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Abstract. The influence of attractive depletion forces on the structure and dynamics of ferrofluids is studied
by computer simulations. In the presence of a magnetic field, we find that sufficiently strong depletion forces
lead to an assembly of particle chains into columnar structures with hexagonal ordering inside the columns.
In a planar shear flow, this ordering is destroyed, leading to strong shear thinning behavior. A pronounced
anisotropy of the shear viscosity is observed. The viscosity is found to be largest when the magnetic field
is oriented in the gradient direction of the flow.

PACS. 75.50.Mm Magnetic liquids – 61.20.Ja Computer simulation of liquid structure – 66.20.Cy Theory
and modeling of viscosity and rheological properties, including computer simulations – 83.10.Mj Molecular
dynamics, Brownian dynamics

1 Introduction

Dispersions of nano-size ferromagnetic particles —so-
called ferrofluids— show strong responses to external mag-
netic fields [1,2]. In particular their flow behavior can be
modified by varying the strength of the applied field [3],
which opens several practical applications of these fluids.

Over the last years, the understanding of the flow
behavior of ferrofluids has improved significantly due to
experimental and theoretical investigations [4]. For di-
lute ferrofluids with weak dipolar interactions, the vis-
cosity change with varying magnetic-field strength is suc-
cessfully described by the hindrance of rotation of indi-
vidual particles [5,6]. Other ferrofluids show a viscosity
increase which is much stronger than predicted by the
single-particle model [3]. Such a strong viscosity increase
can be explained under the assumption that the magnetic
particles form chain-like aggregates [7]. This assumption is
supported by nonequilibrium simulation results [8–10] as
well as by small-angle neutron scattering (SANS) results
under shear flow [11].

While equilibrium chain formation in magnetic fluids
has been predicted theoretically long ago and has subse-
quently been studied extensively in the literature (see [12]
for a recent review), it came as a surprise when pseudo-
crystalline ordering in bulk ferrofluids were observed in
SANS and cryo-TEM experiments [13–15]. In thin films,
hexagonal order has been observed experimentally already
in [16] and later in [17]. The experimental results [13–15]
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were interpreted in terms of hexagonal particle arrange-
ments in sheets parallel to the magnetic-field direction.
Simulation results [18,19] on a perfectly oriented model-
ferrofluid showed similar patterns only for much higher
concentrations than appropriate for the experimental fer-
rofluids. Similarly, hexagonally ordered ground states
were predicted in [20] only for very high concentrations.
For more realistic values of the fluid parameters, com-
puter simulations could so far not reproduce this pseudo-
crystalline ordering [12].

Here we show that hexagonal particle arrangements
can indeed be observed in computer simulations for realis-
tic model parameters, if one assumes additional, attractive
interactions. Such attractive interactions are well known
in colloidal systems and result from depletion forces due to
free surfactant molecules forming micellar aggregates [21].
We also study the flow behavior of these fluids by nonequi-
librium computer simulations.

The outline of this paper is as follows. In Section 2 we
introduce the model system studied here as well as the
simulation method. The equilibrium properties and struc-
ture of this model are presented in Section 3. In Section 4
we explore the dynamical and viscous properties of the
model. Finally, some conclusions are offered in Section 5.

2 Model system and simulation method

We study an extension of the model system used in earlier
work [10,22,23]. The system consists of a set of N iden-
tical, spherical particles of diameter dm with coordinates
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ri and magnetic dipole moments mi = mui, where m de-
notes the magnitude and ui the orientation of the dipole.

2.1 Interaction potential

The interaction energy between particles i and j can be
written as

Uij = Φ(rij) + Φdd(rij ,mi,mj), (1)

where rij = ri − rj , rij = |rij | is the distance between
particles i and j, and Φ(r) denotes a spherically symmetric
potential to be specified below. The dipole-dipole energy
Φdd is given by

Φdd(r,m1,m2) =
µ0

4π

[

m1 · m2

r3
−

3(m1 · r)(m2 · r)

r5

]

.

