ∈ R≥0 such
that � · (2n + 1) · w(M) < 1. Let Z = [[M]] and Z′ = [[M]]�. For all x ′ ∈ Z′, there exists
x ∈ Z such that ‖x ′ − x‖∞ ≤ n · w(M) · �.

Proof First, assume that x ′ is a vertex of Z′. Then x ′ can be obtained by solving a system of
n equations of the form x ′

i − x ′
j = [[mij]]�, x ′

i = [[mi0]]� or x ′
i = −[[m0i]]�. Therefore, each

x ′
i is the sum or difference of at most n coefficients [[mij]]�. Since the bounds mij are entries

of M, for all 1 ≤ i ≤ n, if x ′
i = li + ki� for some li , ki ∈ Z, then |ki | ≤ n ·w(M) and we take

xi = li . Then ‖x ′ − x‖∞ ≤ n · w(M) · � and we claim that x ∈ Z. Let l0 = k0 = 0. Then, for
all 0 ≤ i, j ≤ n we have (for mij = (aij , bij)):

x ′
i − x ′

j = li − lj + (ki − kj) · � ≤ aij + bij�.

Hence,

li − lj ≤ aij + (bij − ki + kj) · �.

Since li , lj and aij are integers and |(bij − ki + kj) · �| ≤ (2n + 1) · w(M) · � < 1, we have
xi − xj = li − lj ≤ aij = [[mij]]0. Therefore x ∈ Z.

Second, if x ′ is not a vertex, then it can be written as x ′ = ∑
i λiv

′
i with λi ≥ 0 and∑

i λi = 1 and each v′
i is a vertex of Z′. From the proof above, for each v′

i there exists
vi ∈ Z such that ‖v′

i − vi‖∞ ≤ n · w(M) · �. We take x = ∑
i λivi . Clearly x ∈ Z, and we

have:

‖x ′ − x‖∞ =
∥
∥
∥

∑

i

λi(v
′
i − vi)

∥
∥
∥∞

≤
∑

i

λi‖v′
i − vi‖∞

≤
∑

i

λi(n · w(M) · �) ≤ n · w(M) · �.
�

Now, we show how to extend to PDBM the operations that we have presented in Sect. 4
for DBM. To do so, we have to define the minimum of two parametric bounds (for inter-
section of PDBM). We define a lexicographic order on parametric bounds: (a, b) ≤ (a′, b′)

Form Methods Syst Des (2008) 33: 45–84 75

Table 1 Operations on PDBM (NF = normal form)

PDBM in Rn Input in NF Output in NF Width of the result

Intersection M1 ∩ M2 NO NO ≤ max{w(M1),w(M2)}
Time passing M↗ YES YES ≤ w(M)

Reset M[R := 0] YES YES ≤ w(M)

Normalization of M
NO YES ≤ n · w(M)

Emptiness test of M

if and only of either a < a′, or a = a′ and b ≤ b′. This (syntactical) definition is justi-
fied by the following observation: for all � such that b� ≤ 1, if (a, b) ≤ (a′, b′) then
[[(a, b)]]� ≤ [[(a′, b′)]]�. Thus if we take a sufficiently small �, the order is preserved at
the semantic level. In the sequel, this will imply that provided � is below some threshold,
the operations on PDBM can be performed independently of the value of �. The sum of two
parametric bounds (a, b) and (a′, b′) is (a + a′, b + b′).

We review the important operations on PDBM:

– Intersection: the intersection of two PDBM M1 and M2 is the PDBM M whose entries
are the minimum (according to the lexicographic order on parametric bounds) of the cor-
responding entries of M1 and M2. Hence w(M) ≤ max{w(M1),w(M2)}.

– Time passing and reset: those operations only substitute entries of the matrix with other
entries of the matrix and they preserve the normal form. Thus the width cannot increase.

– Normalization: to obtain the normal form of a PDBM M in Rn, each entry mij is replaced
by the length of the shortest path from node i to node j , which has at most n edges.
Therefore, the width of the normal form is bounded by n · w(M).

– Emptiness test: given a PDBM M, let M′ be its normal form. The emptiness test checks
whether one of the diagonal entries is negative (a parametric bound m = (a, b) is negative
iff m < (0,0) iff a ≤ −1).

A summary of the above observations is given in Table 1. Their correctness is established
in the following lemma.

Lemma 41 For all PDBM M, M′ in Rn, we have:

– [[M ∩ M′]]� = [[M]]� ∩ [[M′]]� for all 0 ≤ � ≤ 1/max{w(M),w(M′)};
– [[M↗]]� = [[M]]�↗ for all � ∈ R≥0, if M is in normal form;
– [[M[R := 0]]]� = [[M]]�[R := 0] for all � ∈ R≥0 and all R ⊆ {x1, . . . , xn}, if M is in

normal form;
– if M′ is the normal form of M, then the DBM ([[m′

ij]]�)0≤i,j≤n is the normal form of the
DBM ([[mij]]�)0≤i,j≤n, for all 0 ≤ � ≤ 1/max{w(M),w(M′)};

– [[M]]� = ∅ iff [[M]]0 = ∅, for all 0 ≤ � ≤ 1/(n · w(M)).

