
When choices under uncertainty satisfy certain basic
rationality criteria, they can be thought of as maximizing 
a utility index that is obtained by multiplying probabilities
of possible states by utilities of the outcomes promised in
each of the states. This equivalence between choices and 
maximization of an expected utility index was first dem-
onstrated by Von Neumann and Morgenstern (1947) and 
has since been proven to hold under quite general condi-
tions of uncertainty (Savage, 1972) and far less stringent 
conditions of rationality—better reflecting the properties
of actual human choices (Tversky & Kahneman, 1992).

The maximization of an expected utility index may be
thought of not only as representing choices, but also as a 
means to compute choice. This view is implicit in much of 
recent neuroeconomic work in which attempts are made
to find separate neurocorrelates of probabilities (Chan-
drasekhar, Capra, Moore, Noussair, & Berns, 2008), of 
utilities assigned to magnitudes (Tom, Fox, Trepel, & 
Poldrack, 2007), or both (Tobler, O’Doherty, Dolan, & 
Schultz, 2007). But although expected utility theory does 
pprovide an effective way to compute choices under uncer-
tainty, it is by no means the only way.

Indeed, in financial economics, it has long been tradi-
p y gtion to compute the value of risky gambles in terms of 

dstatistical moments, expected payoff, payoff variance, and 
so forth (Black & Scholes, 1973; Markowitz, 1952).

AThe approach is not unrelated to expected utility: A
mathematical operation called the Taylor series expansion
demonstrates that a finite number of moments suffices to
approximate well any smooth expected utility index (see 
the Appendix). This being said, we hasten to add that 
financial economists usually consider only the first two

fstatistical moments (namely, expected payoff and payoff 
variance); two moments would, in general, provide only 
a very crude approximation of expected utility. Also, the
square root of variance—that is, standard deviation—is 
often used as a measure of risk, instead of variance, be-
cause in many realistic cases (examples will follow), stan-
dard deviation is of the same order of magnitude as mean
payoff and, hence, easily comparable.

 Here, we raise the fundamental question of how the
human brain computes choices. Does it follow the ap-
proach in classical decision theory, multiplying state prob-
abilities by utilities of magnitudes to be received in each 
state, or does it rather opt for the financial approach, as-
sessing expected reward and risk (measured as variance), 
to be integrated in a valuation signal that drives choices?

ppThe evidence for one or the other approach is far from 
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We first will discuss how mean–variance–based choices 
may violate some basic principles of rationality. Sub-
sequently, we will elaborate on the advantage of mean–
variance representations of gambles for learning. We then 
will discuss recent empirical work that shows encoding of 
probability, magnitude, mean, and variance of reward in 
the human brain. We next will introduce a new paradigm to 
dissociate learning and decision making on the basis of ex-
pected utility and mean–variance analysis. We will discuss
illustrative behavioral results based on implementation of 
the paradigm. We will close with some final remarks.

Mean–Variance Decisions May Lead 
to Dominated Choices

Decision theorists have long been interested in math-
ematical representations of choices that satisfy a minimum 
of rationality restrictions. These rationality restrictions are 
represented by means of choice axioms. Many expected 
utility decision-making models (including prospect theory) 
satisfy such choice axioms; Von Neumann–Morgenstern 
expected utility derives from the stringest axioms, whereas
prospect theory is founded on far weaker axioms.

One of the weakest axioms is statewise dominance, 
also known as state-by-state dominance (see Harsanyi & 
Selten, 1988). Gamble A has strict statewise dominance
over Gamble B if A gives a better outcome than does B in 
every possible state. The dominance is weak if A gives a
better or equal outcome in every possible state, with strict 
inequality in at least one state. For instance, consider the
following two Gambles A and B. Two states may occur, 
with a probability of .25 and .75, respectively (in fact,
these probabilities are irrelevant for statewise dominance). 
Gamble A pays 5 in the first state and 3 in the second state.
Gamble B pays 4 in the first state and 0 in the second state.
So, Gamble A always pays more than Gamble B. As such,
A statewise dominates B.

Statewise dominance is to be dissociated from stochas-
tic dominance. The contrast between the two will, how-
ever, clarify the true meaning of expected utility theory. A
Gamble C has (first-order) stochastic dominance over D if, 
for any outcome x, C gives a higher probability of receiv-
ing an outcome equal to or better than x under D. In other 
words, the cumulative distribution for Gamble C (FCFF ) 
is smaller than that for D (FDFF )—that is, FCFF (x(( )  FDFF (x(( ). 
Statewise dominance is a stronger concept; in particular, 
it implies first-order stochastic dominance.

