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When modeling valuation under uncertainty, economists generally prefer expected utility because it has an axi-
omatic foundation, meaning that the resulting choices will satisfy a number of rationality requirements. In expected
utility theory, values are computed by multiplying probabilities of each possible state of nature by the payoff in that
state and summing the results. The drawback of this approach is that all state probabilities need to be dealt with
separately, which becomes extremely cumbersome when it comes to learning. Finance academics and profession-
als, however, prefer to value risky prospects in terms of a trade-off between expected reward and risk, where the
latter is usually measured in terms of reward variance. This mean—variance approach is fast and simple and greatly
facilitates learning, but it impedes assigning values to new gambles on the basis of those of known ones. To date, it is
unclear whether the human brain computes values in accordance with expected utility theory or with mean—variance
analysis. In this article, we discuss the theoretical and empirical arguments that favor one or the other theory. We also
propose a new experimental paradigm that could determine whether the human brain follows the expected utility or
the mean—variance approach. Behavioral results of implementation of the paradigm are discussed.

When choices under uncertainty satisfy certain basic
rationality criteria, they can be thought of as maximizing
autility index that is obtained by multiplying probabilities
of possible states by utilities of the outcomes promised in
each of the states. This equivalence between choices and
maximization of an expected utility index was first dem-
onstrated by Von Neumann and Morgenstern (1947) and
has since been proven to hold under quite general condi-
tions of uncertainty (Savage, 1972) and far less stringent
conditions of rationality—better reflecting the properties
of actual human choices (Tversky & Kahneman, 1992).

The maximization of an expected utility index may be
thought of not only as representing choices, but also as a
means to compute choice. This view is implicit in much of
recent neuroeconomic work in which attempts are made
to find separate neurocorrelates of probabilities (Chan-
drasekhar, Capra, Moore, Noussair, & Berns, 2008), of
utilities assigned to magnitudes (Tom, Fox, Trepel, &
Poldrack, 2007), or both (Tobler, O’Doherty, Dolan, &
Schultz, 2007). But although expected utility theory does
provide an effective way to compute choices under uncer-
tainty, it is by no means the only way.

Indeed, in financial economics, it has long been tradi-
tion to compute the value of risky gambles in terms of

statistical moments, expected payoff, payoff variance, and
so forth (Black & Scholes, 1973; Markowitz, 1952).

The approach is not unrelated to expected utility: A
mathematical operation called the Taylor series expansion
demonstrates that a finite number of moments suffices to
approximate well any smooth expected utility index (see
the Appendix). This being said, we hasten to add that
financial economists usually consider only the first two
statistical moments (namely, expected payoff and payoff
variance); two moments would, in general, provide only
a very crude approximation of expected utility. Also, the
square root of variance—that is, standard deviation—is
often used as a measure of risk, instead of variance, be-
cause in many realistic cases (examples will follow), stan-
dard deviation is of the same order of magnitude as mean
payoff and, hence, easily comparable.

Here, we raise the fundamental question of how the
human brain computes choices. Does it follow the ap-
proach in classical decision theory, multiplying state prob-
abilities by utilities of magnitudes to be received in each
state, or does it rather opt for the financial approach, as-
sessing expected reward and risk (measured as variance),
to be integrated in a valuation signal that drives choices?
The evidence for one or the other approach is far from
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clear-cut. We mentioned a number of references that im-
plicitly assume that the human brain separately encodes
probabilities and (utilities of ) magnitudes; there exist also
studies that show separate encoding of expected reward
and risk in the human brain (Preuschoff, Bossaerts, &
Quartz, 2006; Tobler et al., 2007) and the nonhuman pri-
mate brain (Tobler, Fiorillo, & Schultz, 2005).

From a normative point, one may argue that the ex-
pected utility approach dominates, because it ensures
that certain basic mistakes will never occur. Indeed, as
we shall show, choices computed as a trade-off between
mean (expected reward) and variance (of reward) may vio-
late very basic principles of rationality. The violations are
caused, however, not by the use of statistical moments to
determine choice per se, but by the use of only a very lim-
ited number of moments (mean, variance). Efforts have
also been made to avoid irrational choices by using other
measures of risk, such as, for instance, the semivariance
(variance computed with observations above or below the
mean only; Ogryczak & Ruszczynski, 1999).

Nevertheless, computation of choice on the basis of the
expected utility approach requires that the decision maker
keep track of the probabilities of all possible states, a
rather memory-intensive exercise. In contrast, the mean—
variance approach requires encoding of only two basic
numbers. Matters become even more complex when con-
sidering learning. In the absence of any specific link be-
tween the state probabilities (except that they add up to 1),
the expected utility person has to update the probability
of each state separately. If the number of states is large,
the situation becomes untenable: Even with a (countably)
infinite number of outcome observations, the expected
utility decision maker will generically not learn the true
probabilities (Diaconis & Freedman, 1986). Contrast
this with a mean—variance decision maker who uses the
simplest of learning algorithms—namely, the Rescorla—
Wagner rule—to estimate the expected reward and risk
(Rescorla & Wagner, 1972). This rule will generate pre-
cise estimates even after a few observations.

