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Abstract. Weighing is a common task in any chemical

laboratory and weighing data are associated with some

uncertainty, as this is common with all other working

procedures and their data. This paper presents the influ-

ence factors which are part of the combined measure-

ment uncertainty of a mass determination and their

interplay, namely the technical specifications of the

balance (repeatability, nonlinearity, sensitivity toler-

ance, and temperature coefficient of the sensitivity) and

the effect of air buoyancy. Depending on the net and

gross weight, the densities involved (density of air

and of the weighing object in relation to the density

of the reference weights) and the uncertainties of these

densities the relative uncertainty of weighing data is

often in the 10�5 to 10�4 range (10 to 100 ppm). It

must be kept in mind that such low values can only

be obtained with simple weighing goods, i.e. in the

absence of disturbances such as electrostatic charges,

air drafts, evaporation, or water adsorption phenomena.

Key words: Mass determination; weighing; uncertainty; balance;

air buoyancy.

Weighing, i.e. the determination of mass, is a common

operation in the analytical laboratory and perhaps the

one which can be performed with the lowest uncer-

tainty. As it is the case with all measurement tasks, a

weighing result has a certain uncertainty even though

it is small. The uncertainty comes from a number of

physical and technical features of the balance and

from the air buoyancy which is the main bias effect.

So far they have never been presented thoroughly in a

journal devoted to analytical chemistry. A discussion

can be found in the proceedings of a conference held

in Broadbeach in 2001 [1]. The EURACHEM=CITAC

Guide ‘‘Quantifying Uncertainty in Analytical Mea-

surement’’ [2] presents the uncertainty of weighing in

few words only and air buoyancy is not discussed at

all. The book by Jones and Schoonover includes a

short chapter on measurement uncertainty without

discussing the details [3].

We present the various influence parameters and

their interplay to the combined standard uncertainty

as well as some practical examples.

Weighing Value and Mass

A contemporary electronic analytical balance does

not directly measure the mass ms of a sample s; instead,

it measures its weight force. Therefore the display

shows the so-called weighing value ws. In most cases

these data are not identical if the sample is weighed in

air because the resulting air buoyancy (in the follow-

ing termed buoyancy) gives rise to a deviation, i.e. a
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systematic influence. The effect can simply be mod-

eled as follows:

ms ¼ Bu � ws ð1Þ
where Bu is the buoyancy correction factor for the sam-

ple. In practice, things are more complicated. Electronic

precision balances are calibrated with reference weights

whose mass is known with low uncertainty; however,

they are also subject to buoyancy. They are made from

a steel alloy with a density of 8000 kg m�3. This results

in the fact that the mass of a sample that has the same

density can be determined without the necessity of a

correction because the influence of buoyancy onto the

sample and the calibration weight cancel each other. The

weighing values of objects with a density other than

8000 kg m�3 deviate from their mass. In analytical

laboratories (as well as in everyday life) the majority

of the weighed objects have a lower density than steel

and their weighing value is lower than their mass, i.e. Bu

is >1. The opposite is true for the alloys and pure metals

with densities higher than 8000 kg m�3. Figure 1 shows

the deviation of the weighing value from the mass as a

function of weighing sample density.

The buoyancy correction factor Bu is defined by the

following equation [4] using the densities of sample

�s, reference weight �r and air �a:

Bu ¼ 1 � ð�a=�rÞ
1 � ð�a=�sÞ

¼ �sð�r � �aÞ
�rð�s � �aÞ

ð2Þ

Equation (1) shows the multiplicative relationship

between mass and weighing value. Therefore, the

combined relative standard uncertainty of the mass

uc(ms)=ms can be calculated in accordance to the laws

of uncertainty propagation:

ucðmsÞ
ms

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðBuÞ

Bu

� �2

þ uðwsÞ
ws

� �2
s

ð3Þ

where u(Bu) is the standard uncertainty of the buoy-

ancy factor and u(ws) is the standard uncertainty of

the weighing value. Both uncertainties depend them-

selves on a number of influence parameters.