The fundamental difference is that statewise dominance 
requires the definition of states, which is not necessary 
for stochastic dominance. Thinking in terms of states is 
the foundation of probability theory and, by extension,
expected utility theory. Under this perspective, random-
ness of a variable is a property of states; the variable is
random only because it is a nontrivial function that maps 
states into payoffs. The concept of stochastic dominance 
does not require one to think in terms of states. Only (the
distributions of) the outcomes are relevant. The same is
true for mean–variance analysis.

When choosing an inferior, dominated gamble, the deci-
sion maker is said to make a dominated choice. The axiom 
of statewise dominance then says that rational agents

clear-cut. We mentioned a number of references that im-
plicitly assume that the human brain separately encodes 
probabilities and (utilities of) magnitudes; there exist also
studies that show separate encoding of expected reward 
and risk in the human brain (Preuschoff, Bossaerts, & 
Quartz, 2006; Tobler et al., 2007) and the nonhuman pri-
mate brain (Tobler, Fiorillo, & Schultz, 2005).

From a normative point, one may argue that the ex-
pected utility approach dominates, because it ensures
that certain basic mistakes will never occur. Indeed, as 
we shall show, choices computed as a trade-off between
mean (expected reward) and variance (of reward) may vio-
late very basic principles of rationality. The violations are
caused, however, not by the use of statistical moments to
determine choice per se, but by the use of only a very lim-
ited number of moments (mean, variance). Efforts have 
also been made to avoid irrational choices by using other 
measures of risk, such as, for instance, the semivariance
(variance computed with observations above or below the
mean only; Ogryczak & Ruszczy ski, 1999).

Nevertheless, computation of choice on the basis of the 
expected utility approach requires that the decision maker 
keep track of the probabilities of all possible states, a 
rather memory-intensive exercise. In contrast, the mean–
variance approach requires encoding of only two basic
numbers. Matters become even more complex when con-
sidering learning. In the absence of any specific link be-
tween the state probabilities (except that they add up to 1),
the expected utility person has to update the probability 
of each state separately. If the number of states is large, 
the situation becomes untenable: Even with a (countably)
infinite number of outcome observations, the expected 
utility decision maker will generically not learn the true 
probabilities (Diaconis & Freedman, 1986). Contrast
this with a mean–variance decision maker who uses the 
simplest of learning algorithms—namely, the Rescorla–
Wagner rule—to estimate the expected reward and risk 
(Rescorla & Wagner, 1972). This rule will generate pre-
cise estimates even after a few observations.

Expected utility theory and mean–variance preference
theory differ also in the way they induce risk aversion. Ex-
pected utility theory predicts that risk aversion is related 
to the curvature of the utility function. The faster marginal
utility decreases as a function of payoff, the higher risk 
aversion is. As such, one should be able to predict some-
one’s risk attitudes from choices not involving any uncer-
tainty. Specifically, to predict risk aversion, one merely
has to observe a decrease in willingness to spend effort
as the subject becomes richer. To date, nobody has con-
vincingly been able to do so. The link between decreasing
marginal utility and choice under uncertainty is absent in
mean–variance choice theory. The link is also not as tight
in prospect theory (Kahneman & Tversky, 1979), where 
weighing of the state probabilities interferes to induce risk 
aversion (see the Appendix).

The goal of this article is not only to clarify these is-
sues, but also to propose a paradigm that could effectively
determine whether choice is computed on the basis of the
expected utility approach or on the basis of the mean–
variance approach. The remainder is organized as follows. 



EXPECTEDXPECTED UUTILITY ANDNDAA MEANNAA V–VARIANCENCEAA APPROPPROAOO CHESCHES 365365

By construction, expected utility theory does not vio-
late the axiom of statewise dominance, provided the util-
ity function is strictly increasing. Take someone with a 
simple utility function—namely, u √x√√√ , where x denotes 
the payoff. The value of a gamble for this expected utility
agent is VEUVV E[u(x(( )] E(√x√√√ ). The value of A is thus
VEUVV 0.20√2√  0.28. The value of B is VEUVV 0.20√1√
0.20. The agent chooses A instead of the dominated lot-
tery B. This can be shown to be true for any expected util-
ity decision maker.

Figure 2 provides one way to graphically represent how 
an expected utility agent thinks about this particular prob-
lem. Gambles can be represented by circles. Circular seg-
ments denote states of the world; they are indexed by the 
symbol inside the segment (1 and 2). The size of a circular 
segment is proportional to the belief that the correspond-
ing state will occur. The expected utility decision maker 
first compares the payoffs in each state. Payoffs are distin-
guished by color: Yellow denotes €0, blue €1, and orange 
€2. He or she will recognize that the payoff is the same in
State 2, but higher for Gamble A in State 1. Hence, A is 
strictly preferred.

If humans are mean–variance optimizers, we should 
observe dominated choices. If expected utility is a bet-
ter model of human decision making, dominated choices 
should be nonexistent. Numerous behavioral studies have 
reported that humans routinely violate this dominance
principle (Birnbaum & Navarrete, 1998; Mellers, Ber-
retty, & Birnbaum, 1995).

