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1 Introduction

1.1 Review of Cumulative Prospect Theory (CPT)

Expected utility theory has been the foundation for most of our modern economic
theories on uncertainty and risk. However, it has been challenged by more and
more empirical results pointing at violations of it. For example, it has been found
that people tend to think of the outcome as a relative change rather than the final
status, they have different risk attitudes towards gains and losses, and they tend to
overweight unlikely events but underweight highly possible events.

All these observations call for developments of alternative theories that are psy-
chologically more appealing and descriptively more valid. The Cumulative Prospect
Theory (CPT), introduced by Tversky and Kahneman [15], stands out as one of the
most well-accepted descriptive alternatives to expected utility theory. It has three
important features:

1. Instead of evaluating the final wealth, the payoffs are framed as gains or losses
as compared to some reference point.

2. The loss looms larger than the gain, hence the value function in losses is steeper
than the value function in gains.

3. A weighting function, in which the small probabilities are underweighted and
the moderate to large probabilities are overweighted, is introduced to transform
the cumulative probability distribution.

The first two features are reflected in the two-part S-shaped value function—
concave in gains and convex in losses. The prototypical example has been given in
[15] for α, β ∈ (0, 1) and λ > 1:

u(x) :=

{
xα, x ≥ 0

−λ(−x)β , x < 0.
(1)

We mention that the distinction between α and β is not essential to our results.
The third feature is captured by weighting the (cumulative) probability distri-

bution by an S-shaped function, the so-called weighting function w. The original
example of [15] is given by

w(F ) :=
F γ

(F γ + (1 − F )γ)1/γ
. (2)

It is possible to assign different weighting functions for gains and losses (denoted
by w+ and w−), and we will use δ to denote the parameter in losses. Our results
extend to a large class of possible weighting functions, in particular including the
aforementioned and the alternative weighting function

w(F ) := exp(−(− ln(F ))γ)

for γ ∈ (0, 1), which has been suggested by Prelec [13].
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We define the subjective utility by

U(p) :=
∫ 0

−∞
u(x)

d

dx
(w−(F (x))) dx +

∫ +∞

0
u(x)

d

dx
(w+(F (x))) dx,

where F (x) :=
∫ x

−∞ dp. This is a generalization of the original formulation in
[15]. The generalization allows for arbitrary (continuous) outcomes, and not only
for discrete values. Our formulation includes in particular the discrete case of [15].
This can be seen easily by setting p(x) :=

∑
i piδxi

, where δx is a Dirac mass at x,
the probabilities pi > 0 satisfy

∑
i pi = 1, and the (discrete) outcomes are given

by the real numbers xi. The formula for U in the discrete setting then becomes

U(p) :=
0∑

i=−m

v(xi)π−
i +

n∑
i=0

v(xi)π+
i ,

where π+
n = w+(pn), π+

i = w+(pi + · · · + pn) − w+(pi+1 + · · · + pn) for
0 ≤ i ≤ n − 1 and accordingly for the πi with m ≤ i < 0. (Here the possible
outcomes are denoted by xi and x−m < · · · < x−1 < x0 = 0 < x1 < · · · < xn.
For details see [15].)

The classical formulation of the St. Petersburg problem (as a discrete lottery)
would correspond to this special case. Nevertheless, we prefer to take a little extra
effort to use the more general continuous setting. Readers who are not familiar with
the continuous formulation may just replace all integrals by sums to arrive at the
more usual discrete case.

1.2 A remark on the monotonicity of the weighting function

The weighting function w is usually assumed to be a strictly increasing function.
This follows from the basic fact that people weigh higher probabilities stronger
than lower probabilities. However, to our knowledge it hasn’t been pointed out so
far that the oldest and most widely used form of the weighting function

w(F ) :=
F γ

(F γ + (1 − F )γ)1/γ
,

as suggest by [15], does not satisfy this condition for allγ ∈ (0, 1). In fact, numerical
computations show that the function w is partially decreasing for γ ≤ 0.278,
compare Figure 1. The problem disappears for larger values of γ. It is surprising
that it hasn’t been found earlier (to our knowledge). This can only be explained
with the analytical difficulties which the complicated structure of w poses.

