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Abstract In 1976, Paolo Cerretelli published an article
entitled ‘‘Limiting factors to oxygen transport on
Mount Everest’’ in the Journal of Applied Physiology.
The paper demonstrated the role of cardiovascular
oxygen transport in limiting maximal oxygen con-
sumption ( _V O2max). In agreement with the predomi-
nant view of _V O2max limitation at that time, however,
its results were taken to mean that cardiovascular
oxygen transport does not limit _V O2max at altitude. So
it was argued that the limiting factor could be in the
periphery, and muscle blood flow was proposed as a
possible candidate. Despite this suggestion, the con-
clusion generated a series of papers on muscle struc-
tural characteristics. These experiments demonstrated a
loss of muscle oxidative capacity in chronic hypoxia,
and thus provided an unambiguous refutation of the
then widespread hypothesis that an increased muscle
oxidative capacity is needed at altitude to compensate
for the lack of oxygen. This analysis is followed by a
short account of Cerretelli�s more recent work, with a
special attention to the subject of the so-called ‘‘lactate
paradox’’.

Keywords Altitude adaptation Æ Humans Æ Muscle
morphometry Æ Maximum oxygen consumption
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Introduction

In this paper some of Paolo Cerretelli�s contributions to
the study of man�s adaptation to altitude exposure are
analysed. It is not a survey of his work. In the first part I
discuss the origin, the results and the consequences of
what is, at least in my opinion, his most influential pa-
per, entitled ‘‘Factors limiting oxygen transport on
Mount Everest’’, published in the Journal of Applied
Physiology in 1976 (Cerretelli 1976). I am intrigued by
this paper because the conclusions arrived at were the
only possible logical conclusions at that time, although
they can now be considered to be intrinsically wrong. In
spite of this, and despite the fact that they were not even
pointing to that direction, they led to the opening of an
entire new chapter of altitude physiology, that of the
morphological study of muscle adaptation to altitude, to
which Paolo Cerretelli, Hans Hoppeler and Hans Ho-
wald gave great impulse. Subsequently I propose a brief
critical analysis of his more recent contributions to our
understanding of the so-called ‘‘lactate paradox’’.

The early years

In 1959, Cerretelli participated as medical scientist in an
expedition aimed at conquering the then virgin peak of
Kanjut-Sar, in the Karakoram, organised by Guido
Monzino, a remarkable figure of climber and explorer
descended from a major family of the industrial bour-
geoisie of Milan (see Fig. 1).

Three experiments were carried out in that expedi-
tion. The first (Cerretelli 1959) reported data on the
ventilatory response to chronic hypoxia, investigated by
the technique of chemical denervation of peripheral
chemoreceptors that Dejours et al. (1959) had just
published. In practice, the subjects, while breathing
ambient air, were suddenly administered four breaths of
pure oxygen. The evolution of pulmonary ventilation
was then followed on the spirometer. It was shown that
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the reduction in ventilation induced by oxygen breathing
was greater in chronic hypoxia than in normoxia. The
same technique was resumed 25 years later for investi-
gating the chemoreflexogenic drive of climbers who
reached the highest peaks on Earth without supple-
mentary oxygen (Oelz et al. 1986). The second experi-
ment (Cerretelli 1961) reported data of lung volumes in
subjects acclimatised to altitude. The third, and perhaps
most significant experiment in the present context
(Cerretelli and Margaria 1961), demonstrated that the
decrease in maximal oxygen consumption ( _V O2max) in
chronic hypoxia was equivalent to that in acute hypoxia.
This implied that the increase in haematocrit or hae-
moglobin concentration resulting from acclimatisation
was unable to increase _V O2max.

After the Kanjut-Sar expedition, Cerretelli had few
further experiences in altitude physiology until the 1973
Italian expedition to Mount Everest. Nevertheless, he
continued to perform experiments in acute hypoxia. An
analysis of blood lactate accumulation (Cerretelli 1967)
demonstrated that: (1) the decrease in _V O2max brings
about an equivalent decrease in the work load at which
blood lactate accumulation becomes evident, and (2) the
maximal blood lactate concentration is unchanged in
acute hypoxia, contrary to chronic hypoxia (Dill et al.
1931; Edwards 1936). An investigation of _V O2max in
acute hypoxia supported the hypothesis of central (car-
diopulmonary) limitation of _V O2max in humans (Cerre-
telli et al. 1967).

