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Abstract The concept of finitely additive supermartingales, originally due to
Bochner, is revived and developed. We exploit it to study measure decompositions
over filtered probability spaces and the properties of the associated Doléans-Dade
measure. We obtain versions of the Doob–Meyer decomposition and, as an applica-
tion, we establish a version of the Bichteler and Dellacherie theorem with no exoge-
nous probability measure.
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1 Introduction

In the classical theory of probability one often encounters situations in which count-
able additivity fails. Broadly speaking, these fall into two main classes of problems:
those involving duality on the space L∞ and those in which the underlying σ algebra

I am indebted to an anonymous referee for several helping suggestions.

G. Cassese (�)
Università del Salento, Lecce, Italy
e-mail: g.cassese@economia.unile.it

G. Cassese
University of Lugano, Lugano, Switzerland

Present address:
G. Cassese
Dipartimento di Scienze Economiche e Matematico-Statistiche, Ecotekne, via per Monteroni, 73100
Lecce, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159155695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:g.cassese@economia.unile.it


J Theor Probab (2008) 21: 586–603 587

needs to be extended, e.g., to overcome the lack of measurability of some random
quantity. Both situations are well documented in applications. [18] is a recent exam-
ple of the former kind of situations arising in mathematical finance. In the area of
weak convergence it is well known that even the classical empirical process is not
Borel measurable in the space D[0,1] when the latter is equipped with the nonsep-
arable topology induced by the supremum norm. Dudley [14] illustrates a number
of situations relevant for empirical processes in which measurability fails. To over-
come these drawbacks, a new approach, based on outer expectation, was developed
by Hoffmann–Jorgensen and, in a systematic way, in the book by van der Vaart and
Wellner [24]. More recently Berti and Rigo [4] have shown that such a notion of weak
convergence has an exact translation in the language of finite additivity.

In this paper we fix an algebra A of subsets of some set Ω and an increasing fam-
ily (At : t ∈ R+) of subalgebras of A, a filtration (F and Ft will hereafter denote the
σ algebras generated by A and At , respectively). To illustrate our topic, consider the
quantity m(ft ), where f = (ft : t ∈ R+) is an adapted process, and m a finitely ad-
ditive probability on A, that is, m is a positive, finitely additive set function on A (in
symbols m ∈ ba(A)+), and m(Ω) = 1. When dealing with finitely additive expecta-
tion, of special importance are the structural properties of m such as decompositions,
particularly the one of Yosida and Hewitt [25]. In our setting, however, what matters
are the properties of m conditional on At , and the focus then shifts from the finitely
additive measure m to the finitely additive process (mt : t ∈ R+), where mt = m|At ;
or even (mc

t : t ∈ R+), where mc
t and m⊥

t designate the countably and purely finitely
additive components of mt (in the sequel the spaces of countably and purely finitely
additive set functions on an algebra G will be indicated with the symbols ca(G) and
pf a(G), respectively, while P(G) will be used to designate full, i.e., countably addi-
tive, probabilities on G). The inclusion At ⊂ Au for u ≥ t implies mc

u|At ≤ mt and
m⊥

t ⊥ mc
u|At i.e., mc

u|At = mt ∧ (mc
u|At ) ≤ mc

t + (m⊥
t ∧ (mc

u|At )) = mc
t , a conclu-

sion which extends to any decomposition mt = me
t +m

p
t such that m

p
t ⊥ me

u|At ; see,
e.g., Lemma 2. (mt : t ∈ R+) and (mc

t : t ∈ R+) turn thus out being finitely addi-
tive supermartingales, a concept introduced by Bochner in a number of little known
papers—[6–8]—and later revived by Armstrong in [2, 3].

More formally, a finitely additive stochastic process ξ = (ξt : t ∈ R+) is an ele-
ment of the vector lattice

∏
t∈R+ ba(At ) endowed with the order induced by each

coordinate space. ξ is a finitely additive supermartingale if

ξt (F ) ≥ ξu(F ), F ∈At , t ≤ u. (1.1)

The symbol S designates the set of finitely additive supermartingales such that
‖ξ‖ ≡ supt∈R+ ‖ξt‖ < ∞. Without loss of generality, we put A0 = ⋂

t∈R+ At and
A = ⋃

t∈R+ At and define, for F ∈ A and G ∈ A0, ξ∞(F ) = inf{t :F∈At } ξt (F ) and

ξ0(G) = supt ξt (G), a choice that will allow us to replace R+ by R+ = R+ ∪ {∞},
when necessary. We also use the symbols Ω̄ = Ω × R+ and F̄ ≡ F ⊗ {∅,R+}.

We use repeatedly the following corollary of the Hahn–Banach theorem (see, e.g.
[5, 3.2.3(b) and 3.2.10]).

Lemma 1 If �0 ⊂ � are algebras of subsets of some set S and μ0 ∈ ba(�0)+, then
there exists μ ∈ ba(�)+ such that μ|�0 = μ0.
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Although all processes in this paper are indexed by R+, we often do not use but
the order properties of the real numbers so that some of the results that follow carry
over almost unchanged to the case of a linearly ordered index set.

2 Finitely Additive Conditional Expectation

The absence of a satisfactory concept of conditional expectation in the finitely addi-
tive setting, a major argument in favor of countable additivity, is a direct consequence
of the failure of the Radon–Nikodym theorem. The operator defined hereafter, e.g.,
provides an extension of such a fundamental concept, which is suitable for many
analytical purposes but lacks some of the properties which matter for the sake of
its statistical interpretation (a different proof of the following result appears in [10,
Proposition 2.1, p. 27]).

Theorem 1 Let H be an algebra of subsets of Ω , G a sub-σ -algebra of H, and
μ ∈ ba(H)+. Let μ|G decompose as λ+π with λ ∈ ca(G)+, π ∈ ba(G)+, and λ ⊥ π

and define

Iπ = {
G ∈ G : π(G) = 0

}
. (2.1)

If f ∈ L1(μ), there exists a unique μ(f |Iπ ) ∈ L1(λ) such that

μ(f 1I ) = μ
(
μ(f |Iπ )1I

) = λ
(
μ(f |Iπ )1I

)
, I ∈ Iπ (2.2)

and

μ(f 1G|Iπ ) = μ(f |Iπ )1G, G ∈ G (2.3)

μ( ·|Iπ ) : L1(μ) → L1(λ) is a positive linear operator with ‖μ( ·|Iπ )‖ = 1.

Proof Being closed with respect to finite unions, Iπ is a directed set relatively to
inclusion. Since λ ⊥ π and G is a σ -algebra, for each ε > 0, there exists I ∈ Iπ such
that λ(I c) ≤ ε: i.e., λ(G) = limI∈Iπ

λ(IG), G ∈ G. Let f ∈ L1(μ). Any solution
p(f ) ∈ L1(λ) to (2.2) must then satisfy

λ(p(f )1G) = lim
I∈Iπ

λ
(
p(f )1G∩I

) = lim
I∈Iπ

μ(f 1G∩I ), G ∈ G

and is therefore unique P a.s.: by considering f + and f − separately we can (and
will) thus restrict to the case where f ∈ L1(μ)+.

