
ORIGINAL ARTICLE

Changyuan Lu Æ Willem H. Koppenol

Inhibition of the Fenton reaction by nitrogen monoxide

Received: 22 March 2005 / Accepted: 8 August 2005 / Published online: 6 October 2005
� SBIC 2005

Abstract The toxicity of iron is believed to originate
from the Fenton reaction which produces the hydroxyl
radical and/or oxoiron(2+). The effect of nitrogen
monoxide on the kinetics of the reaction of iron(II)
bound to citrate, ethylenediamine-N,N¢-diacetate (edda),
ethylenediamine-N,N,N¢,N¢-tetraacetate (edta), (N-hy-
droxyethyl)amine-N,N¢,N¢-triacetate (hedta), and nitri-
lotriacetate (nta) with hydrogen peroxide was studied by
stopped-flow spectrophotometry. Nitrogen monoxide
inhibits the Fenton reaction to a large extent. For in-
stance, hydrogen peroxide oxidizes iron(II) citrate with a
rate constant of 5.8·103 M�1 s�1, but in the presence of
nitrogen monoxide, the rate constant is
2.9·102 M�1 s�1. Similar to hydrogen peroxide, the
reaction of tert-butyl hydroperoxide with iron(II) com-
plexes is also efficiently inhibited by nitrogen monoxide.
Generally, nitrogen monoxide binds rapidly to a coor-
dination site of iron(II) occupied by water. The rate of
oxidation is influenced by the rate of dissociation of the
nitrogen monoxide from iron(II).

Keywords Fenton reaction Æ Inhibition Æ Kinetics Æ
Nitrogen monoxide Æ Stopped-flow spectrophotometry

Abbreviations ATP: Adenosine triphosphate Æ
edda: Ethylendiamine-N,N¢-diacetate Æ
edta: Ethylenediamine-N,N,N¢,N¢-tetraacetate Æ hedta:
(N-hydroxyethyl)amine-N,N¢,N¢-triacetate Æ nta:
Nitrilotriacetate

Introduction

Iron is an essential mineral but also associated with toxic
effects if present in excess. The toxicity of iron may stem
from the Fenton reaction [1], Reaction 1, which pro-
duces the hydroxyl radical or an oxoiron(2+) com-
pound [2]. Either species is a powerful oxidant and
damages biomolecules, which may ultimately result in
cell death [3].

FeIILþH2O2 ! LFeO2þ þH2O; or
FeIIILþ �

OHþOH�
ð1Þ

The toxicity of iron may also originate from its
reactions with lipid hydroperoxides (ROOH, RH = li-
pid) [3, 4]. The alkoxy radicals produced initiate lipid
peroxidation.

ROOH + FeIIL! FeIIILþRO
�
+ OH� ð2Þ

RO
�
+ RH! ROH + R

� ð3Þ

R
�
+ O2 ! ROO

� ð4Þ

ROO
�
+ RH! ROOH + R

� ð5Þ

Nitrogen monoxide has been reported to protect cells
from oxidative damage caused by hydrogen peroxide
and alkyl peroxides [5–9]. However, no mechanistic
evidence has been reported. That nitrogen monoxide
protects, is interesting, as the presence of nitrogen
monoxide could also lead to peroxynitrite, a peracid that
is a powerful oxidant [10].

We studied by stopped–flow spectrophotometry,
the reaction of hydrogen peroxide and tert-butyl hydro-
peroxide, used as model of a lipid hydroperoxide, with
iron(II) complexes in the presence of nitrogen monoxide.
We used iron(II) complexed with citrate, ethylendiamine-
N,N¢-diacetate (edda), ethylenediamine-N,N,N¢,N¢-tet-
raacetate (edta), (N-hydroxyethyl)amine-N,N¢,N¢-triace-
tate (hedta), and nitrilotriacetate (nta). The spectroscopic
and kinetic data suggest that a nitrosylferrate(II) com-
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plex is rapidly formed. As reduction of a peroxide only
proceeds when it is liganded to the iron [11], the rate of
oxidation of iron(II) ought to be affected by the rate of
dissociation of nitrogen monoxide.