Proof The argument is similar for the five claims. We give the details for the last one. First,
we have [[M]]0 ⊆ [[M]]� for all �. Thus it suffices to show that [[M]]0 = ∅ implies that
[[M]]� = ∅ for all � < 1/(n · w(M)). If [[M]]0 = ∅ then there exists a parametric bound
m′ = (a, b) in the diagonal of the normal form PDBM M′ such that a ≤ −1. Since b ≤
n · w(M), we have [[m′]]� = a + b� < 0 and therefore [[M]]� is empty. �

76 Form Methods Syst Des (2008) 33: 45–84

Notations Given a TTS T = 〈S, ι,�,→〉, let U ⊆ S and σ ∈ �. We define the following
operators:

postσT (U) = {s ′ ∈ S | ∃s ∈ U. s
σ−→ s ′},

posttime
T (U) = {s ′ ∈ S | ∃s ∈ U. ∃t ∈ R≥0. s

t−→ s ′}.

We use the PDBM to characterize the relationship between the reachable states of the
classical semantics [[A]] and those of the perturbed semantics [[A]]ε�.

By an abuse of notation, we omit the location in the argument of post(·), that is we
use Z = [[M]] instead of Z = {	} × [[M]] for 	 ∈ Loc. Finally, we assume that the edges of
timed automata are identified by their label. This is clearly not restrictive for reachability
analysis.

In Lemma 42, the PDBM M′ contains the exact information about the timed successors
of M in the classical semantics, and it is an over-approximation of the timed successors in
the perturbed semantics. Lemma 43 is similar for discrete successors.

Lemma 42 Let A be a timed automaton with n clocks and largest constant M . Let M be a
PDBM in Rn in normal form. There exists a PDBM M′ in normal form such that:

– ∀� ∈ R≥0, ∀� ∈ R≥0, ∀ε ≤ �/(2(M + 1)) : posttime
[[A]]ε�([[M]]�) ⊆ [[M′]]�;

– posttime
[[A]]00

([[M]]0) = [[M′]]0;

– w(M′) = w(M) + 1.

Proof Assume that �,� ∈ R≥0 and ε ≤ �/(2(M + 1)). First, observe that in the classical
semantics [[A]], the length of a timed transition is bounded by M . In the perturbed semantics
[[A]]ε� however, a timed transition may be longer than M because clocks can progress more
slowly, namely at the rate 1 − ε. Therefore, the length of a timed transition is bounded by
M/(1 − ε) and thus by M + 1 since ε ≤ 1/(M + 1). Second, we obtain M′ by constructing
the time successor of M as described above (in the exact semantics), and then by replacing
each bound (a, b) of the PDBM by (a, b + 1), except on the diagonal. Clearly we have
w(M′) = w(M)+1 and [[M↗]]0 = [[M′]]0 and thus posttime

[[A]]00
([[M]]0) = [[M′]]0. On the other

hand, if we have (, x)
t−→ (, x ′) in [[A]]ε� and xi − xj ≤ [[mij]]�, then:

x ′
i − x ′

j ≤ [[mij]]� + 2εt ≤ [[mij]]� + 2ε(M + 1) ≤ [[mij]]� + � = [[m′
ij]]�.

Therefore posttime
[[A]]ε�([[M]]�) ⊆ [[M′]]�. �

Lemma 43 Let A be a timed automaton with n clocks and alphabet Lab. Let M be a PDBM
in Rn. For all σ ∈ Lab, there exists a PDBM M′ in normal form such that:

– ∀� ≤ 1/(max{2,w(M)}), ∀� ≤ �, ∀ε ∈ R≥0 : postσ[[A]]ε�([[M]]�) ⊆ [[M′]]�;

– postσ[[A]]00
([[M]]0) = [[M′]]0;

– w(M′) ≤ n · max{2,w(M)}.

Proof Assume that �,ε ∈ R≥0 and � ≤ �. Let (, 	′, g, σ,R) be the edge of A associ-
ated with σ . Let Mg be the PDBM that represents the guard g (with w(Mg) = 2). To con-
struct M′, let M∩ be the PDBM M ∩ Mg put in normal form, and let M′ = M∩[R := 0]

Form Methods Syst Des (2008) 33: 45–84 77

which is in normal form. According to Table 1, we have w(M′) ≤ n · max{2,w(M)} and

postσ[[A]]ε�([[M]]�) ⊆ postσ[[A]]ε�([[M]]�) = [[M′]]� (by Lemma 41).

For � = � = ε = 0, the sets collapse and postσ[[A]]00
([[M]]0) = [[M′]]0. �

With the previous two lemmas, we have characterized how much the set of reachable
states can increase by taking one transition (either timed or discrete) in the perturbed se-
mantics [[A]]ε� instead of the classical semantics [[A]]0

0. That increase is measured in terms
of the width of a PDBM. In the next theorem, we use an argument by induction to give a
bound on the increase after a given number of transitions. However, this is not sufficient to
prove the completeness of Algorithm 1. We need in addition to show that every trajectory
π ′ in [[A]]ε� can be approached by a trajectory π in [[A]]0

0 where each intermediate state
in π is “close” to the corresponding state in π ′. To obtain this result, we introduce the no-
tion of automaton refinement that roughly divides the guards into small pieces of size6 1/γ

(with γ ∈ N) so that two valuations that satisfy the same guard are necessarily “close” to
each other (by choosing γ sufficiently large). This is the core of Theorem 44.