Limiting factors to oxygen transport on Mount Everest

As were many physiologists in the early 1970s, Cerretelli
was intrigued by the finding that the decrease in _V O2max

was not the same in acute as in chronic hypoxia
(Cerretelli and Margaria 1961), because it appeared to
be in contrast with the notion of central _V O2max limi-
tation and with the observation that altitude acclimati-
sation implies an increase in haemoglobin concentration.
The hypothesis was formulated that cardiovascular

oxygen transport may not account for the entire change
in _V O2max in chronic hypoxia. Therefore, on the occa-
sion of the Italian expedition to Mount Everest in 1973,
in order to test this hypothesis, Cerretelli conceived and
realised the following experiment (Cerretelli 1976): let a
man acclimatised to altitude, and thus polycythaemic,
breathe at the Everest base camp a gas mixture con-
taining an oxygen partial pressure equivalent to that
existing at sea level; if cardiovascular oxygen transport is
the factor that limits _V O2max in chronic hypoxia, this
man who was artificially brought back to sea level would
have a _V O2max higher than that measured at sea level
before the expedition, because an equivalent maximal
cardiac output combined with an increased arterial
oxygen concentration would have improved his oxygen
transport capacity. If conversely this was not the case,
then the limit to _V O2max would be elsewhere than in
cardiovascular oxygen transport. On a fraction of his
subjects (group A in the paper), _V O2max was measured in
Milan before departure (normoxia), at Everest base
camp after acclimatisation (chronic hypoxia) and at
Everest base camp while breathing a normoxic gas
mixture [inspiratory fraction oxygen (FIO2) = 0.4,
barometric pressure = 390 mmHg, a condition that I
would dare to call acute normoxia]. Arterial oxygen
concentration (CaO2) was determined from measure-
ments of blood haemoglobin concentration and arterial
oxygen saturation. Cardiac output was measured by the
N2–CO2 rebreathing method.

The results are summarised in Table 1 and Fig. 2.
Blood haemoglobin concentration obviously increased
with acclimatisation, so that, despite the drop in arterial
oxygen saturation, CaO2 levels were slightly higher in
chronic hypoxia than in normoxia at maximal exercise.
Acute normoxia, of course, then resulted in a huge in-
crease in CaO2. The decrease in _V O2max corresponded to
what one could have expected at 5,000 m (Pugh et al.
1964). Most significant were the findings in acute
normoxia: although the _V O2max levels increased with
respect to the values observed in chronic hypoxia, they
did not increase in proportion to CaO2, but they re-
mained well below the value observed in Milan, in
normoxia. Cardiac output was expressed only relative to
the value observed in normoxia; however, the values are
coherent with those of _V O2max: maximal cardiac output
decreased in chronic hypoxia and, even if a slight in-
crease was observed, it did not come back to the value
observed in Milan in acute normoxia. An indirect

Fig. 1 Paolo Cerretelli portrayed behind a Tissot spirometer inside
a tent at the base camp of Mount Kanjut-Sar, 1959

Table 1 Results of the 1973 experiment at Everest base camp
(Cerretelli 1976). _V O2max Maximal oxygen consumption;
CaO2arterial oxygen concentration

Condition Haemoglobin
(gl)1)

CaO2

(ml l)1)

_V O2max

(l min)1)
Cardiac
output(%)

Normoxia 150 197 3.21 100
Chronic hypoxia 206 214 2.26 87
Acute normoxia 206 271 2.95 92
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observation pointing in the same direction was made a
few years earlier by Pugh et al. (1964): while breathing
oxygen at 150 mmHg at 5,800 m after acclimatisation,
two of their subjects were able to sustain a given su-
pramaximal power for 4 min instead of 6 min, as at sea
level. This observation was overlooked by Pugh, but it
did not escape Cerretelli, who was thinking along those
lines.

