New distinct curves having the same complement in the projective plane

Paolo Costa

Received: 18 December 2010 / Accepted: 4 May 2011 / Published online: 21 July 2011
© Springer-Verlag 2011

Abstract

In 1984, Yoshihara conjectured that if two plane irreducible curves have isomorphic complements, they are projectively equivalent, and proved the conjecture for a special family of unicuspidal curves. Recently, Blanc gave counterexamples of degree 39 to this conjecture, but none of these is unicuspidal. In this text, we give a new family of counterexamples to the conjecture, all of them being unicuspidal, of degree $4 m+1$ for any $m \geq 2$. In particular, we have counterexamples of degree 9 , which seems to be the lowest possible degree.

1 The conjecture

In the sequel, we will work with algebraic varieties over a fixed ground field \mathbb{K}, which can be arbitrary.

Conjecture 1.1 ([2]) Suppose that the ground field is algebraically closed of characteristic zero. Let $C \subset \mathbb{P}^{2}$ be an irreducible curve. Suppose that $\mathbb{P}^{2} \backslash C$ is isomorphic to $\mathbb{P}^{2} \backslash D$ for some curve D. Then C and D are projectively equivalent, i.e. there is an automorphism $\alpha: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ such that $\alpha(C)=D$.

This conjecture leads to several alternatives. Let $\psi: \mathbb{P}^{2} \backslash C \rightarrow \mathbb{P}^{2} \backslash D$ be an isomorphism. If the conjecture holds, then:

- either ψ extends to an automorphism of \mathbb{P}^{2} and we can choose $\alpha:=\psi$.
- or ψ extends to a strict birational map $\psi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$. In this case, there is an automorphism $\alpha: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ such that $\alpha(C)=D$.

P. Costa (\boxtimes)

UniGe, Genève, Suisse
e-mail: costapa5@etu.unige.ch

Otherwise, if ψ gives a counterexample to the conjecture, then:

- either C and D are not isomorphic.
- or C and D are isomorphic, but not by an automorphism of \mathbb{P}^{2}.

In this text, we are going to study the conjecture in the case of curves of type I.
Definition 1.2 We say that a curve $C \subset \mathbb{P}^{2}$ is of type \mathbf{I} if there is a point $p \in C$ such that $C \backslash p$ is isomorphic to \mathbb{A}^{1}.
We say that a curve $C \subset \mathbb{P}^{2}$ is of type II if there is a line $L \subset \mathbb{P}^{2}$ such that $C \backslash L$ is isomorphic to \mathbb{A}^{1}.

All curves of type II are of type I, but the converse is false in general. Moreover, a curve of type I is a line, a conic, or a unicuspidal curve (a curve with one singularity of cuspidal type).

In the case of curves of type II, Yoshihara [2] showed that the conjecture is true, but in general the conjecture does not hold. Some counterexamples are given in [1], but these curves are not of type I.

In this article, we give a new family of counterexamples, of degree $4 m+1$ for any $m \geq 2$. These are all of type I, and some of them have degree 9 , which seems to be the lowest possible degree (see the end of the article for more details). In Sect. 2 we give a general way to construct examples, that we precise in Sect. 3. The last section is the conclusion.

2 The construction

We begin with giving a general construction, which provides isomorphisms of the form $\mathbb{P}^{2} \backslash C \rightarrow \mathbb{P}^{2} \backslash D$ where C, D are curves in \mathbb{P}^{2}. We start with the following definition:

Definition 2.1 We say that a morphism $\pi: S \rightarrow \mathbb{P}^{2}$ is a (-1)—tower resolution of a curve C if:
(1) $\pi=\pi_{1} \circ \cdots \circ \pi_{m}$ where π_{i} is the blow-up of a point p_{i},
(2) $\pi_{i}\left(p_{i+1}\right)=p_{i}$ for $i=1, \ldots, m-1$,
(3) the strict transform of C in S is a smooth curve, isomorphic to \mathbb{P}^{1}, and has selfintersection -1 .

