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Abstract Generating the medial surface for a general
boundary representation model raises several difficulties.
Problems might emerge from the complexity of the
resulting equations, singularities caused by unforeseen
relative boundary element positions and orientations,
etc. The majority of the current algorithms are based on
the topology of the boundary representation model and
produce wireframes composed of straight lines regard-
less of the real medial surfaces. Many of the solids used
in engineering can be represented by extrusions, delim-
ited by a cross-section and an extrusion distance. This
paper develops a fast and efficient method for creating
the facetted approximations of the medial surfaces of
extrusions generated by sweeping along the normal
direction to the generating cross-section.

Keywords Disassembly evaluation Æ Extrusions Æ
Interference analysis Æ Layout modelling Æ Medial axis
transform Æ Medial surface

Introduction

The medial surface (MS, or as referenced by other
works, medial axis transform, or MAT) was introduced
by Blum [1] and is defined as the infinite set of the
centres of the maximal inscribed spheres (MIS) of a 3D
object. Similarly, in 2D, the MAT is the locus of the
centres of the maximal inscribed circles (MICs). The MS
technology has many applications in engineering design,
for example geometric reasoning [19], collision detec-
tion, feature recognition [13], shape interrogation [6],
mesh generation [7, 8, 19], etc. However, the number of
systems that apply and exploit the advantages of the MS
representation is quite small because of the absence of

MS calculation methods that work under every cir-
cumstance and generate exact or fairly approximate
medial surfaces. Several attempts have been made to
work out such general methods but each of them has its
own drawbacks such as numeric instability or crude
approximation. Nevertheless, by considering only a well-
defined subset of engineering design problems one can
identify subclasses of the occurring geometric forms with
properties that can be efficiently exploited during the
calculation of medial surfaces.

The main application fields of the 2D MAT are NC
machining and FEM mesh generation. In the pocket
machining technique introduced by Held et al. [9] a
MAT-based proximity map helps to keep track of the
distance relations inside the pocket. Gürsoy and Patri-
kalakis used MAT to subdivide a complex surface and to
get the local element size to generate fine triangular me-
shes within subregions [7, 8, 6]. In the 3D case, the
majority of the approaches work with B-rep models.
Reddy and Turkiyyah used a constructive method to
build up the dual of the medial surface, i.e., a set of
connected Delauney tetrahedra [11]. This is also the basis
of the work of Renner and Stroud [14, 13], but they ad-
ded several optimisations to the initial method such as
the multiple start point [14] and divide-and-conquer
techniques (Stroud, Renner, Xirouchakis, personal cor-
respondence). The work of Reddy-Turkiyyah and Ren-
ner-Stroud approximates the MS by a wireframe
composed of straight lines. Sherbrooke et al. found an
alternative way of handling the problem; they use a dif-
ferential MS edge traversing approach maintaining the
sorted list of distance events [17, 18]. Besides working on
B-rep models, other pieces of work addressed the prob-
lem of MS generation for CSG models. For example,
Dutta and Hoffmann analysed the Voronoi surfaces of
simple, but frequently used shape elements in order to
calculate the MS of CSG objects [4]. Both techniques
have the common problem of robustness due to the high
degree systems of equations and numerical instability.
Generally, the cost of increasing the robustness [10] has
to be paid from the performance of the algorithm.
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In addition to the Renner-Stroud algorithm there are
several other algorithms; four examples include those by
Reddy and Turkiyyah [11], Sherbrooke, Patrikalakis
and Brisson [17], Sheehy, Armstrong and Robinson [15,
16] and Etzion and Rappoport [5]. Direct comparison
with these algorithms has not been possible because only
the Renner-Stroud code was available for testing.

The first algorithm, by Reddy and Turkiyyah, is sim-
ilar to that of the first Renner-Stroud algorithm, which
was derived from it. However, it suffers from the same
drawbacks in that it can find multiple, coincident MAT
verticeswheremore than four elements delimit a vertex. In
addition the Renner-Stroud version finds multiple start-
points, thus improving the efficiency of the algorithm.