These results were discussed as being indicative of
the fact that cardiovascular oxygen transport is not the
factor that limits _V O2max in chronic hypoxia. Since the
investigated respiratory variables, not reported here,
were unaffected by chronic hypoxia, the lungs (ventila-
tion and/or diffusion) were not considered as an alter-
native limiting factor. So, Cerretelli suggested that ‘‘the
limiting factors for aerobic work performance are
peripheral’’. And in the periphery, he directed his
attention to capillary perfusion or diffusion, since, based
on observations on rats (Gold et al. 1973), he argued
that there could not be changes in cell respiration due to
chronic hypoxia exposure. Curiously enough, the failure
to observe an increase in _V O2max in acute normoxia
above the value measured in Milan was taken to be an
analogous of the failure to observe an increase in
_V O2max proportional to that in inspired oxygen pressure
in hyperoxia (Bannister et al. 1954; Margaria et al. 1961,
1972; Fagraeus et al. 1973). In a book chapter written a
few years later, commenting the same results, Cerretelli
(1982) wrote: ‘‘the failure of sudden hyperoxia to raise

_V O2max in acclimatised lowlanders to sea level or even
higher values in the absence of a drastic reduction of
maximal cardiac output could be explained by a reduc-
tion of effective blood flow to the working muscles’’.

Critique of a paper, 27 years later

When Cerretelli wrote his paper, the subject of the fac-
tors that limit _V O2max was looked at under an either/or
perspective. The exercise physiology community was
divided between those who were convinced that the
limits were imposed by central circulation (cardiovas-
cular oxygen transport) and those who believed that the
limits were of muscular origin. Indeed the majority
supported the former statement (Åstrand 1952; Mar-
garia et al. 1965; Holmgren and Åstrand 1966; Ekblom
1969; Saltin 1973; Rowell 1974; just to cite publications
preceding Cerretelli�s paper), because _V O2max was: (1)
higher in endurance athletes than in non-athletes (Saltin
and Åstrand 1967), (2) proportional to maximal cardiac
output (Åstrand et al. 1964; Ekblom and Hermansen
1968), (3) increased by endurance exercise training
(Ekblom et al. 1968). Most significant in this context,
and even considered conclusive by some, were the first
experiments showing an increase in _V O2max after
autologous blood reinfusion (Ekblom et al. 1972) and
the parallel of such an increase with that in maximal
cardiac output (Ekblom et al. 1976). When he wrote his
paper, Cerretelli was probably unaware of the latter
article, which had been published just 2 months earlier
in the same journal, when his article was already in
press. This circumstance may explain why he underes-
timated the significance of autologous blood reinfusion
in his paper�s discussion.

We must recognise that Cerretelli�s reasoning was
logical and coherent with the way of thinking of that
time. To him, the fact that _V O2max did not increase in
acute normoxia above the level attained in hypoxia
could only mean that central circulation was not limit-
ing. Thus, it was logical to look elsewhere, and think of a
distal site of limitation. When Cerretelli looked into
muscle, however, he excluded oxidative capacity as a
possible site of limitation, and he did this on the basis of
an observation made on small animals. Other more
convincing yet neglected data were available that seemed
to support the same viewpoint. In particular, Reyna-
farjee (1962) reported an increase in myoglobin con-
centration and in oxidative enzyme activity in Andean
altitude natives. Thanks essentially to Reynafarjee�s
work, the belief that oxidative capacity was to increase
in chronic hypoxia was very strong, so strong that, when
Reinhold Messner conquered Mount Everest without
using supplementary oxygen, John West explained this
extraordinary achievement by hypothesising an ex-
tremely high oxidative capacity (West and Wagner 1980;
West 1983), and so strong that finally Hochachka et al.
(1983) constructed a keen interpretative hypothesis
around this notion. Their point was that animals living

Fig. 2 Left panel Maximal oxygen consumption ( _V O2max), ex-
pressed relative to the value at sea level, set equal to 100%, as a
function of barometric pressure. The filled dots refer to the values
obtained at Milan (normoxia) and at the Everest base camp after
acclimatisation (chronic hypoxia). The dotted area indicates the
expected range for _V O2max values in chronic hypoxia. Middle panel
Same as for the left panel. The two values in normoxia and in
chronic hypoxia are now connected by a curve. Administration of
the hyperoxic mixture at Everest base camp moves the _V O2max

value up to the circled dot, as indicated by the continuous arrow.
The open dot indicates the _V O2max value that Paolo Cerretelli
expected to find on average after administration of the hyperoxic
mixture, based on the observed increase in blood haemoglobin
concentration. The dashed arrow indicates the apparent ‘‘lack’’ of
_V O2max. Right panel Heart rate or cardiac output at maximal
exercise, expressed relative to the value at sea level, set equal to
100%, as a function of barometric pressure. The values in
normoxia and in chronic hypoxia (filled dots) are connected by a
curve. Administration of the hyperoxic mixture at Everest base
camp moves the _V O2max value up to the circled dot. Redrawn from
Cerretelli 1976
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in chronic hypoxia had to face a major problem, namely
‘‘how to maintain an acceptably high scope for aerobic
metabolism in the face of the reduced oxygen availability
of the atmosphere’’, and they proposed that this could
be achieved by increasing the capacity for oxygen
transport and the capacity for oxidative metabolism.