Other weighting functions, in particular the ones defined by [13] and [11] are
strictly increasing for all values of γ ∈ (0, 1). This observation seems to suggest
that for experimental studies alternative forms should be preferred over the original
form of (2). The problem, however, is not too severe, since previous studies mostly
measured values of γ ≥ 0.3, and in this parameter regime, the weighting function
w seems indeed to be strictly increasing as numerical computations suggest.
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Figure 1. The classical weighting function defined in (2) and introduced by [15] is not monotone for
small values of γ. (Here: γ = 0.2)

In fact, one can prove that w is monotone for γ ≥ 0.5: consider the derivative
of ln(w(F )) with respect to F . An easy computation shows that

d

dF
(ln(w(F )) =

(γ − 1)F γ + (γ + F )γ(1 − F )γ−1

F (F γ + (1 − F )γ)
,

and hence w is monotone if and only if Hγ(F ) := (γ−1)F γ +(γ+F )γ(1−F )γ−1

is positive for all F ∈ [0, 1]. Since the first summand can be estimated from below
by γ − 1 and the second by γ, this is the case for all γ ≥ 0.5.

On the other hand, evaluating Hγ(F ), e.g., for γ = 0.25 and F = 0.1 gives
a negative value for Hγ(F ) and hence one can prove that w is non-monotone for
γ ≤ 0.25.

In our paper we will nevertheless occasionally use the weighting function w
as given by (2), since it is the most frequently studied version, and the problems
we are concerned with are independent of the non-monotonicity for small values
of the parameter γ. Our main motivation, however, is to provide general results
covering all classes of weighting functions, hence the function w will only be a
specific example for us.

1.3 The classical St. Petersburg paradox

The St. Petersburg paradox is usually explained with the following example: the
player Paul is reluctant to pay enormous amounts of money for a gamble that Peter
offers him – he will get 2i ducats when the coin lands “heads” on the ground for
the first time at the ith throw – which has an infinitely large expected value (EV).
This example already dates back to Bernoulli [3]. The solution of this problem is



Cumulative prospect theory and the St. Petersburg paradox 669

usually to replace the formula of EV with the one of expected utility, in which a
strictly concave utility function makes the subjective utility of the large outcome
no longer high enough to compensate the very low probability associated with it.

It is, however, important to keep in mind that for gambles with infinite EV, the
strict concavity of the utility function alone cannot guarantee the expected utility to
be finite. For example, if Peter offers Paul 22i ducats when the coin lands “heads”
at the i-th throw, then with a strictly concave utility function like u(x) := x0.8, the
expected utility is still infinitely large. (Even in the original example, the strictly
concave utility function u(x) := x − e−x still leads to an infinite expected utility.)
Such insight was first made by Menger [12] with his illustration of the “Super-
Petersburg Paradox”. He concluded that unless the utility function is bounded, it is
impossible to discriminate all possible probability distributions. One could argue,
however, it is not necessary to discriminate all possible probability distributions,
because no individuals or organizations can offer a lottery with unlimited EV.
Actually, Arrow [2] pointed out that if we only consider distributions with finite
EV, we can still guarantee finite expected utility even though the utility function is
unbounded. More precisely he found the following result:

Proposition 1 Let p be a probability measure with finite EV E(p) < ∞ and let
u : R → R be a strictly increasing, concave utility function, then the utility U(p) :=∫

u dp is finite.

(We remark again that this statement is a generalization of the case of discrete
outcomes where the integral is replaced by a sum. Hence the usual formulation of
the St. Petersburg problem in terms of a discrete lottery is included.)

In other words, the St. Petersburg paradox can be resolved by allowing only
for “realistic” lotteries, i.e., under the assumption of a finite EV, a (not necessarily
strictly) concave utility function is sufficient to guarantee that the expected utility
is finite.

Even though this fundamental statement is mathematically easy in the frame-
work of expected utility theory, it turns out to be false in the context of CPT. In fact,
we will show in the Section 2 that in cumulative prospect theory a gamble with a
finite EV can have an infinite subjective value – independent of the concavity of the
value function u.