(2)
The strength of dipolar interactions relative to the thermal
energy is measured by the dipolar interaction parameter
λ defined by

λ = µ0m
2/4πkBTd3

m. (3)

In the presence of a magnetic field H, the dipole moment
mi acquires the additional field energy UH

i = −µ0mi ·H.
For later use, we introduce the Langevin parameter α =
µ0m|H|/kBT , which is a dimensionless measure for the
strength of the magnetic field compared to the thermal
energy.

The ferrofluids used in the investigations [13–15] are
sterically stabilized by a surface layer of surfactant mole-
cules. The resulting, repulsive steric interactions are usu-
ally modeled either as truncated Lennard-Jones poten-
tial [24] or, slightly more realistic, by the entropic repul-
sion of interpenetrating surfactant molecules proposed by
Rosensweig [9,10]:

Φs(r) =

{

NpkBT

2δ
{d̃h + r[ln(d̃h/r) − 1]}, for dm ≤ r ≤ d̃h

0, else.
(4)

The number of polymer molecules on the surface and their
effective length are denoted by Np and δ, respectively. The

quantity d̃h = dm + 2δ gives the range of the repulsive in-
teraction. Typical values are Np ≈ 100–300 and δ ≈ 2 nm.
We assume the stabilizing shell to be thick enough, such
that van der Waals interaction can be neglected. Ferrofluid
models with these interactions have been considered, e.g.,
in [9,10,23]. See [25] for Brownian-dynamics simulations
on electrostatically stabilized ferrofluids.

The spherical potential Φ(r) in equation (1) contains
not only the repulsive potential (4) but also an additional
contribution Φdep,

Φ(r) = Φs(r) + Φdep(r), (5)

which accounts for an effective attractive interaction be-
tween the colloidal particles that is known as depletion
interaction [21]. For the functional form of Φdep(r) we

employ the approximation proposed by Vrij [21],

Φdep(r) = −Φ0
dep

[

1−
3r

2(d̃h + dmisc)
+

1

2

(

r

d̃h + dmisc

)3
]

,

(6)

for d̃h ≤ r ≤ d̃h + dmisc and Φdep(r) = 0, otherwise. The
strength of the depletion interaction can be estimated as
Φ0

dep = kBTφmisc(1 + d̃h/dmisc)
3 [21]. The diameter and

volume fraction of the micelles are denoted by dmisc and
φmisc, respectively.

Adding steric repulsion and depletion interaction, the
spherical potential Φ(r) develops a minimum and the
model becomes more similar to a Stockmayer-fluid [26].
The importance of attractive interactions for condensation
phenomena has been emphasized frequently in the liter-
ature [27,26] and recently also in the context of ferroflu-
ids [28,29]. The influence of depletants on ferrofluid emul-
sions was studied experimentally in [30,31]. The phase
behaviour of ferrofluids containing depletants was studied
theoretically and experimentally in [32,33].

2.2 Model dynamics

Two basic mechanisms are known by which the magneti-
zation of a ferrofluid relaxes. First, Brownian rotational
motion of the particles leads to a relaxation of the magne-
tization. The time scale for this process is the rotational
relaxation time of a single particle in a solvent with vis-
cosity ηs, τB = πηsd

3
h/2kBT . Here and in the following,

dh denotes the hydrodynamic diameter of the colloidal
particles, to be determined below. The second, Néel re-
laxation mechanism is associated with thermal activation
of the internal magnetic moment with respect to the crys-
tallographic axis, τN ∝ exp [Kπd3

m/6kBT ], K being the
anisotropy constant of the magnetic material. For cobalt,
a typical value is K = 2.5×105 J/m3 [34]. We consider here
particles that are larger than a critical diameter. In this
case τN ≫ τB and the magnetic moment can be considered
as effectively frozen within the particle. This assumption
is justified for the fluid used in the experiment [13] with
dm ≈ 8 nm cobalt particles, since their critical diameter is
approximately 5 nm [35].