For the following presentation we assume that the

numerous possible bias effects such as water adsorp-

tion, drifts etc. are less prominent than the influence

parameters discussed below.

The Influence Parameters on the Uncertainty

of the Weighing Value

The weighing operation and the electro-mechanical

design of the balance give rise to various effects which

influence the data obtained. Among these influences

are the repeatability, nonlinearity, sensitivity tolerance

and the temperature coefficient of the sensitivity.

Eccentric load can be another effect. The technical

specifications presented in the following discussion

are valid for the semi-micro electronic balance

Fig. 1. The relative air buoyancy, i.e. the relative difference between weighing value and mass as a function of the sample density for

weighing operations in air, performed on a contemporary electronic laboratory balance (air density¼ 1.01 kg m�3). The reference weights

have a density of 8000 kg m�3, therefore no buoyancy correction is necessary if the sample has the same density. The weighing value of

samples with lower density is smaller than their mass and vice versa
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AT 201 (Mettler Toledo, Greifensee, Switzerland,

www.mt.com) with a maximum load of 205 g but

apply to similar balances of other manufacturers as

well. The influence parameters as discussed below,

however, are the same for other models of balances

that work with electrodynamic compensation (or elec-

tromagnetic force restoration), irrespective of their

construction for the milligram or the ton range.

Table 1 presents typical data of analytical balances.

It is a matter of course that a balance needs to be

calibrated in regular intervals or after a major change

of the environmental parameters. Some types of mod-

ern balances have a built-in and self-activated calibra-

tion routine. The others must be calibrated by the

laboratory personnel or by a technician of the manu-

facturing company.

Repeatability REP

Deviating results are not uncommon if the same

object is weighed under repeatability conditions.

The reasons for this behaviour are of physical nature:

small air drafts present even within the draft shield,

temperature non-equilibria, and electronic noise to

name but a few. In addition there is the resolution of

the digital display but from a practical point of view

this effect is included in the experimental repeatabil-

ity. Expressed as standard deviations s (which are

identical with standard uncertainties u in this case),

the following data are typical for an AT 201 balance if

operated carefully:

– up to 50 g: u(REP)¼ s(REP)¼ 0.015 mg

– from 50 to 200 g: u(REP)¼ s(REP)¼ 0.04 mg

The load levels refer to the gross weight on the bal-

ance platform (tare plus net weight) and are valid for a

complete weighing operation including the determina-

tion of the tare. (A tare operation is also performed

when the empty platform is zeroed.) If the operator

works less carefully or if the climatic conditions in the

laboratory are unsatisfactory the repeatability can be

worse, i.e. the value of s(REP) will be higher and

should be determined experimentally. This is also true

for critical weighing objects such as volatile or hygro-

scopic goods.

Nonlinearity NL

An ideal balance exhibits a perfectly linear relation-

ship between displayed value and the load on the plat-

form. In reality this characteristic curve is not straight

but curved in a certain shape which is not determined

for each individual instrument (although this could be

done in principle). Figure 2 illustrates the ideal and

real characteristic curves. Instead of individual data

Table 1. Typical specifications of electronic analytical balances

Balance type Micro Semi-micro Precision

Weighing capacity 5 g 200 g 1 kg

Repeatability (up to) 0.8 mg (<2 g) 15 mg (<50 g) 1 mg

0.9 mg (>2 g) 40 mg (>50 g)

Nonlinearity (within) 2 mg (<0.5 g) 30 mg (<10 g) 2 mg

4 mg (>0.5 g) 120 mg (>10 g)

Sensitivity tolerance 10 � 10�6 2 � 10�6 3 � 10�6

Temperature coefficient 1.5 � 10�6 K�1 1.5 � 10�6 K�1 2 � 10�6 K�1

Calibration weight density 8006 kg m�3 8006 kg m�3 7900 kg m�3

Standard uncertainty

of reference weight density

10 kg m�3 10 kg m�3 25 kg m�3

Fig. 2. A possible characteristic curve of a balance. For better

clarity the deviations from linearity are disproportionately large
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the manufacturers guarantee maximum deviations

from linearity which will not be exceeded:

– within 10 g: NLmax¼ 0.03 mg (this is also the value

to be used if a sample �10 g is weighed into a tare

vessel of e.g. 150 g)

– within 200 g: NLmax¼ 0.12 mg

These numbers refer to the net mass and need to be

considered twice for each weighing operation because

the deviation from ideality may occur with the deter-

mination of the tare and of the gross weight as well.