So, Why Mean–Variance Preferences?
The dominated choice argument is damaging for deci-

sion making based on mean–variance optimization. So,
why would the brain choose to encode expected payoff and 
payoff variance, the building blocks of mean–variance pref-ff
erences, instead of probabilities and utilities (magnitudes), 
the components needed to compute expected utility?

One argument in favor of representation of gambles in 
terms of mean payoff and payoff variance is that it facili-
tates learning. To see this, let us first go back to expected 
utility theory. This theory is based on the idea that there

should never make dominated choices. It is motivated 
by the premise that rational agents should always prefer 
more over less (nonsatiation). In terms of utility theory, 
the axiom states that utility must continue to increase with
payoff. If the utility function u is differentiable, this means
that the first derivative u is positive everywhere.

The problem with choice based on a trade-off between
expected (mean) payoff and variance (risk) of payoff is
that it may violate the axiom of statewise dominance. Here
is an example. Consider the following two-outcome gam-
bles: A pays 2 and B pays 1 in the first state; both A and 
B pay zero in the second state; the first state has a prob-
ability of .20 of occurring; the second state occurs with a
probability of .80. Obviously, A statewise dominates B.
(To determine the statewise dominance, we did not need 
the probabilities, but we shall need those for the mean–
variance analysis.)

How would a mean–variance optimizer evaluate these two
gambles? The value V of a gamble for a mean–variance opti-
mizer can be computed by subtracting the risk (measured as 
standard deviation ) from the mean : VMRVV b . Here,
the coefficient b measures the risk aversion; if b is high, our 
agent penalizes risk more and, hence, is more risk averse;
if b is actually negative, our agent is risk seeking. Assume
that b 2. The mean payoff  and standard deviation  for 
A equal 0.4 and 0.8, respectively. For B, the numbers are 0.2
and 0.4. A graphical representation of the trade-offs between 
expected payoff and risk is given in Figure 1. Because b 2,
VMRVV 0.4 2 0.8 1.2 for Gamble A and VMRVV
0.2 2 0.4 0.6 for B. Thus, our agent assigns a higher 
value to B than to A and, hence, will decide to go for B. This
choice is statewise dominated, however.

It can easily be shown that for any risk aversion param-
eter b 0.5, B will be preferred to A. In other words, if a
decision maker is sufficiently risk averse, he/she will pre-
fer B because this gamble entails lower risk. In fact, it can 
be shown that statewise-dominated gambles can always be
found for any mean–variance optimizer and that there are
many of those (Borch, 1969).

Gamble A
 = 0.4;  = 0.8

VMR = –1.2

Gamble B
 = 0.2;  = 0.4

VMR = –0.6

Figure 1. Representation of gambles within the mean–variance 
preference model. Gamble A dominates, but B is preferred.

Gamble A
“€2 if State 1;

Nothing otherwise”
VEU = 0.28

Gamble B
“€1 if State 1;

Nothing otherwise”
VEU = 0.20

1

2

1

2

Figure 2. Representation of gambles within the expected util-
ity model. States are identified by numbers (1 and 2); payoffs are
identified by colors: yellow €0, blue €1, and orange €2. 
Gamble A dominates and is preferred to Gamble B.
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states. The value of the gamble is then computed by mul-
tiplying the utility of the payoff in each state by the belief 
that the state occurs and adding the results across states.

For instance, consider a Gamble X that pays €2 if the 
temperature tomorrow is equal or above 19ºC and nothing 
otherwise and another Gamble Y that pays €2 if the tem-

are common, fundamental states of nature that underlie all 
gambles. The expected utility maximizer first has to pon-
der what these states of nature are and what probabilities 
to assign to each of them. When faced with a particular 
gamble, the expected utility maximizer will then deter-
mine how much this gamble pays in each of the possible

A Payoff (€)

Gamble X
Gamble Y

€2

€0

16 17 18 19 20 21 22 23

Temperature (ºC)

B

Gamble X
“€2 if temperature  19º;

Nothing otherwise”

Gamble Y
“€2 if temperature  20º;

Nothing otherwise”

17
18

19

20
21

22

23

16 17
18

19

20
21

22

23

16

C

 = 1.56
 = 0.82

 = 1.16
 = 0.99

Figure 3. State-space conceptualization of random payoffs. (A) Maps be-
tween states and payoffs define gambles. (B) Expected utility representation
of gambles. (C) For comparison: mean–variance representation of the same 
gambles.
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Just as Bayesian learning can become a powerful infer-
ence tool in a complex world where outcomes may be gen-
erated by common causes (see, e.g., Hampton, Bossaerts,
& O’Doherty, 2006), expected utility theory facilitates 
evaluation of uncertainty. Imagine, for instance, that the 
agent has always chosen Gamble X in Figure 3 in the past.
The expected utility maximizer learns about the chances
of winning by learning about the probabilities of each of 
the states (temperature levels). If asked what the chance is 
that GambleY will pay off, the expected utility maximizer 
will apply his or her knowledge of the probabilities of the 
temperature levels to induce an answer.

