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Abstract Characterizations of admissible quasi-identi-

ties, which may be understood as quasi-identities holding

in free algebras on countably infinitely many generators,

are provided for classes of De Morgan algebras and

lattices.
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1 Introduction

De Morgan algebras are algebraic structures hA;^;_;:;
?;>i such that hA;^;_;?;>i is a bounded distributive

lattice with bottom element ? and top element >; and : is

an involution (i.e., satisfies ::x � x) respecting the De

Morgan laws :ðx ^ yÞ � :x _ :y and :ðx _ yÞ � :x ^ :y:

The class DMA of De Morgan algebras forms a variety

containing just two proper non-trivial subvarieties: the

class KA of Kleene algebras satisfying x ^ :x� y _ :y and

the class BA of Boolean algebras satisfying x� y _ :y: The

classes DML;KL; and BL of De Morgan, Kleene, and

Boolean lattices are defined analogously by omitting the

constants ? and > from the language.

De Morgan lattices were first studied by Moisil (1935)

and Kalman (1958), and subsequently, with or without the

constants ? and >; by many other researchers. In partic-

ular, the quasivariety lattice of De Morgan lattices has been

fully characterized by Pynko (1999) (there are just seven

non-trivial quasivarieties), while the more complicated

(infinite) quasivariety lattice of De Morgan algebras has

been investigated by Gaitán and Perea (2004). As is well

known, DMA is generated by the diamond algebra D4;KA

by the three-valued chain C3; and BA by the two-valued

algebra C2: However, KA is also generated by the standard

fuzzy algebra h½0; 1�;min;max; 1� x; 0; 1i; and DMA is

generated by the fuzzy interval algebra hfða; bÞ j a; b 2
½0; 1�; a� bg;^;_;:; ð0; 0Þ; ð1; 1Þi where ^ and _ are min

and max calculated component-wise and :ða; bÞ ¼ ð1�
b; 1� aÞ: These classes have therefore received consider-

able attention in the fuzzy logic literature (see, e.g., Gehrke

et al. 2003). We note, moreover, that De Morgan algebras

provide an underlying involutive lattice structure for the

algebras of substructural logics such as R-mingle, Łukas-

iewicz logic, and multiplicative additive linear logic (see,

e.g., Galatos et al. 2007).

The aim of this paper was to investigate and develop

characterizations of admissibility in the context of De

Morgan algebras. A rule is admissible in a logic

(understood as a consequence relation) if every substi-

tution that makes each premise of the rule into a theo-

rem of the logic also makes the conclusion into a

theorem. Equivalently, a rule is admissible if it can be

added to the logic without producing any new theorems.

The admissible rules of classical propositional logic are

also derivable (i.e., classical propositional logic is

structurally complete), but this is not the case in general

for non-classical logics (see Rybakov 1997; Ghilardi

1999, 2000; Iemhoff 2001; Jeřábek 2005, 2010a, b;

Olson et al. 2008; Cintula and Metcalfe 2009, 2010). In

algebra, rules correspond (roughly speaking) to quasi-

identities and the admissible quasi-identities of a quasi-

variety may be understood as the quasi-identities that
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hold in the free algebra on countably infinitely many

generators.

For algebraizable logics, admissible rules may be

translated into admissible quasi-identities and vice versa.

De Morgan algebras provide semantics for Belnap’s four-

valued logic (which, note, has no theorems), but do not

form the equivalent algebraic semantics for any algebra-

izable logic (see Font 1997 for details) and we therefore

focus only on the algebraic notion. In particular, we give

characterizations here of admissible quasi-identities for the

classes of Kleene lattices KL; Kleene algebras KA; De

Morgan lattices DML; and De Morgan algebras DMA: For

KL;KA; and DML; axiomatizations of the admissible

quasi-identities make use of a single additional quasi-

identity. However, in the case of DMA; we make use of not

only a quasi-identity but also a universal formula. We

conclude by giving a brief overview of recent admissibility

and structural completeness results for some related classes

of algebras.