Expected utility theory and mean—variance preference
theory differ also in the way they induce risk aversion. Ex-
pected utility theory predicts that risk aversion is related
to the curvature of the utility function. The faster marginal
utility decreases as a function of payoff, the higher risk
aversion is. As such, one should be able to predict some-
one’s risk attitudes from choices not involving any uncer-
tainty. Specifically, to predict risk aversion, one merely
has to observe a decrease in willingness to spend effort
as the subject becomes richer. To date, nobody has con-
vincingly been able to do so. The link between decreasing
marginal utility and choice under uncertainty is absent in
mean—variance choice theory. The link is also not as tight
in prospect theory (Kahneman & Tversky, 1979), where
weighing of the state probabilities interferes to induce risk
aversion (see the Appendix).

The goal of this article is not only to clarify these is-
sues, but also to propose a paradigm that could effectively
determine whether choice is computed on the basis of the
expected utility approach or on the basis of the mean—
variance approach. The remainder is organized as follows.

We first will discuss how mean—variance—based choices
may violate some basic principles of rationality. Sub-
sequently, we will elaborate on the advantage of mean—
variance representations of gambles for learning. We then
will discuss recent empirical work that shows encoding of
probability, magnitude, mean, and variance of reward in
the human brain. We next will introduce a new paradigm to
dissociate learning and decision making on the basis of ex-
pected utility and mean—variance analysis. We will discuss
illustrative behavioral results based on implementation of
the paradigm. We will close with some final remarks.

Mean—Variance Decisions May Lead
to Dominated Choices

Decision theorists have long been interested in math-
ematical representations of choices that satisfy a minimum
of rationality restrictions. These rationality restrictions are
represented by means of choice axioms. Many expected
utility decision-making models (including prospect theory)
satisfy such choice axioms; Von Neumann—Morgenstern
expected utility derives from the stringest axioms, whereas
prospect theory is founded on far weaker axioms.

One of the weakest axioms is statewise dominance,
also known as state-by-state dominance (see Harsanyi &
Selten, 1988). Gamble A has strict statewise dominance
over Gamble B if A gives a better outcome than does B in
every possible state. The dominance is weak if A gives a
better or equal outcome in every possible state, with strict
inequality in at least one state. For instance, consider the
following two Gambles A and B. Two states may occur,
with a probability of .25 and .75, respectively (in fact,
these probabilities are irrelevant for statewise dominance).
Gamble A pays 5 in the first state and 3 in the second state.
Gamble B pays 4 in the first state and 0 in the second state.
So, Gamble A always pays more than Gamble B. As such,
A statewise dominates B.

Statewise dominance is to be dissociated from stochas-
tic dominance. The contrast between the two will, how-
ever, clarify the true meaning of expected utility theory. A
Gamble C has (first-order) stochastic dominance over D if,
for any outcome x, C gives a higher probability of receiv-
ing an outcome equal to or better than x under D. In other
words, the cumulative distribution for Gamble C (F()
is smaller than that for D (Fp)—that is, F(x) < Fp(x).
Statewise dominance is a stronger concept; in particular,
it implies first-order stochastic dominance.

The fundamental difference is that statewise dominance
requires the definition of states, which is not necessary
for stochastic dominance. Thinking in terms of states is
the foundation of probability theory and, by extension,
expected utility theory. Under this perspective, random-
ness of a variable is a property of states; the variable is
random only because it is a nontrivial function that maps
states into payoffs. The concept of stochastic dominance
does not require one to think in terms of states. Only (the
distributions of) the outcomes are relevant. The same is
true for mean—variance analysis.

When choosing an inferior, dominated gamble, the deci-
sion maker is said to make a dominated choice. The axiom
of statewise dominance then says that rational agents
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Gamble A Gamble B
u=04,0=038 u=020=04
Vg =-1.2 < Vyr = -0.6

Figure 1. Representation of gambles within the mean—variance
preference model. Gamble A dominates, but B is preferred.

should never make dominated choices. It is motivated
by the premise that rational agents should always prefer
more over less (nonsatiation). In terms of utility theory,
the axiom states that utility must continue to increase with
payoff. If the utility function u is differentiable, this means
that the first derivative u” is positive everywhere.

The problem with choice based on a trade-off between
expected (mean) payoff and variance (risk) of payoff is
that it may violate the axiom of statewise dominance. Here
is an example. Consider the following two-outcome gam-
bles: A pays 2 and B pays 1 in the first state; both A and
B pay zero in the second state; the first state has a prob-
ability of .20 of occurring; the second state occurs with a
probability of .80. Obviously, A statewise dominates B.
(To determine the statewise dominance, we did not need
the probabilities, but we shall need those for the mean—
variance analysis.)

How would a mean—variance optimizer evaluate these two
gambles? The value V" of a gamble for a mean—variance opti-
mizer can be computed by subtracting the risk (measured as
standard deviation o) from the mean u: Vy;r = 1 — bo. Here,
the coefficient b measures the risk aversion; if b is high, our
agent penalizes risk more and, hence, is more risk averse;
if b is actually negative, our agent is risk seeking. Assume
that b = 2. The mean payoff ¢ and standard deviation o for
A equal 0.4 and 0.8, respectively. For B, the numbers are 0.2
and 0.4. A graphical representation of the trade-offs between
expected payoff and risk is given in Figure 1. Because b = 2,
Vur = 0.4 — 2 - 0.8 = —1.2 for Gamble A and Vyr =
0.2 —2-0.4 = —0.6 for B. Thus, our agent assigns a higher
value to B than to A and, hence, will decide to go for B. This
choice is statewise dominated, however.