The algorithm by Sherbrooke, Patrikalakis and
Brisson uses a method to trace the MAT edges, ‘‘seam
edges’’ looking for junction points. Once the edges and
the vertices have been determined the MAT surfaces are
generated. There are some similarities with the algo-
rithm described in this paper. The edges are traced using
the centre points of the circles, with the junction points
determined using a pattern recognition technique.
However, the special case for which the algorithm de-
scribed here has been developed allows some optimisa-
tion which is not possible for the general case.

The Sheehy, Armstrong and Robinson algorithm
presents yet another approach, using points distributed
on the body to generated Delaunay tetrahedra, the
centres of the associated maximal spheres of which lie on
the medial axis surface. In contrast to the previous two
algorithms this is not geometry dependent, since the
points may lie on any surface type. One difference with
the algorithm described here is that the maximal spheres
are computed directly rather than using the intermediate
notion of the Delaunay structures. Another difference is
that the boundary elements themselves are used to de-
limit the spheres rather than points, which is implicitly
more efficient.

Etzion and Rappoport describe a medial axis calcu-
lation algorithm where the symbolic and geometric parts
are calculated separately. The algorithm uses a proximity
structure to calculate the symbolic part which then facil-
itates the computation of the geometric part. This sepa-
ration is not done in the algorithm described in this paper.

In addition there are other algorithms based on cel-
lular methods which use thinning to arrive at an object
skeleton, but these are sufficiently different from the
approach described here, and not to be dealt with here.

In order to provide an example for theMS calculation,
we present the basic algorithm of Reddy and Turkiyyah
[11], as formulated by Renner and Stroud [12]:

1. Make a list of all relevant boundary entities.
2. Determine all starting points, i.e., vertices where at

least three boundary entities meet. These first three
entities form a ‘‘seed triangle’’ which is placed on a
list of triangles to be processed.

3. Pick a triangle from the list to be processed. Find all
possible fourth entities which together with the three

defined by the triangle bound spheres inside the ob-
ject. If no candidate fourth elements are found, repeat
this step.

4. Sort the list of possible entities in order of increasing
distance of the corresponding sphere centre from the
previous critical point.

5. Discard any candidates where other boundary enti-
ties intersect the sphere.

6. If any fourth entities remain, pick the closest one and
form a new tetrahedron. If any triangles of the new
tetrahedron already exist then merge the existing
triangle into the new tetrahedron, if possible. Add
any new triangles bounding the tetrahedron to the list
of triangles to be processed.

7. Repeat from Step 3.

It can be seen that, for example, in the case when
three edges and one vertex boundary elements define an
inscribed sphere then the resulting systems of equations
might be composed of three quadratic equations which
require numeric solution methods. In the case of many
boundary elements this method is computationally
unstable and expensive.

Geometric representation

Given a simply connected planar polyline with a n unit
normal vector of its plane and a W real number, from
the point of view of the internal representation, the
planar polyline is composed of line segments (edges) and
concave vertices. Convex vertices are not represented
explicitly since they do not play a significant role in the
MS generation method to be discussed. The polyline is
swept along the Wn vector creating the extrusional ob-
ject and considering the plane of the cross-section laid
down horizontally, we can distinguish horizontal and
vertical elements in that. The locus of convex/concave
vertices of the swept cross-section result in convex/con-
cave vertical side edges, called convex/concave v-edges.
The edges of the extremal cross-section positions form
the horizontal top and bottom edges, called h-edges
(Fig. 1).

If we generate the MS of such an object (with any
kind of algorithm), we can then identify specific types of
medial surfaces. These can be classified as follows:

– The locus of the maximal inscribed spheres that are
constrained by the top and the bottom faces at the
same time are the h-surfaces (‘‘horizontal surfaces’’).
These planar surfaces are parallel to the original
cross-section.

– The locus of MISs that are constrained by two non-
neighbouring vertical elements (side face or concave v -
edge) are the v-surfaces (‘‘vertical surfaces’’). v-sur-
faces are perpendicular to the original cross-section.

