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Abstract The k ·p envelope function method is a popular
tool for the study of electronic properties of III–V nanos-
tructures. The equations are usually transferred to real-space
and solved using standard numerical techniques. The power-
ful and flexible finite element method was seldom employed
due to problems with spurious solutions. The method would
be favorable for the calculation of electronic properties of
large strained nanostructures as it allows a flexible represen-
tation of complex geometries. In this paper, we show our
consistent implementation of the k · p envelope equations
for nanostructures of any dimensionality. By including Burt-
Foreman operator ordering and ensuring the ellipticity of the
equations, we are able to calculate reliable and spurious so-
lution free subband structures for the standard k·p 4×4, 6×6
and 8×8 models for zinc-blende and wurtzite crystals. We
further show how to consistently include strain effects up
to second order by means of the Pikus-Bir transformation.
Finally, we analyze the performance of our implementation
using benchmark examples.

Keywords Nanostructures · k·p · Strain · Finite elements ·
Bandstructure · Spurious solutions

1 Introduction

With the advent of quantum-sized optoelectronic devices
such as quantum dot, wire and well light emitting diodes
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and lasers, computer simulation demands accurate, fast and
reliable prediction of the electronic band structure of III–
V and nitride semiconductors. Atomistic methods, such as
the empirical tight-binding, pseudopotential or density func-
tional method using a repeated super-cell formulation, allow
to describe the electronic properties to a high precision. Un-
fortunately the extreme demand in computational resources
restricts their application in device-design to small and sim-
ple systems. In contrast, the k·p envelope function method
can be formulated as a partial differential equation system
and therefore allows to determine the band structure effi-
ciently using standard numerical techniques. Various simpli-
fications during the perturbative treatment of remote bands
obfuscate physical details, such as intervalley- and interface
mixing [1, 2]. This leads to an ongoing dispute about the
precision and validity of the obtained results [3–6] where the
raised arguments apply to the commonly used k·p standard
model. It was shown recently [1, 2] that an exact derivation
of the envelope equations from first principles does allow for
a consistent incorporation of interface mixing effects and an
exact description of the band structure.

Nevertheless, due to its usually sufficient accuracy and
simplicity, the standard k ·p model is widely used in acad-
emia and industry for the determination of band structures
in quantum wells and less frequently for wires and dots.

A major obstacle in the application and reliability of the
k·p method is the appearance of spurious solutions that are
highly oscillatory, produce energy bands bending into the
wrong direction and sometimes lead to unphysical solutions
extending into the forbidden bandgap. The finite element
(FE) method suffers especially severely from these solutions
which might explain its rare application. As demonstrated in
[7], the spurious solutions go hand in hand with the lack of
ellipticity of the envelope equations. The ellipticity can be
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recovered using Burt-Foreman (BF) operator ordering [8–
10] and a careful choice of input parameters (compare with
eqn. (30) in [7]). The elliptic formulation of the envelope
equations allows us to reliably apply the FE method without
occurrence of spurious solutions.
The FE method has advantages over other methods such as
the finite difference (FD) method as it allows modelling of
complex geometries defined on non-tensorial grids without
staircase surfaces. The major difference however is that the
FE method describes an approximation to the solution while
the FD method is an approximation of the equations. The
FD method needs a careful mixture of forward- and back-
ward differences to guarantee the hermiticity and numerical
stability of the equation system [11].
The aim of this paper is to present a consistent FE formu-
lation of the envelope equations for nanostructures of any
dimension that we have implemented in a C++ computer
program named tdkp. Using BF operator ordering, elliptic
envelope equations, parallel programming, sparse matrix-
and iterative solver techniques, our solver is able to deliver
fast, accurate and reliable band structure results. We imple-
mented 4×4, 6×6 and 8×8 models for zinc-blende and
6×6 and 8×8 models for wurtzite crystals. Strain effects
are treated using continuum equations and their effects on
the band structure are consistently included up to second or-
der.