The isomorphisms of the form $\mathbb{P}^{2} \backslash C \rightarrow \mathbb{P}^{2} \backslash D$ are closely related to (-1)-tower resolutions of C and D because of the following Lemma:
Lemma 2.2 ([1]) Let $C \subset \mathbb{P}^{2}$ be an irreducible algebraic curve and $\psi: \mathbb{P}^{2} \backslash C \rightarrow \mathbb{P}^{2} \backslash D$ an isomorphism. Then, either ψ extends to an automorphism of \mathbb{P}^{2}, or it extends to a strict birational map $\phi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$.

Consider the second case. Let $\chi: X \rightarrow \mathbb{P}^{2}$ a minimal resolution of the indeterminacies of ϕ, call $\tilde{E}_{1}, \ldots, \tilde{E}_{m}$ and \tilde{C} the strict transforms of its exceptional curves and C in X and set $\epsilon:=\phi \circ \chi$. Then:
(1) χ is $a(-1)$-tower resolution of C
(2) ϵ collapses $\tilde{C}, \tilde{E}_{1}, \ldots, \tilde{E}_{m-1}$ and $\epsilon\left(\tilde{E}_{m}\right)=D$,
(3) ϵ is a $(-1)-$ tower resolution of D.

Remark 2.3 This lemma shows that if C does not admit a (-1)-tower resolution, then every isomorphism $\mathbb{P}^{2} \backslash C \rightarrow \mathbb{P}^{2} \backslash D$ extends to an automorphism of \mathbb{P}^{2}. So counterexamples will be given by rational curves with only one singularity.

We start with a smooth conic $Q \subset \mathbb{P}^{2}$ and $\phi \in \operatorname{Aut}\left(\mathbb{P}^{2} \backslash Q\right)$ which extends to a strict birational map $\phi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$. Call p_{1}, \ldots, p_{m} the indeterminacies points of ϕ; according to Lemma 2.2, we can order the points so that p_{1} is a point of \mathbb{P}^{2} and p_{i} is infinitely near to p_{i-1} for $i=2, \ldots, n$. Consider $\chi: X \rightarrow \mathbb{P}^{2}$, a minimal resolution of the indeterminacies of ϕ and set $\epsilon:=\phi \circ \chi$. Lemma 2.2 says that:
(1) χ is a (-1)-tower resolution of Q,
(2) ϵ collapses $\tilde{Q}, \tilde{E}_{1}, \ldots, \tilde{E}_{m-1}$ and $\epsilon\left(\tilde{E}_{m}\right)=Q$,
(3) ϵ is a $(-1)-$ tower resolution of Q.

Now, consider a line $L \subset \mathbb{P}^{2}$, which is tangent to Q at $p \neq p_{1}$. Since ϕ contracts Q, then $C:=\phi(L)$ is a curve with a unique singular point which is $\phi(Q)$. Since $L \cap\left(\mathbb{P}^{2} \backslash Q\right) \simeq \mathbb{A}^{1}$, we have $C \cap\left(\mathbb{P}^{2} \backslash Q\right) \simeq \mathbb{A}^{1}$, which means that C is of type I .

Consider now a birational map $f \in \operatorname{Aut}\left(\mathbb{P}^{2} \backslash L\right)$ which extends to a strict birational map $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ and satisfies:
(1) $f(Q)=Q$,
(2) $f\left(p_{1}\right)=p_{1}$.