The data must be treated as rectangular distributions

[5]. In order to convert them into standard uncertain-

ties it is necessary to divide them by
ffiffiffi
3

p
. Therefore

the nonlinearity contribution of a single reading is:

uðNLÞ ¼ NLmaxffiffiffi
3

p ð4aÞ

For the calculation of a combined measurement

uncertainty it is necessary to use the squared value.

The nonlinearity contribution of a complete weighing

operation adds up to:

u2ðNLÞ ¼ 2
NL2

max

3
¼ 0:67 � NL2

max ð4bÞ

Note: The technical data given above are worst-case

scenarios but they are recommended for everyday use.

Non-linearity is a more complex feature of a balance

as discussed elsewhere [6].

Sensitivity Tolerance ST

The slope of the characteristic curve, i.e. the sensitiv-

ity of the balance, has some tolerance or uncertainty.

For an AT 201 the maximum deviation is 2 � 10�6 of

the net mass, e.g. 2 mg if a sample of 1 g is weighed in.

The sensitivity tolerance is also treated as a rectangu-

lar distribution but it is proportional to the net weigh-

ing value:

uðSTÞ ¼ wnet

STmaxffiffiffi
3

p ¼ wnet

2 � 10�6ffiffiffi
3

p ð5aÞ

u2ðSTÞ ¼ 1:3 � 10�12 � w2
net ð5bÞ

Note: This uncertainty parameter includes the uncer-

tainty of the built-in reference weight as well as the

uncertainty of the process by which the balance

adjusts its sensitivity (the slope) with the help of this

reference weight. This uncertainty term is also known

as u(CAL) [7]; the mathematical treatment of u(ST)

and u(CAL) is identical but the difference is more

than a linguistic one. We tend to use the term

‘‘calibration’’ no longer because first, it does not cover

all influences as just explained, and second, it means

the comparison with a reference without any setting.

However, what is done in the laboratory from time to

time is the adjustment of the balance sensitivity, i.e.

the determination of the sensitivity, including its

proper setting if necessary.

Temperature Coefficient TC

The slope of the characteristic curve is temperature

dependent with a maximum static deviation of

1.5 � 10�6 �C� 1 (static means that the balance is in

the temperature equilibrium with its surroundings).

What is described by TC is in fact the temperature

drift of the sensitivity, and ‘‘temperature coefficient’’

is a somewhat sloppy description of this phenomenon.

This value is proportional to the net weighing value

and is treated as a rectangular distribution. It is advi-

sable to describe the temperature deviation between

calibration and weighing by a rectangular distribution

as well:

uðTCÞ¼wnet

TCmaxffiffiffi
3

p ��Tffiffiffi
3

p ¼wnet

1:5�10�6

3
�T

ð6aÞ

u2ðTCÞ ¼ 0:25 � 10�12w2
net ��T2 ð6bÞ

For operator-calibrated balances �T should be the

maximum temperature fluctuation which occurs in

the laboratory over the day or year. For self-calibrat-

ing balances �T will be lower; the operating instruc-

tion booklet or the manufacturer will give some

information about the temperature drift which triggers

a new calibration (this value can be preset with some

balance models). �T is known in the form �x �C

(e.g. �3 �C) and it is the number x which is used

in Eqs. (6).

Eccentric Load

Another effect which can contribute to the uncertainty

budget of weighing data is eccentric load, a phenom-

enon which occurs when the center of gravity of a

weighing object is not placed vertically above the cen-

ter of the weighing pan. The deviation from the weigh-

ing value to the one found in the center can be as high

as 0.2 mg for the type of balance discussed in this

paper. However, it can be easily avoided by the careful
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placing of the object centrally onto the pan. Therefore

eccentric load is not considered in our discussion.