2 Envelope equations

The envelope equations of the standard k·p model consist of
a coupled set of partial differential equations up to second
order, defined by the eigenequation of the k ·p differential
operator

Hk·p = −
∑

i,j

∂iH
(2)
ij (x;kt )∂j

+
∑

i

(
H(1)

i;L(x;kt )∂i + ∂iH
(1)
i;R(x;kt )

)

+ H(0)(x;kt ). (1)

Indices over i and j denote the quantized directions and
the equation is parametrized in terms of the transverse
wavenumber kt . The details of the k ·p model such as the
BF operator ordering, the considered number of bands, the
basis choice and the crystal type determines the form of the
parametric k·p matrices H(.)

. (.). Other second order opera-
tors such as

∂i∂j H and H∂i∂j (2)

do not appear in the standard k ·p model but exist in the
first-principles model of [1]. According to the dimensional-

ity of the considered system, bulk second-order terms de-
pending on the translationally invariant direction are effec-
tively added to first and zero order terms of the differential
operator:

∂iH
(2)
it kt → ∂iH

(1)
i;R

ktH
(2)
ti ∂i → H(1)

i;L∂i (3)

ktH
(2)
tt kt → H(0).

The usual approach of constructing the envelope equations
from bulk k·p Hamiltonians is to replace the wavenumbers
kq of the symmetry broken directions with the correspond-
ing operators −i∇q . This particular approach cannot be ap-
plied, as in the bulk Hamiltonian the ordering of a second
order term H.kikj is lost. Therefore, the distribution into

kiH+kj + kj H−ki (4)

is unknown. A naive symmetric distribution between these
terms leads to a non-elliptic equation system which results in
spurious solutions [7]. In contrast, the BF operator ordering
results in an asymmetric distribution between H+ and H−
preserving ellipticity [8–10].
The effect of symmetry breaking in arbitrary crystal planes
can be calculated by an appropriate rotation of the real space
system into principal directions.

2.1 Zinc-blende models

To describe III–V semiconductors with zinc-blende crystal
structure, we consider four different models. The simplest
model is the one-band effective mass that also easily fits into
the given equation frame but will not be discussed any fur-
ther. The k ·p 4×4 model describes the Γ8 valence band
(light- and heavy hole), the 6×6 model adds the Γ7 split-off
band, and the 8×8 model further includes the Γ6 conduc-
tion band. Usual k ·p implementations [12–19] are based
on model Hamiltonians expressed in terms of the diagonal
Bloch basis at the Γ point. We found it more convenient
to use the Pidgeon-Brown or Enders Hamiltonian [20, 21]
given in the zone-center basis

S↑, X↑, Y ↑, Z↑, S↓, X↓, Y ↓, Z↓ (5)

for which the spin orbit terms are non-diagonal at k = 0. The
reason for our choice is that the BF operator ordering keeps
a simple and clear form (see eqn. (11) in [10]) in that par-
ticular basis. All diagonal terms are treated in the standard
way Mk2

x → kxMkx while the offdiagonal terms Nkikj in
the valence band are split asymmetrically

Nkikj → kiN+kj + kjN−ki (6)
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and N− is estimated as [10]

N− = M − �
2

2m0
. (7)

The first order terms in the 8×8 model also require some
care: The self-adjoint of the first order term iP kj is given
by −ikjP . Wrong operator ordering there leads to a non-
hermitian equation system. The explicit form of the 8×8
Hamiltonian is given in [7, 10, 20, 21]. The 6×6 Hamil-
tonian is obtained from the 8×8 model by taking the limit
Eg → ∞ and neglecting the Γ6 conduction band. In order
to obtain the 4×4 Hamiltonian, one performs a basis trans-
formation diagonalizing the 6×6 Hamiltonian at k = 0 and
then neglects the Γ7 split-off band. By keeping track of the
ordered terms of eqn. (6), the Burt-Foreman operator order-
ing is transfered into 4×4 model terms having again the form
kiAnkj − kjAnki [22].