Now, we are going to get a new birational map $\phi^{\prime}: \mathbb{P}^{2} \longrightarrow \mathbb{P}^{2}$ which restricts to an automorphism of $\mathbb{P}^{2} \backslash Q$ using the p_{i} 's and f. Set:

$$
p_{i}^{\prime}:=f\left(p_{i}\right)
$$

Note that p_{i}^{\prime} is a well-defined point infinitely near to p_{i-1}^{\prime} for $i>1$.
Let's call $\chi^{\prime}: X^{\prime} \rightarrow \mathbb{P}^{2}$ the blow-up of the p_{i}^{\prime} 's and $\tilde{E}_{1}^{\prime}, \ldots, \tilde{E}_{m}^{\prime}$ and \tilde{Q}^{\prime} the strict transforms of the exceptional curves of χ^{\prime} and of Q in X^{\prime}.
Since $f(Q)=Q$ and f is an isomorphism in a neighbourhood of p_{1}, the intersections between $\tilde{E}_{1}, \ldots, \tilde{E}_{m}$ and \tilde{Q}^{\prime} are the same as those between $\tilde{E}_{1}, \ldots, \tilde{E}_{m}$ and \tilde{Q}. Then there is a morphism $\epsilon^{\prime}: X^{\prime} \rightarrow \mathbb{P}^{2}$ which contracts $\tilde{E}_{1}^{\prime}, \ldots, \tilde{E}_{m-1}^{\prime}$ and \tilde{Q}^{\prime}. Moreover, $\epsilon^{\prime}\left(\tilde{E}_{m}^{\prime}\right)$ is a conic, and up to composing by an automorphism of \mathbb{P}^{2}, we can suppose that $\epsilon^{\prime}\left(\tilde{E}_{m}^{\prime}\right)=Q$. By construction, the birational map ϕ^{\prime} restricts to an automorphism of $\mathbb{P}^{2} \backslash Q$. In fact, none of the p_{i}^{\prime} 's belongs to L (as proper or infinitely near point), so $\phi^{\prime}(L)$ is well defined. Moreover, ϕ^{\prime} collapses Q, so $D:=\phi^{\prime}(L)$ is a curve with a unique singular point which is $\phi^{\prime}(Q)$.
Set then $\psi:=\phi^{\prime} \circ f \circ \phi^{-1}$. We have the following commutative diagram:

Lemma 2.4 The map $\psi: \mathbb{P}^{2} \backslash C \rightarrow \mathbb{P}^{2} \backslash D$ induced by the birational map defined above is an isomorphism.

Proof Since $\phi, \phi^{\prime} \in \boldsymbol{\operatorname { A u t }}\left(\mathbb{P}^{2} \backslash Q\right)$ and $f \in \boldsymbol{\operatorname { A u t }}\left(\mathbb{P}^{2} \backslash L\right)$, we only have to check that $\psi(Q)=Q$.
Let $\chi: X \rightarrow \mathbb{P}^{2}$ (resp. $\chi^{\prime}: X^{\prime} \rightarrow \mathbb{P}^{2}$) be a minimal resolution of the indeterminacies of ϕ (resp. ϕ^{\prime}) and write $\epsilon:=\phi \circ \chi$ (resp. $\epsilon^{\prime}:=\phi^{\prime} \circ \chi^{\prime}$). Call $\tilde{E}_{1}, \ldots, \tilde{E}_{m}$ (resp. $\left.\tilde{E}_{1}^{\prime}, \ldots, \tilde{E}_{m}^{\prime}\right)$ the strict transforms of the exceptional curves of χ (resp. χ^{\prime}) in X (resp. X^{\prime}).

It follows from Lemma 2.2 that $\epsilon\left(\tilde{E}_{m}\right)=Q$ (resp. $\epsilon^{\prime}\left(\tilde{E}_{m}^{\prime}\right)=Q$). Then factorising ψ we get $\psi(Q)=Q$.

Now we study the automorphisms $\alpha \in \operatorname{Aut}\left(\mathbb{P}^{2}\right)$ such that $\alpha(C)=D$.
Lemma 2.5 If $\alpha \in \operatorname{Aut}\left(\mathbb{P}^{2}\right)$ sends C onto D, then $a:=\left(\phi^{\prime}\right)^{-1} \circ \alpha \circ \phi$ is an automorphism of \mathbb{P}^{2} and satisfies:
(1) $a(L)=L$,
(2) $a(Q)=Q$,
(3) $a\left(p_{i}\right)=p_{i}^{\prime}$ for $i=1, \ldots, m$.