Compare this with the mean–variance optimizer. Since 
he or she has never seen any outcome for Gamble X, he or 
she has no idea about the expected payoff and payoff vari-
ance on Y. If he or she were to realize that there is a com-
mon cause (same states) behind the payoffs on Gambles X 
and Y, he or she would be able to obtain a good estimate 
of the expected payoff and the risk of Y on the basis of 
outcome observations for X.

The distinction between the expected utility and the 
mean–variance approaches to decision making is also anal-
ogous to the distinction between reflective and reflexive 
learning (Daw, Niv, & Dayan, 2005). The mean–variance 
approach is fast and easy, like reflexive learning, but subject 
to mistakes; the expected utility approach is slow and com-
plicated, like reflective learning, but powerful. The mean–
variance approach may be called heuristic, whereas the
expected utility approach is formal (Kahneman & Freder-
ick, 2002). The reflexive/reflective learning and heuristic/
formal decision-making approaches are examples of the
dual-system theory of cognition (Evans, 2003).

A final remark on the differences between the expected 
utility and the mean–variance theories concerns risk aver-
sion. The two theories incorporate risk aversion (or risk 
seeking, for that matter) in fundamentally different ways.
In expected utility, risk aversion is the consequence of 
nonlinearity in the valuation of magnitudes of outcomes.
Specifically, when the utility function u of the payoff x is 
strictly concave in the payoff, the agent will exhibit risk 
aversion: He or she will favor risk-free gambles when al-
ternative, risky gambles return the same payoff on average.
In words, strict concavity means that the marginal utility 
of an extra payment declines with the payment amount. 
Mathematically, if u is twice differentiable in x, strict con-
cavity obtains if the second derivative u is negative. The 
square root function [u(x(( ) √x√√√ ] from the illustration in
the previous section provides an example of a strictly con-
cave function.

It may seem strange that risk aversion is determined 
solely by nonlinear valuation of outcomes. It is all the
stranger because this nonlinearity has nothing to do 
with uncertainty. Specifically, risk aversion is not the re-
sult of biases in beliefs about the likelihood that states
will occur.1

In contrast, in mean–variance preference theory, risk 
aversion is the result of the penalty imposed on risk. Valu-
ation V is based on a trade-off between mean and vari-
ance (standard deviation ): VMRVV b , where b is the
penalty imposed on risk. The higher b is, the more risk is

perature tomorrow is equal to or above 20ºC and nothing 
otherwise. Temperature levels can be considered to be the 
underlying states of nature for the gambles at hand, and 
the payoffs on the gambles can be represented as a map-
ping from these states to €0 or €2 (see Figure 3A). (For 
simplicity, we limit our attention to temperatures ranging 
from 16ºC to 23ºC.)

These two gambles can then be represented in a circle 
paradigm by letting the circular segments correspond to
temperature levels; the temperature level inside a segment 
indicates what state the segment refers to. We now let color 
denote payoffs: yellow for €0 and orange for €2. Imagine 
now that our agent does not perfectly know the chances
of each of the states (temperature levels). Our agent will
learn as follows. He or she will record outcomes (tem-
peratures) and use those to update his or her belief about
the temperature levels. Effectively, each temperature level 
becomes a parameter, and the agent learns about each pa-
rameter separately.

One can easily see that such a learning strategy may be-
come problematic. In our example, we limited our atten-
tion to eight temperature levels and, hence, seven param-
eters (one probability for each temperature level, except 
for the last one, where the probability can be inferred from
the fact that probabilities should add up to 1). After, say, 
7 days, our agent will have recorded only 1 observation on 
average per parameter, a rather dismal sample size. In re-
alistic situations, the number of possible states and, hence,
the number of parameters are obviously far higher. With 
1,000 states, it takes 999 observations to obtain a ratio
of observations to parameters equal to just 1. It becomes 
questionable whether this approach allows someone to
learn anything at all! A formal treatment can be found in
Diaconis and Freedman (1986).

As a result, the expected utility maximizer will have
a hard time learning to correctly value risky gambles.
What about the mean–variance optimizer? This agent is 
interested only in estimates of the mean payoff and of the
payoff variance (or its square root, the standard devia-
tion; see Figure 3C). These two parameters can easily be 
learned from observed outcomes, using simple reinforce-
ment learning algorithms. The expected payoff can be es-
timated from the sample mean payoff of repeated play of 
the gamble, and the payoff variance can be estimated from
the sample variance. With independent sampling, both the
estimated mean and the variance will quickly converge to 
the true mean and variance, by the law of large numbers.