2.2 Wurtzite models

With the advent of blue lasers and LEDs, wurtzite nitride
semiconductors have recently drawn high attention. We have
implemented the k·p 6×6 model for the valence bands de-
rived by Chuang [23] and it’s extension to the 8×8 model
[24] including the conduction band. The BF operator order-
ing for this model has been derived by Mireles et al. [25] and
leads to results similar to the zinc-blende case. The relevant
unsymmetrical BF splitting of the parameters affects the off-
diagonal terms N1 and N2 which, again using the zone cen-
ter basis, split into

N1kxky → kxN1+ky + kxN1−ky. (8)

These parameters are related to the more commonly used Ai

effective mass parameters [23] by

�
2

2m0
A5 = N1

2
,

�
2

2m0
A6 = N2√

2
. (9)

The detailed distribution between N1+, N1− and N2+, N2−
in terms of the Ai parameters has been given in [25, 26]. As
the Ni− have contributions only from a remote d-like con-
duction band, they are believed to be small compared to Ni+
[25]. This suggestion is supported using the ellipticity analy-
sis of the envelope equation system [7]. In Fig. 1, we use the
measure ρ suggested in eqn. (31) of [7] to visualize the de-
gree of non-ellipticity of the equation system depending on
the splitting of A5 and A6 so that

Ai = Ai+ + Ai− (10)

and plot iso-lines for the non-ellipticity ratio depending on
the choices of Ai+. The equation system is elliptic if ρ = 0.
The figure shows the situation for InN material parameters

Fig. 1 Non-ellipticity analysis for parameter splitting Ai+ and Ai−
in InN for fixed parameters A5 = −5.11 and A6 = −5.96 [27]. The
completely asymmetric splitting leads to elliptic equation systems

(A5 = −5.11 and A6 = −5.96) taken from [27] but similar
results also apply to GaN and AlN. The equation system is
elliptic only for the nearly complete asymmetric splitting.
The asymmetric splitting of [25] applied to nitride parame-
ters given by [27] leads to smaller, but still nonzero values
for ρ and therefore to non-elliptic equations. Therefore, we
usually follow the ellipticity criterion and set

Ai− = 0. (11)

3 Strain effects

3.1 Continuum elasticity

The different lattice constants of semiconductors can lead
to high internal strains, which substantially modify the elec-
tronic properties. While the strain in biaxially strained quan-
tum wells can be calculated analytically, strains in complex
geometries of wires and dots require numerical determina-
tion [12, 13, 15, 17, 18, 28]. In order to be consistent with
the continuum approach of the envelope method, we ap-
ply small strain-linear continuum elasticity. Here, the elastic
strain tensor εij is defined in terms of the displacement vec-
tor u as

εij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
. (12)

The strains in certain material systems can be very large
leading to a misdescription of the strain field [29]. A correct
description of large strains in terms of continuum elasticity
would require the use of non-linear large strain analysis.

The elastic strain energy of the system is given by

� =
∫

1

2

∑

ij

σij εij dΩ. (13)
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Here σij denotes the stress tensor which is related to the
strain via the elastic coefficient matrix C [19]. As bulk zinc-
blende materials are cubic, the number of independent elas-
tic coefficient elements is reduced to three independent con-
stants, C11, C12 and C44. In wurtzite crystals, the elastic re-
sponse is different along c- and a-axis, leading to additional
elastic coefficients C13, C33 and C66.

In order to include the intrinsic strain of a quantized re-
gion, the system is regarded as a shrink-fit problem. The sys-
tem is assumed to be embedded within a host material with
a reference lattice constants ar,i . This leads to a position de-
pendent intrinsic strain given by

ε0
ii (x) = ar,i − aq,i(x)

aq,i(x)
(14)

which is added to the strain in (13). aq,i(x) denotes the posi-
tion dependent lattice constant of the crystal. In zinc-blende
crystals, the lattice constant is isotropic, while wurtzite crys-
tals have different lattice constants for the c- and the a-axis.
The relaxed configuration is then obtained by finding the
displacement field u minimizing the energy given by (13).