In the presence of a macroscopic flow field V (r) with
vorticity Ω(r) = (1/2)∇r×V (r), the Brownian dynamics
of the system is described by [8,9,24,10]

0 = F i − ξt[vi − V (r)] + F B
i , (7)

0 = N i − ξr[ωi − Ω(r)] + T B
i . (8)

The velocity and angular velocity of particle i are de-
noted by vi and ωi, respectively. The potential forces and
torques are given by F i = −∇ri

U and N i = −LiU , re-
spectively, with the rotational operator Li = ui × ∂/∂ui.
The second terms on the right-hand side of the above
equations describe the friction forces and torques. For hard
spheres of diameter dh, the translational and rotational
friction coefficients are given by ξt = 3πηsdh and ξr =
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πηsd
3
h, respectively. For smooth repulsive short-ranged

interactions Φ(r), a hydrodynamic diameter dh is de-
fined with the help of the equivalent hard-sphere diam-
eter dh =

∫

∞

0
dr(1 − exp [−βΦ(r)]), β = (kBT )−1 as

proposed by Barker and Henderson [36]. Since Φ van-

ishes for r ≥ d̃h, the equivalent hard-sphere diameter is
smaller than the range of Rosensweig’s repulsive interac-
tion potential dh ≤ d̃h. The rapidly fluctuating forces and
torques F B

i and T B
i are modeled as uncorrelated Gaus-

sian white noise obeying 〈F B
i (t)〉 = 〈T B

i (t)〉 = 0 and

〈F B
i (t)F B

j (t′)〉 = 2kBTξtδijδ(t − t′)1, 〈T B
i (t)T B

j (t′)〉 =
2kBTξrδijδ(t − t′)1. We consider the free-draining limit,
where hydrodynamic interactions can be neglected [37].

Equations (7) and (8) are obtained in the overdamped
limit M v̇i → 0 and Θω̇i → 0 from the corresponding
Langevin equations. M denotes the mass and Θ the mo-
ment of inertia of the particles. The overdamped limit is
appropriate on the diffusive time scale (τ ≫ M/ξt, τ ≫
Θ/ξr), where translational and rotational momenta can
be assumed to be equilibrated [37]. For typical ferrofluids
including the ones studied in [13], M/ξt ≈ Θ/ξr ≈ 10−13 s
while τB ≈ 10−4 . . . 10−5 s, and the overdamped limit is an
excellent approximation. Furthermore, we treat depletion
interactions as instantaneous. This is a valid assumption
here, since we restrict ourselves to time scales larger than
the diffusion time of the micelles [38].

2.3 Macroscopic variables

The macroscopic magnetization of the system is given by
the ensemble average of the individual magnetic moments,
M = Msat〈u〉, where Msat = nm is the saturation mag-

netization and 〈u〉 = 1
N

∑N
j=1 uj denotes the average ori-

entation of the magnetic dipoles.
The definition of the pressure tensor in magnetic fluids

has been the subject of a number of studies [39,6,40,41].
The orientational motion leads to an antisymmetric con-
tribution to the viscous pressure tensor pa if the average
angular velocity of the particles 〈ω〉 does not match the
local vorticity of the flow, pa = 3ηsφ ǫ · (〈ω〉−Ω) [6]. The
total antisymmetric tensor of rank three (Levi-Civita) is
denoted by ǫ. Inserting ωi from equation (8) and aver-
aging over the particles, one obtains the familiar expres-
sion pa = M × H. Summing the viscous and Maxwell’s
magnetic pressure tensor, PM = −BH + (µ0H

2/2)1 with
B = µ0(H +M) [39], the total pressure tensor is found to
be symmetric, expressing the conservation of total angular
momentum. Using the standard virial expression for the
symmetric traceless part, the total viscous pressure tensor
is given by [10]

P = p1 − ηsΓ +
1

V

N
∑

j<k

rjkF jk +
1

2
(MH − HM), (9)

where Γ ≡ 1
2
[∇rv + (∇rv)T ] is the symmetric velocity

gradient, F 12 = −∇r1
U12 the force on particle 1 due to

particle 2, and . . . denotes the symmetric traceless part.