Proof Call q_{1}, \ldots, q_{m} (resp. $q_{1}^{\prime}, \ldots, q_{m}^{\prime}$) the points blown-up by ϵ (resp. ϵ^{\prime}). Then these points are the singular points of C (resp. D). Since α is an automorphism such that $\alpha(C)=D$, then α sends q_{i} on q_{i}^{\prime} for $i=1, \ldots, m$, and lifts to an isomorphism $X \rightarrow X^{\prime}$ which sends \tilde{E}_{i} on \tilde{E}_{i}^{\prime} for $i=1, \ldots, m-1$ and \tilde{Q} on \tilde{Q}^{\prime}.
Since Q is the conic through q_{1}, \ldots, q_{5}, then $\alpha(Q)=Q$, and the isomorphism $X \rightarrow X^{\prime}$ sends \tilde{E}_{m} on \tilde{E}_{m}^{\prime}. So χ and χ^{\prime} contract the curves in X and X^{\prime} which correspond by mean of this isomorphism, and we deduce that $a \in \operatorname{Aut}\left(\mathbb{P}^{2}\right)$.
It follows then that a sends p_{i} on $p_{i}^{\prime}, a(Q)=Q$ and that $a(L)=L$.

3 The counterexample

In this section, we describe more explicitly the construction given in the previous section, by giving more concrete examples.
We choose $n \geq 1$ and will define $\Delta: X \rightarrow \mathbb{P}^{2}$ which is the blow-up of some points $p_{1}, \ldots, p_{4+2 n}$, such that $p_{1} \in \mathbb{P}^{2}$, and for $i \geq 2$ the point p_{i} is infinitely near to p_{i-1}. We call E_{i} the exceptional curve associated to p_{i} and \tilde{E}_{i} its strict transform in X. The points will be chosen so that:

- $\quad p_{i}$ belongs to Q (as proper or infinitely near points) if and only if $i \in\{1, \ldots, 4\}$,
- $\quad p_{i}$ belongs (as a proper or infinitely near point) to E_{4} if and only if $i \in\{5, \ldots, 4+n\}$,
- $p_{i} \in E_{i-1} \backslash E_{i-2}$ if $i \in\{5+n, \ldots, 4+2 n\}$.

Note that p_{1}, \ldots, p_{4+n} are fixed by these conditions, and that $p_{5+n}, \ldots, p_{4+2 n}$ depend on parameters. On the surface X, we obtain the following dual graph of curves (see Fig. 1).

The symmetry of the graph implies the existence of a birational morphism $\epsilon: X \rightarrow \mathbb{P}^{2}$ which contracts the curves $\tilde{E}_{1}, \ldots, \tilde{E}_{3+2 n}, \tilde{Q}$, and which sends $E_{4+2 n}$ on a conic. We may choose that this conic is Q, so that $\phi=\epsilon \circ \Delta^{-1}$ restricts to an automorphism of $\mathbb{P}^{2} \backslash Q$.
Calculating auto-intersection, the image by ϕ of a line of the plane which does not pass through p_{1} has degree $4 n+1$.

3.1 Choosing the points

Now we are going to choose the birational maps f and the points which define ϕ in order to get two curves which give a counterexample to the conjecture of Yoshihara.

We choose that L is the line of equation $z=0, Q$ is the conic of equation $x z=y^{2}$ and $p_{1}=(0: 0: 1)$.

We define the birational map $f: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ by:

$$
f(x: y: z)=\left(\mu^{2}\left(\lambda x z+(1-\lambda) y^{2}\right): \mu y z: z^{2}\right) \quad \text { with } \lambda, \mu \in \mathbb{K}^{*} \text { and } \lambda \neq 1 .
$$

The map f preserves Q, and is an isomorphism at a local neighbourhood of p_{1}. In consequence, f sends respectively $p_{1}, \ldots, p_{4+2 n}$ on some points $p_{1}^{\prime}, \ldots, p_{4+2 n}^{\prime}$ which will define $\Delta^{\prime}: X \rightarrow \mathbb{P}^{2}, \epsilon^{\prime}: X^{\prime} \rightarrow \mathbb{P}^{2}$ and $\phi^{\prime}=\epsilon^{\prime} \circ\left(\Delta^{\prime}\right)^{-1}$ in the same way as ϕ was constructed.