Note the fundamental difference in perspective between 
expected utility theory and mean–variance theory. In the
former, all uncertainty about outcomes (payoffs) of differ-
ent gambles can be reduced to the uncertainty of common
states of nature. States of nature are effectively the deeper 
cause of outcome variation. In the latter, the decision 
maker considers only outcomes and learns about these.

There is an analogy between decision making based 
on the expected utility approach and learning based on 
Bayesian updating. Both perceive deeper causes behind 
observable outcomes. For the expected utility decision 
maker, these causes are referred to as states of nature. The 
Bayesian learner thinks of them as parameters.
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recorded using fMRI. Levels of reward magnitude and 
probability were manipulated experimentally by chang-
ing number and shapes: The number of circles informed 
the subjects about reward magnitude, whereas color indi-
cated probability (or the reverse, for the other half of the 
subjects). Effects of payoff magnitude, probability, and 
expected value were observed in distinct regions within
the striatum and lateral prefrontal cortex (see Figure 4, re-
produced from Tobler et al., 2007). A link with probability 
also emerged in the medial prefrontal cortex. Hemody-
namic response in the lateral orbitofrontal cortex depended 
on an inverted-U function of probability, suggesting that 
this region may be involved in risk evaluation.

It is worth noting, however, that gambles have gener-
ally been represented with stimuli that separately convey
probabilities and magnitudes. So, there is the possibility
that the presence of activations correlating with probabili-
ties and magnitudes is due to the way the information is
presented from which the brain can infer expected reward 
and variance. That is, the brain may be “forced” to en-
code probabilities and magnitudes. Studies that analyze
neuronal activity in terms of expected reward and vari-
ance have invariably presented gambles in the same way. 
Even when probabilities are indirectly conveyed—for ex-
ample, through cards in a card game (Preuschoff et al., 
2006)—the most immediate translation of the stimuli is to 
probabilities, whereas the mapping to payoff variance, in
particular, is far from straightforward. As such, it remains 
unclear to what extent the human brain favors an approach
to computing value of risky gambles that is based on ex-
pected utility theory or on mean–variance modeling.

As was stated before, in expected utility theory, risk 
sensitivity is caused by the curvature of the utility func-
tion. In mean–variance preference theory, risk aversion 
is the result of a penalty imposed on variance. This re-
quires that variance be encoded separately from expected 
value. If the expected utility theory is true, neuroscientists
should observe only brain activity related to the expected 

penalized and, hence, the higher the risk aversion exhib-
ited in choices is.

One can interpret the multiplication b  in this valuation
equation as a biasing of risk assessment by means of the
coefficient b. As such, b  corresponds to subjective risk 
assessment. Hence, in mean–variance choice theory, risk 
aversion is the result of belief biases. In particular, risk 
aversion increases with overassessment of risk.

Simultaneous Encoding of Probability, 
Magnitude, Expectation, and Reward Variance

To date, it is not known whether the human brain com-
putes value primarily on the basis of an expected utility
approach or on the basis of a mean–variance approach.
Neurobiological studies of brain activation in the context 
of risk generally analyze the data in terms of one or the 
other approach only. Studies that use the expected utility
approach (Knutson, Taylor, Kaufman, Peterson, & Glover,
2005; Yacubian et al., 2006; Yacubian et al., 2007) cor-
relate activation with probabilities and magnitudes (or 
utilities). For instance, Knutson et al. reported that effects
of payoff magnitude and probability were preferentially
observed in the nucleus accumbens and the medial pre-
frontal cortex, respectively. Studies that follow the mean–
variance approach (Huettel, Song, & McCarthy, 2005; 
Paulus, Rogalsky, Simmons, Feinstein, & Stein, 2003;
Preuschoff et al., 2006; Rolls, McCabe, & Redoute, 2008)
identify neurocorrelates of expected reward and/or risk.
For instance, expected value correlates with activity in the
striatum, and risk correlates with activity in the striatum
and insula (Preuschoff et al., 2006; Preuschoff, Quartz, &
Bossaerts, 2008).

Studies that look at all aspects of decision making under 
uncertainty simultaneously (probability, magnitude, ex-
pected reward, and risk) are rare (for a review, see Knut-
son & Bossaerts, 2007). One important exception is To-
bler et al. (2007). In this study, subjects observed abstract
shapes representing gambles while brain activation was 

A B

Figure 4. Brain activation related to payoff magnitude, probability, and expected value 
within the striatum (A) and the lateral prefrontal cortex (B). From “Reward Value Coding 
Distinct From Risk Attitude-Related Uncertainty Coding in Human Reward Systems,” by
P. N. Tobler, J. P. O’Doherty, R. J. Dolan, and W. Schultz, 2007, Journal of Neurophysiology,
97, pp.77 1626–1627. Copyright 2007 by The American Physiological Society. Reprinted with 
permission.
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subjects did not know the composition of the bin—that is,
how many balls of each color there were.