It can easily be shown that for any risk aversion param-
eter b > 0.5, B will be preferred to A. In other words, if a
decision maker is sufficiently risk averse, he/she will pre-
fer B because this gamble entails lower risk. In fact, it can
be shown that statewise-dominated gambles can always be
found for any mean—variance optimizer and that there are
many of those (Borch, 1969).

By construction, expected utility theory does not vio-
late the axiom of statewise dominance, provided the util-
ity function is strictly increasing. Take someone with a
simple utility function—namely, u = \x, where x denotes
the payoff. The value of a gamble for this expected utility
agent is Vgy = Elu(x)] = E(\/;c). The value of A is thus
Veu = 0.2042 = 0.28. The value of B is Vg = 0.2041 =
0.20. The agent chooses A instead of the dominated lot-
tery B. This can be shown to be true for any expected util-
ity decision maker.

Figure 2 provides one way to graphically represent how
an expected utility agent thinks about this particular prob-
lem. Gambles can be represented by circles. Circular seg-
ments denote states of the world; they are indexed by the
symbol inside the segment (1 and 2). The size of a circular
segment is proportional to the belief that the correspond-
ing state will occur. The expected utility decision maker
first compares the payoffs in each state. Payoffs are distin-
guished by color: Yellow denotes €0, blue €1, and orange
€2. He or she will recognize that the payoff is the same in
State 2, but higher for Gamble A in State 1. Hence, A is
strictly preferred.

If humans are mean—variance optimizers, we should
observe dominated choices. If expected utility is a bet-
ter model of human decision making, dominated choices
should be nonexistent. Numerous behavioral studies have
reported that humans routinely violate this dominance
principle (Birnbaum & Navarrete, 1998; Mellers, Ber-
retty, & Birnbaum, 1995).

So, Why Mean—Variance Preferences?

The dominated choice argument is damaging for deci-
sion making based on mean—variance optimization. So,
why would the brain choose to encode expected payoff and
payoffvariance, the building blocks of mean—variance pref-
erences, instead of probabilities and utilities (magnitudes),
the components needed to compute expected utility?

One argument in favor of representation of gambles in
terms of mean payoff and payoff variance is that it facili-
tates learning. To see this, let us first go back to expected
utility theory. This theory is based on the idea that there

Gamble A Gamble B
“€2 if State 1; “€1 if State 1;
Nothing otherwise” Nothing otherwise”
Vey=0.28 > Vey =0.20

Figure 2. Representation of gambles within the expected util-
ity model. States are identified by numbers (1 and 2); payoffs are
identified by colors: yellow = €0, blue = €1, and orange = €2.
Gamble A dominates and is preferred to Gamble B.
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A Payoff (€)
Gamble X
. Gamble Y
i i i i i i i —»
16 17 18 19 20 21 22 23

Temperature (°C)

W

Gamble X
“€2 if temperature = 19%
Nothing otherwise”

u=1.56
0=0.82

|/

Gamble Y
“€2 if temperature = 20%
Nothing otherwise”

u=116
0=0.99

Figure 3. State-space conceptualization of random payoffs. (A) Maps be-
tween states and payoffs define gambles. (B) Expected utility representation
of gambles. (C) For comparison: mean—variance representation of the same

gambles.

are common, fundamental states of nature that underlie all
gambles. The expected utility maximizer first has to pon-
der what these states of nature are and what probabilities
to assign to each of them. When faced with a particular
gamble, the expected utility maximizer will then deter-
mine how much this gamble pays in each of the possible

states. The value of the gamble is then computed by mul-
tiplying the utility of the payoff in each state by the belief
that the state occurs and adding the results across states.
For instance, consider a Gamble X that pays €2 if the
temperature tomorrow is equal or above 19°C and nothing
otherwise and another Gamble Y that pays €2 if the tem-
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perature tomorrow is equal to or above 20°C and nothing
otherwise. Temperature levels can be considered to be the
underlying states of nature for the gambles at hand, and
the payoffs on the gambles can be represented as a map-
ping from these states to €0 or €2 (see Figure 3A). (For
simplicity, we limit our attention to temperatures ranging
from 16°C to 23°C.)

These two gambles can then be represented in a circle
paradigm by letting the circular segments correspond to
temperature levels; the temperature level inside a segment
indicates what state the segment refers to. We now let color
denote payoffs: yellow for €0 and orange for €2. Imagine
now that our agent does not perfectly know the chances
of each of the states (temperature levels). Our agent will
learn as follows. He or she will record outcomes (tem-
peratures) and use those to update his or her belief about
the temperature levels. Effectively, each temperature level
becomes a parameter, and the agent learns about each pa-
rameter separately.