– The locus of MISs that are constrained by two
neighbouring vertical elements are the w-surfaces
(‘‘wing surfaces’’). Depending on whether both of
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themare side faces or either of them is a concave v-edge
(‘‘vertical edge’’) we distinguish wF-surfaces and
wE-surfaces, respectively. (Two wE-surfaces emanate
from a concave vertical edge which are perpendicular
to each of the incident faces.)

– The locus of MISs that are constrained by a vertical
element (a side face or a concave edge) and the
bottom or the top face are the s-surfaces (‘‘seam-
surfaces’’). We can distinguish sT-surfaces and sB-
surfaces depending on whether one of the constrain-
ing elements is the top face or the bottom face,
respectively.

Figure 2 illustrates the classification of the mentioned
surfaces.

MS generation

MS boundary points

The method starts by finding the points of the boundary
curves of the medial surfaces. These points are con-
strained by at least three elements. The first part of the
method works on the planar cross-section since the
points of the planar projections of the above curves can
be calculated easily in 2D. As the result of the projection
side faces become line segments and concave edges

become concave vertices. The constrained inscribed
spheres degenerate into constrained inscribed circles
whose dependency on the cross-section element is sum-
marised in Table 1.

The input is a cross section represented by a simply-
connected planar polygon. The polygon is represented
by a set of boundary elements of two types: edges and
concave vertices. In the first step offset circles are
introduced in the interior of the cross-section. Each edge
has a set of circles touching it arranged equidistantly
along it, i.e., each concave vertex has a set of touching
circles. Offset circles are swept along edges and around
concave vertices so that the currently processed bound-
ary element touches the offset circles. This is done by
subdividing the offset lines and arcs based on a prede-
fined preferred distance of the centres of offset circles
(a constant). The actual distance is calculated in the
following way:

a0 ¼ L
int L

a þ 1

(see Fig. 3). (There is also a minimum number of offset
circles per boundary element for the case of too short
edges and too blunt concave vertices.) This offsetting is
done conforming to a predefined traversal sense which is
clockwise with respect to the normal of the cross section.
The diameter of the offset circles is equal to the extrusion
thickness. These traversed boundary elements become the
reference boundary elements, (RBEs) of the attached off-
set circles. The first circles of RBEs and their centre points
are called F-circles and F-points, respectively (Fig. 3).

The next step is to constrain the offset circles by cross-
section boundary elements. If a circle is intersected by
any edge then the centre of the circle is moved towards its

Fig. 2 The classification of extrusional MS surfaces

Fig. 1 Entities of the MS representation

Fig. 3 Offset circles of a line segment

Table 1 Mapping between the locus of centres of inscribed circles
and projections of 3D MS surfaces

Constrained by Circle diameter Projection of

Two neighbouring
boundary elements

<W w-surface

Two non-neighbouring
boundary elements

<W v-surface

Circle diameter =W h-surface
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RBE and its radius is decreased until only concave ver-
tices or intersecting edges touch the circles. Obviously,
the tangential relationship with the RBE is maintained all
along. At the end of this process, in the ideal case, there
will be two boundary elements that touch the relevant
offset circle; the RBE and a second one which is called the
constraining boundary element (CBE). Figure 4 shows
two examples of the possible combinations: in the first
case both the reference and the constrained boundary
elements are line segments, in the second case both of
them are concave vertices. If none of the offset circles
have a CBE, that is, the offset distance is smaller than the
radius of the smallest maximal inscribed circle, then
the generated points (centres of offset circles) are on the
internal offset curve of the cross-section.

Offset circle classification

The offset circles are arranged in a list and a type
attribute is added to each circle depending on the rela-
tion between its diameter and the diameters of neigh-
bouring circles. These are as follows: (Table 2):

1. Attribute Z (‘‘zero’’): A circle in which the radius
degenerates to zero. This situation occurs when the
RBE and the CBE of a circle are neighbouring edges
of the cross-section that meet at a convex vertex.