In a planar shear flow, V (r) = γ̇yex, the shear vis-
cosity is defined by ηyx = −Pyx/γ̇. Note, that no contri-
bution of the Maxwell pressure tensor to the shear stress
arises because of the boundary conditions for the magnetic
fields H and B (see, e.g., Chapt. 8.12. of [2]). Similar to
the Miesowicz viscosities of liquid crystals [27,42,43,22],
different viscosity coefficients ηi can be defined if the mag-
netic field is oriented in flow (i = 1), in gradient (i = 2), or
in the vorticity direction (i = 3) of the flow. In addition,
a fourth viscosity coefficient is needed to fully character-
ize the viscous behavior. This coefficient can be chosen
as η4, the viscosity ηyx that is measured if the magnetic
field is oriented along the bisector of the flow and gradient
direction.

2.4 Simulation algorithm

In order to minimize effects due to the finite system
size, periodic boundary conditions were employed. The
long-range part of the dipolar interactions were treated
with the reaction field method beyond a distance rc, while
all interactions are taken into account explicitly below
this value. Most simulation results shown are obtained
for rc = 5dm. We verified that the results do not change
significantly upon increasing rc = 8dm or employing the
Ewald method. The nonequilibrium simulations were per-
formed with standard Lees-Edwards periodic boundary
conditions [23].

The equations of motion (7) were integrated with a
second-order predictor-corrector scheme, while for equa-
tions (8) we use a first-order Euler-Maruyama algorithm
adapted to conserve exactly the norm of the unit vectors.
The integration time step was chosen as ∆t = 5× 10−4τB

for the equilibrium simulations and reduced, depending on
the shear rate, down to ∆t = 5× 10−5τB. Results are pre-
sented for systems containing N = 2048 particles. Some
studies for a larger system of N = 8000 particles showed
no significant differences.

3 Equilibrium structure

We performed equilibrium simulations of the model sys-
tem by solving equations (7, 8) with the parameters chosen
to mimic the experimental situation. For the cobalt-based
ferrofluid investigated in [13], the mean particle size was
determined to be dm = 7.6 nm, resulting in a dipolar inter-
action strength of λ ≈ 6. The steric repulsion was modeled
by Rosensweig’s potential (4) with Np = 100, δ = 0.2dm,
such that the resulting hydrodynamic diameter correctly
accounts for the measured shell thickness of 2 nm. The
steric shell prevents the particles from approaching each
other closer than roughly dh, such that the effective dipo-
lar interaction parameter [4] λ∗ = λ(dm/dh)3 ≈ 3 is sig-
nificantly reduced. Since the micelles are formed by the
free surfactants, their diameter should correspond to the
length of the adsorbed molecules. Therefore, the diameter
of the micelles was taken as dmisc = 0.2dm, which corre-
sponds to dmisc = 1.5 nm for dm = 7.6 nm. Note, that even
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Fig. 1. Snapshot of particle configuration viewed along the
magnetic-field direction. The model parameters are λ = 6, φ =
0.06, φmisc = 0.1, α = 10.

for these size ratios, the pairwise depletion potential has
been found to give good predictions on the phase behavior
of binary mixtures [44].

Neglecting depletion interactions, φmisc = 0, no sign
of hexagonal ordering could be detected in the simula-
tion, for all concentrations investigated φ = 0.02 . . . 0.06.
While the experiments [13] show a pronounced pseudo-
crystalline ordering in this regime, the simulations yield
only chain-like structures.

However, accounting for sufficient attraction due to de-
pletion interactions, we observe the formation of different
equilibrium structures for φmisc & 0.05. Figure 1 shows a
snapshot configuration viewed along the magnetic-field di-
rection for volume fraction of magnetic particles φ = 0.06,
volume fraction of surfactants φmisc = 0.1, Langevin pa-
rameter α = 10. The formation of columnar structures is
obvious.