Automaton refinement Given a timed automaton A with n clocks and a positive integer γ ,
the γ -refinement of A is the timed automaton Aγ constructed from A as follows:

– we first substitute each constant c appearing in the rectangular constraints (guards, invari-
ants, initial and final conditions) of A with cγ

– we then replace each edge (l, l′, g, σ,R) in the resulting automaton with the set of all
edges (l, l′, g′, σ,R) where g′ ranges over the set of all unit constraints (i.e., conjunc-
tions of constraints of the form xi = a or a ≤ xi ≤ a + 1) that imply g. Equalities of the
form xi = a are used only if g implies xi = a.

Roughly, the γ -refinement of A is a scaling of the constants by a factor γ (and thus a
scaling of the time), followed by a partitioning of the guards such that the distance between
two valuations that satisfy the guard is at most 1 (instead of being a multiple of γ , as is the
case after the first step).

The important property of such refinements is that for all �,ε ∈ R≥0, the two
TTS [[A]]ε� and [[Aγ]]εγ� are bisimilar, witnessed by the bijection μγ : QA → QAγ such
that μγ (, v) = (, γ v). We extend μγ to trajectories as expected (states are mapped ac-
cording to μγ and the time stamps are multiplied by γ). Finally, for all v, v′ ∈ QAγ we have
‖μ−1

γ (v) − μ−1
γ (v′)‖∞ = ‖v − v′‖∞/γ .

Example For γ = 2, an edge (, 	′, g, σ,R) in A with g ≡ (x = 4)∧ (1 ≤ y ≤ 3) is replaced
in Aγ with the following four edges:

(, 	′, {x = 8 ∧ 2 ≤ y ≤ 3}, σ,R) (, 	′, {x = 8 ∧ 4 ≤ y ≤ 5}, σ,R),

(, 	′, {x = 8 ∧ 3 ≤ y ≤ 4}, σ,R) (, 	′, {x = 8 ∧ 5 ≤ y ≤ 6}, σ,R).

The next theorem extends and clarifies Theorem 8.2 in [36].

Theorem 44 Let A be a timed automaton with n ≥ 1 clocks and largest constant M . For
all distances 0 < α < 1, for any number of steps k ∈ N, there exist two numbers D,E ∈ R>0

6The size of a set is the maximal distance (for d∞) between two points in the set.

78 Form Methods Syst Des (2008) 33: 45–84

such that for all � ∈ [0,D], for all ε ∈ [0,E] and for all stutter-free trajectories π ′ of [[A]]ε�
such that |π ′| = k, there exists a trajectory π of [[A]] such that:

– first(π) ∈ [first(π ′)];
– trace(π) = trace(π ′);
– π is “close” to π ′ in the following sense: ∀0 ≤ i ≤ k, if statei (π) = (i, vi) and

statei (π
′) = (′

i , v
′
i), then 	i = 	′

i and ‖vi − v′
i‖∞ < α.

Proof Given 0 < α < 1 and k ∈ N, let γ = �2/α� and:

D = α

4γ (n + 1)k+1
, E = D

2(γM + 1)
.

Let � ∈ [0,D] and ε ∈ [0,E] and let � = γD. Let trace(π ′) = σ1σ2 . . . σk . Let ρ ′ = μγ (π ′).
Then ρ ′ is a trajectory of [[Aγ]]εγ�. Let M0 be a PDBM in normal form such that [[M0]] =
[first(π ′)] and w(M0) = 0 (in fact M0 can be seen as a DBM). Observe that γ� ≤ � and
ε ≤ �/(2(Mγ +1)) where Mγ = γM is the largest constant of Aγ . Therefore, by Lemma 42
and 43, there exists PDBM M1,M2, . . . ,Mk in normal form such that, for all 1 ≤ i ≤ k and
provided that � ≤ 1/(max{2,w(Mi)}),
(a) postσi

[[Aγ]]εγ�
([[Mi−1]]�) ⊆ [[Mi]]�;

(b) postσi

[[Aγ]]([[Mi−1]]0) = [[Mi]]0;
(c) w(Mi) ≤ max{w(Mi−1) + 1, n · max{2,w(Mi−1)}.

Let us show that w(Mi) ≤ 2(n+1)i . We proceed by induction. The claim holds for i = 1
since w(M0) = 0. Assume that it holds up to some index i − 1, with i ≥ 2. Then we have

w(Mi) ≤ max
{
w(Mi−1) + 1, n · max{2,w(Mi−1)}

}

≤ max{1 + 2(n + 1)i−1, 2n · (n + 1)i−1} by (6.3)

≤ 2(n + 1)i−1 + 2n · (n + 1)i−1

≤ 2(n + 1)i .