The way of looking at _V O2max limitation has drasti-
cally changed in subsequent years. After Taylor and
Weibel (1981) had resumed work on the oxygen con-
ductance equation and had applied it to the condition of
maximal exercise, multifactorial models of _V O2max lim-
itation were developed. The first and most comprehen-
sive of these models was conceptually proposed by di
Prampero (1985), algebraically formulated by di
Prampero and Ferretti (1990) and later expanded to
cover hypoxia (Ferretti and di Prampero 1995). This
model implies that: (1) oxygen flows from ambient air to
mitochondria along a number of resistances in-series; (2)
each of these resistances provides a measurable fraction
of _V O2max limitation, the greatest of which is accounted
for by cardiovascular oxygen transport (�60–70%); (3)
the system is non-linear, because of the shape of the
oxygen equilibrium curve, so that the lung (ventilation
and/or diffusion), that is not limiting in normoxia, be-
comes limiting in hypoxia; (4) the role played by mus-
cular factors (either diffusive or metabolic) is minor both
in normoxia and in hypoxia. Other concurrent models,
but generated after the same starting concept, were also
developed (Wagner 1993). It has now become a gener-
ally accepted notion that _V O2max is limited not by a
single factor (monofactorial theory), as believed 30 years
ago, but by the simultaneous action of multiple factors
(multifactorial theory).

In the contemporary cultural context, I would pro-
pose a different interpretation of Cerretelli�s paper.
According to di Prampero and Ferretti (1990), the car-
diovascular resistance to oxygen flow (Rq) is equal to:

Rq ¼ Gqð Þ�1 ¼ _Qbb
� ��1 ð1Þ

Where _Q is the cardiac output, Gq is the equivalent
conductance and bb is the oxygen transport coefficient of
blood. This in turn corresponds to the average slope of
the oxygen equilibrium curve as:

bb ¼ CaO2 � Cv �O2ð Þ PaO2 � PvO2ð Þ�1 ð2Þ

where C and P indicate the concentrations and pressures
of oxygen, respectively, in arterial (a) and mixed venous
(�v) blood. Administering oxygen at 150 mmHg to
Cerretelli�s subjects at Everest base camp was tanta-
mount to changing three parameters pertaining to the
oxygen conductance equation: (1) increase the overall
oxygen gradient, because he changed the inspired oxy-
gen pressure; (2) slightly increase the maximal cardiac
output (it was measured indeed); and (3) to decrease the
factor bb. In fact, the increase in inspired oxygen pres-
sure brought about a subsequent increase in alveolar
and arterial oxygen pressures, so that the arterial
blood point was moved onto the flat part of the oxygen

equilibrium curve. Since the mixed venous blood point
on the oxygen equilibrium is only slightly displaced
under these conditions, there is then a dramatic change
in the average slope of the oxygen equilibrium curve,
and thus in bb. According to Eq. 1, this means a
reduction of Gq with a consequent increase in Rq. To
sum up, the administration of oxygen at 150 mmHg did
not induce a _V O2max increase proportional to that in the
overall oxygen gradient, because, due to the shape of the
oxygen equilibrium curve, the latter increase was inevi-
tably accompanied by a concomitant reinforcement of
the cardiovascular resistance to oxygen flow. These are
exactly the same reasons why _V O2max does not increase
in hyperoxia and why subjects with a high _V O2max in
normoxia, who are subjected to arterial oxygen desatu-
ration (Dempsey et al. 1984), undergo a greater decrease
in _V O2max in hypoxia (Ferretti et al. 1997). Indeed
Cerretelli�s experiment provides nothing but a brilliant
confirmation of the predominant role of cardiovascular
oxygen transport in limiting _V O2max! Since _V O2max did
not return to the level measured in Milan before the
expedition, it is likely that the peripheral (muscular)
resistances to oxygen flow factors, though smaller than
Rq, are larger than in normoxia. However, this by no
means implies that the fractional limitation to _V O2max in
chronic hypoxia imposed by peripheral factors is
increased.