We occasionally changed the bin. The period of time
that we kept the bin the same was referred to as a trial. 
Each trial consisted of a sampling period and a playing 
period (see Figured 5).

Within a trial, the subjects were initially given the op-
portunity to sample the bin, as much as they liked, though
at a small cost of 0.01 Frs (Swiss francs) per sample. With 
each sample, a ball was drawn from the bin (with replace-
ment), and the payoff, but not the color of the ball, was
revealed (see “Sampling period,” Figure 5).

Once the subjects decided not to sample anymore, we
offered them a chance to buy into the gamble. We imple-
mented a posted-price mechanism: We quoted a price, and 
the subject decided to take the offer or leave it. If the sub-
ject bought the gamble, we played it. We added the gamble 
payoff to, and subtracted the gamble price from, the play
money. Otherwise, the subject kept the play money level.
We repeated this five times with different prices, randomly 
chosen between the minimum and the maximum possible 
payoffs (see “Playing period,” Figure 5).

We preferred a posted-price mechanism for eliciting 
value over the usual incentive-compatible mechanisms
whereby subjects are asked to offer a price. Our prefer-
ence was motivated by ecological relevance. Indeed, most 
subjects rarely have to offer prices in daily life (when, say, 
buying milk in a supermarket); instead, prices are posted, 
and subjects decide whether to buy or not.

At the end of a trial, either we changed the composition
(number of balls of each color and number of colors) and 
the payoffs on the balls (e.g., Trials 1 and 3 in Figure 6),
or we changed only the payoffs (e.g., Trials 2 and 4 in the 
same figure). The subjects were told explicitly when this 
happened and which case applied.

Consequently, we effectively created a situation in
which the subjects should have been fully aware of the 
underlying structure: They knew the states and the pay-

utility of an option. If the second model is correct, two 
signals should emerge in the brain: one for expected value 
and the other for a risk measure such as variance. As it
is, data slightly favor the latter hypothesis, because sepa-
rate risk (variance) signals have been detected (Preuschoff 
et al., 2008; Tobler et al., 2007). Separate signals for ex-
pected value and variance have also been observed in a
learning task. Indeed, a recent fMRI study has revealed 
that prediction error for expected value is related to ac-
tivity in the striatum (a dopamine projection area gener-
ally understood to be involved in reward reinforcement 
learning; McClure, Berns, & Montague, 2003; O’Doherty
et al., 2004), whereas prediction error for variance is re-
lated to activity in the insula and the inferior frontal gyrus
(d’Acremont, Lu, Li, Van der Linden, & Bechara, 2007). 
Incidentally, the ubiquitous use of mean–variance analysis 
in the financial industry has led some to conjecture that
this is actually the approach the human brain takes to de-
termine choice under uncertainty (Dickhaut, 2008). The
argument is that humans prefer to use computational tools 
that are based on principles employed by their brains.

A New Experimental Paradigm
Experimental design. To adjudicate between the ex-

pected utility and the mean–variance valuation principles,
a new paradigm is needed that focuses on the two main 
differences—namely, potential of statewise dominated 
choice and, foremost, learning. We will propose one such 
paradigm here and will discuss the behavioral results of 
its implementation.

In our paradigm, states were represented by colors of 
balls in a bin, whereas payoffs (outcomes) were indicated 
by numbers on the balls. Payoffs were the same for all 
balls of the same color. Gambles were draws (with re-
placement) of a single ball from the bin; the number on the
drawn ball determined the payoff. The subjects knew what
colors (states) were in a bin at any moment and which 
payoff corresponded to each of the colors. However, the 

25 43 25 43

Do you want to sample?

Yes No Yes No

Do you want to pay 40 Frs to play this bin?

25 43
No outcome No outcome

Your net payoff is 3 Frs.

Your net payoff is 0 Frs.

Sampling period Playing period

Figure 5. Sampling and playing periods within a trial.
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E1. As long as the composition of the bin remains un-
changed, expected utility maximizers will never 
resample when the mapping from states to pay-
offs (numbers on the balls) changes.

E2. The length of sampling (number of times they 
sample) depends only on the number of states 
(number of colors in a bin).

Resampling is unnecessary (Feature E1) because expected 
utility decision makers know the composition of the bin 
(up to a certain level of precision). They need merely to 
apply the new mapping from states (colors) to payoffs in
order to revalue gambles after a change in this mapping. 
The second feature presupposes that subjects stop sam-
pling after their predictions reach a certain precision. Pre-
cision is measured in terms of the probabilities that a state
(color) is drawn.

As was explained before, expected utility decision mak-
ers will never buy statewise dominated gambles. A simple 
implication for choice is the following:

E3. Expected utility maximizers will never buy domi-
nated gambles (where the price is at least as much
as the highest possible payoff across all states) or 
pass on gambles dominated by their price (where 
the price is, at most, equal to the lowest possible 
payoff across all states).