Figures 2 and 3 show contour plots of the two-
dimensional static structure factor S(k) = 〈

∑

jk exp[ik ·

rjk]〉 in the plane of the applied field (H in y-direction).
The same model parameters as in Figure 1 were chosen. In
Figure 2, a scattering pattern typical for chain-like struc-
tures is seen, whereas in Figure 3 sharp, distinct peaks at
well-defined positions are clearly visible. Both scattering
patterns look qualitatively very similar to the experimen-
tal ones observed in [13]. In the simulations, the tran-
sition from chain-like to more ordered structures occurs
at somewhat larger concentrations φ ≈ 0.04 compared
to the experiments. Another interesting observation from
the simulations is that a high concentration of magnetic
particles is not necessarily sufficient to cause the transi-
tion to the more ordered structures. Indeed, the scattering
patterns in Figure 2 are both obtained at the same con-
centration of magnetic particles φ = 0.06. However, the
micellar concentration was chosen as φmisc = 0.05 in Fig-
ure 2 and φmisc = 0.1 in Figure 3. This result illustrates
the crucial role of attractive depletion interactions for

Fig. 2. Static structure factor S(k) for the same model param-
eters as in Figure 1 but for φmisc = 0.05 instead of φmisc = 0.01.

Fig. 3. Static structure factor S(k) for the same model pa-
rameters as in Figure 1.

structure formation in ferrofluids, at least in the present
simulations.

Beyond the qualitative similarities with the experimen-
tal results, also the peak positions of Figure 3 are very
similar to those in reference [13]. In order to compare the
simulation results with the experimental data quantita-
tively, we follow [13] and calculate Sθ(k) = S(k · nθ) as
sector-average of the two-dimensional scattering structure
factor S(k) of Figure 3 along the unit vector nθ in the di-
rection θ. Figure 4 shows a comparison of the experimen-
tal curves for Sθ(k) given in [13] to the simulation results.
We observe that the peak positions k1 ≈ 0.3 nm−1 and
k2 ≈ 0.57 nm−1 for θ = 0◦ and 30◦ agree nicely between
experiment and simulation. For θ = 30◦ also the peak
height is quantitatively reproduced by the simulations,
whereas the peaks in the simulations are smaller than
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Fig. 4. Sector averages of the static structure factor Sθ(k) as
a function of k for angles θ = 90◦, 60◦, 30◦, and 0◦. For better
visibility the curves are shifted horizontally by +1, 0,−1, and
−2, respectively. Open symbols denote the experimental values
of [13], while solid symbols are the simulation results obtained
in this work.

the experimental ones for θ = 0◦. The simulations agree
with the experimental results also for an angle θ = 60◦,
where the peak heights are much smaller compared to
θ = 0◦, 30◦. Strong peaks are again observed for θ = 90◦,
both in experiments and simulations. However, the values
for the position and height of the main peak for θ = 90◦

differ significantly between experiment and simulation.
While in the experiments the main peak is located at
k3 ≈ 0.24 nm−1, the corresponding peak in the simula-
tions is at lower k with much larger height (not shown).
The position of this peak in the simulations corresponds
to length of the simulation box and is therefore clearly
affected by the finite system size. In the experiments, the
peak at k3 is attributed to the spacing between layers of
hexagonal ordering [13]. This feature seems to be absent in
the simulations. The second peak at k1, due to hexagonal
in-plane ordering is reproduced in the simulations.

Having studied the equilibrium structures of the fer-
rofluid model, we now proceed to investigate its dynamical
properties in a given shear flow.

4 Dynamics in shear flow

It is well known that structural and dynamical proper-
ties of complex fluids are intimately related [27,42]. For
dilute and chain-forming ferrofluids, a number of exper-
imental and theoretical studies have been performed on
this relationship in the last years [11,45,10]. The flow
properties of ferrofluids with pseudo-crystalline equilib-
rium structures as those described in Section 3 are, how-
ever, largely unknown. Simulation studies on simple model
systems of perfectly oriented ferrofluids show a strong
anisotropy of viscous response and strong shear thinning
behavior [18]. These features are reminiscent of magne-
torheological fluids.

We study the present model in a planar shear flow
for a range of shear rates 5 × 10−3 ≤ De ≤ 1, where

Fig. 5. Static structure factor S(k) in planar shear flow with
dimensionless shear rate De = 0.01. The magnetic field with
strength α = 10 is oriented in the gradient direction. The other
parameters are chosen as in Figure 1.