Consequences: the study of muscle structure

Finally, a paper was published that demonstrated the
role of cardiovascular oxygen transport in limiting
_V O2max and this prompted a series of innovative re-
search projects on muscle structural adaptation to alti-
tude exposure! This was not Cerretelli�s original
intention, because he was candidly convinced that
muscle oxidative capacity had nothing to do with it, and
proposed to investigate muscle blood flow and capil-
larity. Nobody studied muscle blood flow in chronic
hypoxia. Cerretelli et al. (1984) measured muscle blood
flow in a group of climbers upon return from an altitude
expedition, but the only notable finding was a slower
blood flow adaptation at light exercise onset. I guess that
the keyword leading to muscle structural studies could
have been capillarity, which can be determined by his-
tochemical or morphometric methods on muscle biopsy
samples. So I cannot say whether the evolution of re-
search after the publication of Cerretelli�s paper was
serendipitous or not, yet it is a fact that, in apparent
contrast with the paper�s conclusions, his attention
turned to the study of muscle morphometry. To this aim,
Cerretelli, who had then moved to Geneva, set up a
collaboration with Hans Hoppeler and Hans Howald.

Hoppeler and Howald, together with Ewald Weibel,
initiated the morphometric study of human muscle in
the early 1970s (Hoppeler et al. 1973). A few years later,
in collaboration with Dick Taylor, Weibel organised a
major study on the structural characteristics and limits
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of the mammalian respiratory system that resulted in a
remarkable series of publications in Respiration Physi-
ology (Taylor and Weibel 1981). Hoppeler was respon-
sible for muscle morphometric studies, Howald for
muscle enzymatic activity studies. They were both fas-
cinated by Messner�s achievement, and attracted by
West�s hypothesis to explain it.

The collaboration between Cerretelli and Hoppeler
and Howald was inevitable and led to several investi-
gations on the structural and biochemical characteristics
of muscle in chronic hypoxia. Elite climbers (Oelz et al.
1986), climbers before and after acclimatisation (Hop-
peler et al. 1990; Howald et al. 1990), Sherpas (Kayser
et al. 1991), Tibetans (Kayser et al. 1996) and Andean
natives (Desplanches et al. 1996) were studied. Others
also joined this line of research, investigating the par-
ticipants in Operation Everest II (Green et al. 1989;
McDougall et al. 1991) or other acclimatised subjects
(Poole and Mathieu-Costello 1989). The common find-
ing of all these studies was the remarkable reduction of
muscle oxidative capacity measured both from the
measurement of muscle mitochondrial volume density or
mass and from muscle oxidative enzyme activities (see
Table 2). These observations were opposite to what
Paolo, and all altitude physiologists, expected. Fur-
thermore, they were so univocal and coherent that they
led to the dismissal of Hochachka�s interpretative
hypothesis (Hochachka et al. 1983), at least as far as
humans were concerned. In addition, these studies
invariably showed an increase in muscle capillary den-
sity that may have come more from muscle fibre
restriction than from capillary neoformation. This
finding implies a reduction in muscle diffusion distances
that facilitates oxygen diffusion from capillaries to
mitochondria. This in turn compensates for the loss of
mitochondrial oxidative capacity, so that in the end, the
ensemble of the peripheral resistances to oxygen flow
remains essentially unchanged in altitude-adapted hu-
mans compared with non-acclimatised normoxic low-
landers.

To sum up, a remarkable paper that demonstrated
how cardiovascular oxygen transport limits _V O2max, and
that proposed muscle blood flow as the factor that limits

_V O2max at altitude, prompted a series of experiments
that unambiguously showed the loss of muscle oxidative
capacity as the most prominent effect of chronic hypoxia
on human muscle structure and function. This story
prevents one from thinking that a coherent linear evo-
lution of our scientific knowledge is a consequence of a
logical series of hypotheses and refutations. It rather
puts forward a great deal of serendipity, accidental,
chance and logical misdemeanour that fits well with
Feyerabend�s anarchic theory of the evolution of scien-
tific knowledge (Feyerabend 1975).

The recent years

By the end of the 1980s, Cerretelli took over the scien-
tific responsibility for the permanent Italian altitude
laboratory at Mount Everest (generally referred to as the
Pyramid), where he organised several physiological re-
search projects. Most of the experiments at the Pyramid
have indeed been carried out by his pupils and veritable
heirs in the field: Bruno Grassi (Milan), Bengt Kayser
(Geneva) and Marco Narici (Manchester). Without
summarising all the work carried out at the Pyramid, I
would just mention a project that illuminates Cerretelli�s
cultural background. It deals with the subject of the so-
called lactate paradox.