The variances of repeatability, nonlinearity, sensi-

tivity tolerance, and sensitivity temperature coefficient

are additive since their causes are independent of each

other. They are added up to the combined uncertainty

of the weighing value:

ucðwÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðREPÞþu2ðNLÞþu2ðSTÞþu2ðTCÞ

p
ð7aÞ

With u(REP)¼ s(REP), as discussed above, and the ex-

pressions presented as Eqs. (4b), (5b) and (6b) we obtain:

ucðwÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðREPÞ þ 0:67 � NL2

max

þ 10�12w2
netð1:3 þ 0:25 ��T2Þ

s
ð7bÞ

The Influence Parameters on the Uncertainty

of the Buoyancy Factor

The buoyancy correction factor has been introduced

with Eq. (1) and defined with Eq. (2). Here follows a

simplified derivation of its uncertainty (the accurate

equations are presented in the Appendix): We assume

that the air density and its uncertainty are identical for

the calibration and weighing operations as implied by

Eq. (2). For the calculation of the standard uncertainty

none of the simple rules of uncertainty propagation

can be used because this equation is a combination

of additive and multiplicative relationships. It is

necessary to determine its three partial derivatives:

@Bu

@�s

¼ �að�a � �rÞ
�rð�s � �aÞ2

ð8aÞ

@Bu

@�r

¼ �s � �a

�2
r ð�s � �aÞ

ð8bÞ

@Bu

@�a

¼ �sð�r � �sÞ
�rð�s � �aÞ2

ð8cÞ

The standard uncertainty is then calculated as follows:

uðBuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Bu

@�s

� �2

u2 �sð Þ þ @Bu

@�r

� �2

u2 �rð Þ

þ @Bu

@�a

� �2

u2 �að Þ

vuuuuuut ð9Þ

We obtain:

uðBuÞ¼ �s

�rð�s��aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�að�a��rÞ
�sð�s��aÞ

� �2

u2ð�sÞþ
�a

�r

� �2

u2ð�rÞ

þ �r��s

�s��a

� �2

u2ð�aÞ

vuuuuuut
ð10Þ

Now another simplification is possible: We can set

�r � �a ¼ �r, or vice versa, because (8000� 1.2)

kg m�3 � 8000 kg m�3. This leads to the following

representation of Eq. (10):

uðBuÞ¼ �s

�rð�s��aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��r��a

�sð�s��aÞ

� �2

u2ð�sÞþ
�a

�r

� �2

u2ð�rÞ

þ �r��s

�s��a

� �2

u2ð�aÞ

vuuuuuut
ð11Þ

The negative sign in the term of u(�s) is irrelevant

because it is squared for the uncertainty calculation.

It is obvious that it is necessary to know the den-

sities of air, sample and reference weights as well as

their respective uncertainties in order to calculate the

uncertainty of the buoyancy factor.

Density of Air

The density of air increases with increasing pressure,

decreasing temperature and decreasing relative humid-

ity. The following empirical equation can be used [8]:

�a=kg � m�3 ¼ 10�3 A � p � B � hr � expðC � TÞ
273:15 þ T

ð12Þ

p: air pressure in Pa

hr: relative air humidity in %

T: air temperature in �C
A: 3.4848

B: 9.024

C: 0.0612

The equation is valid for the conditions 90,000 Pa �
p � 110,000 Pa, 10 �C � T � 30 �C, hr � 80%. The

possible deviations are less than 10�4. (A finer ap-

proximation would also include the influence of the

carbon dioxide content.)

For the uncertainty of the air density it is convenient to

calculate the extreme values which may occur in the

laboratory and to treat these data as the boundaries of a

rectangular distribution. The extremes are the combina-

tion of high atmospheric pressure, low temperature and

low humidity on the one hand, and low pressure, high

temperature and high humidity on the other. For the

calculation of the density according to Eq. (12) the mean

values of pressure, temperature and humidity are used.