Notice that the condition � ≤ 1/(max{2,w(Mi)}) is satisfied. For each 0 ≤ i ≤ k, let q ′
i =

statei (π
′). By (6.3), we have μγ (q ′

k) ∈ [[Mk]]�. Since α < 1, it is easy to see that:

� = α

4(n + 1)k+1
<

1

(2n + 1)w(Mk)

and thus by Lemma 40, there exists qk ∈ [[Mk]] such that:

‖μγ (q ′
k) − qk‖∞ ≤ n · w(Mk) · � < 2(n + 1)k+1 · � ≤ α.

Using (6.3), we can construct in a backward fashion a trajectory ρ of [[Aγ]] such that:

– last(ρ) = qk ;
– trace(ρ) = trace(π ′);
– first(ρ) ∈ [[M0]] = [q ′

0].
For each 0 ≤ i ≤ k, let qi = statei (ρ). For all i such that σi �= time, we have qi ∈ [[g′

i]] and
μγ (q ′

i) ∈ N∞([[g′
i]], γ�) where g′

i is the guard of the edge of Aγ associated to σi that has
been taken in ρ. Since the size of g′

i is at most 1, we have:

‖μγ (q ′
i) − qi‖∞ ≤ 1 + γ� ≤ 1 + �. (10)

Form Methods Syst Des (2008) 33: 45–84 79

Observe that the effect of discrete transitions is to reset some clocks and that does not in-
crease the ∞-distance between two states: we also have ‖μγ (q ′

i) − qi‖∞ ≤ 1 + γ� for all
i such that σi−1 �= time. Since π ′ is stutter-free and trace(ρ) = trace(π ′), (10) holds for all
0 ≤ i ≤ k. Now, let π = μ−1

γ (ρ) which is a trajectory of [[A]] since ρ is a trajectory of [[Aγ]].
Thus, we have for all 0 ≤ i ≤ k:

‖q ′
i − μ−1

γ (qi)‖∞ ≤ 1 + �

γ
<

2

γ
≤ α

which entails that π is “close” to π ′ as required. �

The following theorem is the key of the proof of completeness. It shows that for all
distances α > 0, we can choose sufficiently small values of � and ε such that from J ∗
the points that are reachable in [[A]]ε� are at distance at most α from J ∗. By contrast with
Theorem 44, we do not make the hypothesis that the length of the trajectories is bounded.
This result is similar to Theorem 8.3 in [36], but the constants are different because only
drifting clocks were considered by Puri and the bound of Lemma 16 was wrong.

Theorem 45 Let A be a timed automaton with n ≥ 1 clocks and largest constant M that
satisfies Assumption 9. For all distances α ∈ R>0, there exist two numbers D,E ∈ R>0 such
that for all � ∈ [0,D], for all ε ∈ [0,E] and for all trajectories π ′ of [[A]]ε� such that
first(π ′) ∈ J ∗, we have d∞(last(π ′), J ∗) < α.

Proof Without loss of generality, we may assume that α < 1
2n

. Let W be the number of
regions of A, let γ = �2/α� and:

D = α

4γ (n + 1)2W+1
, E = D

2(γM + 1)
.

Let � ∈ [0,D] and ε ∈ [0,E] and let π ′ be a stutter-free trajectory of [[A]]ε� such that
first(π ′) ∈ J ∗. Let m = |π ′| and for each 0 ≤ i ≤ m, let q ′

i = statei (π
′).

– If m ≤ 2W . By Theorem 44, there exists a trajectory π of [[A]] such that first(π) ∈
[first(π ′)] and for all 0 ≤ i ≤ m, ‖qi − q ′

i‖∞ < α where qi = statei (π). Since q0 ∈
[q ′

0] ⊆ J ∗, the state qm is reachable from J ∗ and thus qm ∈ J ∗. Since ‖qm − q ′
m‖∞ < α

this yields d∞(last(π ′), J ∗) < α.
– If m > 2W . By induction, assume that d∞(q ′

i , J
∗) < α for all 0 ≤ i ≤ m − 1. Consider

the sub-trajectory of π ′ from state q ′
m−2W to q ′

m, and according to Theorem 44, let π

be a trajectory such that for all m − 2W ≤ i ≤ m, it holds ‖qi − q ′
i‖∞ < α, where qi =

statei−(m−2W)(π). Then for all i with m − 2W ≤ i ≤ m − 1, we have :

d∞(qi, J
∗) ≤ ‖qi − q ′

i‖∞ + d∞(q ′
i , J

∗) ≤ 2α <
1

n
,

and by Lemma 16, this implies [qi] ∩ J ∗ �= ∅ for all m − 2W ≤ i ≤ m − 1 (since J ∗ is a
zone-set).