Let μf ∈ ba(G)+ be defined implicitly by letting

μf (G) = lim
I∈Iπ

μ(f 1G∩I ), G ∈ G. (2.4)

The limit in (2.4) exists uniformly with respect to G ∈ G. In fact, I ∈ Iπ implies
μf (I) = μ(f 1I ) and limI∈Iπ

μf (I c) = 0, so that

0 ≤ μf (G) − μ(f 1G∩I ) = μf (G) − μf (G ∩ I ) ≤ μf

(
I c

)
.
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Let 〈Gn〉n∈N ⊂ G be such that limn λ(Gn) = 0 and I ∈ Iπ . Then limn μ(Gn ∩ I ) =
limn λ(Gn ∩I ) = 0, so that limn μ(f 1Gn∩I ) = 0, by absolute continuity of the finitely
additive integral [15, III.2.20(b)]. Then [15, I.7.6]

lim
n

μf (Gn) = lim
n

lim
I∈Iπ

μ(f 1Gn∩I ) = lim
I∈Iπ

lim
n

μ(f 1Gn∩I ) = 0

i.e., μf � λ. (2.2) follows by letting μ(f |Iπ ) ∈ L1(λ)+ be the corresponding
Radon–Nikodym derivative; (2.3) follows from IG ∈ Iπ whenever I ∈ Iπ and
G ∈ G. μ( ·|Iπ ) is linear and positive as μ is. If f ∈ L1(μ),

λ
(∣
∣μ(f |Iπ )

∣
∣
) ≤ lim

I∈Iπ

λ
(
μ

( |f ||Iπ

)
1I

) = lim
I∈Iπ

μ
(|f |1I

) ≤ ‖f ‖

with equality if f is the indicator of some I ∈ Iπ , i.e., ‖μ( ·|Iπ )‖ = 1. �

Referring to μ( ·|Iπ ) as “conditional expectation” is just a convenient abuse of
terminology as the law of total probability μ(f ) = μ(μ(f |Iπ )), which is at the
basis of the statistical interpretation of this concept [17, p. 1229], will in general not
hold unless μ|G ∈ ca(G)1. Of course, if μ ∈ ca(H), the above concept of conditional
expectation would coincide (by uniqueness) with the traditional one.

3 The Doléans-Dade Measure

In the early works of Doléans-Dade [12], Föllmer [16], and Metivier and Pellaumail
[20], supermartingales were associated with measures over predictable rectangles.
We address this issue in the present setting. The claims and the proofs of this section
remain true if we replace R+ by any linearly ordered index set.

Denote by R the collection of all sets of the form

F0 × {0} ∪
N⋃

n=1

Fn×]tn,∞[ (3.1)

where F0 ∈ A0, N ∈ N, and, for each N ≥ n > m ≥ 1, Fn ∈ Atn and Fn ∩ Fm = ∅.
R is closed with respect to intersection and contains Ω̄ and ∅. We denote by P the
algebra generated by R: each F ∈ P takes then the form of a disjoint union

F0 × {0} ∪
N⋃

n=1

Fn×]tn, un] (3.2)

with F0 ∈ A0, tn, un ∈ R+, Fn ∈ Atn . We also denote by P̄ the collection defined as
in (3.2) but with At replaced by A for each t ∈ R+. Let

M =
{
x̄ ∈ ba

(
2Ω̄

)
+ : lim

t
x̄
(
Ω×]t,∞[) = 0

}
. (3.3)

1The failure of this property for reasonable definitions of finitely additive conditional expectation is well
known since the work of Dubins [13].
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Theorem 2 ξ ∈ S if an only if there exists x̄ ∈ M and λ ∈ ba(A∞) such that

ξt (F ) = λ(F ) + x̄
(
F×]t,∞[) t ∈ R+, F ∈At . (3.4)

Proof Assume that ξ ∈ S and, replacing ξt with ξt − ξ∞, assume also that ξ∞ = 0.
For each F0 × {0} ∪ ⋃N

n=1 Fn×]tn,∞[∈ R, define the quantity

x

(

F0 × {0} ∪
N⋃

n=1

Fn×]tn,∞[
)

=
N∑

n=1

ξtn(Fn). (3.5)

Let F = F0 ×{0}∪⋃N
n=1 Fn×]tn,∞[ and G = G0 ×{0}∪⋃K

k=1 Gk×]uk,∞[ be sets
in R. To prove that R is a lattice, write F ′

0 = F0 ∩ Gc
0, G′

0 = G0 and, for n, k > 0,
F ′

n = Fn ∩ ⋂
{k>0:uk≤tn} Gc

k and G′
k = Gk ∩ ⋂

{n>0:tn<uk} F
c
n . We obtain

F ∪ G = (F ′
0 ∪ G′

0) × {0} ∪
(

N⋃

n=1

F ′
n×]tn,∞[

)

∪
(

K⋃

k=1

G′
k×]uk,∞[

)

∈ R.

Rearrange the collection {tn, uk : 1 ≤ n ≤ N,1 ≤ k ≤ K} as 〈γi〉Ii=1 with γi ≥ γi+1

and set conventionally ξγ0 = 0. For 1 ≤ i ≤ I , let ψ̂i be a positive extension of (ξγi
−

ξγi−1)|Aγi
to A and ξ̂γi

= ∑i
j=1 ψ̂j . Then, ξ̂γi

|Aγi
= ξγi

and ξ̂γi+1 ≥ ξ̂γi
≥ 0, i.e.,

ξ̂tn ≥ ξ̂uk
whenever tn ≤ uk . For 0 < k ≤ K ,

⋃N
n=1(Gk ∩ Fn)×]uk, tn] ⊂ Fc ∩ G (as

Fn ∩ Fm = ∅ for n > m > 0). Then G ⊂ F implies Gk ∩ Fn = ∅ for all 1 ≤ k ≤ K

and 1 ≤ n ≤ N such that uk < tn, that is, Gk = ⋃
{n:tn≤uk}(Gk ∩ Fn). Therefore,

K∑

k=1

ξuk
(Gk) =

∑

{1≤n≤N,1≤k≤K:tn≤uk}
ξuk

(Gk ∩ Fn)

≤
∑

{1≤n≤N,1≤k≤K:tn≤uk}
ξ̂tn (Gk ∩ Fn) ≤

N∑

n=1

ξtn(Fn). (3.6)

The set function x defined in (3.5) is then monotonic and a fortiori well defined. If
F = ∅, then

⋃N
n=1 Fn = ∅, so that x(F ) = 0; moreover,

x(F ∪ G) =
N∑

n=1

ξtn(F
′
n) +

K∑

k=1

ξuk
(G′

k)

=
N∑

n=1

ξtn(Fn) −
∑

{1≤n≤N,1≤k≤K:tn≥uk}
ξtn(Fn ∩ Gk)

+
K∑

k=1

ξuk
(Gk) −

∑

{1≤n≤N,1≤k≤K:tn<uk}
ξuk

(Fn ∩ Gk)
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=
N∑

n=1

ξtn(Fn) +
K∑

k=1

ξuk
(Gk) −

∑

k,n≥1

ξtn∨uk
(Fn ∩ Gk)

= x(F ) + x(G) − x(F ∩ G).