2 Admissibility in quasivarieties

Let us begin by briefly recalling some basic notions from

universal algebra, referring to Burris and Sankappanavar

(1981) for further details. For a language L; we denote the

formula algebra over countably infinitely many variables

by FmL and let the metavariables u;w; v stand for arbitrary

members of FmL called L-formulas. An L-identity is a pair

of L-formulas, written u � w; and we let the metavariables

R;D stand for arbitrary finite sets of L-identities. An L-

quasi-identity is identified with an ordered pair consisting

of a finite set of L-identities R and a single L-identity

u � w; written R) u � w (often dropping the external

brackets in R). We denote sets of L-quasi-identities using

the metavariable K: As usual, if the language is clear from

the context we may omit the prefix L when referring to

these concepts.

Let K be a class of algebras of the same language L and

let R [ fu � wg be a finite set of L-identities. We write

R �K u � w to denote that for every A 2 K and homo-

morphism h: FmL ! A;R � ker h implies u � w 2 ker h:

We abbreviate ; �K u � w by �K u � w; and R �fAg
u � w by R �A u � w; saying in the latter case that the

quasi-identity R) u � w ‘‘holds in’’ the algebra A: K is

said to be a quasivariety if there exists a set of L-quasi-

identities K such that A 2 K if and only if (henceforth, iff)

all quasi-identities in K hold in A: If there exists such a K
consisting only of identities, then K is called a variety. The

variety VðKÞ and quasivariety QðKÞ generated by K are,

respectively, the smallest variety and quasivariety con-

taining K:

Now let Q be a quasivariety for a language L: An

L-quasi-identity R) u � w will be called admissible in

Q, if for every homomorphism r: FmL ! FmL:

�Q rðu0Þ � rðw0Þ for all u0 � w0 2 R implies

�Q rðuÞ � rðwÞ:

In fact, quasi-identities admissible in Q are simply the

quasi-identities that hold in the free algebra on countably

infinitely many generators of Q, denoted FQ: To establish

this well-known but crucial fact, we make use of the

canonical homomorphism hQ: FmL ! FQ that maps each

formula to its equivalence class in FQ; recalling (see Burris

and Sankappanavar 1981 for details) that for each L-

identity u � w:

�Q u � w iff �FQ u � w iff hQðuÞ ¼ hQðwÞ:

Lemma 1 Given a quasivariety Q for a language L and

L-quasi-identity R) u � w :

R) u � w is admissible in Q iff R �FQ u � w:

Proof Suppose that R) u � w is admissible in Q and

let g: FmL ! FQ be a homomorphism such that R � ker g:

We define a map r that sends each variable x to a member

of the equivalence class g(x). By the universal mapping

property for FmL; this extends to a homomorphism

r: FmL ! FmL: But since hQðrðxÞÞ ¼ gðxÞ for each

variable x, we obtain hQ 	 r ¼ g: But then R � kerðhQ	
rÞ; so for each u0 � w0 2 R; we have hQðrðu0ÞÞ ¼
hQðrðw0ÞÞ and therefore �Q rðu0Þ � rðw0Þ: Hence by

assumption, �Q rðuÞ � rðwÞ; and gðuÞ ¼ hQðrðuÞÞ ¼
hQðrðwÞÞ ¼ gðwÞ as required.

Suppose now that R �FQ u � w and let r: FmL ! FmL
be a homomorphism such that for each u0 � w0 2 R;�Q
rðu0Þ � rðw0Þ and hence hQðrðu0ÞÞ ¼ hQðrðw0ÞÞ: By

assumption, hQðrðuÞÞ ¼ hQðrðwÞÞ: Hence �Q rðuÞ �
rðwÞ as required. h

Example 1 Consider the variety of abelian groups. The

quasi-identities (1� n 2 N)

xþ � � � þ x
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

n

� 0) x � 0

(which define the quasivariety of torsion-free abelian

groups) hold in all free abelian groups and are hence

admissible in the variety, but do not hold in all abelian

groups.