One can easily see that such a learning strategy may be-
come problematic. In our example, we limited our atten-
tion to eight temperature levels and, hence, seven param-
eters (one probability for each temperature level, except
for the last one, where the probability can be inferred from
the fact that probabilities should add up to 1). After, say,
7 days, our agent will have recorded only 1 observation on
average per parameter, a rather dismal sample size. In re-
alistic situations, the number of possible states and, hence,
the number of parameters are obviously far higher. With
1,000 states, it takes 999 observations to obtain a ratio
of observations to parameters equal to just 1. It becomes
questionable whether this approach allows someone to
learn anything at all! A formal treatment can be found in
Diaconis and Freedman (1986).

As a result, the expected utility maximizer will have
a hard time learning to correctly value risky gambles.
What about the mean—variance optimizer? This agent is
interested only in estimates of the mean payoff and of the
payoff variance (or its square root, the standard devia-
tion; see Figure 3C). These two parameters can easily be
learned from observed outcomes, using simple reinforce-
ment learning algorithms. The expected payoff can be es-
timated from the sample mean payoff of repeated play of
the gamble, and the payoff variance can be estimated from
the sample variance. With independent sampling, both the
estimated mean and the variance will quickly converge to
the true mean and variance, by the law of large numbers.

Note the fundamental difference in perspective between
expected utility theory and mean—variance theory. In the
former, all uncertainty about outcomes (payoffs) of differ-
ent gambles can be reduced to the uncertainty of common
states of nature. States of nature are effectively the deeper
cause of outcome variation. In the latter, the decision
maker considers only outcomes and learns about these.

There is an analogy between decision making based
on the expected utility approach and learning based on
Bayesian updating. Both perceive deeper causes behind
observable outcomes. For the expected utility decision
maker, these causes are referred to as states of nature. The
Bayesian learner thinks of them as parameters.

Just as Bayesian learning can become a powerful infer-
ence tool in a complex world where outcomes may be gen-
erated by common causes (see, ¢.g., Hampton, Bossaerts,
& O’Doherty, 2006), expected utility theory facilitates
evaluation of uncertainty. Imagine, for instance, that the
agent has always chosen Gamble X in Figure 3 in the past.
The expected utility maximizer learns about the chances
of winning by learning about the probabilities of each of
the states (temperature levels). If asked what the chance is
that Gamble Y will pay off, the expected utility maximizer
will apply his or her knowledge of the probabilities of the
temperature levels to induce an answer.

Compare this with the mean—variance optimizer. Since
he or she has never seen any outcome for Gamble X, he or
she has no idea about the expected payoff and payoff vari-
ance on Y. If he or she were to realize that there is a com-
mon cause (same states) behind the payoffs on Gambles X
and Y, he or she would be able to obtain a good estimate
of the expected payoff and the risk of Y on the basis of
outcome observations for X.

The distinction between the expected utility and the
mean—variance approaches to decision making is also anal-
ogous to the distinction between reflective and reflexive
learning (Daw, Niv, & Dayan, 2005). The mean—variance
approach is fast and easy, like reflexive learning, but subject
to mistakes; the expected utility approach is slow and com-
plicated, like reflective learning, but powerful. The mean—
variance approach may be called heuristic, whereas the
expected utility approach is formal (Kahneman & Freder-
ick, 2002). The reflexive/reflective learning and heuristic/
formal decision-making approaches are examples of the
dual-system theory of cognition (Evans, 2003).

A final remark on the differences between the expected
utility and the mean—variance theories concerns risk aver-
sion. The two theories incorporate risk aversion (or risk
seeking, for that matter) in fundamentally different ways.
In expected utility, risk aversion is the consequence of
nonlinearity in the valuation of magnitudes of outcomes.
Specifically, when the utility function « of the payoff x is
strictly concave in the payoff, the agent will exhibit risk
aversion: He or she will favor risk-free gambles when al-
ternative, risky gambles return the same payoff on average.
In words, strict concavity means that the marginal utility
of an extra payment declines with the payment amount.
Mathematically, if u is twice differentiable in x, strict con-
cavity obtains if the second derivative u” is negative. The
square root function [u(x) = \/;] from the illustration in
the previous section provides an example of a strictly con-
cave function.

It may seem strange that risk aversion is determined
solely by nonlinear valuation of outcomes. It is all the
stranger because this nonlinearity has nothing to do
with uncertainty. Specifically, risk aversion is nof the re-
sult of biases in beliefs about the likelihood that states
will occur.!

In contrast, in mean—variance preference theory, risk
aversion is the result of the penalty imposed on risk. Valu-
ation V' is based on a trade-off between mean u and vari-
ance (standard deviation 0): Vy;g = ¢ — bo, where b is the
penalty imposed on risk. The higher b is, the more risk is
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penalized and, hence, the higher the risk aversion exhib-
ited in choices is.

One can interpret the multiplication bo in this valuation
equation as a biasing of risk assessment o by means of the
coefficient b. As such, bo corresponds to subjective risk
assessment. Hence, in mean—variance choice theory, risk
aversion is the result of belief biases. In particular, risk
aversion increases with overassessment of risk.