In other words, x is a strongly additive set function on a lattice of sets which contains
∅ as well as Ω̄ : as such [5, 3.1.6, 3.2.1 and 3.2.5], it admits an extension x̂ to P . If
F ∈ P is as in (3.2), then

x̂(F ) =
N∑

n=1

{
x
(
Fn×]tn,∞[) − x

(
Fn×]un ∨ tn,∞[)}

x̂ is thus unique and, in view of (3.6), positive. But then, x̂ admits a positive extension
x̄ to 2Ω̄ , by Lemma 1. If x̄ ∈ M and λ ∈ ba(A∞) are given and ξ is defined as in
(3.4), then it is clear that ξ ∈ S with ξ∞ = λ. �

If ξ ∈ S, then denote by M(ξ) the collections of those x̄ ∈ M meeting (3.4).
Each x̄ ∈ M(ξ) will be referred to as a Doléans-Dade measure associated to ξ . Dis-
regarding the apparent arbitrariness implicit in the existence of a multiplicity of such
measures, there are several remarkably simple implications of Theorem 2 on such rel-
evant issues as the decomposition and extension of supermartingales that are spelled
out in the next corollaries where the following notation is used: let Muc,Mup ⊂ M

consist of measures m such that m|F̄ ∈ ca(F̄) and m|F̄ ∈ pf a(F̄), respectively. We
set

S
uc = {

ξ ∈ S : ξ∞ ∈ ca(A), M(ξ) ∩ M
uc �= ∅

}
and

(3.7)
S

up = {
ξ ∈ S : ξ∞ ∈ pf a(A), ⊂ M

up
}
.

A supermartingale belonging to Suc (resp. Sup) will be called uniformly countably
additive (resp. uniformly purely finitely additive).

Corollary 1 Any ξ ∈ S admits a decomposition

ξ = μ − α (3.8)

where μ is a finitely additive martingale, and α a positive, finitely additive increasing
process (as defined in [2, p. 287]). Moreover, the following are equivalent:

(i) ξ ∈ Suc;
(ii) μ and α in (3.8) may be chosen such that μ∞, α∞ ∈ ca(A) (and thus so that μ

and α are countably additive processes);
(iii) there exists λ ∈ ca(A)+ such that |ξt | ≤ λ|At for each t ∈ R+.

Proof Let x̄ ∈ M(ξ), and define

μt(F ) = ξ∞(F ) + x̄(F × R+) and αt (F ) = x̄
(
F × [0, t]), F ∈At . (3.9)
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Then (3.8) follows from (3.4). In fact, μ is a finitely additive martingale, while α

extends to an increasing family (ᾱt : t ∈ R+) of measures on A such that inft ‖ᾱt‖ =
‖α0‖ = 0. If (i) holds, then upon choosing x̄ ∈ M(ξ) ∩ Muc such that x̄|F̄ , (3.9)
implies (ii). If (ii) holds, let λ = |μ∞| + 2α∞. Then in restriction to At we obtain
|ξt | ≤ |ξ∞| + (ξt − ξ∞) ≤ |μ∞| + α∞ + (α∞ − αt ) ≤ λ, and (iii) follows. Assume
(iii), then ξ∞ ∈ ca(A). Let U = {0 = t1 ≤ · · · ≤ tN }, and define ζ̄ U

tN
∈ ca(A)+ to be

an extension of ξtN − ξ∞|AtN to A dominated by λ − ξ∞ and set ξ̄U
tN

= ξ∞ + ζU
tN

;
likewise, for n < N , let ζ̄ U

tn
∈ ca(A)+ be an extension of ξtn − ξtn+1 |Atn to A dom-

inated by λ − ξ̄U
tn+1

and set ξ̄U
tn

= ξ̄U
tn+1

+ ζ̄ U
tn

. Define ξ̄U = ∑N
n=1 ξ̄U

tn
1[tn,tn+1[ a map

from R+ to ba(A). One easily establishes that ξ∞ ≤ ξ̄U
t ≤ λ for each t ∈ R+, i.e.,

ξ̄U ∈ [ξ∞, λ]R+ , that ξ̄U is decreasing, and that ξ̄U
t |At = ξt for t ∈ U . If ba(A)R+ is

equipped with the product topology obtained after endowing each coordinate space
with the weak∗ topology, we conclude that [ξ∞, λ]R+ is compact and that the net
〈ξ̄U 〉U∈U , with U denoting the collection of finite subsets of R+ directed by in-
clusion, admits a cluster point ξ̄ . Then necessarily, ξ̄ is decreasing and ξ̄t |At = ξt

for each t ∈ R+. The same argument used in the proof of Theorem 2 shows that
the quantity

∑N
n=1(ξ̄tn − ξ̄un)(Fn), where F0 × {0} ∪ ⋃N

n=1 Fn×]tn, un] ∈ P̄ , im-
plicitly defines a measure on P̄ which admits an extension x̄ ∈ M(ξ) such that
x̄(F × R+) = (ξ̄0 − ξ̄∞)(F ) ≤ λ(F ) so that x̄|F̄ ∈ ca(F̄). �

Corollary 1 establishes a general version of the Doob–Meyer decomposition. In
addition, it characterizes exactly those processes ξ admitting a countably additive
version of such a decomposition. This characterization implies a condition hinging
on the uniform countable additivity of the process ξ or, equivalently, a weak form of
countable additivity of the Doléans-Dade measure, namely x̄|F̄ ∈ ca(F̄). We shall
return on this issue in the following sections.

The existence of Doléans-Dade measures easily translates into that of extensions
of finitely additive supermartingales, a result which may prove useful in problems
involving changes of the underlying filtration. For H ⊂ Ω̄ , let Hω denote the section
{t ∈ R+ : (ω, t) ∈ H }.

