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Abstract

We investigated the effects of aging and ischemia–reperfusion (I/R) injury on the expression and activity of
nitric oxide (�NO) synthases and superoxide dismutase (SOD) isoforms.To this end we perfused excised
hearts from young (6 months old) and old (31–34 months old) rats according to the Langendorff technique.
The isolated hearts were, after baseline perfusion for 30 min, either subjected to 20 min of global no-flow
ischemia followed by 40 min of reperfusion or were control-perfused (60 min normoxic perfusion).Both
MnSOD and Cu,ZnSOD expression remained unchanged with increasing age and remained unaltered by
I/R. However, SOD activity decreased from 7.55±0.1 U/mg protein in young hearts to 5.94±0.44 in old
hearts (P<0.05). Furthermore, I/R led to a further decrease in enzyme activity (to 6.35±0.41 U/mg
protein; P<0.05) in myocardium of young, but not in that of old animals. No changes in myocardial
protein-bound 3-nitrotyrosine levels could be detected. Endothelial NOS (eNOS) expression and activity
remained unchanged in aged left ventricles, irrespective of I/R injury. This was in steep contrast to
peripheral (renal and femoral) arteries obtained from the same animals where a marked age-associated
increase of eNOS protein expression could be demonstrated. Inducible NOS expression was undetectable
either in the peripheral arteries or in the left ventricle, irrespective of age.In particular when associated with
an acute pathology, which is furthermore limited to a certain time frame, changes in the aged myocardium
with respect to enzymes crucially involved in maintaining the redox homeostasis, seem to be much less
pronounced or even absent compared to the vascular aging process. This may point to heterogeneity in the
molecular regulation of the cardiovascular aging process.

Abbreviations: SOD – superoxide dismutase; PGI2 – prostacyclin; �NO – nitric oxide; eNOS – endothelial
nitric oxide synthase (NOS III); iNOS – inducible nitric oxide synthase (NOS II); COX – cyclooxygenase;
�O�2 – superoxide; LVDP – left ventricular developed pressure; P – perfusion; I – ischemia; Y – young; O –
old; I/R – ischemia/reperfusion; Mn – manganese; Cu,Zn – copper, zinc; cGMP – cyclic guanosine
monophosphate; GSH – glutathione
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Introduction

Aging is an important risk factor for the devel-
opment of cardiovascular disease (Lüscher and
Noll 1995). In the vasculature, it is mainly char-
acterized by endothelial dysfunction, which
has been demonstrated both in animal studies
(Tschudi et al. 1996) and in humans (Zeiher et
al. 1993). The underlying mechanisms are not
yet completely elucidated, but, based upon the
oxidative-stress hypothesis of vascular aging
(Stadtman 1992; Finkel and Holbrook 2000),
alterations of nitric oxide synthases (NOS) and
superoxide (�O�2 )-scavenging antioxidative en-
zyme systems appear to be involved (van der
Loo and Lüscher 2002; Lakatta 2003). Recently,
it could be shown that aging led to changes in
the phenotype of coronary arterioles including
decreased expression of eNOS and cyclooxygen-
ase (COX)-1 with no age-differences in the
expression of superoxide dismutases (MnSOD
and Cu, ZnSOD) and COX-2 (Csiszar et al.
2003). However, data on the regulation of the L-
arginine-cGMP pathway in aged myocardium are
controversial as an increased expression and
activity of eNOS in whole-heart extracts have
also been described (Zieman et al. 2001). Fur-
thermore, aged vessels exhibited increased 3-ni-
trotyrosine contents (Csiszar et al. 2003) which is
a biomarker for the in vivo generation of perox-
ynitrite (Beckman et al. 1992; Zou et al. 1999).
Age-associated increase in �O�2 is thought to be
mainly responsible for trapping vasorelaxant
�NO, a reaction which is currently accepted as
the main biological source for peroxynitrite
(Goldstein et al. 2000). Peroxynitrite, in turn, is
responsible for tyrosine nitration (Reiter et al.
2000) and subsequent inactivation of important
enzymes involved in the maintenance of vascular
function (Mac Millan-Crow et al. 1996; Zou
et al. 1997). Interestingly, several studies have
suggested that the regulatory mechanisms
involved in the aging process may differ from
one vessel type to the other due to vascular bed
heterogeneity (Barton et al. 1997; Matz et al.
2000). However, heterogeneity of vascular aging
on the one hand and cardiac aging on the other
hand has not yet been demonstrated to date.
Furthermore, it has not been elucidated if those

regulatory mechanisms may change in the aged
heart under ischemic conditions, a fact which
might possibly explain the well known higher in-
farct mortality among older patients.