Simultaneous Encoding of Probability,
Magnitude, Expectation, and Reward Variance

To date, it is not known whether the human brain com-
putes value primarily on the basis of an expected utility
approach or on the basis of a mean—variance approach.
Neurobiological studies of brain activation in the context
of risk generally analyze the data in terms of one or the
other approach only. Studies that use the expected utility
approach (Knutson, Taylor, Kaufman, Peterson, & Glover,
2005; Yacubian et al., 2006; Yacubian et al., 2007) cor-
relate activation with probabilities and magnitudes (or
utilities). For instance, Knutson et al. reported that effects
of payoff magnitude and probability were preferentially
observed in the nucleus accumbens and the medial pre-
frontal cortex, respectively. Studies that follow the mean—
variance approach (Huettel, Song, & McCarthy, 2005;
Paulus, Rogalsky, Simmons, Feinstein, & Stein, 2003;
Preuschoffet al., 2006; Rolls, McCabe, & Redoute, 2008)
identify neurocorrelates of expected reward and/or risk.
For instance, expected value correlates with activity in the
striatum, and risk correlates with activity in the striatum
and insula (Preuschoff et al., 2006; Preuschoff, Quartz, &
Bossaerts, 2008).

Studies that look at all aspects of decision making under
uncertainty simultaneously (probability, magnitude, ex-
pected reward, and risk) are rare (for a review, see Knut-
son & Bossaerts, 2007). One important exception is To-
bler et al. (2007). In this study, subjects observed abstract
shapes representing gambles while brain activation was

A B

! Probagiiity
xpected valu

recorded using fTMRI. Levels of reward magnitude and
probability were manipulated experimentally by chang-
ing number and shapes: The number of circles informed
the subjects about reward magnitude, whereas color indi-
cated probability (or the reverse, for the other half of the
subjects). Effects of payoff magnitude, probability, and
expected value were observed in distinct regions within
the striatum and lateral prefrontal cortex (see Figure 4, re-
produced from Tobler et al., 2007). A link with probability
also emerged in the medial prefrontal cortex. Hemody-
namic response in the lateral orbitofrontal cortex depended
on an inverted-U function of probability, suggesting that
this region may be involved in risk evaluation.

It is worth noting, however, that gambles have gener-
ally been represented with stimuli that separately convey
probabilities and magnitudes. So, there is the possibility
that the presence of activations correlating with probabili-
ties and magnitudes is due to the way the information is
presented from which the brain can infer expected reward
and variance. That is, the brain may be “forced” to en-
code probabilities and magnitudes. Studies that analyze
neuronal activity in terms of expected reward and vari-
ance have invariably presented gambles in the same way.
Even when probabilities are indirectly conveyed—for ex-
ample, through cards in a card game (Preuschoff et al.,
2006)—the most immediate translation of the stimuli is to
probabilities, whereas the mapping to payoff variance, in
particular, is far from straightforward. As such, it remains
unclear to what extent the human brain favors an approach
to computing value of risky gambles that is based on ex-
pected utility theory or on mean—variance modeling.

As was stated before, in expected utility theory, risk
sensitivity is caused by the curvature of the utility func-
tion. In mean—variance preference theory, risk aversion
is the result of a penalty imposed on variance. This re-
quires that variance be encoded separately from expected
value. If the expected utility theory is true, neuroscientists
should observe only brain activity related to the expected

Figure 4. Brain activation related to payoff magnitude, probability, and expected value
within the striatum (A) and the lateral prefrontal cortex (B). From “Reward Value Coding
Distinct From Risk Attitude-Related Uncertainty Coding in Human Reward Systems,” by
P. N. Tobler, J. P. O’Doherty, R. J. Dolan, and W. Schultz, 2007, Journal of Neurophysiology,
97, pp. 1626-1627. Copyright 2007 by The American Physiological Society. Reprinted with

permission.
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Do you want to sample?

Yes / Qo

No outcome

25 .

Do you want to pay 40 Frs to play this bin?

Yes / ‘o
No outcome

Your net payoff is 3 Frs.

Your net payoff is O Frs.

Sampling period |

| Playing period

Figure 5. Sampling and playing periods within a trial.

utility of an option. If the second model is correct, two
signals should emerge in the brain: one for expected value
and the other for a risk measure such as variance. As it
is, data slightly favor the latter hypothesis, because sepa-
rate risk (variance) signals have been detected (Preuschoff
et al., 2008; Tobler et al., 2007). Separate signals for ex-
pected value and variance have also been observed in a
learning task. Indeed, a recent fMRI study has revealed
that prediction error for expected value is related to ac-
tivity in the striatum (a dopamine projection area gener-
ally understood to be involved in reward reinforcement
learning; McClure, Berns, & Montague, 2003; O’Doherty
et al., 2004), whereas prediction error for variance is re-
lated to activity in the insula and the inferior frontal gyrus
(d’Acremont, Lu, Li, Van der Linden, & Bechara, 2007).
Incidentally, the ubiquitous use of mean—variance analysis
in the financial industry has led some to conjecture that
this is actually the approach the human brain takes to de-
termine choice under uncertainty (Dickhaut, 2008). The
argument is that humans prefer to use computational tools
that are based on principles employed by their brains.

A New Experimental Paradigm

Experimental design. To adjudicate between the ex-
pected utility and the mean—variance valuation principles,
a new paradigm is needed that focuses on the two main
differences—namely, potential of statewise dominated
choice and, foremost, learning. We will propose one such
paradigm here and will discuss the behavioral results of
its implementation.