Dill et al. (1931) and Edwards (1936) were the first to
report that the maximal blood lactate concentration
attained at exhaustion from an incremental exercise test
was reduced in chronic hypoxia, an observation con-
firmed by many, including Paolo, who reported this
phenomenon on Caucasians and Sherpas (Cerretelli
et al. 1982). By contrast, the maximal blood lactate
concentration was unchanged in acute hypoxia (Cerre-
telli 1967; Cerretelli et al. 1982). This state of things was
viewed as paradoxical (West 1986; Hochachka 1989),
and the term lactate paradox was eventually created to
define it (Hochachka 1989).

Numerous hypotheses have been formulated to ex-
plain this phenomenon. Paolo postulated that it could be
due to a reduced buffer capacity in chronic hypoxia
(Cerretelli et al. 1982), and provided ‘‘cute’’ experimental

Table 2 Morphometric determinations of muscle oxidative capacity and capillary density in chronic hypoxia. All the data reported in this
table were obtained in the electron microscope laboratory of the Institute of Anatomy, University of Bern

Subjects Capillary density(mm)2) Mitochondrial density(%) Reference

Untrained Caucasians 373 4.33 Hoppeler et al. 1985
379 5.15 Desplanches et al. 1993

Trained Caucasians 481 6.08 Hoppeler et al. 1985
395 6.99 Desplanches et al. 1993

Climbers before expeditionb 483b 5.85b Hoppeler et al. 1990b

Climbers after expeditionb 538a,b 4.76a,b Hoppeler et al. 1990b

Elite climbers 542a 4.95a Oelz et al. 1986
Sherpas 467a 3.96a Kayser et al. 1991
Tibetans – 3.99a Kayser et al. 1996
La Paz natives 405a 3.94a Desplanches et al. 1996

aSubjects adapted to chronic hypoxia
bThe same group of climbers, investigated before and after a Himalayan expedition
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evidence disproving this hypothesis (Kayser et al. 1993).
A reduction in chronic hypoxia of the maximal rate at
which lactate can be accumulated in blood, corre-
sponding to the maximal lactic power (Margaria et al.
1964) was demonstrated (Grassi et al. 1995). The pro-
gressive reversibility of the lactate paradox phenomenon
upon return to sea level as acclimatisation is lost was
also demonstrated (Grassi et al. 1996). A lower maximal
blood lactate concentration in chronic hypoxia was
documented also after supramaximal exercise of 30 s
duration, but not of 10 s duration (Grassi et al. 2001).
The hypothesis that exercise time to exhaustion may
play some role was formulated.

These experiments did not pretend to find a solution
to the lactate paradox problem–and perhaps there is no
solution to what is not a physio-logical paradox. How-
ever, the results agree with the observation of a reduced
net lactate release from working muscles in chronic hy-
poxia (Bender et al. 1989; Brooks et al. 1992, 1998). In
my view, these data altogether support the hypothesis
that the lactate paradox may reflect a reduction of
proton transport outside the muscle fibre, perhaps due
to a reduced activity of the lactate-proton co-trans-
porter. More recently, Saltin�s group has shown that
there are no differences in maximal blood lactate con-
centration between chronic hypoxia and normoxia if
acclimatisation to altitude is prolonged beyond 6 weeks
(Lundby et al. 2000; van Hall et al. 2001), suggesting
that the lactate paradox may be a transient phenome-
non. This has led to a slight modification of this
hypothesis, as the possibility of a progressive upregula-
tion of the lactate–proton co-transporter with time of
acclimatisation had to be postulated (van Hall et al.
2001), but not to its refutation. Cerretelli�s work has
contributed a ‘‘major brick to this construction’’.

The future

Paolo Cerretelli is now 70 years old. He is a serene
professor of physiology at Milan. He is still active in
high-altitude research. He is turning his attention to
genetic aspects of altitude adaptation, and he is inves-
tigating the possibility of a permanent trans-genera-
tional adaptation to hypoxia in lowlander Tibetans of
high-altitude ancestry. He is associated with a project
aimed at studying human muscle proteome in chronic
hypoxia. His vitality is impressive, his enthusiasm for
research unaltered, his motivation as strong as ever. I am
confident that that the future holds for him the same
satisfaction that he has had so far. Happy birthday
Paolo, have a long life, and as happy as you have had so
far.
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