Fig. 6. Same as Figure 5 but for a dimensionless shear rate
De = 1.0.

De = τBγ̇ is the Deborah number, i.e. the shear rate γ̇
measured in units of inverse Brownian relaxation time.
Equations (7) and (8) were integrated numerically until
a stationary state was reached. Data were extracted in
the stationary state for further time intervals of typically
102–103 τB. Error bars were estimated from standard de-
viations of block averages.

Figures 5 and 6 show two-dimensional projections of
the static structure factor onto the shear plane for different
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Fig. 7. Relative change of shear viscosity (ηi − ηs)/ηs with re-
spect to solvent viscosity ηs as a function of dimensionless shear
rate De = τBγ̇, where i = 1, 2, 3 corresponds to orientation of
the magnetic field in flow, gradient and vorticity direction, re-
spectively. Solid symbols correspond to φmisc = 0.1, while open
symbols φmisc = 0.05. Otherwise, the same model parameters
as in Figure 1 are used.

values of the shear rate. The structure factor clearly shows
significant structural changes due to the applied flow. The
distinct peaks in equilibrium seen in Figure 3 get washed
out by the shear flow. We note that the lowest shear rate
studied De = 5 × 10−3 is already strong enough to de-
stroy the hexagonal equilibrium ordering in case the field
is oriented along the gradient direction of the flow. For
increasing shear rate, also the peak at the lowest wave
vector k disappears. Instead, shear-induced anisotropy of
local particle arrangements is seen at high shear rates,
Figure 6, similar to earlier observations [42,18].

The strong structural changes are reflected in the shear
thinning behavior shown in Figure 7. The viscosity coeffi-
cient η2 corresponds to the magnetic field being oriented
along the gradient direction of the flow. This geometry
was also used in Figures 5 and 6. A strong shear-thinning
behavior is apparent from Figure 7 with a power law be-
havior η2 ∝ γ̇−ν . The shear-thinning exponent ν ≈ 0.6
observed here is slightly higher than 1/2 which can be
estimated from the force balance on a chain of ferromag-
netic particles [35]. On the other hand, the exponent ν
found here is smaller than ν = 1 which is the typical value
for magnetorheological fluids (see, e.g., G. Bossis et al.
in [1,42]). For a two-dimensional model system, an expo-
nent ν = 0.75 was found in [9] for a higher concentration
and at much higher dipolar interaction strengths.

For different orientations of the magnetic field with re-
spect to the flow geometry, the viscosity coefficients differ
considerably. If the magnetic field is oriented parallel to
the flow direction, the corresponding viscosity coefficient
η1 is much lower than η2, since in this case the extended
structures provide less resistance to the flow. Furthermore,
the plateau of η1 for decreasing shear rate γ̇ indicates that
the low shear rate regime has been reached for this quan-
tity. Finally, orienting the magnetic field parallel to the
vorticity direction, i.e. perpendicular to the shear plane,
gives the smallest viscosity value η3. The observed order-

ing of the viscosity coefficients η3 < η1 < η2 is typical
for suspensions of elongated objects [42]. For dimension-
less shear rates De & 0.2, the values of the viscosity co-
efficients η1 and η2 become quite similar. We conclude
therefore that in this regime the particle aggregates are
destroyed to a large extent.

From Figure 7 we also observe that the shear viscos-
ity η2 is significantly larger for φmisc = 0.1 (solid squares)
than for φmisc = 0.05 (open squares). Therefore, the differ-
ence in the equilibrium structures Figures 2 and 3 leaves
a trace in the nonlinear viscosity behavior, even though
these structures are strongly distorted by the shear flow.
Therefore, depletion interactions play an important role
also for dynamical properties of ferrofluids.

We verified by a direct cluster analysis [10] of the
nonequilibrium particle configurations that the mean clus-
ter size is decreasing significantly due to the shear flow.
These results support the intuitive arguments of “chain
rupture” being responsible for strong shear thinning be-
havior in ferrofluids [3].