Density of the Reference Weights

As already mentioned, most reference weights

are made today from a steel alloy with density
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�cal ¼ 8000 kg m�3. Based on measurements made in

the Mettler Toledo laboratories a reasonable standard

uncertainty of this density is 10 kg m�3.

Density of the Sample to be Weighed

This topic is less trivial than it may seem. In many

cases the density is not well known but nobody has the

time and interest to determine it. Good data can be

obtained for liquids quite easily but not for solids. The

densities of formulated drugs, washing powder or tex-

tiles cannot be found in the literature. Even for many

pure chemicals the density is unknown or the reliabil-

ity of the published data is difficult to estimate. We

assume that the object density is only rarely known to

an uncertainty of �1% and that �10% or even worse

is what can be expected in reality. It is then this uncer-

tainty which dominates the combined standard uncer-

tainty of a mass value.

The Equation for the Combined Standard

Uncertainty of Mass Determination

A simple equation was already presented above:

ucðmsÞ
ms

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðBuÞ

Bu

� �2

þ uðwsÞ
ws

� �2
s

ð3Þ

The second term can be noted in more detail by using

Eq. (7a):

ucðmsÞ
ms

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðBuÞ

Bu

� �2

þu2ðREPÞþu2ðNLÞþu2ðSTÞþu2ðTCÞ
w2

s

vuuuuuut
ð13Þ

For the uncertainty calculation we can postulate the

pseudo-identity of mass and weight value: m�w.

This leads to:

ucðmsÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

s

uðBuÞ
Bu

� �2

þu2ðREPÞþu2ðNLÞ

þu2ðSTÞþu2ðTCÞ

vuuut ð14Þ

or, with Eq. (7b) and considering that buoyancy is

only relevant for the net weight:

ucðmsÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðREPÞþ0:67 �NL2

max þ m2
s;net

uðBuÞ
Bu

� �2

þ10�12
�
1:3 þ 0:25 ��T2

�" #
vuuuut

ð15Þ

We refrain from including the equation for u(Bu), i.e.

Eq. (11), into this description of the combined stan-

dard uncertainty of a weighing operation because the

resulting equation looks rather complicated. To per-

form the calculation it is advisable to set up a spread-

sheet table.

Equation (15) is valid for electronic semi-micro

balances with a maximum load of 200 g. As already

explained, we used a standard deviation of the repeat-

ability of 0.015 mg or 0.04 mg, depending on the gross

weight. The maximum nonlinearity was assumed to

be 0.03 mg or 0.12 mg, depending on the net weight.

If these data are used as mg values it is also necessary

to put in the mg value of the net mass ms,net in

Eq. (15).

Unfortunately, it is impossible to set up simple

rules of thumb for the combined standard uncer-

tainty of weighing data. The final number is the

result of an interplay of gross and net weight, the

uncertainty of the air density (i.e. the possible

extreme values of the air density in a certain labora-

tory), the density of the weighing object and the

uncertainty of this density, to name but the most

important influence parameters. They are presented

as a cause-and-effect diagram in Fig. 3. The inter-

play of the technical balance parameters and buoy-

ancy is shown in Fig. 4 for objects of different

densities and with the technical data given in the

legend. In this graph, the combined uncertainty is

dominated by the nonlinearity of the balance up to a

mass of 1 g and for all densities; for objects of 10 g

and more the uncertainty of the buoyancy is pre-

Fig. 3. The cause-and-effect diagram of the main uncertainty

parameters of weighing on an electronic analytical balance
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ponderant, mainly due to the uncertainty of the air

density. However, if the relative uncertainty of the

object density is higher than 1%, if the climatic

properties differ from those of Fig. 4 (higher or

lower variability of pressure, humidity and=or tem-

perature), or if the tare mass is not 0 g but, e.g.,

50 g, the curves have another position within the

diagram.

Examples

Aqueous Solution

3.504 g of an aqueous solution of unknown composi-

tion is weighed into a vessel of 110 g. The mean atmo-

spheric pressure at the location of the laboratory is

101,000 Pa (1010 mbar) with extremes over the year

of �1500 Pa. The temperature is 22 � 3 �C, the rela-

tive humidity is 50 � 25%.