3.2 Strains in k·p theory

The strained k · p Hamiltonian can be obtained from the
Hamiltonian without strain by means of the Pikus-Bir trans-
formation where the strained system is mapped to the un-
strained crystal. The strain-dependent Hamiltonian can be
obtained from the unstrained H0 by [21, 30]

Hε(ε,k) = H0((1 − ε)k) + D(ε), (15)

where D(ε) is the deformation potential contribution [31].
The Hamiltonian in the form of (15) is particularly elegant
and suited for numerical implementation as for example sec-
ond order terms are simply transformed to

H(2)
ε,ij =

∑

mn

(1 − ε)TimH(2)
mn(1 − ε)nj (16)

and D(ε) can be added to the zero order terms. Thereby,
strain effects are consistently included in the equation sys-
tem up to second order, which obviates the inclusion of ex-
plicitly strain dependent effective masses.

4 Numerical formulation and determination

4.1 Envelope equations

Using the k·p differential operator Hk·p, the envelope equa-
tion to solve is given by

Hk·pF(x) = E F(x), (17)

where F(x) is the envelope vector describing at each po-
sition of the nanostructure how the bulk Bloch states are
mixed. Usually either a spectral or the FD method is ap-
plied. For the FE method, several derivations for different
dimensionalities exist [32–34]. Here, we focus on a general
form that is applicable to wells, wires and dots for any k·p
model. Therefore, we cast (17) into a weak form and apply
the FE discretization.

Let Ω be the volume of interest with boundary ∂Ω and
let H 1 be the Sobolev space with square-integrable weak
derivatives [35] up to order 1, which we use as the space
for the relevant envelope functions Fi(x). As we are merely
interested in bound states, we use Dirichlet boundary condi-
tions at the volume boundary and therefore define the solu-
tion space to be

V =
{
u ∈ H 1 : u(∂Ω) = 0

}
. (18)

The variational form of the envelope equation (17) is ob-
tained by multiplying with a test function W(x)∈V and in-
tegrating over Ω , leading to
∫

Ω

∑

ij

∂iW	H(2)
ij ∂j Fdx

+
∫

Ω

∑

i

W	H(1)
i;L∂iF − ∂iW	H(1)

i;RFdx (19)

+
∫

Ω

W	H(0)F = E

∫

Ω

W	Fdx.

In (19), the first integral and the second part of the second in-
tegral were partially integrated using the Dirichlet boundary
conditions of (18). Thus, the singularity of ∂iH

(1)
i;R at the ma-

terial interface is removed and no complicated tweaks in the
numerical evaluation have to be applied. Let a(W,F) denote
the left-hand side bilinear form and (W,F)0 the right-hand
side bilinear form of (19). The generalized solutions of (17)
are defined as (λ̂n, F̂n) (F̂n ∈ V ) where

a(W, F̂n) = λ̂n(W, F̂n)0 ∀W ∈ V. (20)

There is no need to explicitly enforce special boundary con-
ditions inside Ω at a given material interface. Such boundary
conditions are implicitly included in the given differential
operator and are denoted in the finite element framework as
natural boundary conditions.

To solve (20) numerically, it must first be converted into
an algebraic equation of finite size. Therefore let

VM ⊂ V (21)

be a linear subspace of V , the finite element space, spanned
by the basis functions {Ni}Mi=1. The solutions Fn ∈ VM of

a(W,Fn) = λn (W,Fn)0 ∀W ∈ VM (22)
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are approximations to the general solutions of (20), converg-
ing to F̂n as M → ∞.

As a(., .) and (., .)0 in (20) are both bilinear forms, their
arguments may expressed in terms of the basis functions
{Nj }Mj=1,

Fn =
M∑

j=1

cnjNj , (23)

leading to

M∑

j=1

a(Ni,Nj )cnj = λn

M∑

j=1

(
Ni,Nj

)
0 cnj ∀Ni ∈ VM. (24)

The basis functions are known and therefore the integrals in
(19) can be evaluated, leading to a sparse generalized matrix
eigenvalue problem (GEVP)

Acn = λnMcn (25)

for the coefficients cnj . The matrix M is real valued, sym-
metrical and positive definite. The matrix A is hermitian and
indefinite for the k·p 8×8 model. For the k·p 4×4 and 6×6
models, the matrix can be made negatively definite using a
constant zero-energy shift.
The dimensionality and the k · p model for a calculation
is stored in the element integrals and coefficient matrices.
Therefore major parts of the code remain independent of the
problem considered. We use triangles, rectangles and tetra-
hedrons as the partition of the domain Ω and assume con-
stant material parameters for each element. This assumption
allows us to evaluate all integrals in (24) analytically leading
to a matrix assembly time that is negligible compared to the
time spent for solving the eigenvalue problem of (25).