Corollary 2 Consider an increasing family (Aτ : τ ∈ T) of algebras of subsets of Ω ,
where T ⊂ 2Ω̄ is ordered by reverse inclusion, and let ξ ∈ S and x̄ ∈ M(ξ). There
exists a finitely additive supermartingale ξ∗ on (Aτ : τ ∈ T) such that x̄ ∈ M(ξ∗). As
a consequence,

(i) If τ(t) ≡ Ω×]t,∞[∈ T and F ∈At ∩Aτ(t), then ξ∗
τ(t)

(F ) = ξt (F )

(ii) If τ,υ ∈ T, F ⊂ Ω and Fτ,υ ≡ {ω ∈ F : υω ⊂ τω} ∈ Aτ ∩ Aυ , then ξ∗
τ (Fτ,υ) ≥

ξ∗
υ (Fτ,υ).

Proof Fix x̄ ∈ M(ξ) and define ξ∗
τ ∈ ba(Aτ ) implicitly by letting

ξ∗
τ (F ) = ξ̄∞(F ) + x̄

(
(F × R+) ∩ τ

)
, F ∈Aτ (3.10)

where ξ̄∞ is an extension of ξ∞ to 2Ω : (i) is immediate from (3.5). Given that τ ≤
υ is equivalent to υ ⊂ τ , then F ∈ Aτ and τ ≤ υ imply ξ∗

τ (F ) ≥ ξ∗
υ (F ), so that
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ξ∗ is a finitely additive supermartingale on (Aτ : τ ∈ T). Moreover, if F ⊂ Ω and
Fτ,υ ∈ Aτ ∩ Aυ , then ξ∗

τ (Fτ,υ) ≥ ξ∗
υ (Fτ,υ) is equivalent to x̄((Fτ,υ × R+) ∩ τ) ≥

x̄((Fτ,υ × R+) ∩ υ), which follows from x̄ being positive. �

Whenever τ(t) ∈ T and At ⊂ Aτ(t) for all t ∈ R+, Corollary 2 suggests that any
ξ ∈ S may be consistently extended to any filtration indexed by T. Corollary 2 is an
illustration of the importance of finite versus countable additivity.

4 Two Decompositions

We shall prove in this section that all finitely additive supermartingales have a com-
ponent that may be represented as a classical supermartingale with respect to some
P ∈ P(F). It should be highlighted that the probability measure P involved here
emerges endogenously, rather than being given from the outset, as in the classical
theory. We start with a preliminary result.

Lemma 2 Let G ⊂ H be two algebras of subsets of Ω , and denote by ca(G,H)

and pf a(G,H) the subspaces of ba(G) consisting of set functions which admit a
countably additive extension to H and whose norm preserving extensions to H are
all purely finitely additive, respectively. For each λ ∈ ba(G), there exists a unique way
of writing

λ = λe + λp (4.1)

where λe ∈ ca(G,H) and λp ∈ pf a(G,H), and λe,λp ≥ 0 if and only if λ ≥ 0.

Proof With the aid of the Radon–Nikodym theorem it is easily seen that λ ∈ ca(G,H)

if and only if λ � λ̄|G for some λ̄ ∈ ca(σH) and, thus, that ca(G,H) is an ideal. Let
〈λα〉α∈A be an increasing net in ca(G,H)+ with

∨
α∈A λα = λ ∈ ba(G). Fix α1 ∈ A

arbitrarily, and, for given αn−1, let αn ≥ αn−1 be such that λαn(Ω) ≥ λ(Ω) − 2−n. If
F ∈ G,

λ(F ) ≥ lim
n

λαn(F ) = λ(Ω) − lim
n

λαn

(
Fc

) ≥ λ(Ω) − λ
(
Fc

) = λ(F ).

But then, λ � ∑
n 2−nλαn ∈ ca(G,H), i.e., λ ∈ ca(G,H). We obtain from Riesz

theorem the decomposition ba(G) = ca(G,H) + ca(G,H)⊥. The inclusion pf a(G,

H) ⊂ ca(G,H)⊥ is clear. To prove the converse, let λ̄ ∈ ba(H) be a norm pre-
serving extension of λ ∈ ca(G,H)⊥. Then there exists Gn ∈ G such that |λ|(Gc

n) +
|λ̄c|(Gn) < 2−n. If G ∈ G,

∣
∣λ(G)

∣
∣ = lim

n

∣
∣λ(G ∩ Gn)

∣
∣ = lim

n

∣
∣λ̄⊥(G ∩ Gn)

∣
∣ ≤ ∣

∣λ̄⊥∣
∣(G)

i.e., ‖λ̄c‖ + ‖λ̄⊥‖ = ‖λ̄‖ = ‖λ‖ ≤ ‖λ̄⊥‖. In other words, λ ∈ pf a(G,H). �

Lemma 2 is a slight generalization of the classical decomposition of Yosida and
Hewitt (by uniqueness the two decompositions coincide for G = H). It has though an
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important implication here as it implicitly suggests that finitely additive supermartin-
gales may admit a component that can be represented as a classical supermartingale
with respect to some P ∈ P(F).

Proposition 1 Let ξ ∈ S+. For each t ∈ R+, let ξt = ξe
t + ξ

p
t with ξe

t ∈ ca(At ,F)

and ξ
p
t ∈ pf a(At ,F), and set ξe = (ξ e

t : t ∈ R+) and ξp = (ξ
p
t : t ∈ R+). Then

ξ = ξe + ξp (4.2)

is the unique decomposition of ξ such that ξe ∈ S+ may be represented as a classi-
cal P supermartingale X for some P ∈ P(F),2 while ξp is positive and orthogonal
to all finitely additive processes admitting such a representation. We say that ξe is
representable and that the pair (P,X) is a representation of ξe.

Proof The inclusion ξe ∈ S+ was shown in the Introduction. As ξp is clearly or-
thogonal to any classical stochastic process, we only need to prove that ξe admits
a representation. Define the function T (t) = ‖ξe

t ‖ and the set J = {t ∈ R+ : T (t) >

supu>t T (u)} (with sup ∅ = −∞). As T is monotone, J is countable; let C be a
countable subset of R+ such that T [C] is dense in T [R+]. For each t ∈ R+, either
t ∈ J, or there is a decreasing sequence 〈tk〉k∈N in C such that limk T (tk) = T (t). Let
〈tn〉n∈N be an explicit enumeration of D = C ∪ J, and choose ξ̄ e

tn
∈ ca(F) such that

ξ̄ e
tn

∣
∣Atn = ξe

tn
, fix Q ∈ P(F), and let P̄ = Q+∑

n 2−nξ̄ e
tn

and P = ‖P̄ ‖−1P̄ . Clearly,
P ∈ P(F) and P � ξ̄ e

tn
for each n ∈ N. By construction, for all t ∈ R+ and k > 0,

there is tk ∈ D such that t ≤ tk and (ξ e
t −ξe

tk
)(Ω) ≤ 2−k . Remark that (ξ̄ e

t − ξ̄ e
tk
)|σAt ∈

ca(σAt ) is the (unique) countably additive extension of ξe
t − ξe

tk
|At to σAt and is

therefore positive. We conclude that ξ̄ e
t (F ) = limk ξ̄ e

tk
(F ) for each F ∈ σAt . By the

Vitali–Hahn–Saks theorem and its corollaries [15, III.7.2-3], ξ̄ e
t |σAt � P |σAt , i.e.,

ξe is representable. �

Uniformly countably additive supermartingales play a special role in the following
section.