We describe now the points p_{i} and p_{i}^{\prime} in local coordinates.
Since f preserves Q and fixes p_{1}, we have $p_{i}^{\prime}=p_{i}$ for $i=1, \ldots, 4$. Locally, the blow-up of p_{1}, \ldots, p_{4} corresponds to:

$$
\phi_{4}: \mathbb{A}^{2} \rightarrow \mathbb{P}^{2}, \quad \phi_{4}(x, y)=\left(x y^{4}+y^{2}: y: 1\right) .
$$

The curve E_{4} corresponds to $y=0$, and the conic \tilde{Q} to $x=0$. The lift of f in these coordinates is:

$$
(x, y) \mapsto\left(\lambda \mu^{2} x, \mu y\right)
$$

The blow-up of the points p_{5}, \ldots, p_{4+n} (which are equal to $p_{5}^{\prime}, \ldots, p_{4+n}^{\prime}$) now corresponds to:

$$
\phi_{4+n}: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}, \quad \phi_{4+n}(x, y)=\left(x, x^{n} y\right)
$$

So the lift of f corresponds to:

$$
(x, y) \mapsto\left(\lambda \mu^{2} x, \frac{y}{\lambda^{n} \mu^{2 n-1}}\right) .
$$

We set $p_{4+n+i}=\left(0, a_{i}\right)$ for $i \in\{1, \ldots, n\}$ with $a_{n} \neq 0$. The blow-up of p_{5+n}, \ldots, p_{4+n+i} now corresponds to:
$\phi_{4+n+i}: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}, \quad \phi_{4+n+i}(x, y)=\left(x, x^{i} y+P_{i}(x)\right) \quad$ where $P_{i}(x)=a_{1} x^{i-1}+\cdots+a_{i}$.
Since f sends p_{i} on p_{i}^{\prime}, we can set $p_{4+n+i}^{\prime}=\left(0, b_{i}\right)$ for $i \in\{1, \ldots, n\}$ with $b_{n} \neq 0$. The blow-up of $p_{5+n}^{\prime}, \ldots, p_{4+n+i}^{\prime}$ then corresponds to:
$\phi_{4+n+i}^{\prime}: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}, \quad \phi_{4+n+i}^{\prime}(x, y)=\left(x, x^{i} y+Q_{i}(x)\right) \quad$ where $Q_{i}(x)=b_{1} x^{i-1}+\cdots+b_{i}$.
So the lift of f corresponds to:

$$
(x, y) \mapsto\left(\lambda \mu^{2} x, \frac{x^{i} y+P_{i}(x)-\lambda^{i} \mu^{2 i-1} Q_{i}\left(\lambda \mu^{2} x\right)}{\lambda^{i} \mu^{2 i-1} x^{i}}\right)
$$

The curves E_{4+n+i} and E_{4+n+i}^{\prime} correspond to $x=0$ in both local charts. Since f is a local isomorphism which sends p_{i} on p_{i}^{\prime} for each i, it has to be defined on the line $x=0$. Because P_{i} and Q_{i} have both degree $i-1$, this implies that:

$$
P_{i}(x)=\lambda^{i} \mu^{2 i-1} Q_{i}\left(\lambda \mu^{2} x\right) \text { for } i=1, \ldots, n
$$

In particular, the coefficients satisfy:

$$
a_{i}=\lambda^{i} \mu^{2 i-1} b_{i} \text { for } i=1, \ldots, n
$$

Fig. 1 The dual graph of the curves $\tilde{E}_{1}, \ldots, \tilde{E}_{3+2 n}, E_{4+2 n}, \tilde{Q}$. Two curves have an edge between them if and only they intersect, and their self-intersection is written in brackets, if and only if it is not -2