In our paradigm, states were represented by colors of
balls in a bin, whereas payoffs (outcomes) were indicated
by numbers on the balls. Payoffs were the same for all
balls of the same color. Gambles were draws (with re-
placement) of a single ball from the bin; the number on the
drawn ball determined the payoff. The subjects knew what
colors (states) were in a bin at any moment and which
payoff corresponded to each of the colors. However, the

subjects did not know the composition of the bin—that is,
how many balls of each color there were.

We occasionally changed the bin. The period of time
that we kept the bin the same was referred to as a #rial.
Each trial consisted of a sampling period and a playing
period (see Figure 5).

Within a trial, the subjects were initially given the op-
portunity to sample the bin, as much as they liked, though
at a small cost of 0.01 Frs (Swiss francs) per sample. With
each sample, a ball was drawn from the bin (with replace-
ment), and the payoff, but not the color of the ball, was
revealed (see “Sampling period,” Figure 5).

Once the subjects decided not to sample anymore, we
offered them a chance to buy into the gamble. We imple-
mented a posted-price mechanism: We quoted a price, and
the subject decided to take the offer or leave it. If the sub-
ject bought the gamble, we played it. We added the gamble
payoff to, and subtracted the gamble price from, the play
money. Otherwise, the subject kept the play money level.
We repeated this five times with different prices, randomly
chosen between the minimum and the maximum possible
payoffs (see “Playing period,” Figure 5).

We preferred a posted-price mechanism for eliciting
value over the usual incentive-compatible mechanisms
whereby subjects are asked to offer a price. Our prefer-
ence was motivated by ecological relevance. Indeed, most
subjects rarely have to offer prices in daily life (when, say,
buying milk in a supermarket); instead, prices are posted,
and subjects decide whether to buy or not.

At the end of a trial, either we changed the composition
(number of balls of each color and number of colors) and
the payoffs on the balls (e.g., Trials 1 and 3 in Figure 6),
or we changed only the payoffs (e.g., Trials 2 and 4 in the
same figure). The subjects were told explicitly when this
happened and which case applied.

Consequently, we effectively created a situation in
which the subjects should have been fully aware of the
underlying structure: They knew the states and the pay-
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Figure 6. Time line of the experiment.

offs in each state. At the same time, all the subjects ever
saw were payoffs; they never observed the states directly.
They could have opted to ignore the states, effectively
becoming mean—variance optimizers. Or they could have
inverted payoffs for states, to apply the expected utility
approach.

Bins were built in the following way. We first chose
among the following number of states (colors): 2, 3, 5, or
10. A fixed set of probabilities (number of balls of a given
color) was associated with each number of states. For in-
stance, for three states, we chose p; = .25, p, = .50, and
p3 = .25. Subsequently, we assigned specific colors (from
among 10 colors) to these probabilities. This defined a
particular instance of a bin. Specific gambles were then
constructed by assigning payoffs to colors in the bin in
order to obtain a particular standard deviation (4, 8, or 12)
and a mean chosen from a uniform distribution (ranging
from 26 to 74 Frs).

Whenever we changed only the payoffs, we merely
selected different payoffs for each of the colors, keeping
the number of colors (states), the number of balls of each
color (state probabilities), and the payoff standard devia-
tion the same; only the mean payoff changed. Whenever
we changed the composition of the bin, we chose a new
number of colors (states) with its associated probabili-
ties, assigned new colors to each of the probabilities, and
picked a new payoff standard deviation.

Two different bins were built for each combination of
number of states (colors) and payoff standard deviation.
Thus, these two dimensions were orthogonalized. This
makes in total 24 bins. For each of these bins, we changed
payoffs once without changing the composition of the
bin, to generate a different mean payoff. In total, we thus
generated 48 trials per subject. The subjects were paid for
performance. At the end of the experiment, they received
one tenth of their net play money in real currency.

The interesting aspect of our paradigm is that expected
utility and mean—variance models predict very different be-
havior. In particular, while sampling, expected utility sub-
jects should infer from payoff which state has occurred, to
keep track of the states (like Bayesians, they solve an inverse
problem) and their frequency of occurrence. Therefore, two
distinct features should characterize their decisions:

E1. Aslong as the composition of the bin remains un-
changed, expected utility maximizers will never
resample when the mapping from states to pay-
offs (numbers on the balls) changes.

E2. The length of sampling (number of times they
sample) depends only on the number of states
(number of colors in a bin).

Resampling is unnecessary (Feature E1) because expected
utility decision makers know the composition of the bin
(up to a certain level of precision). They need merely to
apply the new mapping from states (colors) to payoffs in
order to revalue gambles after a change in this mapping.
The second feature presupposes that subjects stop sam-
pling after their predictions reach a certain precision. Pre-
cision is measured in terms of the probabilities that a state
(color) is drawn.

As was explained before, expected utility decision mak-
ers will never buy statewise dominated gambles. A simple
implication for choice is the following:

E3. Expected utility maximizers will never buy domi-
nated gambles (where the price is at least as much
as the highest possible payoff across all states) or
pass on gambles dominated by their price (where
the price is, at most, equal to the lowest possible
payoff across all states).