2. Attribute E (‘‘escape’’): A circle with a diameter equal
to the extrusion distance but preceeded by a sequence
of circles with radius less than the extrusion width.
That is, E circles do not have CBEs but the preceding
circles do.

3. Attribute C (‘‘capture’’): A circle with diameter equal
to the extrusion distance but followed by a sequence
of circles with radius less than the extrusion width.
That is, C circles do not have CBEs but the following
circles do.

4. Attribute G (‘‘general’’): A circle which is not a Z, E
or C circle.

The centres of the circles listed above are named as Z,
E, C and G points, respectively. The Z, E and C points
are called separator points and are the centres of sepa-
rator circles.

In order to clarify this classification, let us consider
the example in Fig. 5, in which all the non- G points of
a polygon offsetting are shown labelled by their attri-
butes. Circles are not drawn here, but we reference
them by their centres. The Z0 circle has zero radius
since its RBE is AB and its CBE is EA which meet at a
convex vertex. Circles between Z0 and E1 have radii
less that W ; E1 is the first circle in the sequence which
does not have any CBE. This latter condition holds for
every circle between E1 and C2. C2 is constrained by
DE; the next unconstrained circle is E3. Between C2 and
E3 vertex D will also appear as a CBE. After several
unconstrained circles BC constrains C4 and this con-
dition remains for the rest of the circles of RBE AB.
The remaining circles are characterised in a similar way
to Z5 which is the zero-radius circle of BC constrained
by AB.

Based on the introduced classification it is possible to
recognise special patterns in the list of separator points.
Each pattern stands for a sub-sequence of points which
correspond to the projection of particular surfaces of the
MS to be calculated. Table 3 shows how these patterns
are related to the sequence of projection points. (Note
that the indices show the absolute position of the points

Fig. 4 An example for reference and constraining boundary
elements

Table 2 Attributes of offset circles

Circle Next Previous Attr.
Diameter Diameter Diameter

1 =0 >0 >0 Z
2 =W =W <W E
3 =W <W =W C
4 other G

Fig. 5 An example case of offset circle attributes

68



in the list so that j=i+n+1 and k=j+m+1.) (See also
Fig. 1).

Locating junction circles

In order to facilitate the discussion of this topic we
introduce two other, not explicitly registered offset circle
attributes. Let circles immediately followed by an E
circle be flagged with the GE attribute and circles
immediately preceded by a C circle are flagged with the
GC attribute (Fig. 6).

It can be seen that C and E points that are geomet-
rically close to each other can be arranged in pairs such
as (E1,C15), (C2,E11) etc. (Fig. 5). These pairs can be
identified more precisely based on the fact that the RBEs
and CBEs of the corresponding GE and GC circles per-
mutate. These pairs make it possible to delimit domains
of the so-called junction circles, J circles whose diameters
are equal to W and are touched tangentially by the rel-
evant RBEs and CBEs. This is a very important prop-
erty, because J circles are the projections of the MISs of
the extruded object which are constrained by four
boundary elements of the object. J circles have the
common properties that 1) their diameter is equal to W
and 2) the distance between their centres and the closest
boundary elements is equal to W/2. Such a circle occurs
between a constrained and an unconstrained circle, be-
cause this is the domain where a circle conforming to
these two conditions can be found. Subdomains between
GE and E circles or between C and GC circles fulfill this
requirement, where the closest boundary elements are
given by the CBE of the GC and GE circles. The centre of

the J circle sought is obtained by a numerical method
which works for either edges or concave vertices of the
cross-section. Instead of introducing a new circle, the
foremost circle of the domain being searched is modi-
fied, that is, C and GE circles are translated so that they
touch the corresponding CBE (see Fig. 6) and the radius
of circles of the latter type are set to W/2. We assign
them the JC and JG attributes, respectively, indicating
their original type.

Projection curve approximations

The task at this stage is to generate polylines composed
of centres of offset circles that approximate the projec-
tion curves of medial surfaces. Before discussing this
topic, we classify the possible approximate polylines in
the following way:

– An approximate polyline of the projection of the
bordering curve of an h-surface is called an h-seg-
ment.