In young rats, it has previously been shown
that both �NO and �O�2 are elevated in response
to reperfusion injury (Liu et al. 1997). Sub-
sequent formation of peroxynitrite was increased
as indicated by the presence of nitrotyrosine (Liu
et al. 1997). Furthermore, prolonged experimen-
tal ischemia in young rat hearts leading to myo-
cardial infarction was shown to be associated
with an increase of MnSOD mRNA, but not of
Cu,ZnSOD, suggesting that the MnSOD gene
may be activated as a counterbalancing response
(Assem et al. 1997).

This heterogeneous background tempted us to
investigate the role of the �NO-producing enzyme
system as well as of the �O�2 scavenging enzymes
in the particular context of myocardial ische-
mia–reperfusion injury (stunning) with respect to
cardiac aging, which, to our knowledge, has
never been investigated before.

Methods

Animals

F1 (F344�BN) healthy male rats, fed ad libitum,
were obtained from the National Institutes of
Health, National Institute on Aging, Bethesda,
MD, USA. Experiments were performed in
young (6 months old) and old (31–34 months
old) animals. For some experiments, middle-aged
animals (18–20 months old) were also used. On
the day of the experiment, rats were anesthetized
with intraperitoneal injections of ketamine (1 ml/
kg body weight) and xylazine (0.5 ml/kg body
weight). After medial sternotomy, the hearts
were excised, placed on ice-cold Krebs–Ringer
bicarbonate solution, and rapidly mounted on
the aortic cannula of a Langendorff perfusion
chamber. The aorta was excised, placed in cold
(4 �C) Krebs–Ringer bicarbonate solution, pH
7.4, and cleaned of adhering tissue. Tissue was
then snap frozen in liquid nitrogen until being
further processed.
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Perfusion procedure and experimental protocol

To induce myocardial stunning, the Langendorff
model of retrogradely perfused rat hearts was
performed as described previously (Klainguti
et al. 2000). Hearts of young and old animals
were perfused in a Langendorff perfusion appa-
ratus for 30 min (baseline), then followed in each
age class by either

(1) 20 min of total ischemia and 40 min of rep-
erfusion (n=3 for hearts from young and
from old animals), or

(2) another 60 min of normoxic perfusion (n=3
for hearts from young and from old animals).

After completion of the perfusion protocol,
cardiac tissue was snap-frozen in liquid nitrogen
and stored at )80 �C until analysis. For analysis
of expression and activity of antioxidant enzymes
and of protein bound 3-nitrotyrosine, tissue of
the left ventricle (n=3 for each group) was used.

After completion of the perfusion experiments
in the Langendorff chamber we investigated po-
tential differences in expression and activity of
antioxidant enzymes as well as nitrotyrosine lev-
els in four groups of the left ventricle

(1) young, perfusion only (Y/P; ‘‘perfusion’’);
(2) young ischemia and reperfusion (Y/I;

‘‘ischemia’’);
(3) old, perfusion only (O/P) and
(4) old, ischemia and reperfusion (O/I).

Determination of cardiac eNOS and iNOS protein
expression

Frozen cardiac tissue samples of the left ventricle
were homogenized and lysed in a Tris–HCl
buffer, pH 6.8, containing 2% SDS, 1% urea,
3.6 lM leupeptin and 12.5 mM Tris. After 1 h of
incubation on ice and 4 min of sonication in a
water bath, the suspension was boiled for 2 min,
and the lysate centrifuged at 10,000 g at 4 �C for
10 min. Protein concentrations in the lysates
were measured using the bicinchoninic acid
(BCA) protein assay kit (Pierce Chemical Co.,
UK). Proteins were separated on an SDS 6%
polyacrylamide gel at 40 V overnight, and sepa-
rated proteins were transferred electrophoreti-
cally onto polyvinylidine difluoride membranes