The intuitive explanation for this phenomenon can be seen as follows: In ex-
pected utility theory, a concavity of the utility function is sufficient to bound the
utility as long as the EV of the lottery is finite, because a person’s certainty equiv-
alent is less than the EV if he/she is risk averse. When the probability weighting
is nonlinear, however, the risk attitude depends on the interaction of the value and
weighting function, as well as the probability distribution [9,16]. In case of the
probability weighting function as formulated in CPT [15], the infinite slope of the
weighting function at zero and unity counteracts with the concave value function –
when a lottery has a too long “tail” similar to the St. Petersburg gamble, the propor-
tional weights given to the outcomes at the tails are unboundedly high. As a result,
an individual’s subjective value for a lottery with a finite EV can be unbounded
even if his/her value function is concave. This is not a very reasonable situation
for individual decision making. To avoid this problem, we need to make sure that
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the interaction of weighting function and value function behaves like the concave
utility function in expected utility theory at the tails of probability distribution.

Generalizing this idea, we find special cases in CPT under which the prob-
lem can be resolved. In particular we will define a class of admissible probability
distributions and admissible parameter regimes (Sect. 2.3) and we will suggest an
alternative weighting function which allows for an extension of Theorem 1 to CPT
(Sect. 2.4). Some of the results presented in Section 2 have already been found
independently by Blavatskyy in the context of discrete lotteries [4].

In the final Section 3 we summarize our results and discuss the possible modi-
fications of CPT that resolve the paradox.

2 The St. Petersburg paradox in CPT

2.1 General result

The central result of this section is the following Theorem 1. It provides precise
conditions under which the St. Petersburg paradox in CPT occurs. We will later
derive several results from this theorem which are more accessible and which cover
situations of particular interest, compare Theorems 3–5.

Theorem 1 (General result) Let U be a CPT subjective utility given by

U(p) :=
∫ 0

−∞
u(x)

d

dx
(w−(F (x))) dx +

∫ +∞

0
u(x)

d

dx
(w+(F (x))) dx,

where the value function u is continuous, monotone, convex for x < 0 and concave
for x > 0. Assume that there exist constants α, β ≥ 0 such that

lim
x→+∞

u(x)
xα

= u1 ∈ (0, +∞), lim
x→−∞

|u(x)|
|x|β = u2 ∈ (0, +∞), (3)

and that the weighting functions w± are continuous, strictly increasing functions
from [0, 1] to [0, 1] such that w±(0) = 0 and w±(1) = 1. Moreover assume that
w± are continuously differentiable on (0, 1) and that there are constants δ, γ > 0
such that

lim
y→0

w′
−(y)

yδ−1 = w1 ∈ (0, +∞), lim
y→1

1 − w′
+(y)

(1 − y)γ−1 = w2 ∈ (0, +∞). (4)

Let p be a probability distribution with E(p) < ∞. Then U(p) is finite if α < γ
and β < δ. This condition is sharp as can be seen from Theorem 2 below.

In particular, the subjective utility may be infinite for distributions with finite
EV in the setting and the parameter range of the original work by Tversky and
Kahneman [15] where α ≈ 0.88 and γ ≈ 0.65 and hence the (sharp) condition
α < γ is violated, compare Section 2.2.

We will present a proof of the general result Theorem 1 together with some
extensions in Section 2.3. Before that, we give an explicit example for a probability
distribution of outcomes which has a finite EV, but an infinite subjective utility in
the setting of Tversky and Kahneman [15]. A similar example has already been
pointed out by Blavtskyy [4].
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Theorem 2 (Finite EV, but infinite subjective utility) Let γ, α ∈ (0, 1), q > 2.
Let the probability density p of possible outcomes be given by

p(x) :=

{
0, x ≤ 1

Cx−q, x > 1,

where C :=
∫ ∞
0 x−q dx.

Let the weighting function w+ : [0, 1] → [0, 1] be given by (2) and the
value function on u : R+ → R be given by (1), i.e. value- and weighting func-
tion are chosen as in the original work by Tversky and Kahneman [15]. Let
F (x) :=

∫ x

−∞ p(x) dx be the total probability for an outcome less than x. Then we
have E(p) < +∞ and u strictly concave, but for α > γ and q sufficiently close to
2 the subjective utility is infinite, i.e.

U(p) :=
∫

u(x)
d

dx
(w(F (x))) dx = +∞.

This result shows that it is not possible to resolve the St. Petersburg paradox in
the framework of CPT in the same way as in the utility theory: Even if we assume
strict concavity of the value function (corresponding to a risk-averse behavior) and
a finite EV for the probability distribution of outcomes (thus excluding unrealistic
situations with infinite average outcome), the subjective utility can still be infinite!
This paradox has already been observed independently by Blavatskyy in the context
of discrete lotteries. We refer the reader to his article [4] for details.