– An approximate polyline of the projection of the
bordering curve of a v-surface or a wF-surface is
called a v-segment.

The basis for the segment generation is the obser-
vation that the centres of circles of which RBE and
CBE permutate lie on the same projection curve.
Approximations of such curves contain implicit refer-
ences to only two different boundary elements, and are
called A-B invariant segments where A and B are the
two referenced boundary elements. When traversing the
list of offset circles it is not always necessary to start a
new segment at every separator circle; instead, the
algorithm checks every constrained circle to see whe-
ther it can be added to an existing segment. If so, the
new circle will be appended to the list of circles of the
existing segment. Unconstrained circles are not checked
since h -surfaces do not have overlapping projection
curves. The traversal starts with the first Z circle as in
the previous case (Algorithm 1). We have chosen an
order-dependent boundary traversal description for two
reasons: (i) the explanation of the algorithms and
implementations is simplified and (ii) distinguishing
RBEs and CBEs is also a key element of the algorithm
since there can be several offset circles that are touched
by an RBE but are not constrained by any boundary
elements, that is, no CBE (actually, these will form the
boundary of h-surfaces).

Algorithm 1 Medial surface approximation
Require: circle c, segment s, segment list

c:= first Z circle
repeat

if CBE(c) is not NULL then
s:=invariant_segment(CBE(c),RBE(c))
if s does not exist then

if last_of() is not an empty v-segment then
s:= new v-segment
add s to

Table 3 Special patterns in the offset circle sequence

Pattern Point sequence Projection of

dCZE Ci,Gi+1,...,Gi+n,Zj,Gj+1,...Gj+m,Ek w-surface
cCE Ci,Gi+1,...,Gi+n,Ej v-surface
cEC Ri,Gi+1,...Gi+n,Cj h-surface

Fig. 6 Determiming the location of junction circles
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end if
end if

else
if last_of() is not an empty h-segment then

s:= new v-segment
add s to

end if
end if
add the centre of c to s

until c is the first Z circle

The side-effect of the algorithm is that if there are no
unconstrained offset circles in the model then only v-
segments are created which approximate the 2D medial
axis transform representation of the cross-section. This
condition is fulfilled only if W is large enough; more
precisely, for every P point inside the cross-section we
can find a boundary element k which is closer to that
point than W/2, that is:

8P : P ! kjdist P ; kð Þ6W
2

� �

; P 2 X; k 2 ^

where W is the set of points of the cross-section and L is
the set of boundary elements (edges and concave verti-
ces) of the cross-section. Figure 7 shows an example of a
generated 2D MAT.

At the end of the previous stage we have several
segments that approximate MS curve projections. Gen-
erating surface approximations is done in two steps.
Firstly, the distinct segments which approximate the
bordering curves of the same MS surface have to be
linked together; secondly, face sets have to be prepared
that approximate the exact medial surfaces. The
approximate face sets of surfaces are called grids and are
distinguished by using the same prefix as their corre-
sponding surfaces: h-grid, v-grid, etc.

v- and wF-grids. Generation of these types of grids is
quite simple, since both types can be generated from one
distinct v-segment. The v-segment can be considered as
the symmetry polyline, so the task is to ‘‘stretch’’ the
segment vertically, that is, duplicate the segment points
and translate the two instances towards the top and
bottom faces. The amount of translation is equal to W/
2–ri where ri is the radius of the constrained offset circle
of which the centre is to be translated. This operation
gives us two bordering segments of the grids; the other
two bordering curves (vertical straight lines) can be
obtained from the extremal points of the duplicated

v-segment (Fig. 8). The algorithm creates one v-grid per
v-segment as it traverses through the list of segments.