A quasivariety Q is called structurally complete if each

of its proper subquasivarieties generates a proper subvari-

ety of VðQÞ; i.e., for each quasivariety Q0 
 Q; we have

VðQ0Þ 
 VðQÞ: Equivalently (proved by Bergman 1991,

Proposition 2.3),Q is structurally complete iffQ¼Q ðFQÞ:
Hence, combining with Lemma 1:
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Corollary 1 The following are equivalent for any quas-

ivariety Q for a language L:

(a) Q is structurally complete

(b) Q ¼ QðFQÞ
(c) An L-quasi-identity R) u � w is admissible in Q iff

R �Q u � w:

This corollary supplies a method for establishing struc-

tural completeness for quasivarieties. A quasivariety Q is

structurally complete if each member of a class of algebras

generating Q as a quasivariety can be embedded into FQ;
since then any quasi-identity failing in one of the gener-

ating algebras must fail in FQ: More precisely

Lemma 2 Cintula and Metcalfe (2009, Theorem 3.3) Let

Q ¼ QðKÞ be the quasivariety generated by a class of

algebras K of the same language L and suppose that for

each A 2 K; there is a map gA: A! FmL such that

hQ 	 gA embeds A into FQ: Then Q is structurally

complete.

Example 2 Consider the variety BA of Boolean algebras,

generated as a quasivariety by the algebra 2 ¼
hf0; 1g;^;_;:; 0; 1i: Define gð0Þ ¼ ? and gð1Þ ¼ >:
Then hBA 	 g embeds 2 into FBA: So BA is structurally

complete.

Let Q and Q0 be quasivarieties for a language L and

let K be a set of L-quasi-identities. Suppose that A 2 Q0
iff both A 2 Q and each quasi-identity in K holds in A:

Then K is said to axiomatize Q0 relative to Q. In

particular, if QðFQÞ is axiomatized by K relative to Q;
then we call K a basis for the admissible quasi-identities

of Q:
Since QðFQÞ � Q for any quasivariety Q; finding a

basis for the admissible quasi-identities of Q essentially

involves finding a set of quasi-identities that are admissible

in Q and that axiomatize a structurally complete quasiva-

riety relative to Q: More precisely

Lemma 3 Let Q and Q0 be quasivarieties for a language

L and let K be a set of L-quasi-identities axiomatizing Q0
relative to Q: Suppose that Q0 is structurally complete and

that each quasi-identity in K is admissible in Q: Then K is

a basis for the admissible quasi-identities of Q:

Proof It suffices to show that Q0 ¼ QðFQÞ: If each quasi-

identity in K is admissible in Q; then by Lemma 1, each

quasi-identity in K holds in FQ: Hence FQ 2 Q0 and

QðFQÞ � Q0: Suppose for a contradiction that QðFQÞ 
 Q0:
Since Q0 is structurally complete, VðQÞ ¼ VðFQÞ ¼
VðQðFQÞÞ 
 VðQ0Þ (recalling that VðQÞ ¼ VðFQÞ follows

from Burris and Sankappanavar (1981, Theorem 11.4). But

Q0 � Q; so VðQ0Þ � VðQÞ; a contradiction. h

For convenience, in the remainder of this paper, we will

use the symbols Ll and Lb to denote, respectively, the

languages of De Morgan lattices and De Morgan algebras.

3 Kleene algebras

Recall from the introduction that a Kleene algebra is a De

Morgan algebra satisfying

x ^ :x� y _ :y

and that the variety of Kleene algebras is denoted by KA:

The following finite algebras are particularly useful

members of this variety (where 1�m 2 N):

C2m ¼ hf�m;�mþ 1; . . .;�1; 1; . . .;m� 1;mg;
min;max;�;�m;mi

C2mþ1 ¼ hf�m;�mþ 1; . . .;�1; 0; 1; . . .;m� 1;mg;
min;max;�;�m;mi:

The ‘‘fuzzy algebra’’ h½0; 1�;min;max; 1� x; 0; 1i and also

each Cn for any odd n C 3, generates KA as a quasivariety.

In particular, KA ¼ QðC3Þ (see, e.g., Kalman 1958; Pynko

1999).

Now consider the quasi-identity

x � :x) x � y: ð1Þ

We have fx � :xg 6�C3
x � y : just consider an evaluation

sending x to 0 and y to 1. But there is no formula u such

that u � :u holds in all Kleene algebras (or indeed, in all

Boolean algebras). So the quasi-identity (1) is admissible

and by Corollary 1, KA is not structurally complete.

However, the proper subquasivariety of KA generated

by Cn for any even n C 4 is structurally complete. In

particular

Lemma 4 QðC4Þ is structurally complete.