It should be mentioned that the problem does not arise from the convex-concave
structure of the value function in CPT, since in our example we have only positive
outcomes (i.e., we work only in the concave part). It does also not arise from a
specific choice of the weighting function, since we have chosen the standard form
already introduced by [15], and could as well use an alternative form as suggested,
e.g., in [13]. This can also be seen from the general conditions under which the
problem occurs as stated in Theorem 1 above.

Let us now have a look at the proof of Theorem 2 which illustrates best the role
that the weighting function plays in the paradox.

Proof of Theorem 2. First we prove that E(p) < +∞ using that q > 2:

E(p) =
∫ ∞

1
xp(x) dx =

∫ ∞

1
x−q+1 dx =

1
2 − q

< +∞.

The concavity of u on R+ is clear from the definition, so we only need to show that
the utility U(p) is infinite. We compute F (x) =

∫ x

1 p(x) dx = 1
q+1 (1 − x1−q).

Denote C := 1
q+1 ∈ (0, 1

3 ). Now we can calculate U(p):

U(p) =
∫

u(x)
d

dx
(w(F (x))) dx

=
∫ ∞

1
xα d

dx

(
F (x)γ

(F (x)γ + (1 − F (x))γ)1/γ

)
dx
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=
∫ ∞

1
xα d

dx

(
Cγ(1 − x1−q)γ

(Cγ(1 − x1−q)γ + (1 − C)γx(1−q)γ)1/γ

)
dx

=
∫ ∞

1
Cγ

[
γ(1 − x1−q)γ−1xα−q(q − 1)(

Cγ(1 − x1−q)γ + (1 − C)γxγ−qγ
)−1/γ

+(1 − x1−q)γ
(
Cγ(1 − x1−q)γ + (1 − C)γxγ−qγ

)− 1
γ −1

(
Cγ(1 − x1−q)γ−1xα−q − (1 − C)γ(1 − q)xγ+α−qγ−1) ]

dx. (5)

Now we prove the following estimates for positive numbers c1, c2:

(1 − x1−q)γ−1 ≥ 1, (6)(
c1(1 − x1−q)γ + c2x

γ−qγ
)−1/γ ≥ (c1 + c2)−1/γ . (7)(

c1(1 − x1−q)γ + c2x
γ−qγ

)−1/γ−1 ≥ (c1 + c2)−1/γ−1. (8)

Inequality (6) simply follows from 1−x1−q ≤ 1 and γ −1 ∈ (−1, 0), whereas
(7) and (8) follow from (1−x1−q)γ ≤ 1 and xγ−qγ ≤ 1. (Here we use that x ≥ 1.)

We apply these inequalities to (5) with c1 := Cγ and c2 := (1 − C)γ to derive

U(p) ≥
∫ ∞

1
Cγγ(q − 1)(Cγ + (1 − C)γ)−1/γxα−q

+C2γ(1 − x1−q)γ(Cγ + (1 − C)γ)−1/γ−1xα−q

+Cγ(1 − C)γ(q − 1)xα+γ−qγ−1 dx. (9)

We use that for x ≥ 2 we have (1−x1−q)γ ≥ (1− 21−q)γ and since q > 2 we
even have (1−x1−q)γ ≥ (1−2−1)γ = 2−γ . Furthermore we estimate the integral
in (9) by the integral from 2 to +∞, using that the integrant is positive:

U(p) ≥
∫ ∞

2
Cγγ(q − 1)(Cγ + (1 − C)γ)−1/γxα−q

+C2γ2−γ(Cγ + (1 − C)γ)−1/γ−1xα−q

+Cγ(1 − C)γ(q − 1)xα+γ−qγ−1 dx.