The viscoelastic behavior of ferrofluids shows up not
only in shear-thinning behavior but also in normal stress
differences [4]. In agreement with experimental results [4],
the first normal stress difference N1 = Pyy − Pxx is found
to be positive and increasing quadratically with applied
field strength for small α if the magnetic field is ori-
ented in the gradient direction. For large α, N1 is found
to saturate to a finite value. The second normal stress
difference N2 = Pzz − Pyy is found to be negative with
−N2/N1 ≈ 0.5. Experimentally, so far there is only a sin-
gle data point for one value of the magnetic field where
−N2/N1 ≈ 1/4 was found in [4] for a magnetite ferrofluid.
The results on normal stress differences are consistent with
earlier simulation results [23] and with predictions of a dy-
namical mean-field theory [46].

5 Conclusions

We have performed equilibrium and nonequilibrium com-
puter simulations of realistic model-ferrofluids. In accor-
dance with analytical predictions, and also in agreement
with previous studies [9,24], we observe the formation of
chain-like equilibrium structures in a magnetic field for
a wide range of model parameters. One main new result
of the present study is that sufficiently strong depletion
forces lead to an assembly of particle chains into colum-
nar structures along the magnetic-field direction. Inside
the columns and parallel to the field direction, particles
are arranged hexagonally. The corresponding static struc-
ture factor agrees well with results from SANS experi-
ments [13] which exhibit very similar characteristic scat-
tering patterns. The experimental results [13] have been
interpreted in terms of hexagonal ordering in sheets par-
allel to the field direction. The present simulations indeed
show such a hexagonal ordering within columnar struc-
tures. The present study therefore suggests that attrac-
tive interactions due to depletion forces lead to these or-
dered structures. The observations that hexagonal order-
ing has so far been found only in some ferrofluids, can
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then be explained naturally by the different amounts of
free surfactant present in these fluids. Indeed it was men-
tioned in [13] that “additional surfactants have been used
in excess” in some of the fluids studied. Unfortunately,
the precise amount of free surfactants in these fluids re-
mains unclear. Some quantitative discrepancies between
simulation and experimental results can probably be at-
tributed to finite-size effects. However, we cannot exclude
that these discrepancies indicate some differences between
the observed structures. This point deserves further stud-
ies. In any case, the present study clearly demonstrates the
importance of depletion forces for the structure formation
in ferrofluids. While the crucial role of depletion forces is
well known in ordinary colloidal suspensions, apparently
so far it has not been appreciated enough for ferrofluids.

Beyond studying (and to a large extend reproducing
the experimental results on) the static structure, we also
explored the flow behavior of these model-ferrofluids. We
find a strong anisotropy of the viscous behavior with the
shear viscosity being largest when the magnetic field is
oriented along the gradient direction of the flow. This be-
havior is characteristic for the rheology of suspensions of
elongated objects. Furthermore, we observe a strong shear
thinning behavior if the field is oriented in gradient direc-
tion of the flow.

Due to computational limitations, we have so far not
reached the Newtonian, low shear rate regime if the mag-
netic field is oriented in the gradient direction of the flow.
The same problems appears generally in nonequilibrium
simulations: in order to reach the stationary state for a
given shear rate γ̇, the simulations must span time inter-
vals t ≫ 1/γ̇ which soon exceed the available computing
times. Thus, already for the lowest shear rates studied,
the equilibrium structures are severely distorted and we
do not detect any characteristic difference to the rheology
of other chain-forming ferrofluids. Since τB = 10−4–10−5 s
for typical ferrofluids, the lowest shear rate studied here
De = τBγ̇ = 5 × 10−3 still corresponds to a laboratory
shear rate γ̇ = 50–103 s−1. For the cobalt fluid in [13]
with the low viscous solvent toluene, the relaxation time
τB is even shorter. Therefore, we suggest an experimental
investigation of the shear viscosities ηi to be compared to
Figure 7 for a ferrofluid containing a high viscous solvent
that shows hexagonal equilibrium structures.

I am very grateful for numerous enlightening discussions on this
subject with S. Hess, M. Kröger, and A. Wiedenmann. Many
thanks to A. Wiedenmann also for providing the experimental
data in Figure 4.
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