Materials and methods

General

Atp (95–99%), citrate (99%), edta (99%), hedta (99%),
and nta (99%) were received from Sigma-Aldrich. Edda
(99%) was from Acros. Iron(II) sulfate heptahydrate
(>99.5%) and iron(III) nitrate nonahydrate (>99%)
were purchased from Fluka. Hydrogen peroxide (30%)
and tert-butyl hydroperoxide (70%) were obtained from
Merck. All other chemicals were of analytical grade. All
chemicals were used as received. Water was purified with
a Millipore Milli-Q unit fed with deionized water.

Nitrogen monoxide (99.5%), obtained from Linde
AG, was passed through a 4 M potassium hydroxide
solution, a column of potassium hydroxide pellets, and
dry ice before use to remove higher nitrogen oxides such
as nitrogen dioxide and dinitrogen trioxide. A nitrogen
monoxide-saturated aqueous solution was prepared by
bubbling nitrogen monoxide very gently for 90 min
through water that had been previously deoxygenated
by argon bubbling for 80 min. The required nitrogen
monoxide concentration was obtained by diluting the
solution with argon or dinitrogen-saturated solutions.
The final nitrogen monoxide concentrations were mea-
sured with an ANTEK nitrogen monoxide analyzer
(Houston, USA), with a chemiluminescence detector.

Preparation of solutions of iron complexes

Because all iron(II) complexes are extremely dioxygen-
sensitive, the solutions were prepared by adding iron(II)
sulfate heptahydrate to an argon-saturated solution of
the ligand with phosphate as buffer. Iron(III) complexes
were prepared by mixing stock solutions of iron(III)
nitrate nonahydrate and different ligands.

UV/Vis spectrophotometry

Spectra were determined between 200 and 1000 nm with a
double-beam SPECORD 200 (Analytik Jena) spectro-
photometer at room temperature. Quartz cells (1.000 cm)
were sealed with rubber septa and flushed with argon prior
to filling with dioxygen-sensitive solutions.

Determination of the molar extinction coefficients
of nitrosylferrate(II) complexes

Solutions with nitrogen monoxide in excess were
mixed with solutions that contained different amounts

of iron(II) (five or six samples), and then the
absorption of the solutions was determined by UV/Vis
spectrometry. The extinction coefficients were deter-
mined from the plot of the absorbance at the char-
acteristic wavelength vs the concentrations of the
nitrosylferrate(II) complex.

Stopped-flow spectrophotometry

Kinetic experiments were carried out at ambient pres-
sure and 25.0±0.1� C with Applied Photophysics stop-
ped-flow spectrophotometer (SX17-MV and SX18-MV).
pH was measured at the outlet. The mixing time was less
than 2 ms. Six or seven kinetic traces were averaged to
extract a pseudo-first-order rate constant from a single
exponential fit. Gas-tight syringes were used to transfer
solutions.

Kinetic simulations

The oxidation of iron(II) complexes by peroxides in the
absence and presence of nitrogen monoxide was simu-
lated with the help of chemical kinetics simulator (CKS)
program from IBM.

Results

Effect of nitrogen monoxide on the rate of oxidation
of iron(II) complexes by hydrogen peroxide

Experiments were performed with high concentrations
of hydrogen peroxide that are at least five times higher
than that of the iron(II) complex. It is not feasible to
carry out experiments with the latter in excess, given the
maximal concentration of nitrogen monoxide that can
be achieved, 1.9 mM at 25�C [12], which is then halved
by mixing. As shown in Fig. 1, the oxidation of iron(II)
nta proceeds much slower in the presence of nitrogen
monoxide. All kinetic traces exhibited first-order
behavior, and the observed first–order rate constant,
kobs, increased linearly with the hydrogen peroxide
concentration (Fig. 2). It made no difference whether
nitrogen monoxide was added to the iron(II) complex or
to the hydrogen peroxide solution. Rate constants are
listed in Table 1 [13–15], and demonstrate that nitrogen
monoxide can inhibit the Fenton reaction to a large
extent.