Writing K = Cγ + (1 − C)γ and collecting terms with the same expression in
x we arrive at

U(p) ≥
∫ ∞

2
Cγ

(
γ(q − 1)K−1/γ + Cγ2−γK−1/γ−1

)
xα−q

+(q − 1)Cγ(1 − C)γxα+γ−qγ−1 dx. (10)

We recall that a function xs is integrable on (2, +∞) if and only if s < −1, hence
the first term in this integral is integrable if and only if α−q < −1 which is always
the case by the assumptions α < 1 and q > 2. However, the second term is only
integrable if α + γ − qγ < 0. Since we can choose q arbitrarily close to 2, this
is only the case if α < γ. In other words, if we choose q close to 2 and α > γ,
e.g. q := 3, α := 3/4, γ := 1/4, then (10) becomes +∞ and we have proved that
U(p) = +∞. ��
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2.2 Results on finite utility from CPT

We have seen in the previous section that in standard CPT the St. Petersburg paradox
cannot be resolved. However, there are specific situations in which the problem does
not occur and which can be derived from the general results of Theorem 1. In this
section we will discuss such situations.

We first consider conditions on the probability distribution of the outcomes. The
St. Petersburg paradox can obviously not occur if we restrict ourselves to a finite
set of possible outcomes, but even a bounded set of possible outcomes suffices to
prevent infinite utility:

Theorem 3 (Finiteness for special distributions I) Let U be a CPT subjective
utility functional and p be a probability distribution with bounded support, i.e.
supp p := {x ∈ R; p(x) > 0} ⊂ [a, b], where a > −∞ and b < +∞. Then U(p)
is finite.

Proof. This follows from the general result, Theorem 1, but it can also be seen
directly. We assume for simplicity that w := w− = w+, use the monotonicity of u
and that w(F ) ∈ [0, 1]:

U(p) =
∫ b

a

u(x)
d

dx
w(F (x)) dx ≤ u(b)

∫ b

a

d

dx
w(F (x)) dx

= u(b)(w(F (b)) − w(F (a))) ≤ u(b) < ∞. ��
Many interesting probability distributions (e.g. normal Gauss distributions) do

not have a bounded support. Therefore the following extension is useful:

Theorem 4 (Finiteness for special distributions II) Let U be a CPT subjective
utility functional and p be a probability distribution with exponential decay at +∞,
i.e. there exist a, b, c > 0 such that p(x) ≤ ae−bx for all x ≥ c. Moreover, assume
that (4) holds. Then U(p) < +∞. (The corresponding condition for −∞ would
ensure that U(p) > −∞.)

Proof. This result is an immediate consequence of Theorem 6. ��
If one wants to allow for arbitrary probability distributions, a general finiteness

result can be given for bounded value functions:

Theorem 5 (Bounded value functions) Let U be a CPT subjective utility func-
tional with bounded value function |u(x)| ≤ C and let p be a probability distribu-
tion. Then U(p) is finite.

Proof. Again, this is a corollary of Theorem 1, but a direct proof, following the
ideas of the proof of Theorem 3 is also easy. ��

Under the restriction to finite EVs, one can also obtain finiteness if the constant
of the value function is smaller than the parameter of the weighting function, i.e.
max(α, β) < γ, as we will show in Section 2.3. (In a certain sense, the value
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T
¯

able 1. Experimental values of α, β and γ, δ from various studies, compare (3) and (4) for the precise
definition of α, β, γ, δ

Study Estimate Estimate α < γ
for α,β for γ, δ β < δ

Tversky and Kahneman [15]
gains: 0.88 0.61 no
losses: 0.88 0.69 no

Camerer and Ho [6] 0.37 0.56 yes

Tversky and Fox [14] 0.88 0.69 no

Wu and Gonzalez [18]
gains: 0.52 0.71 yes

Abdellaoui [1]
gains: 0.89 0.60 no
losses: 0.92 0.70 no

Bleichrodt and Pinto [5] 0.77 0.67/0.55 no

Kilka and Weber [10] 0.76–1.00 0.30–0.51 no

function has to be “sufficiently concave”.) However, for the classical functions
used in [15] this condition has been violated in most studies, compare Table 1.

Nevertheless this result is important, in that it can be used to derive several
methods to fix the problem: We have already seen one of them, namely considering
bounded value functions (setting asymptotically α = 0). Another approach is to
work with alternative weighting functions (setting for values of F close to 0 and 1
the constant γ = 1). We will explain this idea in Section 2.4.

2.3 Proof of the general result and extensions

In this section we give a proof of Theorem 1 and extend it to situations which are
of particular interest for the classical theory of Tversky and Kahneman [15].

Proof of Theorem 1. To keep things simple we assume that p is absolutely contin-
uous, i.e. we can represent it by a finite function p : R → R≥0. (If this is not the
case, the proof can be concluded by a simple approximation argument.)