In contrast, mean—variance optimizers focus on the dis-
tribution of payoffs, ignoring the underlying structure
(mapping from states to payoffs). If they care only about
the first two moments of the distribution, they will limit
learning to the payoff mean and payoff variance. This they
can accomplish using simple reinforcement learning al-
gorithms such as Rescorla—Wagner (Rescorla & Wagner,
1972). But since they ignore the underlying states, mean—
variance optimizers do need to relearn each time the map-
ping from states (colors) to payoffs changes, even if noth-
ing about the states themselves (number of balls of each
color) changes. Also, in determining how long to sample,
the number of states is irrelevant for a mean—variance op-
timizer. Instead, the variance of the payoffis relevant (pre-
cision of estimates of the mean payoff depends on it), as
is the kurtosis (the fourth moment, on which precision of
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Figure 7. Mean probability of sampling as a function of num-
ber of states and whether the bin composition changes (“New
bin”) or only the payoffs in each state (“New payoffs”). Vertical
bars indicate standard errors.

estimates of the variance depends). Often, there is a func-
tional relationship between kurtosis and variance, such as
with the Gaussian distribution; in those cases, effectively
only variance is needed. These considerations lead to the
following predictions:

M1. Mean—variance optimizers resample even if the
underlying state structure (number of colors and
number of balls of each color) does not change.

M2. Sampling length depends on moments of the
payoff distribution, such as variance.

As was mentioned before, mean—variance optimiz-
ers ignore states and, as a result, may end up making
statewise-dominated choices:

M3. Mean—variance optimizers may purchase gam-
bles at prices at least as high as the highest pos-
sible payoff or pass on gambles at a price at most
equal to the lowest possible payoff.

Results. Twenty-seven subjects (10 women, 17 men)
were recruited for the study. Twenty-four participants were
students from the Swiss Federal Institute of Technology.
The remaining 3 participants were scientific collaborators
working at the Swiss Federal Institute of Technology or the
University of Lausanne. The mean age was 24 years. The
study was approved by the ethics committee of the Swiss
Federal Institute of Technology. The decision-making task
was programmed in E-Prime and run on location at the
Laboratory for Decision Making Under Uncertainty. The
mean pay-for-performance was 69 Frs, with a minimum
of 47 Frs and a maximum of 91 Frs.

We observed very few cases in which the subjects chose
statewise-dominated gambles (Hypothesis M3), suggest-
ing that they paid attention to states and the payoffs as-
sociated with each state. On average, the subjects made
4.3% buy errors (buying a gamble that was dominated by
its price) and 2.8% pass errors (passing on gambles when
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Figure 8. Mean length of sampling as a function of number
of states and whether the bin composition changes (“New bin”)
or only the payoffs in each state (“New payoffs”). Vertical bars
indicate standard errors.

the price equaled the lowest possible payoff). So, even if
the subjects were mean—variance optimizers otherwise,
they paid sufficient attention to states not to be frequently
subject to the most damaging feature of this type of deci-
sion making, consistent with Hypothesis E3. Our findings
call into question the economic relevance of statewise
dominance mistakes reported in the literature (Mellers
etal., 1995).

However, the probability for a subject to resample when
we changed the labels (payoffs) of the balls in the bin, keep-
ing the composition of the bin the same, was above 50%
(dashed line in Figure 7). This indicates that the subjects
partially relied on mean—variance optimization (Hypoth-
esis M1). Yet the probability to resample also increased
with the number of states. There is thus a surprising inter-
action with state complexity (number of states) that is not
predicted by mean—variance optimization (M2) alone.
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Figure 9. Mean length of sampling as a function of number of

states, stratified by payoff standard deviation (SD). Vertical bars
indicate standard errors.
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In fact, when plotting the length of sampling against
number of states, we observe an increase that suggests ex-
pected utility calculations (Hypothesis E2); see Figure 8
(length set to 0 if no sampling). As such, the data reject
the clear-cut categorization into expected utility analysis
or mean—variance analysis.

What is going on? It appears that the length of sampling
also increases with the standard deviation of the payoff for
10 states and, to a lesser extent, for 5 states (see Figure 9).
This increase is consistent with Hypothesis M2 but occurs
only for a higher number of states.

Consequently, the overall picture that emerges is one
in which subjects mix expected utility analysis (they in-
crease sampling as state complexity increases; E2) and
mean—variance analysis (they resample; M1), but once
the number of states reaches a certain level, they tend to
weigh mean—variance analysis more, increasing the length
of resampling when payoff variance increases (M2).

Final Remarks

Mean—variance preference theory assumes that pay-
offs are evaluated in a linear way. That is, mean payoff is
computed as the expectation of payoffs that are not trans-
formed in a nonlinear way, as in standard expected utility
theory. Likewise, payoff variance is just what it says: the
mathematical variance of payoff, and not, for instance,
the variance of the utility of payoff. Allais (1953) has sug-
gested, however, that human choice under uncertainty can
be represented better in terms of trade-offs of expected
utility of reward and variance of reward wuility. That is, ex-
pectations and variances are computed for nonlinear trans-
formations of actual rewards and, therefore, on the basis
of experienced utility. To date, it is not known whether
encoding of expected rewards and reward variances in the
human brain actually represent expected reward utility
and reward utility variance. A new paradigm is needed to
discriminate between standard mean—variance theory as
a basis of choice and Allais’s approach. Just like prospect
theory preferences, Allais’s preferences can accommodate
most of the violations to the stringent rational choice axi-
oms underlying standard expected utility theory that are
commonly observed in human choice under uncertainty.