On the other hand, the trajectory π has the same trace as the sub-trajectory of π ′ from
q ′

m−2W to q ′
m and thus it is stutter-free and |π | = 2W . Therefore, π has 2W + 1 states and

thus there exists two states qk and qk′ in π with k < k′ such that [qk] = [qk′] and a discrete
transition occurred along π between qk and qk′ in π , and thus there exists a path from
[qk] to itself in the region graph of A. Since [qk] ∩ J ∗ �= ∅, we have [qk] ⊆ J ∗ by line 5

80 Form Methods Syst Des (2008) 33: 45–84

of Algorithm 1 and [qi] ⊆ J ∗ for all i ≥ k by line 6 of the algorithm. So we have qm ∈ J ∗
and since ‖qm − q ′

m‖∞ < α, this yields d∞(last(π ′), J ∗) < α. �

Theorem 46 Let J ∗ be the set computed by Algorithm 1. Then Rε→0
�→0 ⊆ J ∗.

Proof For all y ∈ Rε→0
�→0, for all � > 0 and ε > 0 there exists a trajectory π of [[A]]ε� such

that first(π) ∈ J ∗ (because J ∗ contains the initial states) and last(π) = y. Therefore, by
Theorem 45 for all α ∈ R>0 we have d∞(y, J ∗) < α. This implies that d∞(y, J ∗) = 0 and
since J ∗ is a closed set (a finite union of closed regions) we have y ∈ J ∗. �

With Theorems 39 and 46 we have proven the following inclusions:

All those sets are thus equal:

Theorem 47 Under Assumption 9, we have R0
�→0 = Rε→0

0 = Rε→0
�→0, and those sets are

computed by Algorithm 1.

7 Complexity

The complexity issues have been studied in [36]. We mention the main theorem and we give
a detailed proof of the hardness result.

Theorem 48 [36] Given a timed automaton A = 〈Loc,Var, q0,Lab,Edg〉 satisfying As-
sumption 9 and a location 	 ∈ Loc, deciding whether there exists a valuation v such that
(, v) ∈ R0

�→0 (or equivalently (, v) ∈ Rε→0
0 , or (, v) ∈ Rε→0

�→0) is PSPACE -complete.

The proof uses the following definition of Linear Bounded Turing Machines (LBTM).
A LBTM is a non-deterministic Turing machine that can only use a number of tape cells
equal to the length of its input.

Definition 49 (Linear Bounded Turing Machine) A LBTM M = (Q,�,q0, qf ,E) consists
of:

– a finite set of control states Q,
– a finite alphabet �,
– an initial state q0 ∈ Q, a final state qf ∈ Q,
– and a set of transitions E ⊆ Q × � × � × {left, right} × Q.

A configuration of M is a triple (q,w, i) ∈ Q × �∗ × N where q is a control loca-
tion, w ∈ �∗ is the content of the tape, and i is the position of the tape head. A config-
uration (q ′,w′, i ′) is a successor of a configuration (q,w, i) iff there exists a transition
(q, σ,σ ′, d, q ′) ∈ E such that:

(1) wi = σ ;

Form Methods Syst Des (2008) 33: 45–84 81

(2) w′
i = σ ′ and w′

j = wj for all j �= i;
(3) i ′ = i − 1 if d = left and i ′ = i + 1 if d = right with 1 ≤ i ′ ≤ |w|.

We assume that the condition 1 ≤ i ′ ≤ |w| is realized using input delimiters. An exe-
cution of M on the input x ∈ �∗ is a sequence s0s1 . . . sn of configurations starting with
s0 = (q0, x,1) and such that si+1 is a successor of si for every 0 ≤ i < n. We say that M

accepts x iff M has an execution on x finishing in sn = (qf ,w, i) for some w ∈ �∗ and
i ∈ N. The acceptance problem for LBTM asks, given a LBTM M and an input word x ∈ �∗
whether M accepts x.

Proof of Theorem 48 First, we prove PSPACE -membership. It is not possible to use Algo-
rithm 1 because we should construct the region graph G, which may have a number of states
exponential in the number of clocks of the timed automaton A. However, we can check the
reachability of a region r by guessing a path in the region graph from the initial regions to r

in polynomial space. This is a fairly standard trick used for showing PSPACE -membership
of the reachability problem for classical timed automata with an on-the-fly algorithm [4].
The difficult point is that the successor of a given region r can be a neighbour region r ′
such that [r] ∩ [r ′] �= ∅ provided r ′ lies in a progress cycle S of G. As we have shown, the
entire region r ′ can be reached from r in [[A]]� no matter how small � is, by repeating the
cycle S. Hence we can add S in one step in the set of reachable states. Such an acceleration
has been proven correct (Theorem 39) and complete (Theorem 46). So, when guessing the
successor of a region r , we must take into account the neighbour regions of r and decide
whether they are in a progress cycle or not. This can be checked in PSPACE using the same
procedure as for classical timed automata [4]. A polynomially bounded part of the memory
is reserved for executions of this procedure. Since the content of this part of the memory is
not necessary for further computations, it can be reused by subsequent calls and PSPACE
-membership follows.