In order to prove that U(p) is finite we need to prove that it is neither −∞ nor
+∞. For notational reasons we prove the former statement. The latter then follows
by the symmetry of the problem. Thus we assume without loss of generality that
p(x) = 0 for all x > 0.

We define a sequence {xi}, i = 0, 1, 2, . . . as follows:
First, let x0 := 0. Then define xi such that∫ xi−1

xi

p(x) dx = 2−i. (11)
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Since
∑∞

i=1 2−i = 1, we have limi→∞ xi = −∞.
The assumption that p has a finite EV leads to the following estimate, using

(11):

∞∑
i=1

−xi−12−i =
∞∑

i=1

−xi−1

∫ xi−1

xi

p(x) dx

≤
∞∑

i=1

−
∫ xi−1

xi

xp(x) dx

= −E(p) < +∞.

Denoting yi := −xi−12−i we obtain the useful estimate

∞∑
i=1

yi < +∞. (12)

We estimate the subjective utility U(p) using (3) and (4). We denote by η all
terms that converge to zero as x → −∞.

U(p) =
∫ 0

−∞
u(x)w′(F (x))p(x) dx

=
∫ 0

−∞
−(1 + η)u2x

βw1F (x)δ−1p(x) dx

=
∞∑

i=1

∫ xi−1

xi

−(1 + η)u2x
βw1F (x)δ−1p(x) dx

≥
∞∑

i=1

∫ xi−1

xi

−(1 + η)u2x
β
i−1w1F (xi)δ−1p(x) dx

≥
∞∑

i=1

−(1 + η)u2x
β
i−1w1F (xi)δ−12−i.

We use the estimate

F (xi) =
∫ xi

−∞
p(x) dx =

∞∑
j=j+1

∫ xj−1

xj

p(x) dx = 2−i

to obtain:

U(p) ≥
∞∑

i=1

−(1 + η)u2 xβ
i−1w1 2−δi.

Using the definition of yi we derive

U(p) ≥
∞∑

i=1

(1 + η)u2 w1 yβ
i 2i(β−δ). (13)
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By (12) we know that limi→−∞ yi = 0 and hence yβ
i is bounded. Using the

assumption δ > β and that limx→−∞ η = 0, it is clear that the infinite sum in (13)
converges. Thus U(p) is finite. ��

Instead of posing conditions on the value – and the weighting functions, we
can also impose conditions on the class of admissible probability distributions and
in particular their decay at infinity:

Theorem 6 Let U be an arbitrary CPT subjective utility with value function u
satisfying (3) and weighting function w satisfying (4). Let p be an (absolutely
continuous) probability distribution such that for all q < 0 there exists C > 0 such
that p(x) ≤ |x|−q for all |x| ≥ C. Then U(p) is finite.

Proof. Due to the symmetry of the problem (see above), we can assume without
loss of generality that p(x) = 0 for all x > 0. By assumption there exist δ ∈ (0, 1]
and β ∈ (0, 1) corresponding to (3) and (4). finiteness of U(p). Define

q :=
δ + β

δ
+ 1 > 0.

By the assumption on p, there exists a C > 0 such that p(x) ≤ |x|−q for all |x| ≥ C.
We rewrite:

U(p) =
∫ 0

−∞
u(x)w′(F (x))p(x) dx

=
∫ −C

−∞
u(x)w′(F (x))p(x) dx︸ ︷︷ ︸

=:I1

+
∫ 0

−C

u(x)w′(F (x))p(x) dx︸ ︷︷ ︸
=:I2

.

The integral I2 is obvious finite, hence it is sufficient to consider I1. Since p(x) ≤
|x|−q for all x ≤ −C, we have

F (x) ≤ 1
1 − q

|x|1−q.

Using the same asymptotic estimates as in the proof of Theorem 1 we obtain

I1 =
∫ −C

−∞
−(1 + η)|x|β |x|(1−q)(γ−1)|x|−q dx

=
∫ −C

−∞
−(1 + η)|x|δ+β−1−qδ dx.

Now, using the above definition for q, this simplifies to

I1 =
∫ −C

−∞
−(1 + η)|x|−1−δ dx.