4.2 Generalized eigenvalue equation

Solving the GEVP of (25) resulting from the envelope equa-
tions can be a rather delicate problem. For 4×4 and 6×6
models, the desired eigenvalues are at the upper bound-
ary of the matrix spectra. For the k · p 8 × 8 model, the
bound states correspond to interior eigenvalues which are
more difficult to determine. As only a few matrix eigenval-
ues are sought, iterative methods such as the Arnoldi [36] or
the Jacobi-Davidson [37] method can be applied. The num-
ber of public available software packages that are able to
solve such complex-hermitian generalized eigenvalue prob-
lems is rather restricted. We currently apply the shift-and-
invert mode of the iterative Arnoldi algorithm implemented
in ARPACK [38]. Using shift-and-invert, the spectra of the
original GEVP problem is transformed to a problem where
the largest eigenvalues are targeted:

A → (A − τM)−1 . (26)

This reduces the number of required Arnoldi iterations to
usually 70–250, depending on the system, at the cost that in
each Arnoldi iteration, a linear equation

(A − τM)x = b (27)

must be solved for changing b. The linear problem can
be solved either using iterative or direct methods. Iterative
methods have a low memory consumption, but as the equa-
tion system has to be solved several times, a direct factoriza-
tion of the matrix is recommended, given that enough mem-
ory is available. Moreover, we have found that some itera-
tive linear equation solvers fail to converge when the matrix
A is large and indefinite. We currently achieve the best per-
formance for moderately large systems using the direct fac-
torization linear equation solver PARDISO 3.3 [39] where a
parallel version of the matrix factorization on shared mem-
ory machines is available. For very large 3D simulations,
we expand the complex equation system into a real valued
of double size and apply an iterative solver using GMRES
with an incomplete LU factorization with threshold (ILUT)
as preconditioner [40].

4.3 Strain equations

To be consistent, we also solve the strain equations using
finite elements. We seek the displacement field u(x) mini-
mizing the strain energy given by (13). Therefore we use the
Rayleigh-Ritz approach and express the displacement field
in terms of the FE basis function as

u(x) =
∑

i

ūiNi(x). (28)

Using (12) we insert (28) into the strain energy functional
of (13). The variation of the energy with respect to the dis-
placement coefficients ūi leads to the equation

∂

∂ū i
� = 0 ∀ūi (29)

for the determination of the displacement coefficients. Again
all integrals can be evaluated analytically and a sparse linear
equation for the displacement coefficients ūi

Aū = d (30)

is obtained. The relaxation strain is then calculated from the
displacement using (12). Finally the resulting strain field is
given by the sum of the calculated relaxation strains and the
intrinsic strains.

The boundary conditions for the strain equations depend
on the considered system. In general, boundary displace-
ments can either be free floating or kept fixed to a position.
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Fig. 2 Valence subbands of a strained 3 nm In0.1Ga0.9N quantum well
where the symmetry is broken along the c-axis [0001]

5 Applications

In order to demonstrate the capabilities of the solver, we
have calculated benchmark examples of different dimen-
sionality. We have chosen a strained nitride quantum well
with different orientations, a V-groove GaAs quantum wire
and a strained InAs quantum dot as our benchmarks. In-
terface charges resulting from piezo-electric effects and the
change of spontaneous polarization are not included.

5.1 Nitride quantum well

Active regions of blue- and green emitting optoelectronic
devices usually consist of multiple nitride quantum wells.
In our 1D example, we calculate the band structure for a
strained 3 nm In0.1Ga0.9N/GaN quantum well with differ-
ent orientations using the k ·p 6×6 model. The quantum
well is assumed to be biaxially strained and relaxed in the
confinement direction. The dispersion of the c-plane (0001)

oriented quantum well is given in Fig. 2. We use the mate-
rial parameters given in [27] and the operator ordering ex-
plained in Sect. 2.2. Figure 3 shows the dispersion of the
m-plane (1010) quantum well. The m-plane well is mod-
eled by replacing kx in the Hamiltonian with its operator.
The transversal direction is parametrized by the remaining
wavenumbers kz = kc (along the c-axis) and ky (in m-plane,
orthogonal to c-axis). The resulting dispersion is anisotropic
and therefore highly depends on the transversal direction.
As the calculations are not memory and time consuming
and usually run within a few seconds to minutes, we skip
the detailed benchmark analysis of the computational per-
formance.