A nitrosyl complex was observed immediately after
mixing a solution of an iron(II) complex with a hydro-
gen peroxide–nitrogen monoxide solution. The decay of
this nitrosyl complex observed at ca. 440 nm is syn-
chronous with the formation of the corresponding ir-
on(III) complex (Fig. 1). These results demonstrate that
nitrosylferrate(II) complex is the precursor of the ir-
on(III) complex. At low nitrogen monoxide concentra-
tions NO

�½ �= FeIInta
� �

\1
� �

; a biphasic formation of
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iron(III) nta is observed (Fig. 3a): the faster part (ms)
originates from the reaction of iron(II) nta (not bound
to nitrogen monoxide) with hydrogen peroxide; the
slower part (seconds) is attributed to the reaction of
aqua(nta)nitrosylferrate(II). Furthermore, the concen-
tration of the species observed near 440 nm is directly
related to the nitrogen monoxide concentration
(Fig. 3b).

Nitrosylferrate(II) complex

Nitrosylferrate(II) complexes were prepared by mixing
iron(II) complexes and nitrogen monoxide solutions.
Characteristic wavelengths and extintion coefficients are
listed in Table 2 and shown in Supplementary Material,
Fig. S1

Nitrogen monoxide binding to iron(II) complex in-
volves substitution of labile water molecules [16, 17]. In
iron(II) deferoxamine, all the coordination sites of iron
are occupied. As expected, no nitrosyl complex was
observed [18].

H2Oð ÞmFeIIL + nNO
�
� NOð ÞnFeIIL H2Oð Þm�nþ nH2O

ð6Þ

To obtain information about the stoichiometry of
iron(II) complexes with nitrogen monoxide, we added
varying amounts of nitrogen monoxide to the solution
of iron(II) complexes, followed by UV-Vis spectroscopy.
The concentrations of nitrosylferrate(II) complex
were plotted versus the concentration ratio
NO

�½ �= FeIIL
� �

initial
: As shown in Fig. 4, the absorbance

of nitrosylferrate(II) complex increases linearly with the
nitrogen monoxide concentration, until all the initial
iron(II) has reacted. From the break in the curve, the
stoichiometry was obtained: all iron(II) complexes
shown here formed complexes with one nitrogen mon-
oxide, except iron(II) atp, which bound to nitrogen
monoxides, in agreement with previous results [19–21].

When aqua(nta)nitrosylferrate(II) was synthesized
and used to study the reaction with hydrogen peroxide,
the same spectral changes and kinetics were observed as
in the reaction of iron(II) nta with a mixture of hydrogen
peroxide and nitrogen monoxide (Table 1).

Fig. 2 Plot of the pseudo-first-order formation rates of iron(III)
nta observed at 300 nm as a function of hydrogen peroxide
concentration at pH 7.4 and 0.2 mM Fe(II)nta in a, the absence
and b, the presence of 0.48 mM nitrogen monoxide; In c the decay
rates observed at 440 nm in the presence of 0.48 mM nitrogen
monoxide are shown

Fig. 1 Kinetics of the reaction of 0.2 mM iron(II) nta with 3.9 mM
hydrogen peroxide in 6 mM phosphate buffer (pH 7.4) observed at:
a at 300 nm in the absence of nitrogen monoxide, b and c at 300
and 440 nm, respectively, in the presence of 0.48 mM nitrogen
monoxide