Since δ > 0, this is integrable, and thus U(p) is finite. ��
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2.4 Alternative weighting functions

Using the general results of the previous section, it is easy to suggest a new type of
weighting functions that avoids infinite values for the subjective utility. By Theo-
rem 1 we only need to find functions w−, w+ : [0, 1] → [0, 1] with the following
properties:

(i) w±(0) = 0, w±(1) = 1,
(ii) w± are strictly increasing on [0, 1]. (This condition is violated for the classical

weighting function (for small values of γ) as suggested by [15], compare
Sec. 1.2.)

(iii) w± are continuously differentiable on [0, 1], i.e. w′
±(0) and w′

±(1) are finite.
(This condition is violated by all usual weighting functions, e.g., [15] and
[13].)

The constants δ, γ in Theorem 1 will then be δ = γ = 1 and the conditions α < γ
and β < δ will be trivially satisfied since α < 1, β < 1 by assumption. As a
particular example we give a polynomial function and prove the following result:

Proposition 2 Let a ∈ (0, 1), b ∈ (0, 1). Let the weighting function w : [0, 1] →
[0, 1] be given by

w(F ) :=
3 − 3b

a2 − a + 1
(
F 3 − (a + 1)F 2 + aF

)
+ F.

Then w satiesfies the assumptions of Theorem 1 for a finite subjective utility.

The function w is not arbitrarily chosen: It is actually the simplest polynomial
that satisfies all of the above conditions. It has the feature that the two parameters a
and b have the following easy interpretation: a is the point on which w changes from
overweighting to underweighting, i.e. where w(a) = a. The second parameter b
corresponds (like the parameter γ in the original model) to the curvature of w. (One
can easily see that there exists no polynomial of degree less than three which has
a concave–convex structure. A standard ansatz with a polynomial of degree three
then leads to the above formula for w.)

A one-parameter model can be obtained by assuming that a = 1/2. The formula
then simply reads

w(F ) = (4 − 4b) F 3 − (6 − 6b)F 2 + (3 − 2b)F.

Proof. All properties can be easily checked, since w is a polynomial. (This is a big
technical advantage compared to other weighting functions.) The finiteness of the
subjective utility then follows immediately from Theorem 1. ��

In Figure 2 we present plots of w for different values of a and b. Of course the
definition of the weighting function w as a polynomial is just a suggestion, there
are other possibilities if one allows for more complicated functions.
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Figure 2. Alternative weighting functions w, avoiding the paradox of infinite subjective utility, for some
choices of the parameters a and b

3 Conclusions

We have seen that the standard cumulative prospect theory can lead to a strange
result, namely an infinite subjective utility for a probability distribution of outcomes
which has only a finite EV. To conclude, we list four possible ways to fix the problem
and discuss them briefly:

1. If we allow only for probability distributions with exponential decay at infinity
(or even with bounded support), the problem does not occur, as we have proved
in Theorem 4 and Theorem 3. In many applications, this is the case. However, it
seems to be somehow dissatisfying to work with this restriction. In particular in
problems where we are interested in finding the optimal probability distribution
(subject to some constraints), it might well happen that we obtain a “solution”
with infinite subjective utility, compare [17].

2. It is possible to assume that γ > α and δ > β, where γ, δ are the parameters
of the weighting function and α, β are the growth rates of the value functions.
By Theorem 1 this is sufficient to ensure finite subjective utility. Unfortunately,
this assumptions seems to contradict many of the measured parameters in ex-
periments (compare Table 1).

3. The value function can be modified for large gains and losses such that it
is globally bounded. This again ensures a finite subjective utility (compare
Theorem 5). There are also other theoretical reasons summarized in the survey
article by Hens [8], compare also the work by De Giorgi et al. [7].

4. The final idea is to modify the weighting function w as has been suggested
in Section 2.4. This guarantees a finite subjective utility, independently of the
choice of the value function (as long as it has a convex-concave structure). It



Cumulative prospect theory and the St. Petersburg paradox 679

is interesting to compare this approach to the weighting functions which have
been obtained experimentally by Abdellaoui et al. [1].

As a last remark we mention the problem regarding the non-monotonicity of the
classical weighting function by [15] which we had pointed out in Section 1.2. This
problem suggests strongly to use an alternative weighting function – not necessarily
the one that we introduce in Section 2.4, but, e.g., one of the already existing variants
listed in Section 1.2 – in further experimental and theoretical studies.
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