5.2 V-groove GaAs quantum wire

The V-groove quantum wire serves as a benchmark structure
for complex 2D geometries. The mesh of the model struc-

Fig. 3 Valence subbands of a 3 nm In0.1Ga0.9N quantum well where
the symmetry is broken along the m-axis [1010]. Due to the anisotropy
of the crystal, the dispersion is highly dependent on direction of the
in-plane wavevector k

Fig. 4 The benchmark model of a V-groove GaAs quantum wire with
triangular meshing. The axes show the length in μm

ture is given in Fig. 4 with units given in μm. The used tri-
angular meshing allows modeling of complex geometrical
structures. In the calculation, a mesh using 9570 triangles
with a total number of 4901 vertices was applied. The wire
is assumed to consist of GaAs embedded in Al0.32Ga0.68As
with an Al0.2Ga0.8As quantum well below and on top of the
wire. The material parameters were taken from [41]. The
alloy parameters were calculated using linear interpolation
and bowing. In order to successfully apply the k ·p 8×8
model, the optical matrix parameters Ep were reduced for
all materials (to 21.5 eV, 21.6 eV and 20.5 eV for GaAs,
Al0.2Ga0.8As and Al0.32Ga0.68As) to keep the equation sys-
tem elliptic [7]. The resulting conduction band states are
given in Fig. 5. The benchmark example was solved for 32
transversal k points and for all implemented k·p zincblende
models on a workstation equipped with a 2.6 GHz dual-core
opteron 1218 processor. All calculations used the direct-
factorization solver PARDISO 3.3. The time and memory
consumption required for the benchmark examples are listed
in Table 1.



J Comput Electron (2008) 7: 521–529 527

Fig. 5 The probability density of the lowest conduction subband states
of the GaAs quantum wire, calculated using k·p 8×8

Table 1 Time and memory consumption for the quantum wire bench-
mark example. The times are given in terms of wallclock seconds. The
peak memory column gives the required peak resident memory size

k·p Model Total time Fact. Fwd./Bkwd. Peak mem

4×4 428 [s] 37 [s] 366 [s] 221 MB

6×6 623 [s] 63 [s] 524 [s] 349 MB

8×8 923 [s] 119 [s] 750 [s] 486 MB

The benchmark was performed using two Open MP
threads, although the performance increase of the additional
thread is minimal. The majority of the time is spent in the
forward-/backward substitution process during the Arnoldi
iteration which is not parallelized for complex-hermitian
matrices in PARDISO 3.3 and therefore represents the cur-
rent bottleneck regarding performance of tdkp.

5.3 Pyramidal InAs–GaAs quantum dot

The 3D example considered is a pyramidal capped InAs
quantum dot embedded within GaAs including a wetting
layer (WL) of a few monolayers. The base length of the
dot varies between 10.9 and 19.96 nm. Pyramidal quan-
tum dots have been studied extensively in the literature us-
ing the selected k · p models [13, 14, 18] and finite dif-
ferences. Here we use a structure similar to [18] to study
the solver in terms of speed and memory consumption for
very large models. Therefore we use three different meshes
with 66’000, 110’000 and 140’000 vertices and calculate the
electronic states using k ·p 4×4 and 8×8 models includ-
ing strain effects. Each problem is solved using the direct
solver PARDISO 3.3 and an iterative GMRES implementa-
tion [40]. The iterative solver uses an incomplete LU pre-
conditioner with a threshold of 0.001. The examples were
calculated on a shared memory machine with 64 GB mem-
ory and four 3 GHz single core opteron 856 processors, ex-