Fig. 3 a Kinetic trace observed at 300 nm from the reaction of
0.19 mM iron(II) nta with 4.0 mM hydrogen peroxide in the
presence of 0.14 mM nitrogen monoxide and 6 mM phosphate
(pH 7.4). b Optical density (OD) values observed at 440 nm
obtained from the reaction of 0.19 mM iron(II) nta with 4.0 mM
hydrogen peroxide (pH 7.4) in the presence of different nitrogen
monoxide concentration

Fig. 4 Stoichiometry of the reaction of nitrogen monoxide with
iron(II) nta (pH 7.4) observed at 440 nm (filled circle), and with
iron(II) atp (pH 7.4) observed at 443 nm (open circle)
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Effect of nitrogen monoxide on the reaction of iron(II)
complex with tert-butyl hydroperoxide

Iron(II) citrate and iron(II) nta were used to investigate
the inhibitory effect of nitrogen monoxide on the
reduction of tert-butyl hydroperoxide, which was pres-
ent at least in tenfold excess. The oxidation of the
iron(II) complexes was first-order in tert-butyl hydro-
peroxide (Fig. 5). Similar to the results obtained with
hydrogen peroxide, the reaction was much slower in the
presence of nitrogen monoxide (Table 3) [4]. Within an
experimental error, the rates of nitrosyl complex disap-
pearance were in agreement with the rates of iron(III)
complexes formation.

Kinetic simulations

The kinetic traces of the reactions of iron(II) complexes
with hydrogen peroxide or tert-butyl hydroperoxide in
the presence of nitrogen monoxide were simulated

with the program CKS program (Scheme 1). We found
that the reaction of iron(II) bound to edta, hedta, and
citrate can be simulated very well with mechanism a, and

Table 1 Reaction rate constants of iron(II) complexes with hydrogen peroxide in the absence (argon-saturated) or presence of 0.48 mM
nitrogen monoxide and 6 mM phosphate buffer (pH 7.4) at 25 �C

Ar (k M�1s�1) NO
� ðk M�1 s�1Þ

kIron(III)›Literature kIron(III)›This work kIron(III)› kNitrosyliron(II)fl

FeII edta 1.4·104 [2] (1.2±0.1)·104 6.5±0.2 8.1±0.3
FeII hedta 4.2·104 [2] (8.2±0.2)·104 13±1 11±1
FeII citrate 4.9·103 [14] (5.8±0.5)·103 (2.9±0.2)·102 (2.5±0.2)·102
FeII edda 7.8·104 [13] (7.9±0.1)·104 28±1 23±1
FeII nta 3·104 [13] (4.1±0.1)·104 83±3a 92±2a

80±1b 90±1b

81±2c 93±3c

› Formation of iron(III) complex. fl Decay of nitrosyl complex.
aFeII nta was premixed with NO

�
; then reacted with H2O2

bH2O2 was premixed with NO
�
; then mixed with FeIInta.

cNO–FeIInta(H2O) reacted directly with H2O2

Fig. 5 Plot of the pseudo-first-order formation rates of iron(III)
citrate observed at 300 nm as a function of [tert-BuOOH] in 6 mM
phosphate buffer (pH 7.4) in a, the absence and b, the presence of
0.48 mM nitrogen monoxide, respectively; c, the decay rates
observed at 440 nm in the case of 0.48 mM nitrogen monoxide

Table 2 Literature data on rate constants (ka,ka-1), stability constants (KNO = ka/ka-1), and UV data for (NO)nFe
IIL. Spectral data at

pH 7.4 were obtained in this work

Complex FeII:La FeIIL:NO
� b Buffer pH ka(M

�1 s�1) ka-1 (s
�1) KNO (M�1) UV data (k(�): nm (M�1 cm�1))

FeII edta 1:1.25 1:1 [19] 5.0 2.4·108 [19] 91 [19] 2.1·106 [19] 342(1080), 435(820), 633(130) [16]