(Immobilon-P; Millipore) at 200 mA for 40 min.
Membranes were blocked with a buffer contain-
ing 5% milk powder, 20 mM Tris–HCl (pH
7.50), 150 mM NaCl, and 0.05% Tween 20
(=TBS-T) for 1 h followed by three washes with
Tris-buffered saline-Tween (TBS-T). For Western
blot analysis, membranes were incubated with
the primary monoclonal antibody (rabbit anti-
eNOS IgG, Santa Cruz Biotechnology, Inc., or
mouse anti-iNOS IgG, Transduction Laborato-
ries) in a dilution of 1:2,000 at room temperature
for 2 h. After washing, incubation with peroxi-
dase-labeled anti-rabbit IgG (for detection of
iNOS peroxidase-labeled anti-mouse IgG) in a
dilution of 1:4,000 followed at room temperature
for 90 min. A sample of human umbilical vein
endothelial cells was run in parallel as a positive
control. Prestained markers were used for molec-
ular mass determinations. Protein expression was
detected by enhanced chemiluminescence (ECL;
Amersham Pharmacia Biotech).

NOS activity assay

Frozen cardiac tissue samples were homogenized
overnight on ice in 400 ll of a homogenization
buffer containing 20 mM HEPES, 200 mM su-
crose, 1 mM dithiothreitol, 10 lg/ml soybean
trypsin inhibitor, 10 lg/ml leupeptin, and 2 lg/
ml aprotinin. PMSF (0.1 mM final concentra-
tion) and [(3-cholamidopropyl)-dimethyl-ammo-
nio]-1-propanesulfonate (=CHAPS, 20 mM final
concentration) were added before sonication.
Samples were measured in triplicates. After cen-
trifugation at 100,000g for 1 h, supernatants
were depleted of endogenous arginine by passage
over activated resin. NOS activity was measured
by the conversion of L-[14C]arginine to L-[14C]cit-
rulline as described previously (Knowles and
Salter 1994). Results are expressed as pmol per
lg protein per min. The citrulline assay was car-
ried out in 100 ll of assay buffer (containing:
1.2 mmol/l L-citrulline, 2�10)2 mmol/l L-argi-
nine, 0.12 mM NADPH, 10)2 mM tetrahydrobi-
opterin, 1.2 mM MgCl2, 0.24 mM CaCl2, 40
U/ml calmodulin, 10)3 mM FAD, 10)3 mM
FMN, L-[14C]arginine (1.2�10)4 mM; 18.5 kBq/
ml)) and 18 ll of cytosol from the homogenized
samples. Incubations were performed for each
sample in the presence or absence of 1 mM
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EGTA and/or 1 mM L-NAME. Endothelial cells
were used as a positive control. The reaction was
eventually terminated by removal of substrate
and addition of 1 ml H2O/Dowex 50�8–400 cat-
ionic resin, pH 7.20, and 5 ml of water. After
centrifugation of the incubation mix for 3 min at
1,500 rpm, 4 ml of the supernatant in 10 ml of
scintillant was examined for [14C]citrulline forma-
tion using a scintillation counter.

Determination of cardiac MnSOD and Cu,
ZnSOD protein expression

For MnSOD (Sod 2) and Cu,ZnSOD (Sod 1)
determination, homogenisation and extraction
were performed as described above. Western blot
analysis of MnSOD and Cu,ZnSOD were also
performed as described above for NOS. Mem-
branes were incubated with the primary antibody
(polyclonal rabbit anti-MnSOD IgG, StressGen
Biotechnologies, dilution 1:2,000; or polyclonal
rabbit anti-Cu,ZnSOD, Upstate Biotechnology,
dilution 1:2,000) at room temperature for
90 min. After three washes in TBS-T, MnSOD
and Cu,ZnSOD membranes were incubated with
the secondary antibody (peroxidase-labeled anti-
rabbit antibody) (Amersham Pharmacia Biotech)
(dilution 1:4,000) for an additional 90 min at
room temperature. Finally, membranes were
washed three times in TBS-T, and proteins were
detected using enhanced chemiluminescence
(ECL; Amersham Pharmacia Biotech).