In contrast, mean–variance optimizers focus on the dis-
tribution of payoffs, ignoring the underlying structure 
(mapping from states to payoffs). If they care only about
the first two moments of the distribution, they will limit 
learning to the payoff mean and payoff variance. This they 
can accomplish using simple reinforcement learning al-
gorithms such as Rescorla–Wagner (Rescorla & Wagner,
1972). But since they ignore the underlying states, mean–
variance optimizers do need to relearn each time the map-
ping from states (colors) to payoffs changes, even if noth-
ing about the states themselves (number of balls of each
color) changes. Also, in determining how long to sample, 
the number of states is irrelevant for a mean–variance op-
timizer. Instead, the variance of the payoff is relevant (pre-
cision of estimates of the mean payoff depends on it), as
is the kurtosis (the fourth moment, on which precision of 

offs in each state. At the same time, all the subjects ever 
saw were payoffs; they never observed the states directly.
They could have opted to ignore the states, effectively 
becoming mean–variance optimizers. Or they could have
inverted payoffs for states, to apply the expected utility 
approach.

Bins were built in the following way. We first chose 
among the following number of states (colors): 2, 3, 5, or 
10. A fixed set of probabilities (number of balls of a given
color) was associated with each number of states. For in-
stance, for three states, we chose p1 .25, p2 .50, and 
p3 .25. Subsequently, we assigned specific colors (from
among 10 colors) to these probabilities. This defined a 
particular instance of a bin. Specific gambles were then 
constructed by assigning payoffs to colors in the bin in
order to obtain a particular standard deviation (4, 8, or 12)
and a mean chosen from a uniform distribution (ranging 
from 26 to 74 Frs).

Whenever we changed only the payoffs, we merely 
selected different payoffs for each of the colors, keeping 
the number of colors (states), the number of balls of each 
color (state probabilities), and the payoff standard devia-
tion the same; only the mean payoff changed. Whenever 
we changed the composition of the bin, we chose a new 
number of colors (states) with its associated probabili-
ties, assigned new colors to each of the probabilities, and 
picked a new payoff standard deviation.

Two different bins were built for each combination of 
number of states (colors) and payoff standard deviation.
Thus, these two dimensions were orthogonalized. This
makes in total 24 bins. For each of these bins, we changed 
payoffs once without changing the composition of the 
bin, to generate a different mean payoff. In total, we thus
generated 48 trials per subject. The subjects were paid for 
performance. At the end of the experiment, they received 
one tenth of their net play money in real currency.

The interesting aspect of our paradigm is that expected 
utility and mean–variance models predict very different be-
havior. In particular, while sampling, expected utility sub-
jects should infer from payoff which state has occurred, to
keep track of the states (like Bayesians, they solve an inverse
problem) and their frequency of occurrence. Therefore, two
distinct features should characterize their decisions:

Bin 1 (States = 2, SD = 8) Bin 2 (States = 10, SD = 8)

New composition, New payoffs

Sampling Playing Sampling Playing Sampling Playing Sampling Playing

New payoffs only New composition, New payoffs New payoffs only

25 43 83 65 42
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67

59
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55

63

41

53
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49

35

53

48

45

41

Trial 1 Trial 2 Trial 3 Trial 4
Time

Figure 6. Time line of the experiment.
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the price equaled the lowest possible payoff). So, even if 
the subjects were mean–variance optimizers otherwise,
they paid sufficient attention to states not to be frequently 
subject to the most damaging feature of this type of deci-
sion making, consistent with Hypothesis E3. Our findings 
call into question the economic relevance of statewise 
dominance mistakes reported in the literature (Mellers 
et al., 1995).

However, the probability for a subject to resample when 
we changed the labels (payoffs) of the balls in the bin, keep-
ing the composition of the bin the same, was above 50%
(dashed line in Figure 7). This indicates that the subjects 
partially relied on mean–variance optimization (Hypoth-
esis M1). Yet the probability to resample also increased 
with the number of states. There is thus a surprising inter-
action with state complexity (number of states) that is not
predicted by mean–variance optimization (M2) alone.

estimates of the variance depends). Often, there is a func-
tional relationship between kurtosis and variance, such as 
with the Gaussian distribution; in those cases, effectively 
only variance is needed. These considerations lead to the
following predictions:

M1. Mean–variance optimizers resample even if the
underlying state structure (number of colors and 
number of balls of each color) does not change.

M2. Sampling length depends on moments of the
payoff distribution, such as variance.

As was mentioned before, mean–variance optimiz-
ers ignore states and, as a result, may end up making
statewise-dominated choices:d

M3. Mean–variance optimizers may purchase gam-
bles at prices at least as high as the highest pos-
sible payoff or pass on gambles at a price at most 
equal to the lowest possible payoff.