1:1.3 1:1 7.4 1.7·108 [19] 341(1079), 436(839), 633(134)d

FeII hedta 1:1.25 1:1 [19] 5.0 6.1·107 [19] 4.2 [19] 1.1·107 [19] 344(1080), 434(815), 634(130) [16]

1:1.3 1:1 7.4 3.1·108 [19] 347(965), 437(793), 633(126)d

FeII citrate 1:2.3 1:1 [20] 5.0 2.1·104 [16] 338(1120), 443(710), 575(175) [16]

1:5.3 1:1 7.4 4.4·105 [25]c 337(1058), 442(652), 579(154)d

FeII edda 1:1.25 5.7 3.3·105 [16] 341(975), 437(920), 620(135) [16]

1:1.3 1:1 7.4 343(921), 441(892), 622(138)d

FeII nta 1:2.5 1:1 [19] 5.0 2.1·107 [19] 9.3 [19] 1.8·106 [19] 342(1230), 439(870), 600(150) [16]

1:1.4 1:1 [21] 7.4 1.6·107 [19] 344(1140), 441(752), 600(154)d

FeII atp 1:5.3 1:2 7.4 340(1010), 453(592), 597(190)d

aFeII :L indicates the ratio between iron(II) and ligand used to prepare the nitrosylferrate(II) complex.
bFeIIL:NO

�
; indicates the ratio between FeII L and NO

�
determined by spectroscopic methods.

cThe rate constant was determined with a ratio of FeII to citrate of 1:1.
dValues obtained in this work
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the reaction of iron(II) nta follows mechanism b; how-
ever, the oxidation of iron(II) edda could not be simu-
lated by either mechanism a or b (Fig. 6 and
Supplementary Material, Figs. S2, S3, S4, S5, S6).

Discussion

In principle, there are three possibilities for nitrogen
monoxide to interfere with the reaction of iron(II) with

peroxides: (1) Nitrogen monoxide reacts directly with
the peroxide, (2) it scavenges the hydroxyl radical or
oxoiron(2+), or (3) it reacts with the iron(II) complex to
form a nitrosylferrate(II) complex, which reacts either
directly, but slowly, with the peroxide, or after dissoci-
ation of nitrogen monoxide and binding of the peroxide
to iron(II).

Nitrogen monoxide does not react with hydrogen
peroxide [9, 22], and this possibility will not be discussed
further. Only kinetic studies can distinguish path (2)
from (3). Because the rate constants of the reactions of
oxoiron(2+) and hydroxyl radical with nitrogen
monoxide are ca. 1.0·107 M�1 s�1 [23] and
1.0·1010 M�1 s�1 [24], respectively, much larger than
that of the reaction of iron(II) complex with hydrogen
peroxide [13–15], we would have found the same rate
constants for the Fenton reaction in the presence and
absence of nitrogen monoxide if path (2) were operative.
As this is not the case, we conclude that path (3) is
correct. Given the high rate constants for the reaction of
nitrogen monoxide with iron(II) complexes, ka is ca.
105�108 M�1 s�1 [16, 19, 25], nitrogen monoxide reacts
with iron(II) complexes before hydrogen peroxide does
under our experimental conditions. One could add that
if pathway (2) is correct, nitrogen monoxide would still
not protect in vivo. given the low physiological con-
centration of nitrogen monoxide (micromolar concen-
tration at best) and the high reactivity of the hydroxyl
radical [26], scavenging of the latter by the former is
kinetically unlikely.

The rapid formation of a nitrosyl complex after
mixing and the observation that the decay of this ni-
trosyl complex is synchronous with the formation of the
iron(III) complex clearly demonstrate that the nitrosyl-
ferrate(II) complex is the major iron(II) species in solu-
tion. As indicated above, the same results were obtained
when a nitrosylferrate(II) complex reacted with hydro-

Scheme 1

Fig. 6 Kinetic trace observed from the reaction of 0.18 mM
iron(II) citrate with 5.9 mM hydrogen peroxide (a), and 0.2 mM
iron(II) nta with 3.9 mM hydrogen peroxide (b) in the presence of
0.48 mM nitrogen monoxide and 6 mM phosphate (pH 7.4).
Kinetic simulation with mechanism a (open circle) and mechanism
b (open circle) (please see text scheme 1)
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gen peroxide, or when an iron(II) complex reacted with a
mixture of hydrogen peroxide and nitrogen monoxide.
Nitrosylferrate(II) complexes are also involved in the
alkylhydroperoxide reductions.