Fig. 6 Iso-probability surface at |Ψ |2 = 50% of its peak value for the
first conduction- (upper) and valence band states in a pyramidal quan-
tum dot of base length 10.9 nm, calculated using k·p 8×8 and strain.
The mesh of the wetting layer is displayed in the background

cept the k ·p 8×8 system with 140’000 vertices that was
solved on similar machine equipped with 128 GB memory
due to the required 71 GB of memory for the direct solver.
The parameters were taken from [41] at 6.5 K for the plot-
ted data and at 300 K for the benchmarks. The optical ma-
trix parameter Ep and γ3 were reduced for the k ·p 8×8
model to ensure elliptic parameters (Ep: 22.5 eV for GaAs
and 21 eV for InAs, γ3: 2.84 for GaAs). The iso-surfaces
for a probability density of |Ψ |2 = 50% of the peak value
for the first conduction and valence band states are given
in Fig. 6. The energies of the first nine bound states with
respect to the unstrained GaAs band edges plotted against
the base length of the dot are shown in Fig. 7. Compared to
[18], we observe a stronger quantization of the states (espe-
cially for the first states). The energy of the first conduction
band state is 100 meV lower than in [18]. We attribute this
to the methodological differences. In [18], the InAs WL is
modeled as a graded InGaAs WL reproducing the integral
indium amount. In our simulation, the unstructured meshing
allows us to exactly reproduce the one monolayer InAs WL
with a large number of vertices, leading to an increase of
the quantized volume and therefore to more strongly bound
states. Furthermore, in contrast to [18], we find the excited
electron states to be slightly extending into the WL. Omis-
sion of the WL shifts the conduction band states at low base
lengths up by 75 meV. However, the k·p method is probably
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Fig. 7 Energies of the pyramidal quantum dot with respect to the un-
strained GaAs band edges of the nine strongest bound electron and hole
states. The x-axis denotes the base length of the pyramide. The dotted
lines represent doubly degenerate states

Fig. 8 Benchmark results for the unstrained 3D pyramidal quantum
dot. The results were obtained using a four-node server equipped with
3.0 GHz Opteron 856 processors. The x-axis denotes the matrix size N

(degrees of freedom). The upper figure shows the required wallclock
time versus matrix size for k·p 4×4 (black) and 8×8 (grey) using direct
(DI, dashed) and iterative solver (IT, dash-dotted). In the lower figure,
the peak resident memory size (in GB) is plotted against the matrix size

unsuitable for the modeling of the thin WL, where atomistic
effects dominate.

The absence of piezo-electricity in our current implemen-
tation further increases the quantization and leads to a higher
symmetry of the system. This results in a degeneracy of
the second and third (and eight and ninth) conduction band
states, displayed by the dotted lines in Fig. 7.

Benchmark results for the unstrained 3D pyramidal quan-
tum dot of base length 13.6 nm are plotted in Fig. 8. The

resulting matrix size is plotted against the required peak res-
ident memory (lower figure) and wallclock time (in hours,
upper figure). An interesting observation is the linear mem-
ory consumption with matrix size for both solvers, although
the direct solver requires approximately twice as much
memory compared to the iterative solver. PARDISO 3.3 is
faster for the smaller problems while for the larger prob-
lems, the iterative solver needs less time. This observation is
related to the fact that all relevant parts of the iterative solver
code are properly parallelized while PARDISO 3.3 runs on
a single thread during forward- and backward substitution.

6 Conclusions

The basic result of our work is a consistent finite element
derivation and implementation of the k·p envelope equations
that is applicable directly to the band structure of quantum
wells, wires and dots. Using Burt-Foreman operator order-
ing and ensuring the ellipticity of the equation system, we
are able to reliably calculate spurious solution free subband
structures for all standard k ·p models of zinc-blende and
wurtzite materials. The implemented solver is designed to
be extensible, efficient and general, and will be particularly
useful for the study of transport and luminescence in op-
toelectronic devices with complex quantized structures of
different dimensionalities [42]. The application of the finite
element method to the intrinsic strain problem allows us to
consistently incorporate strain effects on the electronic prop-
erties up to second order and therefore leads to a more com-
plete description of essential physics in these devices.
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