SOD activity assay

Superoxide dismutase was assayed by inhibition
of cytochrome c reduction according to a previ-
ously described method (McCord and Fridovich
1969). The reaction contained 50 lM xanthine,
100 lM EDTA, 10 lM ferri cytochrome c, and
50 mM K+ phosphate, pH 7.80. The measure-
ments were performed in a Jasco V-550 spectro-
photometer with a 6-cuvette holder at 25 �C,
and absorbance was read at 550 nm. Cyto-
chrome c (Sigma Chemicals) was tested for
endogenous Cu,Zn SOD contaminations. Xan-
thine oxidase (Calbiochem) suspensions were
centrifuged in an Eppendorf centrifuge for 2 min
at maximum speed, and the pellet was dissolved
in K+-phosphate buffer containing protease

inhibitor cocktail (Complete, Roche). The activ-
ity of the enzyme was adjusted to ~0.025
DA550 nm/min cytochrome c reduction. Sample
SOD content was assayed by half-maximal inhi-
bition of cytochrome c determined in a sample
dilution series.

Determination of protein-bound 3-nitrotyrosine
levels in cardiac tissue

Tissue extraction and Western blot analysis were
performed as described above. To detect nitrated
proteins in cardiac tissue, membranes were
incubated with the primary antibody (rabbit anti-
nitrotyrosine IgG, Upstate Biotechnology,
dilution 1:1,000) at room temperature for 2 h.
After washing, the blot was incubated with the
secondary peroxidase-labeled anti-rabbit anti-
body (Amersham Pharmacia Biotech) in a dilu-
tion of 1:4,000 at room temperature for an
additional 90 min. Proteins were detected as de-
scribed above.

Determination of eNOS and iNOS protein
expression in the peripheral vasculature

Frozen aortic segments from young, middle-aged
an old animals were pulverized and homogenized
in a buffer (pH 7.40) containing 250 mM
Tris–HCl. After centrifugation at 10,000g and
4 �C for 10 min, the supernatant was transferred
to fresh microcentrifuge tubes. Homogenates of
animals (n = 6) belonging to one age group were
pooled according to protein content. To ensure
that equal amounts of proteins were loaded in
the gels, silver staining was performed using the
Silver Staining kit from Amersham Pharmacia
Biotech. Western blot analysis for eNOS and
iNOS was performed as described for cardiac
tissue.

GSH recycling assay

The assay was performed according to the method
established by Baker et al. (1990). Briefly, aortic
tissue segments were frozen in liquid nitrogen
after explantation and homogenized mechanically
by using a Mikro-Dismembrator S, Braun Biotech
International. The frozen powder was dissolved in
PBS and sonicated for 30 s. After centrifugation
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at 10,000 g for 30 s, total protein contents were
adjusted to equal amounts by using the BCA as-
say. About 200 ll of supernatant were treated
with 0.2 vol of 5% SSA (sulfosalicylic acid) for
30 min on ice. After centrifugation at 10,000g for
3 min, the supernatant was diluted 5-fold, and
each sample was adjusted to pH 7.50.

The buffer reactions were performed in
100 mM sodium phosphate and 1 mM EDTA
buffer adjusted to pH 7.50. All reagents for the
reaction mixture were freshly prepared before
assaying GSH. The mixture consisted of 2.8 ml
of 1 mM 5,5¢-dithiobis (2-nitrobenzoic acid)
(DTNB), 3.75 ml of 1 mM NADPH, 5.85 ml of
buffer and 20 U of GSH reductase (Sigma). The
GSH-standard curve ranged from 2 lg/ml to
0.02 lg/ml. All samples and standards were kept
on ice until loaded onto the microtiter plate.
About 50 ll of samples and standards were pip-
etted into a 96-well microtiter plate, followed by
the rapid addition of 100 ll reaction mixture.
The plate was read at 405 nm for 5 min with
1 min intervals.

Quantification of blots

Blots were densitometrically quantified using the
public domain NIH image 1.60 program devel-
oped at the National Institutes of Health (avail-
able at: http://rsb.info.nih.gov/nih-image/). All
experiments were performed three times, and rep-
resentative blots are shown.

Statistical analysis

For comparison between two values, statistical
analysis was done using Student’s t test. For mul-
tiple comparisons, results were analysed by
ANOVA followed by Bonferroni’s and Dunn’s
correction. When applicable, data are presented
as means ± SEM. Means were considered signif-
icantly different at P<0.05.