wE-grids. Approximations of projections of wE-curves
are not represented explicitly in our model but only by
two points. One of these points is always an F-point (see
the section MS boundary points), while the other is
located where the relevant F-circle touches its RBE. They
are called root-point and end-point, respectively (Fig. 8).
The root point might be located either on an h-segment or
on a v-segment; therefore, it is worth generating wE-grids
after h - and v-grids since points of v-segments have al-
ready been duplicated. The end-point projections to the
top and bottom faces create two grid points while the root
point creates (in the case of a v-segment) two projection
points on the corresponding bordering curves (Fig. 9).
When the root point is on an h-segment then there is no
need to project them and therefore we have three grid
points altogether. After projecting the end-point to the
top and bottom faces, we will have three or four grid
points of the wE-grid depending on whether the root-
point was located on an h-segment or on a v-segment.
Then, these points can be connected together to form the
border of the wE-grid. If a better resolution is needed (for
example, the applications discussed in the section
Applications) then the two non-vertical grid edges can be
subdivided with respect to the pre-defined offset circle
distance (see the section MS boundary points).

h-grids. The border of an h-grid is a loop composed
of h-segments. The constituent segments of this loop
do not follow each other continuously in the traversal

Fig. 7 The 2D MAT as the projection of v-surfaces

Fig. 8 The v-grid of the example in Fig. 1 from a viewing direction
that is perpendicular to the AT–FT–FB–AB face

Fig. 9 Significant points of wE-surfaces
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sequence of segments, therefore the matching endpoints
have to be searched for. During the traversal the algo-
rithm checks if the current h-segment has already been
processed, if not, the segment will be registered as the
starting segment of a new loop and a recursive subpro-
cess will collect the corresponding segments of the
current loop. Fig. 10 illustrates in which order v - and
h-grids are created during traversal of the sequence of
segments.

s-grids. As in the case of v-grids, s-grids can be cre-
ated by using one single segment, which can be either an
h - or v-segment. In the case of h-segments one of the
bordering segments is the actual h-segment. The oppo-
site bordering segment (which is coincident with a
boundary edge of the extruded object) can be obtained
by projecting points where the offset circles of the cur-
rent bordering segment touch their RBEs onto the top
face (sT-grids) or the bottom face (sB-grids). The other
two bordering segments are formed by the extremal
points of the discussed ones. The method is quite similar
to that of v-grids except that we have to deal with the
duplicated v-segments for which generation was dis-
cussed earlier.

The complexity of the algorithm

The number of boundary elements of the cross-section,
the length of the cross-section edges and the preferred
offset circle distance affect the number of generated
offset circles, so this can be taken as the size of the
problem (n). Assuming that there are no major changes
regarding the overall dimensions of cross-sections in an
application domain (therefore, there is no need to
change the preferred offset circle distance), we can say
that the problem size can be characterised by the number
of cross-section elements.

Obviously, the offset circle generation and classifica-
tion phases depend linearly on n. In the average case, the
number of J circles grows linearly with n, that is, finding
their exact location takes O(n) time. During segment
generation the list of existing segments is searched for

each of the constrained offset circles, so considering the
worst case, when the size of that list grows linearly with
the problem size, the complexity of this phase is qua-
dratic in n. In addition, the algorithm for sorting the
offset circles increases the execution time linearly. The
algorithm to create the MS approximations processes
each segment once; therefore, its complexity is O(n).
Taking the most complex part of the present MS gen-
eration method, the overall complexity is O(n2). Table 4
summarises the above results.

Test cases

The two major parameters of our MS creation method
that can influence performance are the resolution of the
initial cross-section (i.e., transforming the original
curved sections to their polygon approximation) and the
resolution of the MS to be created (a, see the section MS
boundary points). The former depends on the number
of elements (edges and concave vertices) in the cross-
section while the latter is driven by the user-defined
preferred distance of offset circles. We present two
example cases here in order to examine these aspects by
means of them.

In the first example the cross-section contains curved
edges approximated by polylines (Fig. 11). The mea-
surement of performance is done by applying different
resolution factors (R) to these arcs using the following
parameters:

– The lengthwise overall dimension of the example part
was 230 mm.