Proof By Lemma 2, it suffices to find a map

g : C4 ! FmLb such that hQðC4Þ 	 g embeds C4 into FQðC4Þ:

Define g: C4 ! FmLb by gð1Þ ¼ x _ :x; gð�1Þ ¼ x ^ :x;

gð2Þ ¼ >; and gð�2Þ ¼ ?: Then hQðC4Þ 	 g preserves the

operations of C4: E.g., for all a 2 C4;

ðhQðC4Þ 	 gÞð:aÞ ¼ :ðhQðC4Þ 	 gÞðaÞ

follows from the fact that �C4
:? � >;�C4

:> � ?;�C4

:ðx ^ :xÞ � x _ :x; and �C4
:ðx _ :xÞ � x ^ :x: More-

over, hQðC4Þ 	 g is one-to-one, since 6�C4
u � w for any

distinct u and w from x _ :x; x ^ :x;>; and ?: h

Following almost exactly the corresponding proof of

Pynko (1999, Proposition 4.7) for Kleene lattices (see also

Gaitán and Perea 2004, p. 239), QðC4Þ is axiomatized

relative to KA by the quasi-identity
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:x� x; x ^ :y�:x _ y) :y� y: ð2Þ

Hence we obtain

Theorem 1 {(2)} is a basis for the admissible quasi-

identities of KA:

Proof QðC4Þ is structurally complete (Lemma 4) and

axiomatized relative to KA by {(2)} (see Pynko 1999,

Proposition 4.7). Moreover, C3 is a homomorphic image of

C4; so VðC4Þ ¼ VðC3Þ ¼ KA: Hence, since (2) holds in

C4; it is admissible in KA; and the result follows by

Lemma 3. h

Note that the quasi-identity (1) does not provide a basis

for the admissible quasi-identities of KA: In fact, it axio-

matizes the quasivariety QðC3 � C2Þ relative to KA (see

Pynko 1999, Proposition 4.5). We remark also that by

almost exactly the same reasoning, we can show that {(2)}

provides a basis for the admissible quasi-identities of the

class KL of Kleene lattices. The only difference lies in the

proof of Lemma 4 that the quasivariety of Kleene lattices

generated by the four-element chain is structurally com-

plete: in this case we simply change the mapping g to

gð1Þ ¼ x _ :x; gð�1Þ ¼ x ^ :x; gð2Þ ¼ ðx _ :xÞ _ y; and

gð�2Þ ¼ ðx ^ :xÞ ^ :y:

4 De Morgan algebras

The class DMA of De Morgan algebras is generated as a

quasivariety by the four-valued diamond algebra

D4 ¼ hf?; a; b;>g;^;_;:;?;>i

where hf?; a; b;>g;^;_;?;>i is the diamond bounded

lattice of Fig. 1 and : is defined by :? ¼ >;:> ¼
?;:a ¼ a; and :b ¼ b: That is, DMA ¼ QðD4Þ (see

Kalman 1958). However, to obtain a characterization of the

admissible quasi-identities of DMA; it will be helpful to

first consider the (easier) case of the class DML of De

Morgan lattices. Let us write AL to denote the De Morgan

lattice reduct of a De Morgan algebra A; noting that

DML ¼ QðDL
4 Þ:

The finite lattice of quasivarieties of DML has been

completely characterized by Pynko (1999) and consists of

just seven non-trivial quasivarieties of De Morgan lattices

related as described in Fig. 2. Recall that a quasivariety Q
is structurally complete if every proper subquasivariety of

Q generates a proper subvariety of VðQÞ: The only non-

trivial varieties of De Morgan lattices are BL ¼ QðCL
2 Þ;

KL ¼ QðCL
3 Þ; and DML ¼ QðDL

4 Þ: Hence by inspection of

the subquasivariety lattice, the only non-trivial structurally

complete subquasivarieties of DML are BL ¼ QðCL
2 Þ;

QðCL
4 Þ; and QðDL

42Þ where D42 is defined as the direct

product D4 � C2 (see Fig. 1). It follows in particular that

the admissible quasi-identities of DML must be precisely

those holding in QðDL
42Þ: Moreover, Pynko (1999, Propo-

sition 4.2) has shown that QðDL
42Þ is axiomatized relative to

DML by the quasi-identity (1). Hence {(1)} is a basis for

the admissible quasi-identities of DML: Here, however, we

give a more direct proof that avoids the need for a full

investigation of the subquasivariety lattice.