We establish PSPACE -hardness using a reduction of the acceptance problem for LBTM
The reduction is similar to [21], where a configuration (q,w, i) of a LBTM is encoded by
a location (q, i) (that records the control state q and the tape position i) and by the clocks
y1, . . . , y|w|, one for each tape cell. We assume without loss of generality that � = {a, b}.
A clock yi has the value yi = na if wi = a and yi = nb > na if wi = b. This encoding is not
preserved by time passing. Thus we need to periodically refresh the values of the clocks.
This is done in two phases: (I) resetting the clocks coding a ‘b’ (by checking yi = nb),
then letting nb − na time unit elapse, and (II) resetting the clock coding an ‘a’ (by checking
yi = nb again) and finally letting na time unit elapse. During phase (I), the clock that encodes
the tape cell pointed by the head, is updated according to the transitions of the LBTM.

We show how to adapt this reduction to the perturbed semantics of timed automata. Due
to guards enlargements, equality cannot be tested precisely and the clocks can not store
precise values na and nb . However, if � is sufficiently small and na and nb are not too close,
we can still distinguish clocks coding an ‘a’ and clocks coding a ‘b’. The details of this
proof follow.

Let M = (Q,�,q0, qf , δ) be a LBTM and x ∈ �∗ be an input word. Let n = |x|,
na = 3 and nb = 6. We construct a timed automaton A(M,x) with n + 1 clocks and a lo-
cation 	f such that M accepts x iff (f , v) ∈ R0

�→0 for some valuation v. Let A(M,x) =
〈Loc,Var, qA

0 ,Lab,Edg〉 with:

– Loc = {s0, s1, 	f } ∪ {(q, i, j,φ, d) | q ∈ Q ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ n + 1 ∧ φ ∈ {I, II} ∧ d ∈
{left, right}}; a location (q, i, j,φ, d) encodes the control state q , the tape position i, the
number j of the next clock to be treated, the phase φ of the simulation, and the direction d

of the next head movement;

82 Form Methods Syst Des (2008) 33: 45–84

– Var = {yi | 1 ≤ i ≤ n} ∪ {z};
– qA

0 = (s0, v0) with v0(t) = 0 for all t ∈ Var;
– Lab = {τ };
– The set Edg contains the following edges (we write 	

g,R−→ 	′ when (, 	′, g, τ,R) ∈ Edg):

– Initialization:

• s0
z=3,{yi |xi=a}∪{z}−−−−−−−−−→ s1

• s1
z=3,{z}−−−→ (q0,1,1, I, left)

– Refresh: for every (q, i, j,φ, d) ∈ Loc with j �= i and j ≤ n,

• (q, i, j, ϕ, d)
z≤0∧yj ≤4,∅−−−−−−−−→ (q, i, j + 1, ϕ, d)

• (q, i, j, ϕ, d)
z≤0∧yj ≥5,{yj }−−−−−−−−→ (q, i, j + 1, ϕ, d)

• (q, i, i, II, d)
z≤0∧yi≤4,∅−−−−−−−−→ (q, i, i + 1, II, d)

• (q, i, i, II, d)
z≤0∧yi≥5,{yi }−−−−−−−−→ (q, i, i + 1, II, d)

– Execution: for every q ∈ Q, 1 ≤ i ≤ n, d ∈ {left, right}, and for every transition
(q, σ,σ ′, d ′, q ′) ∈ E,

• If (σ,σ ′) = (a, a) then (q, i, i, I, d)
z≤0∧yi≤4,∅−−−−−−−−→ (q ′, i, i + 1, I, d ′)

• If (σ,σ ′) = (a, b) then (q, i, i, I, d)
z≤0∧yi≤4,{yi }−−−−−−−−→ (q ′, i, i + 1, I, d ′)

• If (σ,σ ′) = (b, a) then (q, i, i, I, d)
z≤0∧yi≥5,∅−−−−−−−−→ (q ′, i, i + 1, I, d ′)

• If (σ,σ ′) = (b, b) then (q, i, i, I, d)
z≤0∧yi≥5,{yi }−−−−−−−−→ (q ′, i, i + 1, I, d ′)

– Phase change: for every q ∈ Q, 1 ≤ i ≤ n, j = n + 1 and d ∈ {left, right},
• (q, i, n + 1, I, d)

z=3,{z}−−−→ (q, i,1, II, d)

• (q, i, n + 1, II, left)
z=3,{z}−−−−→ (q, i − 1,1, I, left)

• (q, i, n + 1, II, right)
z=3,{z}−−−→ (q, i + 1,1, I, right)

– Termination: for every 1 ≤ i ≤ n, d ∈ {left, right},
• (qf , i,1, I, d)

true,∅−−−→ 	f .

After the initialization step, the automaton is in the location (q0,1,1, I, left) and we have
the following relations between the tape content w and the clocks y1, . . . , yn when z = 0:

{
3 − � ≤ yi ≤ 3 + � if wi = a,

6 − 2� ≤ yi ≤ 6 + 2� if wi = b.

After executing one transition (q, σ,σ ′, d ′, q ′) of M , let w′ be the new tape content (w′ dif-
fers from w by at most one symbol). If we simulate that transition by the refresh steps,
the execution step, and the phase changes, it is easy to check that in location (q, i,1, I, d),
when z = 0 we have:

{
3 − 2� ≤ yi ≤ 3 + � if w′

i = a,

6 − 3� ≤ yi ≤ 6 + 2� if w′
i = b.