Results

Hemodynamics

Hearts were perfused in a non-recirculatory mode
at a flow rate of 12 ml/min with Krebs–Henseleit
solution. Perfused hearts had a left ventricular
developed pressure (LVDP) of approximately
90 mmHg, ischemic and reperfused hearts exhib-
ited a decrease of LVDP, which was, at the end
of the protocol, at around 50–60% of the baseline
LVDP.

Pattern of expression and activity of nitric oxide
synthases

eNOS protein expression in the hearts was nei-
ther a function of age nor of ischemia/reperfu-
sion as we found comparable expression levels in
all four groups (Figure 1). Furthermore, iNOS
expression was undetectable in the hearts of both
young and old animals irrespective of exposure
to ischemia–reperfusion (data not shown).

We then determined eNOS activity by the con-
version of L-[14C]arginine into L-[14C]citrulline. In
line with the results on expression levels, no sig-
nificant change both in total NOS and in eNOS
activity between young and old hearts could be
observed. Furthermore, although there was a
tendency toward higher eNOS activity in postis-
chemic hearts of both young and old animals, no
significant difference between postischemic and
control-perfused hearts was detectable (eNOS
activity: Y/P 265±113, Y/I 755±386, O/P
261±161, O/I 639±283 pmol/min/mg protein;
Y/P vs. O/P: P=0.98, Y/I vs. O/I: P=0.82, O/P
vs. O/I: P=0.31, Y/P vs. Y/I: P=0.19; data not
shown). The lack of any difference between
young and old hearts was all the more surprising
as we had found in previous work in rat aortas a
steep age-dependent increase in eNOS expression
and activity (van der Loo et al. 2000).

Figure 1. Western blot analysis of eNOS protein expression in cardiac tissue of young and old rats. Before, hearts had either been

retrogradely perfused for 60 min (=‘‘perfusion’’) or, after a baseline perfusion of 30 min, a total global no-flow ischemia of 20 min

was eventually followed by 40 min of reperfusion (=‘‘ischemia’’).
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Expression of MnSOD and Cu, ZnSOD

Immunoblot analysis of homogenates from
cardiac tissue of old and young animals with
polyclonal anti-MnSOD (Figure 2) and anti-
Cu, ZnSOD antibody (Figure 3) did not reveal
any significant change in enzyme expression ei-
ther in postischemic or in control-perfused
hearts.

Changes in activity of SOD as a function of both
age and ischemia–reperfusion

Although expression of MnSOD and Cu,ZnSOD
remained unchanged with increasing age, we
found a significant decrease in SOD enzyme
activity as a function of age. SOD activity de-
creased from 7.55±0.10 U/mg protein in young
rat hearts to 5.97±0.44 U/mg protein in old
hearts (P<0.05) (Figure 4). Furthermore, 20 min
of total global no-flow ischemia followed by
40 min of normoxic reperfusion also led to a sig-
nificant decrease in enzyme activity in young
hearts (Y/P = 7.55±0.10 U/mg protein, Y/
I = 6.35±0.41 U/mg protein; P<0.05). A vice-
versa tendency, although not significant, could be
observed in old hearts (O/P = 5.97±0.44 U/mg
protein, O/I = 6.96±0.18 U/mg protein;
P=0.08).

Detection of cardiac 3-nitrotyrosine levels
with Western blotting and glutathione levels
in cardiac tissue

Neither aging nor ischemia were associated with
an increased formation of nitrated tyrosine resi-
dues of proteins in cardiac tissue (Figure 5).

Glutathione (GSH) is a highly efficient cellular
scavenger of peroxynitrite (Radi et al. 1991) and
can prevent Tyr-nitration (Radi 2004). However,
in parallel to our results on Tyr-nitration no
significant changes of GSH could be found in
cardiac tissue, although there was a slight decrease
of GSH in the young ischemic–reperfused hearts
(Y/P = 0.250±0.052 lg/ml, Y/I = 0.098±
0.026 lg/ml, O/P = 0.224±0.049 lg/ml and O/I:
0.314±0.081 lg/ml; Y/P vs. Y/I, Y/P vs. O/P, Y/I
vs. O/I and O/P vs. O/I: all ns; data not shown).

Expression pattern of eNOS in the vasculature

The finding of unchanged expression levels of
cardiac eNOS with increased age, irrespective of
ischemia, was unexpected since we had previ-
ously found a striking age-dependent increase of
eNOS expression in the aorta using the same ani-
mal model of cardiovascular aging (van der Loo
et al. 2000). This prompted us to investigate the
hypothesis if we could find a further hint for a
possible heterogeneity of cardiovascular aging.