With Eq. (13) the mean air density is calculated

to be 1.19 kg m�3. The extremes are 1.22 kg m�3

(102,500 Pa, 19 �C, 25%) and 1.15 kg m�3 (99,500 Pa,

25 �C, 75%). This gives a standard uncertainty of

the air density of (0.07=2 �
ffiffiffi
3

p
) kg m�3 ¼ 0.02 kg m�3

(note that with a rectangular distribution, half

of the span is divided by
ffiffiffi
3

p
). The density of

water at 22 �C is 998 kg m�3 [9]; we assume that this

density is not known better than �5% because the

composition of the solution is unknown (rectangular

distribution). This gives a standard uncertainty

u(�s)¼ 30 kg m�3.

Equation (8) gives a buoyancy correction factor

Bu¼ 1.00104. Therefore the mass of the solution is

3.504 g � 1.00104¼ 3.508 g. The combined standard

uncertainty of the buoyancy factor according to

Eq. (11) is u(Bu)¼ 4.0 � 10�5. 25% stem from the un-

certainty term of the air density and 75% from the

uncertainty term of the sample density whereas the

uncertainty contribution of the reference weight den-

sity is negligible.

These data are needed for the calculation of the

combined standard uncertainty of the mass of aqueous

solution using Eq. (15):

ucðmÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:042 þ0:67 �0:032 þ35042

�
ð4:0 �10�5Þ2

þ10�12ð1:3þ0:25 �32Þ
�

mg2

s

This gives a combined standard uncertainty of 0.15 mg

(relative uncertainty¼ 4.2 � 10�5 or 42 ppm). It results

mainly (almost 90%) from the uncertainty of the buoy-

ancy, whereas u(REP) yields only 7.5% and u(NL) a

mere 2.8%. The uncertainties of sensitivity tolerance

and temperature coefficient are negligible in this case.

Aluminium Profile

848 mg of a profile made from an aluminium alloy are

weighed into a vial of 3 g. The mean atmospheric

pressure is 95,000 Pa with extremes of �1200 Pa.

The temperature is 20 � 1 �C, the relative humidity

is 60� 10%.

The mean air density is 1.12 kg m�3 with extremes

of 1.14 and 1.10 kg m�3 (96,200 Pa, 19 �C, 50% and

93,800 Pa, 21 �C, 70%, respectively). The standard un-

certainty of the air density is 0.011 kg m�3. The density

of the alloy is 2950 kg m�3 and we assume that this

value is not more accurate than to �1%, giving a

standard uncertainty of 15.6 kg m�3.

The buoyancy correction factor is 1.000240; there-

fore the weight value and mass of the aluminium are

identical if a resolution of 1 mg is sufficient (the buoy-

ancy has an effect of 0.20 mg). The combined stan-

dard uncertainty of the buoyancy factor is 4.6 � 10�6

stemming to 77% from the uncertainty term of the air

density and to 23% from the uncertainty term of the

sample density; again, the uncertainty contribution of

the reference weights is negligible (0.14%).

Fig. 4. The relative mass uncertainty of samples between 10 mg

and 200 g if weighed on a semi-micro balance. Climatic condi-

tions: Pressure 101300 Pa � 1000 Pa, relative humidity 60% �
10%, temperature 25 �C � 1 �C, resulting in a mean air density

of 1.176 kg m�3 with a standard uncertainty of 0.010 kg m�3.

The tare is 0 g and the weighing sample density has an uncertainty

of 1%. The densities of the five curves are noted in the box in

identical order (the lowest one is for gold). With other weighing

and climate conditions the graph looks different. All curves con-

verge below 1 g because the nonlinearity of the balance is the

dominating parameter in this region (NL¼ 0.03 mg). The hump

between 10 g and 100 g comes from the nonlinearity specification

which changes at sample mass 10 g (0.03 mg or 0.12 mg, see text)
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The combined standard uncertainty of the mass

of the aluminium profile is 0.029 mg (relative un-

certainty¼ 3.4 � 10�5 or 34 ppm). In this case, the

repeatability and nonlinearity terms yield 27% and

71%, respectively, of the total uncertainty whereas

the buoyancy term is small with 1.8%.