Lemma 5 QðDL
42Þ is structurally complete.

Proof By Lemma 2, it suffices to give an embedding of

DL
42 into FQðDL

42Þ: We first define for distinct variables x1

and x2,

u ¼ x1 ^ :x1 and w ¼ x2 _ :x2;

and note that u\:u and :w\w in FQðDL
42
Þ: Now we define

e: DL
42 ! FQðDL

42
Þ by e ¼ hQðDL

42
Þ 	 g where

gð?;�1Þ ¼ ðu ^ wÞ _ ð:u ^ :wÞ gð?; 1Þ ¼ w ^ :u
gða;�1Þ ¼ u _ ð:u ^ :wÞ gða; 1Þ ¼ ðu _ wÞ ^ :u
gðb;�1Þ ¼ ðu ^ wÞ _ :w gðb; 1Þ ¼ w ^ ð:u _ :wÞ
gð>;�1Þ ¼ u _ :w gð>; 1Þ ¼ ðu _ wÞ ^ ð:u _ :wÞ:

It is straightforward to check that none of these formulas

are equivalent to each other in FQðDL
42
Þ and hence that the

mapping is one-to-one. It remains to check that e is a

homomorphism. First note that : is preserved by the

Fig. 1 The De Morgan algebras D4;D42; and �D42

Q(CL
2 ) = BL

Q(CL
4 )

Q(CL
3 × CL

2 )

Q(DL
42)Q(CL

3 ) = KL

Q(DL
42 ,CL

3 )

Q(DL
4 ) = DML

Fig. 2 Subquasivarieties of DML
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mapping; e.g., eð:ða; 1ÞÞ ¼ eða;�1Þ ¼ :eða; 1Þ follows

from the fact that

x _ ð:x ^ :yÞ � :ððx _ yÞ ^ :xÞ

holds in FQðDL
42
Þ: To see that ^ is preserved by the mapping

(the case of _ is dual), we note that

ðx ^ yÞ _ ð:x ^ :yÞ\x _ ð:x ^ :yÞ\x _ :y

ðx ^ yÞ _ ð:x ^ :yÞ\ðx ^ yÞ _ :y\x _ :y

y ^ :x\ðx _ yÞ ^ :x\ðx _ yÞ ^ ð:x _ :yÞ
y ^ :x\y ^ ð:x _ :yÞ\ðx _ yÞ ^ ð:x _ :yÞ

hold in FQðDL
42Þ: Moreover, using the fact that u\:u and

:w\w in FQðDL
42Þ

ðu ^ wÞ _ ð:u ^ :wÞ\w ^ :u
u _ ð:u ^ :wÞ\ðu _ wÞ ^ :u
ðu ^ wÞ _ :w\w ^ ð:u _ :wÞ
u _ :w\ðu _ wÞ ^ ð:u _ :wÞ

hold in FQðDL
42Þ; as do the following

ðu _ :wÞ ^ ðw ^ :uÞ � ðu ^ ðw ^ :uÞÞ _ ð:w ^ ðw
^ :uÞÞ

� ðu ^ wÞ _ ð:u ^ :wÞ

ðu _ ð:u ^ :wÞÞ ^ ðw ^ ð:u _ :wÞÞ
� ðu ^ wÞ _ ð:u ^ :wÞ

ððu ^ wÞ _ :wÞ ^ ððu _ wÞ ^ :uÞ
� ðu ^ wÞ _ ð:u ^ :wÞ

so ^ is preserved by e. h

Theorem 2 {(1)} is a basis for the admissible quasi-

identities of DML:

Proof (1) is admissible in DML and the quasivariety

QðDL
42Þ is structurally complete (Lemma 5) and axioma-

tized relative to DML by {(1)} (Pynko 1999, Proposition

4.2). Hence the result follows by Lemma 3. h

We now turn our attention to De Morgan algebras. Here

the picture is not so clear since the quasivariety lattice is

infinite (see Gaitán and Perea 2004). In particular, unlike

the case of DML; the quasi-identity (1) does not provide a

basis for the admissible quasi-identities of DMA: It follows

from results of Pynko (1999) that {(1)} axiomatizes the

quasivariety QðD42Þ relative to DMA: However, the quasi-

identity

ðx ^ :xÞ _ y � > ) y � >

is admissible in DMA but does not hold in the De Morgan

algebra D42: So {(1)} cannot suffice as a basis for the

admissible quasi-identities of DMA:

Let us consider instead the De Morgan algebra �D42

obtained from D42 by adding an extra top element > and

bottom element ? (see Fig. 1). Note that D4 is a homo-

morphic image of �D42 under the composition of f : �D42 !
D42; f ð>Þ ¼ ð>; 1Þ; f ð?Þ ¼ ð?; 0Þ; f ððx; yÞÞ ¼ ðx; yÞ for all

ðx; yÞ 62 f?;>g and the projection p: D42 ! D4; pðx; yÞ ¼
x: Hence VðQð �D42ÞÞ ¼ DMA: Moreover,

Lemma 6 Qð �D42Þ is structurally complete.

Proof We extend the embedding given in the proof of

Lemma 5 by defining

gð?Þ ¼ ? and gð>Þ ¼ >

to obtain an embedding of �D42 into FQð �D42Þ: We simply

note additionally that :> � ?;:? � >;> ^ x � x;> _
x � >;? ^ x � ?; and ? _ x � x all hold in FQð �D42Þ: h

It follows that the admissible quasi-identities of DMA

consist of those quasi-identities that hold in Qð �D42Þ:
However, unlike the cases of Kleene algebras and De

Morgan lattices, we have been unable to find an axiomat-

ization of this quasivariety using just quasi-identities.

Instead, we make use also of a universal formula. More

precisely, for a language L; we identify universal formulas

consisting of an ordered pair of finite sets R; D of L-for-

mulas, written R) D (often dropping brackets). For a

class of algebras K for L; we write R �K D to denote that

for every A 2 K and homomorphism h: FmL ! A;R �
ker h implies D \ ker h 6¼ ;: As for quasi-identities, we

drop brackets when considering just one algebra and say

that the universal formula ‘‘holds in’’ this algebra.

Observe that the following universal formula holds in
�D42 and hence also in FDMA:

x _ y � > ) x � >; y � >: ð3Þ

Let us define DMA� to be the class of all De Morgan

algebras A such that the quasi-identity (1) and the universal

formula (3) both hold in A: We will show that a quasi-

identity is admissible in DMA iff it holds in all members of

DMA�: The main idea of the proof will be to reduce the

question of the admissibility of a quasi-identity in DMA to

the question of the admissibility of certain quasi-identities

in DML: The following lemma, proved by an easy induc-

tion on cðuÞ; the number of occurrences of connectives

^;_; and : in a formula u; will be useful in this respect.

Lemma 7 For any u 2 FmLb ; one of the following holds:

1. �DMA u � ?
2. �DMA u � >
3. �DMA u � w for some w 2 FmLl with cðwÞ� cðuÞ:

Let us say that an Lb-identity u � w is in normal form if

u and w are either ?;>; or members of FmLl :

Admissibility in De Morgan algebras
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Theorem 3 For any Lb-quasi-identity R) u � w :

R) u � w is admissible in DMA iff R �DMA� u � w:

Proof Suppose first that R �DMA� u � w: Both the quasi-

identity (1) and the universal formula (3) hold in FDMA; so

FDMA 2 DMA�: Hence R �FDMA
u � w and by Lemma 1,

R) u � w is admissible in DMA: For the other direction,

it suffices, using Lemmas 7 and 1, to prove the following:

For any finite set R [ fu � wg of Lb-identities in nor-

mal form:

R �FDMA
u � w implies R �DMA� u � w: ðHÞ

Let cðRÞ be the number of occurrences of connectives

^;_; and : in R and let sðRÞ be the number of identities in

R containing ? or >: We prove ðHÞ by induction on the

lexicographically ordered pair hcðRÞ; sðRÞi: The idea is to

successively eliminate occurrences of ? and > in R by

reducing hcðRÞ; sðRÞi:
Base case. Suppose that there are no occurrences of ?