Proposition 2 Each ξ ∈ S admits a unique decomposition ξ = ξuc + ξup , where
ξuc ∈ Suc and ξup ∈ Sup .

Proof Let x̄ ∈ M(ξ), and let x̄c

F̄ and x̄⊥̄
F be the countably and purely finitely additive

parts of x̄|F̄ , respectively. Define x̄′ ∈ M by letting

x̄′(H) = x̄c

F̄
(
x̄(H |Ix̄⊥̄

F
)
)
, H ⊂ Ω̄.

Then, by (2.3), x̄′
F̄ = x̄c

F̄ , so that x̄′ ∈ Muc. Letting In ∈ Ix̄⊥
F

be such that x̄c
F (I c

n) <

2−n, we have

x̄′(H) = lim
n

x̄c

F̄
(
Inx̄(H |Ix̄⊥̄

F
)
) = lim

n
x̄(InH) ≤ x̄(H), H ⊂ Ω̄.

2The property defined here was called the Kolmogoroff property by Bochner [8, p. 164].
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Clearly, x̄′′ = x̄ − x̄′ ∈ Mup . Thus the set M∗(ξ) = {ȳ ∈ Muc : ȳ ≤ x̄ for some x̄ ∈
M(ξ)} is nonempty, and, we claim, it admits a maximal element with respect to the
partial order ≥F̄ defined by letting ȳ ≥F̄ ȳ′ whenever ȳF̄ ≥ ȳ′

F̄ . In order to apply
the Zorn lemma, consider an increasing net 〈ȳα〉α∈A in M∗(ξ), and let x̄α ∈ M(ξ)

be such that ȳα ≤ x̄α for all α ∈ A. Define x̄◦(H) = LIMα∈Ax̄α(H), H ⊂ Ω̄ , where
LIM denotes the Banach limit functional introduced in [1]. By linearity, x̄◦ ∈ M(ξ).
The inequality x̄◦(H) ≥ lim infα∈A x̄α(H) ≥ lim infα∈A ȳα(H), which holds for any
H ⊂ Ω̄ , implies that x̄◦ ≥F̄ ȳα for all α ∈ A, i.e., that x̄◦ is an upper bound for
〈ȳα〉α∈A. Let x̄uc be a maximal element of M∗(ξ), let x̄∗ ∈ M(ξ) be such that x̄uc ≤
x̄∗, and define x̄up = x̄∗ − x̄uc ∈ M. Let ξuc, ξup ∈ S be uniquely defined by the
condition x̄uc ∈ M(ξuc), x̄up ∈ M(ξup), ξuc∞ = ξc∞, and ξ

up∞ = ξ⊥∞. By construction,
ξuc ∈ Suc. Decompose ȳ ∈ M(ξup) as ȳ′ + ȳ′′, where ȳ′ ∈ Muc and ȳ′′ ∈ Mup , as
in the first step of this proof. From x̄uc + ȳ′ ≤ x̄uc + ȳ ∈ M(ξ) and the fact that x̄uc

is ≥F̄ maximal, we deduce that ȳ′ = 0 or, equivalently, ξup ∈ Sup . If ξ = κuc +
κup were another such decomposition and kup and kuc the associated Doléans-Dade
measures, then from kup ≤ xuc + xup and the Hahn–Banach theorem one may find
k̄up ∈ M(κup) such that k̄up ≤ x̄uc + x̄up . However, since k̄up ⊥ x̄uc, this implies
k̄up ≤ x̄up , while the converse is obtained mirrorwise. In other words, κup and ξup

induce the same Doléans-Dade measure; in addition, κ
up∞ = ξ

up∞ = ξ⊥∞. The claim
follows from Theorem 2(iii). �

5 Increasing Processes

Fix P ∈ P(F), and let A(P ) denote the set of processes (At : t ∈ R+) such that
A∞ ∈ L1(P ) and P(0 = A0 ≤ At ≤ Au) = 1 for each 0 ≤ t ≤ u < ∞. Of course, if
A ∈ A(P ) and A′ is a modification of A (i.e., P(A′

t = At) = 1 for all t ∈ R+), then
A′ ∈ A(P ). Put A = ⋃

P∈P(F) A(P ).

Lemma 3 Let A ∈ A(P ). Then there is F ∈ F with P(F c) = 0 and a modification
A′ of A such that, for each t ≤ u, 0 = A′

0 ≤ A′
t ≤ A′

u on F . If in addition P(At ) =
limn P (At+2−n), then A′ and F may be chosen to be right continuous at each t ∈ R+
and for each ω ∈ F .

Proof As in the proof of Proposition 1, there exists a countable subset D of R+
with the property that, for all t ∈ R+ and ε > 0, there is d ∈ D such that d ≥ t and
P(At ) > P (Ad) − ε. Define F = ⋂

{d,d ′∈D:d>d ′}{Ad ≥ Ad ′ }: clearly, P(F c) = 0. Let
D(t) = {d ∈ D : d ≥ t} and A′

t = infd∈D(t) Ad . By definition of D, A′
t ≥ At P a.s. but

P(A′
t ) = P(At ), so that P(At = A′

t ) = 1. If A is right continuous in mean, the same
conclusion holds even if we replace D(t) with D

+(t) = {d ∈ D : d > t}. However A′
is right continuous on F , since D

+(t) = ⋃
u>t D

+(u). �

For H = (F0 × {0}) ∪ ⋃N
n=1(Fn×]tn, un]) ∈ P̄ and A ∈ A(P ), the integral

∫
1H dA has an obvious definition, namely

∑N
n=1 1Fn(Aun − Atn). In the following

theorem we obtain an extension of this integral together with a characterization of
increasing processes in terms of their Doléans-Dade measure.

Theorem 3 Let x̄ ∈ M. The following are equivalent:
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(i) There exists P ∈ P(F) and, given P , a unique (up to modification) A ∈ A(P )

such that

x̄(H) = P

∫

1H dA, H ∈ P̄; (5.1)

(ii) x̄ ∈ Muc and x̄({0}) = 0;
(iii) There exists P ∈ P(F) such that, for each h ∈ L1(x̄), the equation

x̄(bh) = P
(
bIx̄(h)

)
, b ∈ B(F) (5.2)

admits a unique solution Ix̄(h) ∈ L1(P ) such that Ix̄(1{0}) = 0.