Due to the small influence of the uncertainty of

buoyancy in this case it is not important if 848 mg of

sodium chloride, aluminium, or gold are weighed under

the same circumstances as described above; the mass

uncertainty is 0.029 mg in all three cases. For gold with

a density of 19300 kg m�3 the contributions of repeat-

ability and nonlinearity are almost identical with 27%

and 72.5% but the buoyancy term is even less, namely

0.2%. For sodium chloride with density 2170 kg m�3

the numbers are 26%, 70% and 3.2%, respectively.

The Relevance of Mass Uncertainties

The combined relative standard uncertainty of many

analytical procedures is 1–5% if the matrix is simple

or even absent (chemicals, drug formulations, alloys,

drinking water). It can reach 30% for sophisticated

analyses (clinical chemistry, forensic science, trace

analysis of environmental samples). In such cases it

is not necessary to consider the uncertainty of weigh-

ing data with typical relative values in the 10�5 to

10�4 range (10 to 100 ppm). If there is a doubt about

the relevance of this uncertainty we recommend to use

a value of 10�4 (100 ppm) relative standard uncer-

tainty for each mass determination in the calculation

of the combined standard uncertainty of the analytical

procedure. If it is then found that the contribution of

the weighings is not negligible, their real uncertainties

should be calculated with Eqs. (11) and (15). If

another type of balance is used the numerical values

of Eq. (15) need to be adapted.

In addition it is necessary to perform the buoyancy

correction with Eqs. (1) and (2) in all cases where the

combined relative standard uncertainty of the analysis

is in the 1ø range. Instead of doing it by calculation it

is also possible to use a mass artefact, i.e. a well-

defined weighing object of known mass and density

which shows preferably a high air buoyancy effect [7].

The uncertainties calculated above are probably the

lowest possible values. In reality the uncertainty will

often be larger, especially with volatile or hygroscopic

objects or in cases of static electric charges on the

surface of non-conducting samples. Objects which

show such unfavourable behaviour must be handled

with special precaution and techniques. Good weigh-

ing practice is a prerequisite for good and consistent

results [10, 11]. This includes also the proper choice

of the balance such as a micro-balance if the sample

mass is small [12].
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Appendix: The Detailed Description

of the Uncertainty of the Buoyancy

Correction Factor

Strictly speaking, Eq. (2) is not exactly true in many

cases because the air density at the moment of cali-

bration, �a;cal, is not necessarily identical with the

density when the weighing operation is performed

�a;weigh:

Bu ¼ �sð�r � �a;calÞ
�rð�s � �a;weighÞ

ð16Þ

The four partial derivatives of this equation are:

@Bu

@�s

¼ �sð�a;cal � �rÞ
�rð�s � �a;calÞ2

þ �r � �a;cal

�rð�s � �a;weighÞ
ð17aÞ
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@Bu

@�r

¼ �s

�rð�s � �a;weighÞ
1 � �r � �a;cal

�r

� �
ð17bÞ

@Bu

@�a;cal

¼ � �s

�rð�s � �a;weighÞ
ð17cÞ

@Bu

@�a;weigh

¼ �sð�r � �a;calÞ
�rð�s � �a;weighÞ2

ð17dÞ

This gives the following standard uncertainty

expression:

This equation is identical with Eq. (11) if �a;cal ¼
�a;weigh ¼ �a, uð�a;calÞ ¼ uð�a;weighÞ ¼ uð�aÞ and �r �
�a ¼ �r.

uðBuÞ ¼ �s

�rð�s � �a;weighÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�r � �a;calÞ

1

�s

� �s � �a;weigh

ð�s � �a;calÞ2

 !" #2

u2ð�sÞ

þ �a;cal

�r

� �2

u2ð�rÞ þ 1 � u2ð�a;calÞ þ �r � �a;cal

�s � �a;weigh

� �2

u2ð�a;weighÞ

vuuuuuuut ð18Þ
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