and > in R; i.e., sðRÞ ¼ 0: If u ¼ w or fu;wg � f?;>g;
then we are done. Moreover, if u 2 FmLl and w 2 f?;>g;
then R 6�FDMA

u � w : just consider a homomorphism from

FmLb to D4 that maps all the variables to a. Finally, con-

sider u;w 2 FmLl : Suppose that R �FDMA
u � w: By

Lemma 1, R) u � w is admissible in DMA: But for any

u0;w0 2 FmLl ; we have �DMA u0 � w0 iff �D4
u0 � w0 iff

�DL
4

u0 � w0 iff �DML u0 � w0: So R) u � w is admis-

sible in DML: Hence by Theorem 2, R) u � w holds in

QðDL
42Þ: But every De Morgan algebra in DMA� is also

(ignoring ? and > in the language) a De Morgan lattice in

QðDL
42Þ; so R �DMA� u � w:

Inductive step. Given R; suppose that (H) holds for all D
such that hcðDÞ; sðDÞi\hcðRÞ; sðRÞi: We use A t B to

denote the disjoint union of two sets A and B, i.e., A \ B ¼
;: Consider the following cases:

• R ¼ D t f? � >g: Then (H) clearly holds since

R �DMA� u � w:
• R ¼ D t fv � vg: Then R �FDMA

u � w implies

D �FDMA
u � w and, by the induction hypothesis,

D �DMA� u � w: So D t fv � vg �DMA� u � w as

required.

• R ¼ D t fv1 _ v2 � ?g: Suppose that D t fv1 _ v2 �
?g �FDMA

u � w: Then also D [ fv1 � ?; v2 �
?g �FDMA

u � w: So by the induction hypothesis, D [
fv1 � ?; v2 � ?g �DMA� u � w: But then since fv1 _
v2 � ?g �DMA� vi � ? for i = 1, 2, we obtain D t
fv1 _ v2 � ?g �DMA� u � w as required.

• R ¼ D t fv1 _ v2 � >g: Suppose that D t fv1 _ v2 �
>g �FDMA

u � w: Then D [ fvi � >g �FDMA
u � w for

i = 1,2. So by the induction hypothesis, D [ fvi �

>g �DMA� u � w for i = 1, 2. But now, since (3)

holds in every algebra in DMA�; we have D t fv1 _ v2

� >g �DMA� u � w as required.

• R ¼ D t f:v � >g: Suppose that D t f:v � >g �
FDMAu � w: Then D [ fv � ?g �FDMA

u � w; so by

the induction hypothesis, D [ fv � ?g �DMA� u � w:
But then also D t f:v � >g �DMA� u � w as required.

• R ¼ D t fx � >g: Suppose that D t fx � >g �FDMA

u � w: Let D0 and u0 � w0 be the result of substituting

every occurrence of > for x in D and u � w;
respectively. Then D0 �FDMA

u0 � w0: Notice that

cðD0Þ ¼ cðRÞ and sðD0Þ\sðRÞ: By Lemma 7, we can

find identities D� and u� � w� in normal form such that

1. D� �FDMA
u� � w�

2. cðD�Þ � cðD0Þ and sðD�Þ ¼ sðD0Þ
3. D� �DMA� u� � w� implies D [ fx � >g �DMA�

u � w:
By the induction hypothesis, using 1. and 2.,

D� �DMA� u� � w�: But then also by 3., D [ fx �
>g �DMA� u � w as required.

• The cases R ¼ D t fv1 ^ v2 � ?g;R ¼ D t fv1 ^ v2

� >g;R ¼ D t f:v � ?g; and R ¼ D t fx � ?g are

treated symmetrically to the preceding cases. h

We remark that this result leaves open two interesting

questions: Can we find a similarly elegant basis of quasi-

equations for the admissible quasi-identities of DMA? And

does {(1), (3)} axiomatize the universal theory of FDMA

relative to DMA? I.e., is it the case that R) D holds in

FDMA iff R) D holds in all De Morgan algebras in which

(1) and (3) both hold?