(11)

Note that two clocks coding the same symbol are not necessarily equal (however, their differ-
ence is bounded by �). The reader can check that after having executed a second transition
of M , there is no accumulation of the imprecisions and the conditions (11) still hold. Hence,
provided � is sufficiently small (in fact � < 1/2), the automaton A(M,x) will correctly
distinguish clocks coding ‘a’ from clocks coding ‘b’ for any number of transitions, and thus
simulate faithfully the execution of M on x. It is now easy to see that the location 	f is

Form Methods Syst Des (2008) 33: 45–84 83

reachable in R0
�→0 iff 	f is reachable in [[A]]0

0 iff M accepts x. This concludes the proof
since our construction is polynomial in the size of M and x. �

References

1. Annichini A, Asarin E, Bouajjani A (2000) Symbolic techniques for parametric reasoning about counter
and clock systems. In: Proc 12th int conf computer aided verification (CAV 2000), pp 419–434

2. Asarin E, Bouajjani A (2001) Perturbed Turing machines and hybrid systems. In: Proc 16th annual
symposium on logic in computer science (LICS). IEEE Comput Soc, Los Alamitos, pp 269–278

3. Alur R, Courcoubetis C, Dill DL, Halbwachs N, Wong-Toi H (1992) An implementation of three al-
gorithms for timing verification based on automata emptiness. In: Proc 13th IEEE real-time systems
symposium. IEEE Comput Soc, Los Alamitos, pp 157–166

4. Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126(2):183–235
5. Amnell T, Fersman E, Mokrushin L, Pettersson P, Yi W (2002) Times: A tool for modelling and im-

plementation of embedded systems. In: Katoen J-P, Stevens P (eds) Proc 8th int conference tools and
algorithms for the construction and analysis of systems (TACAS’02). Lecture notes in computer science,
vol 2280. Springer, Berlin, pp 460–464

6. Amnell T, Fersman E, Pettersson P, Sun H, Yi W (2003) Code synthesis for timed automata. Nord J
Comput 9

7. Alur R, Ivancic F, Kim J, Lee I, Sokolsky O (2003) Generating embedded software from hierarchical
hybrid models. In: Proc 2003 conf languages, compilers, and tools for embedded systems (LCTES’03),
pp 171–182

8. Alur R, La Torre S, Madhusudan P (2005) Perturbed timed automata. In: Proc 8th int workshop hybrid
systems: computation and control (HSCC’05). Lecture notes in computer science, vol 3414. Springer,
Berlin, pp 70–85

9. Asarin E, Maler O, Pnueli A, Sifakis J (1998) Controller synthesis for timed automata. In: Proc system
structure and control. Elsevier, Amsterdam

10. Agrawal M, Thiagarajan PS (2004) Lazy rectangular hybrid automata. In: Proc of HSCC 04: Hy-
brid systems—computation and control. Lecture notes in computer science, vol 2993. Springer, Berlin,
pp 1–15

11. Altisen K, Tripakis S (2005) Implementation of timed automata: an issue of semantics or modeling?
In: Proc 3rd int conf formal modelling and analysis of timed systems (FORMATS’05). Lecture notes in
computer science. Springer, Berlin

12. Bouyer P, Chevalier F (2005) On conciseness of extensions of timed automata. J Autom Lang Comb
10(4):393–405

13. Behrmann G, David A, Larsen KG, Håkansson J, Pettersson P, Yi W, Hendriks M (2006) Uppaal 4.0. In:
QEST, pp 125–126

14. Berthomieu B, Menasche M (1983) An enumerative approach for analyzing time Petri nets. In: Mason
REA (ed) Information processing 83—Proceedings of the 9th IFIP world computer congress, September
1983. North-Holland/IFIP, pp 41–46

15. Bouyer P, Markey N, Reynier P-A (2006) Robust model-checking of linear-time properties in timed
automata. In: Correa JR, Hevia A, Kiwi M (eds) Proceedings of the 7th Latin American symposium
on theoretical informatics (LATIN’06). Lecture Notes in Computer Science, vol 3887. Springer, Berlin,
pp 238–249

16. Bouyer P, Markey N, Reynier P-A (2008) Robust analysis of timed automata via channel machines.
In: Amadio R (ed) Proceedings of the 11th international conference on foundations of software science
and computation structures (FoSSaCS’08), Budapest, Hungary, March–April 2008. Lecture notes in
computer science, vol 4962. Springer, Berlin, pp 157–171

17. Clarke E, Grumberg O, Peled D (1999) Model checking. MIT Press, Cambridge
18. Chaochen Z, Hoare CAR, Ravn AP (1991) A calculus of durations. Inf Process Lett 40(5):269–276
19. Cassez F, Henzinger TA, Raskin J-F (2002) A comparison of control problems for timed and hybrid

systems. In: Proc 5th int workshop hybrid systems: computation and control (HSCC’02). Lecture notes
in computer science, vol 2289. Springer, Berlin, pp 134–148