Because the Fenton reaction proceeds when the per-
oxide is bound to iron(II) [2, 11], the replacement of
water bound to the iron(II) by more slowly-exchanging
nitrogen monoxide should attenuate the Fenton
reaction. The reactions of (edta)nitrosylferrate(II),
(hedta)nitrosylferrate(II), and (citrate)nitrosylferrate(II)
with hydrogen peroxide and tert-butyl hydroperoxide
follow this prediction, which is summarized in mecha-
nism a in Scheme 1. Supporting evidence for this
mechanism comes from a plot of the observed rate
constant as a function of the nitrogen monoxide
concentration. While mechanism b does not require
saturation, mechanism a does. Given the attainable
nitrogen monoxide concentration, only the beginning of
saturation could be observed (Supplementary Material,
Fig. S7). Because aqua(nta)nitrosylferrate(II) possesses a
readily dissociable water molecule and nitrogen mon-
oxide is rather tightly bound, [19, 21], it is likely that the
water, and not the nitrogen monoxide, dissociates to
allow binding of hydrogen peroxide or tert-butyl
hydroperoxide (mechanism b). Aqua(edda)nitrosylfer-
rate(II) also possesses a readily dissociable ligand, water,
and the nitrogen monoxide is more loosely bound
(Table 2), The reaction is not satisfactorily simulated by
either mechanism, and we speculate that both mecha-
nisms may operate in parallel.

The discovery of physiological roles for nitrogen
monoxide changes the position of iron in the field of
dioxygen toxicity. At the site of excess nitrogen mon-
oxide and superoxide formation, such as an activated
macrophage, the production of peroxynitrite
ðkðNO

� þO
��
2 Þ ¼ 1:6� 1010 M�1 s�1Þ [27] would divert

superoxide from dismutation, and therefore from
forming hydrogen peroxide. Furthermore, excess nitro-
gen monoxide would bind to iron(II) and slow the
Fenton reaction. These considerations would suggest
that the Fenton reaction under these conditions is less
likely than the formation of peroxynitrite. The caveat
must be made that the precise nature of redox-active
iron is not known, and therefore rate constants and
equilibrium constants are unknown.

In summary, nitrogen monoxide can attenuate the
reaction of an iron(II) complex with hydrogen peroxide
and alkyl hydroperoxide, in that, often, nitrogen

monoxide has to dissociate from the iron(II) complex.
There does not appear to be a relation between the
activity and the electrode potentials. Given the results of
the simulations, the number and nature of the donor
atoms appears to be important. Of all the complexes
examined, only the iron citrate and the iron-atp complex
may be biologically relevant. The iron(II) form of the
former has the lowest affinity for nitrogen monoxide, as
listed in Table 2. This implies that if iron-citrate is
identical to redox-active iron, then the inhibition by
nitrogen monoxide will be much less pronounced. When
the nature of redox-active iron has been finally eluci-
dated, the results presented here may be helpful in
understanding how it reacts with peroxides.

Supplementary Material

Spectra of nitrosylferrate complexes, kinetic simulations
of the reactions of iron(II) complexes of edta, hedta,
and edda with hydrogen peroxide in the presence of
nitrogen monoxide, and the reactions of iron(II) bound
to citrate and nta with tert-butyl hydroperoxide. Fur-
thermore, the kinetics of reactions of iron(II)citrate
with hydrogen peroxide at various nitrogen monoxide
concentrations.
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