Ix̄ : L1(x̄) → L1(P ) as defined in (5.2) is a positive, continuous, linear func-
tional such that ‖Ix̄‖ = ‖x̄‖ and limn Ix̄(hn) = 0 whenever supn |hn| ∈ L1(x̄) and
limn P ∗(h∗

n > η) = 0 for each η > 0, where h∗
n ≡ supt |hn,t | and P ∗ is the outer mea-

sure generated by P .

Proof Let us start remarking that one may easily identify F̄ with F , as we shall now
do. Under (i), x̄({0}) = P

∫
1{0} dA = 0 and x̄(F ) = x̄(F×]0,∞[) = P(1F A∞) for

any F ∈F . Assume (ii) and fix P = (‖Q‖ + ‖x̄‖)−1(Q + x̄|F̄) for some Q ∈ P(F).
By Theorem 1, for each h ∈ L1(x̄), we may define

Ix̄(h) = x̄(h|F̄)
dx̄|F̄
dP

∈ L1(P ).

By (2.2), Ix̄(h) is a solution to (5.2); moreover the operator Ix̄ is positive, linear
and has norm ‖x̄‖, by Theorem 1; x̄({0}) = 0 implies Ix̄(1{0}) = 0, P a.s. Any other
solution J (h) ∈ L1(P ) to (5.2) satisfies P(bJ (h)) = P(bIx̄(h)) for all b ∈ L∞(P ),

i.e., P(J (h) = Ix̄(h)) = 1. Assume (iii) and define At = Ix̄(1]0,t]), A = (At : t ∈
R+), and let H = (F0 × {0}) ∪ ⋃N

n=1(Fn×]tn, un]) ∈ P̄ . Then A ∈ A(P ) and, up to
a P null set,

Ix̄(1H ) =
N∑

n=1

x̄(1Fn×]tn,un]|F̄)
dx̄|F̄
dP

=
N∑

n=1

1Fn x̄(1]tn,un]|F̄)
dx̄|F̄
dP

=
N∑

n=1

1Fn(Aun − Atn)

=
∫

1H dA.

But then (5.1) follows from (5.2). If B ∈ A(P ) also meets (5.1), then, for h = 1F×]0,t]
and F ∈F , we conclude that P(FAt) = P(FBt ), from which we deduce the unique-
ness. It is clear from (5.1) that Ix̄ is linear and positive and that ‖Ix̄‖ = ‖x̄‖.
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If 〈hn〉n∈N is a sequence in L1(x̄) with the above properties, then so is 〈|hn|〉n∈N.
Given that Ix̄ is positive, it is enough to prove the claim for hn ≥ 0. Observe
that x̄(hn ≥ η) ≤ x̄(h∗

n ≥ η); moreover, x̄|F̄ � P implies that, in restriction to
2Ω ⊗ {∅,R+}, x̄ � P ∗. But then, hn converges to 0 in x̄ measure and, by [15, The-
orem III.3.6], in L1(x̄). Given (5.2), this is equivalent to Ix̄(hn) converging to 0 in
L1(P ). �

The equivalence of (i) and (ii) establishes a correspondence between A and Muc

which compares to the classical (and well-known) characterization of increasing
processes as measures given by Meyer [11, VI.65, p. 128] (see also [21, p. 6]).
Meyer’s result, which ultimately delivers the Doob–Meyer decomposition, focuses
however on the countable additivity over F ⊗B(R+); we rather require this property
relatively to F̄ . In Theorem 4 below we show that indeed this is enough to obtain
a suitable version of the Doob–Meyer decomposition. Although there are connec-
tions between these two properties, it is noticeable that the latter is independent of
the given filtration. On should also remark that we do not assume the existence of an
underlying probability P ∈ P(F) but rather deduce it.

Each x̄ ∈ M may be considered in restriction to special classes of functions such
as the set C of functions f : Ω̄ → R with continuous sample paths and bounded
support (i.e., such that f (t) = 0 for all t larger than some T ). Let C be the σ algebra
on Ω̄ generated by C.

Lemma 4 Let x̄ ∈ Mc. There exist αc ∈ ca(C)+, P ∈ P(F), and Ac ∈ A(P ) right
continuous such that

x̄(f ) = αc(f ) = P

∫

f dAc, f ∈ L(x̄) ∩ C. (5.3)

Proof In order to apply the Daniell theorem, consider a sequence 〈hn〉n∈N in the
vector lattice L(x̄) ∩ C decreasing to 0, and fix T such that x̄(|h1 − hT

1 |) < ε,

where hT
n = hn1]0,T ]. Let h

T,∗
n = supt h

T
n (t). A simple application of Dini’s theorem

for each ω ∈ Ω guarantees that the sequence 〈hT,∗〉n∈N converges to 0 pointwise;
moreover, by continuity of the sample paths, h

T,∗
n is in fact F -measurable. Thus

Theorem 3 implies that limn x̄(hn) ≤ ε + limn x̄(hT
n ) = ε + limn P (Ix̄(h

T
n )) = ε.

In other words, the restriction of x̄ to C is a Daniell integral and as such it ad-
mits the representation as the integral with respect to some αc ∈ ca(C). Observe
that F×]t,∞[∈ C for all F ∈ F and t ∈ R+. Fix P ∈ P(F) as in Theorem 3(i)
and define αc

t ∈ ba(F) as αc(F×]0, t]) for each F ∈ F . Since αc
t ≤ x̄F̄ � P , de-

note by Ac
t the Radon–Nikodym derivative of αc

t with respect to P . We deduce that
P((Ac

u − Ac
t )1F ) = αc(F×]t, u]) = x̄(F×]t, u]) ≥ 0, so that Ac ∈ A(P ) and that

limn P (1F (Ac
t+2−n − Ac

t )) = limαc(F×]t, t + 2−n]) = 0 (by countable additivity)
for each F ∈ F so that Ac

t = limn Ac
t+2−n up to a P null set. By Lemma 3, we obtain

that Ac admits a modification which is right continuous. �

Theorem 4 Let ξ ∈ S. Then ξ ∈ Suc if and only if there exist P ∈ P(F), M ∈
L1(P ), and Ap ∈ A(P ) which is adapted, right continuous in mean, and such that

ξt (F ) = P
(
1F

(
M − A

p
t

))
, t ∈ R+ and F ∈ Ft (5.4)
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and that

P

(

b

∫

hdAp

)

= P

∫

M(b)−hdAp, b ∈ L∞(P ), h ∈ B(σP) (5.5)

where M(b) = (P (b|Ft ) : t ∈ R+).

Proof We use the notation of Lemma 4 and the inclusion σP ⊂ C. Let d = {t1 ≤ t2 ≤
· · · ≤ tN } be a finite sequence in R+, and define

Pd(f ) =
N−1∑

n=1

P(ftn |Ftn )1]tn,tn+1] and x̄d (f ) = x̄
(
Pd(f )

)
, f : R+ → L1(P ).