20. Chaochen Z, Hansen MR, Sestoft P (1993) Decidability and undecidability results for duration calcu-
lus. In: In proc of STACS 93: symposium on theoretical aspects of computer science. Lecture notes in
computer science, vol 665. Springer, Berlin, pp 58–68

21. Courcoubetis C, Yannakakis M (1991) Minimum and maximum delay problems in real-time systems.
In: Proc 3rd int workshop computer aided verification (CAV’91). Lecture notes in computer science,
vol 575. Springer, Berlin, pp 399–409

84 Form Methods Syst Des (2008) 33: 45–84

22. De Wulf M, Doyen L, Markey N, Raskin J-F (2004) Robustness and implementability of timed au-
tomata. In: Lakhnech Y, Yovine S (eds) Proceedings of the joint conferences formal modelling and
analysis of timed systems (FORMATS’04) and formal techniques in real-time and fault-tolerant sys-
tems (FTRTFT’04), Grenoble, France, September 2004. Lecture notes in computer science, vol 3253.
Springer, Berlin, pp 118–133

23. De Wulf M, Doyen L, Raskin J-F (2005) Almost ASAP semantics: from timed models to timed imple-
mentations. Form Asp Comput 17(3):319–341

24. Dierks H (1999) Specification and verification of polling real-time systems. PhD thesis, University of
Oldenburg

25. Dierks H (2001) PLC-automata: a new class of implementable real-time automata. Theor Comput Sci
253(1):61–93

26. Dill D (1990) Timing assumptions and verification of finite-state concurrent systems. In: Proc 1st int
workshop automatic verification methods for finite state systems (CAV’89). Lecture notes in computer
science, vol 407. Springer, Berlin, pp 197–212

27. Dima C (2007) Dynamical properties of timed automata revisited. In: Proc of FORMATS 07: formal
modeling and analysis of timed systems. Lecture notes in computer science, vol 4763. Springer, Berlin,
pp 130–146

28. Daws C, Kordy P (2006) Symbolic robustness analysis of timed automata. In: Proc of FORMATS 06:
formal modeling and analysis of timed systems. Lecture notes in computer science, vol 4202. Springer,
Berlin, pp 143–155

29. Fränzle M (1999) Analysis of hybrid systems: an ounce of realism can save an infinity of states. In: CSL.
Lecture notes in computer science, vol 1683. Springer, Berlin, pp 126–140

30. Gupta V, Henzinger TA, Jagadeesan R (1997) Robust timed automata. In: Maler O (ed) Proc int workshop
hybrid and real-time systems (HART’97). Lecture notes in computer science, vol 1201. Springer, Berlin,
pp 331–345

31. Henzinger TA, Kirsch CM, Sanvido MA, Pree W (2003) From control models to real-time code using
GIOTTO. IEEE Control Syst Mag 23(1):50–64

32. Henzinger TA, Nicollin X, Sifakis J, Yovine S (1992) Symbolic model checking for real-time systems.
In: Proc 7th annual symposium logic in computer science (LICS’92). IEEE Comput Soc, Los Alamitos,
pp 394–406

33. Hune T, Romijn J, Stoelinga M, Vaandrager FW (2001) Linear parametric model checking of timed au-
tomata. In: Proc 7th int conf tools and algorithms for construction and analysis of systems (TACAS’01),
pp 189–203

34. Milner R (1980) A calculus of communicating systems. Lecture notes in computer science, vol 92.
Springer, Berlin

35. Maler O, Pnueli A, Sifakis J (1995) On the synthesis of discrete controllers for timed systems (an ex-
tended abstract). In: STACS, pp 229–242

36. Puri A (1998) Dynamical properties of timed automata. In: Proc 5th int symposium formal techniques
in real-time and fault-tolerant systems (FTRTFT’98). Lecture notes in computer science, vol 1486.
Springer, Berlin, pp 210–227

37. Puri A (2000) Dynamical properties of timed automata. Discrete Event Dyn Syst 10(1–2):87–113
38. Swaminathan M, Fränzle M (2007) A symbolic decision procedure for robust safety of timed systems. In:

Proceedings of the 14th international symposium on temporal representation and reasoning (TIME’07).
IEEE Comput Soc, Los Alamitos, p 192

39. Yovine S (1996) Model checking timed automata. In: European educational forum: school on embedded
systems, pp 114–152

	Robust safety of timed automata
	Abstract
	Introduction
	Timed automata
	Implementability of timed automata
	Robust verification of timed automata
	Related works

	Timed models
	The robust safety verification problem is decidable
	Properties of regions and zones
	Clock regions
	Vertices of a clock region
	Zones and DBMs

	Removing existential quantification
	An algorithm for computing RDelta->00, R0 and Repsilon->0Delta->0
	Limit cycles
	Soundness of Algorithm 1: J*RDelta->00 and J*R0
	Imprecise guards: J*RDelta->00
	Drifting clocks: J*R0
	Soundness of Algorithm 1

	Completeness of Algorithm 1: Repsilon->0Delta->0J*
	Notations
	Automaton refinement

	Complexity
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