5 Related work

De Morgan lattices can be regarded as the algebraic

counterpart of Belnap’s four-valued logic (see Font 1997

for details). However, since there exists no faithful trans-

lation of equations into formulas of this logic, DML is not

the equivalent algebraic semantics of this or of any alge-

braizable logic (Font 1997, Proposition 2.12). Indeed,

Belnap’s logic has no theorems so admissibility is trivial:

every rule with at least one premise is admissible. Never-

theless, the algebras of many notable (substructural and

many-valued) logics have De Morgan algebras or De

Morgan lattices as reducts, in particular, the algebras of

multiplicative additive linear logic, the relevant logics R

and R-Mingle, and Łukasiewicz logics (see, e.g., Galatos

et al. 2007). In this final section, we briefly survey the state

of the art regarding questions of structural completeness

and admissible rules for these and related classes of

algebras.
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An involutive commutative residuated lattice (involutive

CRL for short) is an algebra A ¼ hA;^;_; �;!;:; ti with

binary operations ^;_; �;!; a unary operation :; and a

constant t such that (1) hA;^;_;:i is a De Morgan lattice;

(2) hA; �; ti is a commutative monoid; (3) x! y ¼ :ðx � :yÞ
for all x; y 2 A: A bounded involutive CRL is an algebra

A ¼ hA;^;_; �;!;:; t;?;>i such that hA;^;_; �;!;:; ti
is an involutive CRL and hA;^;_;:;?;>i is a De Morgan

algebra. We also define x0 = t and xnþ1 ¼ x � xn for n 2 N:

It is easy to see (following a similar proof by Cintula

and Metcalfe 2009) that the variety of involutive CRLs is

not structurally complete. For 3� n 2 N; let

Ln ¼ f0; 1=ðn� 1Þ; . . .; ðn� 2Þ=ðn� 1Þ; 1g and

Łn ¼ hLn;min;max; �Ł;!Ł;:Ł; 1i

where x �Ł y¼maxðxþ y�1;0Þ;x!Ł y¼minð1;1� xþ yÞ;
and :Łx¼ 1� x:

Lemma 8 Let Q be a quasivariety of involutive CRLs. If

Łn 2 Q for some 3� n 2 N; then Q is not structurally

complete.

Proof We simply note that the quasi-identity

xn�1�:x; :x� x) x � y

does not hold in Q since it does not hold in Łn (just let

x = (n - 2)/(n - 1) and y = 1). On the other hand, note

that if un�1�:u and :u�u hold in all members of Q for

some formula u; then u ¼ :u holds in the two-valued

algebra Ł2: But this is not possible, so the quasi-identity is

admissible in Q: h

In particular, the class of (bounded) involutive CRLs

(the algebras of multiplicative additive linear logic) is not

structurally complete. Further general results for structural

completeness and its failures for classes of algebras for

substructural and many-valued logics may be found in the

recent papers of Olson et al. (2008) and Cintula and Met-

calfe (2009). However, more precise characterizations of

admissibility for members of this family where structural

completeness fails have so far been limited to some rather

special classes of algebras.

Sugihara monoids, the algebras of the logic R-Mingle

are involutive CRLs satisfying x � x � x and x ^ ðy _ zÞ �
ðx ^ yÞ _ ðx ^ zÞ: A (quite complicated) proof of structural

completeness for the class of positive Sugihara monoids

(the :-free subreducts of Sugihara monoids) was given in

Olson and Raftery (2007). However, as is well known, the

class of Sugihara monoids is not structurally complete as is

shown by the admissible quasi-identity

t�ðx ^ :xÞ _ y) t� y:

MV-algebras, the algebras of Łukasiewicz logic(s),

are term-equivalent to involutive CRLs satisfying

ðx! yÞ ! y � x _ y: The n-valued Łukasiewicz logic

corresponds to QðŁnÞ; and the infinite-valued Łukasiewicz

logic to the class of all MV-algebras (generated as a

quasivariety by h½0; 1�;min;max; �Ł;!Ł;:Ł; 1i). In Jeřábek

(2010a) it was shown by Jeřábek (in a logical setting) that a

basis for the admissible quasi-identities ofQðŁnÞ is provided by

:ðx _ :xÞn � t) x � y:

Jeřábek has also given a more complicated basis for

the admissible quasi-identities of the whole class of

MV-algebras (Jeřábek 2010b). On the other hand, the class

of implicational subreducts of MV-algebras is structurally

complete. A proof may be found in Cintula and Metcalfe

(2009), as can a proof that the class of f!; �g-subreducts is

not structurally complete (however, no basis has yet been

found). It is also shown in this paper that the varieties

corresponding to Gödel logic, product logic, and the

implicational fragment of Hájek’s Basic logic (but not the

full logic) are structurally complete.
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