(5.6)
Denote by αd the restriction of x̄d to F ⊗ 2R+ . On the one hand, it is easily seen
that x̄d

F̄ � P so that, as in the proof of Theorem 3, we can associate to x̄d a

process Ad ∈ A(P ), by letting Ad
t dP = x̄d (1]0,t]|F̄)dx̄d

F̄ . On the other hand, (5.3)

implies P
∫

f dAd = x̄(Pd(f )) = αc(Pd(f )). Consider the case where f = bh with
b ∈ L∞(P ) and h bounded, adapted, and left continuous. Let dn = {k2−n : k =
0, . . . ,22n}, and observe that, by [11, VI.2, p. 67], there exists a P null set F ∈ F
outside of which limn Pdn(b)t = M(b)t− and limn Pdn(h)t = ht for each t ∈ R+ (as
h is left continuous and adapted). Given that αc is countably additive in restriction to
C, we conclude

lim
n

P

(

b

∫

hdAdn

)

= lim
n

αc
(
Pdn(bh)

) = lim
n

αc
(
Pdn(b)Pdn(h)

) = αc
(
M(b)−h

)
.

(5.7)
Define then αp ∈ ba(F ⊗2R+) implicitly as αp(H) = αc(M(1H )−). Then from (5.7)
we deduce that 〈αdn〉n∈N converges to αp and, by [15, III.7.3, p. 159], that α

p

F̄ � P .
Let Ap ∈ A(P ) be the increasing process associated to αp . Thus, for every bounded,
adapted, and left continuous process h and every b ∈ L∞(P ), we have

P

(

b

∫

hdAp

)

= x̄
(
M(b)−h

) = αc
(
M(b)−h

) = P

∫

M(b)−hdAp

which delivers (5.4) if we only let M = dξ∞/dP +A
p∞, b = 1F with F ∈ Ft and h =

1]t,∞[. In addition, if F ∈F , s ≤ t and hF,t = 1F − P(1F |Ft ), then M(hF,t )s− = 0,

so that

P
(
hF,tA

p
t

) = αp(hF,t1[0,t]) = P

∫ t

0
M(hF,t )− dAp = 0.

Therefore, replacing A
p
t with P(A

p
t |Ft ), we may assume that Ap ∈ A(P ) is

adapted. Eventually, letting hn = 1]t,t+2−n], we conclude that 0 = limn αc(hn) =
limn P (A

p

t+2−n − A
p
t ) and, thus, that Ap is right continuous in mean. It is obvious

that (5.4) implies ξ ∈ Suc. �
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With a complete filtration Theorem 4 implies that Ap may be chosen to be adapted
and right continuous.

We want to emphasize that the existence of the decomposition (5.4) does not de-
pend on the underlying filtration.

Corollary 3 Let ξ ∈ S, and let D ⊂ R+ be such that ξt = supd∈D(t) ξd |At , where
D(t) = {d ∈ D : d ≥ t}. Then, ξ admits a Doob–Meyer decomposition if and only if
ξD = (ξd : d ∈ D) does.

Proof Given that, by Theorem 4, the Doob–Meyer decomposition is equivalent to
ξ ∈ Suc, the direct implication is obvious. As for the converse, choose x̄D ∈ M(ξD)

to be countably additive in restriction to F ⊗ {∅,D}. If t ∈ R+ and F ∈At , then

|ξt |(F ) ≤ sup
d∈D(t)

|ξd |(F ) ≤ |ξ∞|(F ) + x̄D(F × D) ≡ λ(F ). (5.8)

The claim then follows from Corollary 1. �

Corollary 3 makes clear that decomposition (5.4) is a property that involves any
subset D which is dense for the range of ξ , and we know from the proof of Proposit-
ion 1 that this may be taken to be countable. The class D property may thus be
replaced by the corresponding property, the class Dσ , in which the stopping times
are restricted to have countable range, see [9].

6 The Bichteler–Dellacherie Theorem without Probability

Let f : Ω̄ → R be adapted to the filtration, define f ∗ = supt∈R+ |ft |, and let F be
such that f ∗ is F -measurable. The starting point of this section are the sets

K =
{∫

hdf : h is P simple, |h| ≤ 1

}

and C = K− B(F)+. (6.1)

Bichteler and Dellacherie start from the assumption that K is bounded in L0(P ) for
some given P ∈ P(F) and that f is right continuous with left limits outside some
P null set. These two properties are then shown to imply that for given η > 0, there
exists δ > 0 such that d1F /∈ C1F for all F ∈ F such that P(F) > η. We take in-
spiration from this separating condition to define a concept of boundedness suitable
for our setting. To this end we denote by U a collection of subsets of Ω with the
following properties:

Assumption 1 There exists λ0 > 0 such that

{λ1U : λ ≥ λ0} ∩ C1U = ∅, U ∈ U . (6.2)

Moreover, U,V ∈ U imply that U ⊂ {f ∗ < n} for some n and U ∪ V ∈ U .
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A violation of (6.2) indicates that the set K is unbounded relatively to some U ∈ U .
Both sets in (6.2) are convex subsets of B(2U), and 1UC contains −1U as an internal
point. By ordinary properties of the support functional [15, Lemma V.I.8(f), p. 411],
the Hahn–Banach theorem and [15, Lemma V.II.7, p. 417], we conclude that for
each U ∈ U , there is m̂U ∈ ba(2U) such that supx∈1UC m̂U (x) ≤ 1 = λ0m̂U (U). The
inclusion −B(2U)+ ⊂ 1UC implies that m̂U ≥ 0. By defining mU ∈ ba+ implicitly
by

mU(F) = m̂U (F ∩ U)

m̂U (U)
, F ⊂ Ω

we have completed the proof of the following:

Lemma 5 Let f : Ω̄ → R+ satisfy Assumption 1, and define the set

M =
{
m ∈ ba+ : ‖m‖ = 1, sup

x∈C
m(x) ≤ λ0

}
. (6.3)

For each U ∈ U , there exists mU ∈ M such that mU(U) = 1.

Fix now m ∈ M (so that f ∗ ∈ L1(m)), and let ξe and ξp be the components of
the finitely additive supermartingale (m|Ft : t ∈ R+) as of (4.2). Set also It = Iξ

p
t

(see (2.1)), let (P,X) be a representation for ξe, and observe that −ξp ∈ S and that
M(ξe) = M(−ξp). Fix an extension ξ̄∞ ∈ ba(F) of ξ∞ to F and x̄ ∈ M(ξe), and
define

ξ̄
p
t (F ) = ξ̄

p∞(F ) − x̄
(
F×]t,∞[) F ∈ F .