Results. Twenty-seven subjects (10 women, 17 men)
were recruited for the study. Twenty-four participants were 
students from the Swiss Federal Institute of Technology. 
The remaining 3 participants were scientific collaborators
working at the Swiss Federal Institute of Technology or the 
University of Lausanne. The mean age was 24 years. The 
study was approved by the ethics committee of the Swiss
Federal Institute of Technology. The decision-making task 
was programmed in E-Prime and run on location at the 
Laboratory for Decision Making Under Uncertainty. The
mean pay-for-performance was 69 Frs, with a minimum 
of 47 Frs and a maximum of 91 Frs.

We observed very few cases in which the subjects chose
statewise-dominated gambles (Hypothesis M3), suggest-
ing that they paid attention to states and the payoffs as-
sociated with each state. On average, the subjects made
4.3% buy errors (buying a gamble that was dominated by 
its price) and 2.8% pass errors (passing on gambles when 
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ever, and envisage the possibility that the brain actually 
uses both approaches. As we discussed above, the mean–
variance approach has the advantage of speed, certainly
in a learning environment, but it is prone to mistakes. In
contrast, learning in the expected utility approach is cum-
bersome but allows for powerful extrapolation when new 
gambles (defined on the same state space) are presented. 
It cannot be excluded that the human brain is capable of 
doing both, even simultaneously, emphasizing the output
of one or the other, depending on the situation.

This suggestion amounts, of course, to an application of 
dual-system theory of cognition (Evans, 2003) to choice
under uncertainty. It is analogous to other substantiations 
of dual-system theory, such as reflexive/reflective learn-
ing (Daw et al., 2005) or heuristic/logical problem solving 
(Kahneman & Frederick, 2002).

The experimental findings that we reported on here pro-
vided corroborating evidence for a dual system for deci-
sion making under uncertainty. Aspects of subjects’ deci-
sions supported expected utility, whereas other aspects
indicated mean–variance analysis. We observed that when
the number of states increased, subjects tended to rely
more on mean–variance analysis. Because expected util-
ity analysis is more demanding when the number of states 
is high, this change might be explained by the limited ca-
pacity of human information processing. In this context, it
is interesting to note that we observed a significant effect
of payoff standard deviation on sampling for 5 states; the 
effect became even more pronounced for 10 states. This 
may be explained by the fact that effective human working
memory is limited to seven plus/minus two items (Miller,
1956). Further research is needed to provide explicit as-
sociation of our result with working memory capacity.
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APPENDIX
Formal Definitions of Expected Utility and Mean-Risk Models

Here, we will provide formal definitions of expected utility and mean-risk modeling. We will
also show how the two models are related, by means of Taylor series expansions. In expected util-
ity (EU) theory, the value V of an option is defined as the expectation of the utility of the payoff x
across states:

V E u x p u xs s
s

n

EU ,
1

(1)

where n is the number of states, ps the probability of state s, and xsx the return associated to state s.
Prospect theory (PT) is an amendment to this basic approach, whereby probabilities are also 

transformed:

V w p u xs s
s

n

PT ,
1

where w is the probability-weighting function. (Unlike in expected utility theory, u is usually called 
the value function in prospect theory.) In standard expected utility theory, risk attitudes are gener-
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ated through nonlinearities in u. Specifically, if u is strictly concave (meaning that it increases at 
a decreasing rate), the resulting choices under uncertainty will reflect risk aversion. In prospect 
theory, risk sensitivity results from a combination of nonlinearities in the value function and the 
presence of a probability-weighting function.

In mean-risk (MR) models, the value of a risky option is expressed as a trade-off between a 
return and risk measure (Bell, 1995):

V r x R xMR ( ) ( ), (3)

where r denotes the return function and R the risk function.
In certain conditions, the two models become equivalent. For instance, if the utility function is

quadratic,

u x ax bx c( ) ,2 (4)

the expected utility can be written as a mean-risk model:

V E u x u aEU ( ) ( ) ,2 (5)

where  and 2 are the expected value and variance of the payoff x.
In general, utility functions can always be approximated by means of a Taylor series

expansion:

u x u u x u x( ) ( ) ( ( ))( ) )(1
2

2, (6)

where u and u denote the first and second derivatives of u. Taking the expected value of the util-
ity, we obtain

V u uEU ,( ) ( )1
2

2
(7)

which has the form of a mean-risk model. As such, valuations from expected utility theory can 
always be approximated with valuations from the mean-risk approach.

The mean–variance model is a special case of the mean-risk model. In it, values are computed 
as follows:

V bMR ,2 (8)

where b reflects a penalty for risk, and hence, if b 0, values will generate risk avoidance. This 
mean–variance model is the valuation approach of choice in the area of finance.

APPENDIX (Continued)
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