3.2 The counterexample

Now to get a counter example, we must show that any automorphism $a: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ such that $a(L)=L, a(Q)=Q$ and $a\left(p_{1}\right)=p_{1}$ does not send p_{i} on p_{i}^{\prime} for at least one $i \in$ $\{5+n, \ldots, 4+2 n\}$. Let's start with the following Lemma:

Lemma 3.1 Let $a: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ be an automorphism such that $a(L)=L, a(Q)=Q$ and $a\left(p_{1}\right)=p_{1}$. Then a is of the form:

$$
a(x: y: z)=\left(k^{2} x: k y: z\right) \quad \text { where } k \in \mathbb{K}^{*} .
$$

Proof Follows from a direct calculation.
Theorem 3.2 If $n \geq 2$, the curves C and D obtained from the construction of the previous section give a counter example to the conjecture.

Proof Choose $a_{n}=a_{n-1}=1$.
Since a is an automorphism, it lifts to an automorphism which sends E_{4+n+i} on E_{4+n+i}^{\prime}. Put $\lambda=1$ and $\mu=k$ in the formula for f. Then this lift corresponds to:

$$
(x, y) \mapsto\left(k^{2} x, \frac{x^{i} y+P_{i}(x)-k^{2 i-1} Q_{i}\left(k^{2} x\right)}{k^{2 i-1} x^{i}}\right)
$$

where P_{i} and Q_{i} are the polynomials defined above.
Since E_{4+n+i} and E_{4+n+i}^{\prime} both correspond to $x=0$ in local charts, this lift has to be well defined on $x=0$. So since P_{i} and Q_{i} both have degree $i-1$, we get:

$$
P_{i}(x)=k^{2 i-1} Q_{i}\left(k^{2} x\right) \text { for } i=1, \ldots, n
$$

and the constant terms satisfy $a_{i}=k^{2 i-1} b_{i}$ for $i=1, \ldots, n$.
Since $a_{n}, a_{n-1} \neq 0$, then $b_{n}, b_{n-1} \neq 0$. As explained in the previous section, a sends p_{i} on p_{i}^{\prime}, so we get:

$$
\lambda^{i} \mu^{2 i-1} b_{i}=k^{2 i-1} b_{i} \text { for } i=1, \ldots, n .
$$

This formula for $i=n$ and $i=n-1$ gives $\lambda=1$ or $\mu=0$, which leads to a contradiction.

4 Conclusion

We conclude by observing that the curves C and D of the previous construction have degree $4 n+1$ (using Fig. 1) and are of type I. In particular, we get a counterexample with a curve of degree 9 when $n=2$. One can check by direct computation that the conjecture holds for irreducible curves of type I up to degree 5, because there is only one curve of degree 5 which is of type I and not of type II, up to automorphism of \mathbb{P}^{2}. One can also check that all irreducible curves of type I of degree 6,7 and 8 are of type II. So the curves of degree 9 given by this construction leads to a counterexample of minimal degree among the curves of type I.

If we consider the conjecture for all rational curves, the counterexamples in [1] are of degree 39 (and not of type I). So we have new counterexamples with curves of lower degree. It seems that the curves of degree 9 give counterexamples of minimal degree among the rational curves, but it hasn't been shown yet.

Acknowledgments I would like to thank J. Blanc for asking me the question and for his help during the preparation of this article. I also thank T. Vust for interesting discussions on the result.

References

1. Blanc, J.: The correspondance between a plane curve and its complement. J. Reine Angew. Math. 633, 1-10 (2009)
2. Yoshihara, H.: On open algebraic surfaces $\mathbb{P}^{2}-C$. Math. Ann. 268, 43-57 (1984)
3. Yoshihara, H.: Rational curves with one cusp II. Proc. Am. Math. Soc. 100, 405-406 (1987)