Here, we have focused on the mean—variance model
of decision making. There are other models that sepa-
rate mean and risk, whereby risk is measured in different
ways. Most important, there is the mean-risk model with
the coefficient of variation (the ratio of standard deviation
over mean) as metric for risk. There exists evidence that
the coefficient of variation is a better predictor of decision
making under risk than is variance (or standard deviation)
in both nonhuman primates (McCoy & Platt, 2005) and
humans (Weber, Shafir, & Blais, 2004).

Our article has contrasted the mean—variance and ex-
pected utility approaches to modeling choice under uncer-
tainty. Much of the discussion may seem to imply that we
consider computation of values as an either/or situation:
the brain encodes the features of gambles either in terms of
probabilities and magnitudes (expected utility approach) or
in terms of expected payoff and variance of payoff (mean—
variance approach). One should keep an open mind, how-

ever, and envisage the possibility that the brain actually
uses both approaches. As we discussed above, the mean—
variance approach has the advantage of speed, certainly
in a learning environment, but it is prone to mistakes. In
contrast, learning in the expected utility approach is cum-
bersome but allows for powerful extrapolation when new
gambles (defined on the same state space) are presented.
It cannot be excluded that the human brain is capable of
doing both, even simultaneously, emphasizing the output
of one or the other, depending on the situation.

This suggestion amounts, of course, to an application of
dual-system theory of cognition (Evans, 2003) to choice
under uncertainty. It is analogous to other substantiations
of dual-system theory, such as reflexive/reflective learn-
ing (Daw et al., 2005) or heuristic/logical problem solving
(Kahneman & Frederick, 2002).

The experimental findings that we reported on here pro-
vided corroborating evidence for a dual system for deci-
sion making under uncertainty. Aspects of subjects’ deci-
sions supported expected utility, whereas other aspects
indicated mean—variance analysis. We observed that when
the number of states increased, subjects tended to rely
more on mean—variance analysis. Because expected util-
ity analysis is more demanding when the number of states
is high, this change might be explained by the limited ca-
pacity of human information processing. In this context, it
is interesting to note that we observed a significant effect
of payoff standard deviation on sampling for 5 states; the
effect became even more pronounced for 10 states. This
may be explained by the fact that effective human working
memory is limited to seven plus/minus two items (Miller,
1956). Further research is needed to provide explicit as-
sociation of our result with working memory capacity.
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NOTE

1. Only in prospect theory do belief biases contribute to risk attitudes.

APPENDIX
Formal Definitions of Expected Utility and Mean-Risk Models

Here, we will provide formal definitions of expected utility and mean-risk modeling. We will
also show how the two models are related, by means of Taylor series expansions. In expected util-
ity (EU) theory, the value ¥ of an option is defined as the expectation of the utility of the payoff x

across states:

b = E[u()]= X (). M)

where 7 is the number of states, p, the probability of state s, and x, the return associated to state s.
Prospect theory (PT) is an amendment to this basic approach, whereby probabilities are also

transformed:

Vor :zn:w(ps)u(xs), (2)

where w is the probability-weighting function. (Unlike in expected utility theory, u is usually called
the value function in prospect theory.) In standard expected utility theory, risk attitudes are gener-
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APPENDIX (Continued)

ated through nonlinearities in u. Specifically, if u« is strictly concave (meaning that it increases at
a decreasing rate), the resulting choices under uncertainty will reflect risk aversion. In prospect
theory, risk sensitivity results from a combination of nonlinearities in the value function and the
presence of a probability-weighting function.

In mean-risk (MR) models, the value of a risky option is expressed as a trade-off between a
return and risk measure (Bell, 1995):

Mg = 7(¥) = R(x), 3)

where r denotes the return function and R the risk function.
In certain conditions, the two models become equivalent. For instance, if the utility function is
quadratic,

u(x) = ax*+ bx+c, 4
the expected utility can be written as a mean-risk model:
Vip = E[u(x) ] = u(u) + ac?, (5)

where u and 02 are the expected value and variance of the payoff x.
In general, utility functions can always be approximated by means of a Taylor series
expansion:

u(x) = (i) + o (e = ) + 2 " ()x = 2, ©)

where u” and u” denote the first and second derivatives of u. Taking the expected value of the util-
ity, we obtain

Vo = () + S u" (o’ (7)

which has the form of a mean-risk model. As such, valuations from expected utility theory can
always be approximated with valuations from the mean-risk approach.

The mean—variance model is a special case of the mean-risk model. In it, values are computed
as follows:

Vur = H—bo?, (8)

where b reflects a penalty for risk, and hence, if » > 0, values will generate risk avoidance. This
mean—variance model is the valuation approach of choice in the area of finance.

(Manuscript received March 10, 2008;
revision accepted for publication July 30, 2008.)
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