– The preferred initial offset circle distance was set to
1 mm.

– The extrusion width (W) was set to 10 mm.

Fig. 10 An example of order of segments and grids

Table 4 Complexity of sub-algorithms

Sub-algorithm Complexity

Offset circle generation O(n)
Constraining offset circles O(n2)
Offset circle classification O(n)
Locating J circles O(n)
Curve approximation O(n2)
Sorting offset circles O(n)
Grid generation O(n)

Fig. 11 An example case with curved cross-section elements

71



The results are summarised in Table 51. The example
is also useful to illustrate producing a minimum number
of offset circles per RBE; this is the reason for the
decreasing tendency of the average distance of offset
circle centres. Since for bigger R we will have more line
segments with smaller length the total number of offset
circles is increasing.

We also used this example to examine the behaviour
of the Renner-Stroud algorithm and we arrived at the
following conclusions. Firstly, as mentioned in the
Introduction, the generated MS is approximated by
straight lines; however, the MS points are exact. Sec-
ondly, the algorithm has problems when dealing with
MS points that are equidistant from more than four
boundary elements (the algorithm generates multiple
identical points causing increased complexity). This is
the case, in the example object, at the two circular
branches where W is equal to the difference of the
external and internal radii. Thirdly, the MS generation
took almost one and a half hours on a HP 9000
workstation (as opposed to a few seconds at most for
our method according to Table 5), although it ran

under the test harness module of the ACIS solid
modeller.

The second example measures how calculation times
depend on the resolution of the MS, that is, the pre-
defined preferred distance of offset circles (Fig. 12); five
preferred offset circle distance values (0.1, 0.08, 0.06,
0.04 and 0.02 mm) were combined with 12 extrusion
width values (12, 32... 232 mm). The latter values were
chosen so that either v-surfaces or h-surfaces were not
generated at the extremal values. Fig. 13 shows MSs of
the second example case. Fig. 14 shows graphically the
resulted calculation times for each combination of the
values. Fig. 15 shows the generated surfaces for W =32,
132 and 232 mm (for clarity, only h-, v- and wF-surfaces
are shown). (Fig. 16 shows the layout of a vertical
hoisting device).

The preferred offset circle distance (a) has a great
impact on the precision of the result. Let us consider the
degenerate case in Fig. 15 where a regular hexagon with

Table 5 Test results of the analysis of the first example case

R nE nC �a [mm] nS T [sec]

top. geo. top. geo.

8 147 1225 7.75 233 148 0.17 0.17
16 283 1817 6.30 425 283 0.44 0.49
24 419 2417 5.53 617 419 0.93 0.93
32 555 3097 4.93 809 508 1.65 1.60
40 691 3777 4.55 1001 634 2.47 2.41

Legend: R: resolution, nE: number of cross-section elements (line
segments and concave vertices), nC: number of offset circles, �a:
average distance of centres of offset circles, ns: number of surfaces,
T: execution time (including normal overhead)

1The execution time was measured on a 400 MHz PC.

Fig. 12 A second example case Fig. 13 MSs of the second example case

Fig. 14 Computation times as functions of extrusion distance and
a resolution of the MS

Fig. 15 The MS of a hexagonal bar with different preferred offset
circle distance values
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50 mm edges was extruded by 300 mm. The left MS was
created with a 10 mm preferred offset circle distance
while this value was 5 mm in the second case. Our
experiments showed that the algorithm works with
acceptable precision if the preferred offset circle distance
is one tenth of the shortest internal offset curve of the
cross-section, that is:

a ¼ min
Lmin

10
;

w
2 p� amaxð Þ

2

� �

where Lmin is the shortest cross-section edge and amax is
the angle of two edges that emanate from the bluntest
concave vertex.

Other approaches may have serious problems with
the abovementioned problem. For example, the original
Reddy-Turkiyyah [11] and Renner-Stroud [14] algo-
rithms would traverse the lengthwise axis of the object
several times, because of the redundant internal sphere
constraining elements. However, the latter approach has
an improved version that overcomes this problem; in
this case overconstrained boundary elements, are iden-
tified and counted with only once during the medial
surface calculation.