The collection (ξ̄
p
t : t ∈ R+) is then increasing with t . For all b ∈ B(F) and u ≥ t ,

F ∈ It implies ξ
p∞(b1F ) = x̄(b1F×]t,∞[) and thus

ξ̄
p
u (b1F ) = ξ

p∞(b1F ) − x̄(b1F×]u,∞[) = x̄(b1F×]t,u]). (6.4)

Let now d = {t1 ≤ · · · ≤ tN },

Pd =
{

F0 × {0} ∪
N−1⋃

n=1

Fn×]tn, tn+1] : F0 ∈ F0, Fn ∈Ftn , 1 ≤ n ≤ N − 1

}

(6.5)

and choose Fn ∈ Itn 1 ≤ n < N , and set

Fd =
N−1⋃

n=1

Fn×]tn, tn+1] and f d = f01{0} +
N−1∑

n=1

ftn+11]tn,tn+1].

By (6.4),

N−1∑

n=1

ξ
p
tn+1

(
(ftn+1 − ftn)1Fn

) =
N−1∑

n=1

x̄
(
(ftn+1 − ftn)1Fn×]tn,tn+1]

)
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= x̄
(
f d1Fd

) − x

(
N−1∑

n=1

ftn1Fn×]tn,tn+1]

)

= x̄
(
f d1Fd

) + P

N−1∑

n=1

ftn1Fn(Xtn+1 − Xtn)

i.e.,

m

(∫

1Fd df

)

=
N−1∑

n=1

m
(
(ftn+1 − ftn)1Fn

)

=
N−1∑

n=1

(
ξ

p
tn+1

+ ξe
tn+1

)(
(ftn+1 − ftn)1Fn

)
(6.6)

= x̄
(
f d1Fd

) + P

N−1∑

n=1

1Fn(ftn+1Xtn+1 − ftnXtn).

Assume that H = H01{0} + ⋃N−1
n=1 Hn1]tn,tn+1] ∈ Pd . Then by (3.5)

x̄(H) = P

{

1H0(X0 − X∞) +
N−1∑

n=1

1Hn(Xtn − Xtn+1)

}

i.e., x̄|Pd is countably additive. Replacing Fd with a sequence 〈Fd,k〉k∈N such that
limk P (

⋂N−1
n=1 Fk

n−1) = 1, we thus deduce then from (6.7)

lim
k

m

(∫

1Fd,k df

)

= x̄
(
f d

) + P(f∞X∞ − f0X0). (6.7)

Replace f with
∫

1F×]t,u]df , where t ≤ u and F ∈ Ft , and choose d such that
F×]t, u] ∈ Pd . We also deduce

lim
k

m

(

1F

∫ u

t

1Fd,k df

)

= P
(
F(fuXu − ftXt )

) + x̄
(
f d1F×]t,u]

)
. (6.8)

Theorem 5 Let f ∈ R
Ω̄ satisfy Assumption 1. Then there exists P ∈ P(F) and a P

positive supermartingale X such that Xf is a P quasimartingale. If there are Q ∈
P(F) and η > 0 such that Q(f ∗ < ∞) = 1 and that F ∈F and Q(F ∩{f ∗ < k}) ≥ η

imply F ∩ {f ∗ < k} ∈ U , then, for any δ > η, the pair (P,X) above can be chosen
such that P(X∞ = 0) < δ.

Proof By Lemma 5, for fixed n > n0, there is m ∈ M such that m(f ∗ > n) = 0, so
that m(f ∗) < ∞. By (6.4),

∣
∣x̄

(
f d

)∣
∣ ≤

N−1∑

n=1

(
ξ̄

p
tn+1

− ξ̄
p
tn

)(
sup

1<j≤N

|ftj |
)

= ξ̄
p∞

(
sup

1<j≤N

|ftj |
)

≤ m
(
f ∗).
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Let hd
n be the sign of P(ftn+1Xtn+1 |Ftn ) − ftnXtn and hd = ∑

n hd
n1]tn,tn+1]. By (6.8),

P
∑

n

∣
∣P(ftn+1Xtn+1 |Ftn ) − ftnXtn

∣
∣ = P

∑

n

hd
n(ftn+1Xtn+1 − ftnXtn)

= lim
k

m

(∫

Fd,khd df

)

− x̄
(
f dhd

)

≤ sup
k∈K

m(k) + m
(
f ∗).

Since such a bound is uniform in d , this proves the first claim.
Let Q ∈ P(F) and η be as in the claim. In search of a contradiction, assume that,

for some δ > η and all representations (P,X) of ξe, we have P(X∞ = 0) > δ. Fix
ε = δ − η, define P ε = (1 − ε)Q + εP , and let (P ε,Xε) be the corresponding repre-
sentation. Given that P ε and ξ

p∞ are orthogonal and that F is a σ -algebra, there is an
F -measurable subset F of {Xε∞ = 0} such that ξ

p∞(F ) = m(F) = 0 and P ε(F ) > δ,
so that Q(F {f ∗ < k}) ≥ δ−ε

1−ε
= η

1−ε
for some integer k. We conclude that for each

m ∈ M, there exists hm ∈ B(F) such that 0 ≤ hm ≤ 1, Q(hm) ≥ η
1−ε

, {hm > 0} ∈ U ,
and m(hm) = 0. Denote by H the corresponding collection. Then

sup
m∈M

inf
h∈H

m(h) = 0.

Endow B(F) with the norm topology and ba(F) with the weak∗ topology. One eas-
ily remarks that H and M are convex sets (as U is closed with respect to unions)
and that M, being a closed subset of the unit sphere of ba(F), is compact; more-
over, the function (m,h) → m(h) is bilinear and separately continuous. Sion’s [23,
Corollary 3.3, p. 174] version of the minimax theorem therefore applies, yielding the
conclusion

inf
h∈H

sup
m∈M

m(h) = 0.

There is then a sequence 〈hn〉n∈N in H such that supm∈M m(hn) < 2−n. Given that H

is convex, we may equivalently replace hn by a convex combination
∑J

j=0 αjhn+j .
As a consequence of the Komlos lemma [19, Theorem 1, p. 218] (see also [22, The-
orem 6, p. 184]), there is no loss of generality in assuming that the sequence 〈hn〉n∈N

converges Q a.s. to some h′. By the Egoroff theorem, we can choose F ∈ F such that
hn converges uniformly to h′ on F and that, letting h = h′1F ,

Q(h) = lim
n

Q(hn1F ) ≥ lim
n

Q(hn) − Q
(
Fc

) ≥ η

1 − ε/2
> η

while

sup
m∈M

m(h) ≤ lim
n

sup
m∈M

m(hn) = 0.

Both inequalities remain true if we replace h by U = {h > a;f ∗ < 1/a} for a suf-
ficiently small. Then U ∈ U but m(U) = 0 for all m ∈ M, so that Lemma 5 fails,
a contradiction. �
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