Figure 2. Western blot analysis of MnSOD in homogenates of cardiac tissue of young and old rats after ischemia or after control-

perfusion. Molecular weight markers are indicated (in kD) on the left. Recombinant MnSOD served as a positive control.

Figure 3. Western blot analysis of Cu,ZnSOD in young and old control-perfused or ischemic-reperfused rat hearts.
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Indeed, when determining eNOS protein
expression in other vessels of the peripheral vas-
culature, we found, in agreement with previous
data on the aorta, that eNOS protein expression
markedly increased in an age-dependent fashion
(Figure 6). Both in the femoral and in the renal
artery, eNOS protein expression was two- to
threefold increased in old rats as compared to
young and middle-aged animals (femoral artery:
young vs. old, middle-aged vs. old, and young
vs. middle-aged: P<0.0001; renal artery: young
vs. old and young vs. middle-aged: P<0.0001,
middle-aged vs. old: P<0.01). As in the hearts,
no iNOS expression was detectable in the femo-
ral and renal artery irrespective of age.

Discussion

In the present study we investigated putative
adaptive mechanisms that may occur especially

in the aged heart in association with an acute
pathology (e.g. myocardial ischemia and reperfu-
sion injury). To our knowledge, in this context,
the important aspect of aging, which, by itself, is
one of the most important risk factors for ische-
mic heart disease (Lakatta 2001), has never been
investigated on a molecular basis before.

The rat is by far the most common mamma-
lian model to study cardiovascular aging as, in
particular, rats do not develop atherosclerosis
which often complicates the analysis of human
cardiovascular aging (Folkow and Svanborg
1993). The biological age of young adult and
old animals we used corresponds to that of
20-year-old humans and octogenerians, respec-
tively (Stadtman 1992).

Cardiac oxidative stress, as assessed by mea-
suring cardiac malondialdehyde, has previously
been found to increase as a function of age (van
der Loo et al. 2003). Production of superoxide
was also enhanced in ischemic areas of rat hearts
after experimental induction of myocardial I/R
injury (Liu et al. 1997). Probucol, a potent anti-
oxidant (Kuzuya and Kuzuya 1993), markedly
improved post-myocardial infarction survival,
an effect which may primarily be attributed to

Figure 4. SOD activity in young and old rat hearts that were

either ischemic-reperfused or control-perfused. SOD activity

was measured by determination of cytochrome c reduction as

described under Materials and Methods. Significance: Y/P vs.

O/P: *P<0.05,; Y/I vs. O/I: ns; Y/P vs. O/I: ns; Y/I vs. O/P:

ns; Y/P vs. Y/I #P<0.05; O/P vs. O/I: ns.

Figure 5. Western blot analysis of protein 3-nitrotyrosine

content in young control-perfused hearts and old ischemic-

reperfused hearts.

Figure 6. eNOS expression in rat femoral and renal artery. Homogenates from young (lane 1), middle-aged (lane 2), and old rats

(lane 3) were separated by SDS-PAGE and analysed by Western blotting for eNOS expression. Human vein endothelial cells