Applications

As the Introduction summarises, medial surface repre-
sentations have many uses in engineering tasks. How-
ever, this section focuses on a relatively new area of their
application, namely the spatial layout design of
mechanical assemblies [3, 2]. A Swiss industrial project
whose goal was to establish the modelling principles of
such layouts was successfully concluded with the

collaboration of the CAD/CAM laboratory of the Swiss
Federal Institute of Technology in Lausanne (EPFL).
The future work of this research is to find tools to do the
geometric evaluation of such layouts effectively; using
the medial surface representation is a promising direc-
tion for this purpose.

In our modelling approach, the layout of a
mechanical assembly is a skeleton where the compo-
nents are represented by placeholders for the final
physical assembly components, that is, parts or rigid
sub-assemblies. These placeholders are called design
spaces.

As soon as the layout is defined, it has to be checked
against some design requirements in order to prove its
correctness (functional verification, collision detection,
etc.).

Ordinary interference detection methods work based
on the fact that a point in space cannot be occupied by
two different components at the same time. However, in
our layout design methodology designers work with
fuzzy geometries (design spaces), so this restriction
cannot be applied as is.

Detecting the interference between two facetted ob-
jects by means of existing approaches is an easy task.
However, if we want to find characteristic directions in
the interference area, the face set representation has to
be replaced by another one which is capable of returning
such information. One possibility is to approximate the
objects with internal spheres, since the intersection of
two spheres can always be characterised by a vector
which is defined by the centres of the two spheres and
the interference volume (V ), that is:

V ¼
Z R1

r¼L
R2
1 � r2

� �
pdr þ

Z R2

r¼L2

R2
2 � r2

� �

Fig. 16 The layout of a vertical
hoisting device. (APCO
Technologies SA)
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L1 ¼ R2
1
�R2

2
þL2

2L L2 ¼ R2
2
�R2

1
þL2

2L

where L is the distance of the centres of the two spheres,
R1 and R2 are their radii. This interference vector can be
interpreted as a repulsive force vector between two points
embodied by the centres of the actual spheres. Summing
up all the sphere-sphere intersection vectors for two given
bodies gives a resultant repulsive force vector and a
moment with respect to the centres of the objects. By
means of the iterative application of such vectors we
arrive to a configuration where the interferences between
design spaces is minimal. Then the interfering portions of
the design spaces are stored into the layout model for
further processing in later design stages.

Conclusions

In this paper we have presented a method for calculating
the approximate medial surface of objects created by the
perpendicular sweeping of a planar cross-section. For
this type of object the algorithm is stable, fast and robust
and produces a fair approximation. We could summa-
rise its main characteristics in the following way:

– Robustness: The algorithm does not involve heavy
numerical computations, but fast linear algebra
based calculations. Moreover, inaccuracies are al-
ways maintained and computational errors are cor-
rected during operation.

– Exactness: If a relatively small MS resolution a is
specified by the user, then a fairly exact approxima-
tion is created in a short time. In this case curved MS
surfaces are approximated with a dense set of planar
faces.

– Speed: In the average case the algorithm is capable of
generating acceptable results in milliseconds, so it can
be used for ‘‘on-the-fly’’ calculations. Although real-
time processing is not so practical in our problem
domain, since usually the MS is generated only once
at the beginning of a stage of an application.

Many of the existing methods give only a rough
approximation of medial surfaces (e.g., generating
straight lines instead of curves or producing wireframes
instead of surface models). The other group of them give
fairly exact results but imply a heavy computational
load so it takes a long time to achieve acceptable results.
Our method provides improvements in both aspects.
However, it can be applied only to a restricted set of
possible 3D objects.

The forthcoming stage of the development of this work
will be the extension of the approach to non-perpendic-
ular extrusions and non-linear extrusions (swept vol-
umes). The authors also plan to extend themethod so as to
be able to handle cross-sections with curved boundaries.
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