served as a positive control (lane 4).
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the reduction of oxidative stress and of pro-
inflammatory cytokines (Sia et al. 2002). To
some extent surprisingly, we could not detect any
difference in the cardiac left ventricular expres-
sion levels of protective antioxidant enzymes,
namely MnSOD and Cu, ZnSOD, irrespective of
age and I/R. At first glance, one might argue
that myocardial stunning, defined as a reversible
dysfunction after a period of ischemia persisting
for a certain time despite return of blood flow to
normal (Camici and Rimold 1999), is (timely)
insufficient to induce any change in protein abun-
dance. This may take longer (at least in an I/R
model such as we used it), even though changes
in mitochondrial protein abundance have been
shown within the first hour after a precondition-
ing trigger (Lopez and Melov 2002). Changes at
the molecular level (e.g. posttranslational changes
to proteins ultimately interfering with their func-
tion) are believed to, at least in part, contribute
to cause the stunning phenomenon. The fact
that we observed significant changes in SOD
activity favours our concept of a failure of
counter-regulatory mechanisms in I/R injury. As
expected, SOD activity in aged (control-perfused)
hearts was decreased compared with young
hearts, a finding which is fully in line with
previous data on age-associated increased cardiac
oxidative stress. Furthermore, in young myocar-
dium, I/R led to a decrease in SOD activity.
Although these changes in activity were signifi-
cant, their interpretation has to be done with
caution, both because of the small sample size
and because of the rather small changes
observed. The measured changes in activity may
partly, but not alone, explain enhanced superox-
ide production after myocardial I/R injury previ-
ously found by others (Liu et al. 1997).
Interestingly, in myocardium of old animals, we
found a tendency for SOD activity to increase
after I/R. This might be an age-inherent, but
eventually futile attempt to counter-balance
I/R-induced oxidative stress. Surprisingly, when
investigating 3-nitrotyrosine levels, a marker for
the in vivo generation of peroxynitrite, we did not
find any difference in protein content irrespective
of age and I/R. In parallel the efficient cellular
peroxynitrite scavenger glutathione (Radi 2004)
remained unchanged. This very interesting find-
ing may be related to another novel and unex-

pected observation, namely the fact that neither
eNOS protein expression nor enzyme activity
changed with age or with I/R injury. Therefore,
one may assume that �NO bioavailability did not
change and subsequently, no increased formation
of peroxynitrite and hence no peroxynitrite-
induced protein modification such as tyrosine
nitration took place.

Aging has been found to be associated with an
increased prevalence of nitrated tyrosine residues
of proteins in intramural coronary arteries and
coronary arterioles (Csiszar et al. 2002). These
differences may in part arise from the fact that
we did our determinations in homogenates of the
whole left ventricle (i.e. endocardium, myocar-
dium and epicardium) with a quantitative domi-
nance of myocardium which formed the main
part of our analyses and not selectively in coro-
nary arteries and/or arterioles (= coronary
microcirculation). The same may be applicable to
SOD expression. Furthermore, comparable, but
yet different in detail, experimental protocols for
I/R may play a role. A lack of change in
MnSOD content following I/R in young adult
rat hearts has already been described (Subrama-
nian et al. 1993), a finding which is in line with
our current data.

In contrast to vascular endothelium, there is
only little expression of prostacyclin I2 (PGI2)
synthase in the myocardium. As PGI2 synthase is
one of the main targets for nitrotyrosine, this
may be an important reason why we did not find
any change in protein-bound 3-nitrotyrosine lev-
els.

A heterogeneous basal expression pattern of
SODs and �NO synthases across different regions
of the left ventricle and a specific subcellular dis-
tribution in the mammalian heart has been de-
scribed using immunofluorescence and electron
microscopy (Brahmajothi and Campbell 1999).
eNOS expression was highest in isolated epicar-
dial left ventricular myocytes and was specifically
localized to the sarcolemma, suggesting a func-
tional correlation between localization and activ-
ity. From our data on overall expression and
activity levels we cannot rule out that these spe-
cific expression patterns may change with age
and/or certain pathological conditions such as
I/R injury, thereby entailing potentially impor-
tant implications for cardiac function.
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Apart from our own group (van der Loo et al.
2000), other authors (Goettsch et al. 2001;
Cernadas et al. 1998) have also demonstrated an
age-related increase of eNOS enzyme expression
in the aorta both at the transcriptional and
the protein level. The differences to our current
findings on aged cardiac tissue are astonishing.
Previous data on eNOS expression were obtained
in aortic tissue. We now observed changes of a
similar magnitude also in the femoral and in the
renal artery. Therefore, a heterogeneity of the
aging process with respect to the heart (i.e. myo-
cardium) as compared with the vasculature of
peripheral arteries may be assumed.

Mitochondrial density in the heart is high, and
oxidative stress plays a key role in I/R injury.
Mitochondria are key cellular sites both for the
production and for the detoxification of reactive
oxygen species. Differences in those mitochon-
drial regulatory systems in the heart as compared
to other organs might be involved (Antunes et al.
2002).

The measured alterations described here can
obviously not explain the fundamental mecha-
nisms of cardiovascular aging. However, our
intriguing findings suggest that mechanisms regu-
lating homeostasis in the aging cardiovascular
system become even more complex when the
chronic process of aging is exposed to an acute
pathology such as I/R injury.
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