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Abstract. The equation of state and the stability of the helium-molecular hydrogen mixture at cryogenic
temperature up to moderate pressure are studied by means of current molecular physics methods and
statistical mechanics perturbation theory. The phase separation, segregation and hetero-coordination are
investigated by calculating the Gibbs energy depending on the mixture composition, pressure and tem-
perature. Low temperature quantum effects are incorporated via cumulant approximations of the Wigner-
Kirkwood expansion. The interaction between He and H2 is determined by Double Yukawa potentials. The
equation of state is derived from the hard sphere system by using the scaled particle theory. The behavior
of the mixture over a wide range of pressure is explored with the excess Gibbs energy of mixing and the
concentration fluctuations in the long wavelength limit. The theory is compared to cryogenic data and
Monte-Carlo calculation predictions. Contrary to previous similar works, the present theory retrieves the
main features of the mixture below 50K, such as the critical point and the condensation-freezing curve,
and is found to be usable well below 50K. However, the method does not distinguish the liquid from the
solid phase. The binary mixture is found to be unstable against species separation at low temperature
and low pressure corresponding to very cold interstellar medium conditions, essentially because H2 alone
condenses at very low pressure and temperature, contrary to helium.

PACS. 64.10.+h General theory of equations of state and phase equilibria – 64.75.Gh Phase separation
and segregation in model systems (hard spheres, Lennard-Jones, etc.) – 64.75.Ef Mixing

1 Introduction

Studying the mixing behavior of helium (4He) and molec-
ular hydrogen (1H2) forming a binary system over a wide
range of conditions is extremely important for astrophysi-
cal purposes in view of the ubiquity of this mixture in the
Universe. As by-product, such as study is also of interest
for industrial applications that need to extend the condi-
tions accessible on Earth. The present work is a contribu-
tion to understand the stability of this important cosmic
mixture in cryogenic conditions well below 100K and for
a pressure range going from 0 to a few kbar, therefore
including in particular conditions found in the cold inter-
stellar gas.

This work was motivated by the necessity to predict
the behaviour of this mixture in conditions that are not
easily observable yet, but that might be reached in cold
molecular clouds far from excitation sources, such as those
in outer galactic disks. Almost all earlier similar studies
about the equation of state of He and H2 have been fo-
cused on high temperature and high pressure conditions
suited for planetary and stellar interiors (e.g., [1]).

The mutual solubility of a binary mixture with respect
to the conditions of composition, temperature, pressure
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and density is also of interest for non-astrophysical appli-
cations. For example, in metallurgy a fine dispersion of
a phase during a melting process results in a significant
improvement of the mechanical properties of materials as
well as in the production of electrically and thermally well-
conducting devices.

Generally, there are two distinct classes of mixtures
according to their deviations from Raoult’s law (i.e., the
additive rule of mixing): a positive deviation corresponds
to a segregating system, and a negative deviation corre-
sponds to a short-ranged ordered alloy. The extreme de-
viations from Raoult’s law may lead to either phase sep-
aration or compound formation in the binary system. In
this work we examine such a deviation as it reflects the
energetic and structure of constituting atoms. We use the
excess Gibbs energy of mixing Gxs

M to evaluate the degree
of segregation and the degree of miscibility of the binary
mixture.

For metallurgic applications the present work may be
helpful since, to our knowledge, very little studies have
been carried out for the treatment of liquid alloys exhibit-
ing segregation (like atoms tend to be as nearest neigh-
bors) see Singh and Sommer [2].

The idea of representing a liquid by a system of hard
spheres was originally proposed by Van Der Waals [3]; his
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classical equation of state, which accounts qualitatively
for the prediction of condensation and the existence of a
liquid-vapour critical point was derived using essentially
such a simple representation. In the case of a He–H2 mix-
ture a complication arises from the slight non-sphericity
of H2. In order to overcome this difficulty, following Ali
et al. [4], we make use of the shape factor for the treat-
ment of the model as a hard convex body derived from
the hard spheres system. The application of such a tool,
which is based on the scaling theory as proposed by Largo
and Solana [5], is an advanced method for dealing with
the nonsphericity of the constituents.

Until recently, most equations of state (EOS) have re-
sulted from mathematical approximations of experimen-
tal data without a more fundamental theoretical basis.
The strong point of the method adopted here is that the
relation between pressure, temperature, density and con-
centration of components is derived from the sole knowl-
edge of the intermolecular potentials. To describe the in-
termolecular repulsive and attractive interaction, we use
the double Yukawa potential (DY) which provides an ac-
curate analytical expression for the Helmholtz free energy.

When dealing with light species such as He and H2

at low temperature, we need to take into account quan-
tum mechanical effects. Both He and H2 have 2 protons
and 2 electrons: at first sight He appears just somewhat
heavier than H2. However the quantum rules and shapes
related with the electronic orbitals change completely the
macroscopic properties at low temperature. Below a few
K, H2 can condense even at very low pressure, while He
remains fluid at normal pressure down to 0K.

Ali et al. and others have used the Wigner-Kirkwood
expansion (see [4]) to take into account to first order quan-
tum effects of such a system. But after having checked and
compared with experimental thermodynamical properties,
we found that the Wigner-Kirkwood expansion diverges
at temperatures below 50K even if we extend the quan-
tum correction to second order. To be able to reach at
least the critical point of H2 at 33K, we searched in the
literature for other methods and found the approach of
Royer [6] adapted to our need. Quantum contributions are
described via a renormalized Wigner-Kirkwood cumulant
expansion around 0K, which is well adapted for our ob-
jective to describe the mixture also well below the critical
temperature, down to about the cosmic radiation back-
ground temperature of 2.73K.

The paper is organized as follows: In this Section we
have introduced the motivations for undertaking this work
as a contribution in the study of the interstellar medium.
In Section 2, we present the hypotheses on which our
model is based, and we mention the related investigations
that we are aware of already handled by other authors. In
Section 3, we describe the intermolecular potential and the
justification of the Double Yukawa potential to describe
repulsive and attractive effects at the molecule level. The
aim of Section 4 is to introduce the formulation of the
Gibbs and Helmholtz energy via an analytical description
based on the intermolecular potential and the diameter of
hard spheres. Section 5 deals with the equation of state,

derived from the different contributions of the Helmholtz
energy. In Section 6, we treat the phase stability of the
mixture through the Gibbs energy. In Section 7, we in-
troduce the major results of this study and some related
discussion. Finally, the principal conclusions and perspec-
tives corresponding to this work are summarized in Sec-
tion 8.

2 Preliminary considerations

In this section we present the basic hypotheses for our
study. We mention several related investigations handled
by previous authors, in order to put this study in the
context of other related researches.

Our model is based on the following hypotheses:
– The inter-molecular potential model used to describe

the pairwise interaction of constituent species is the
spherically symmetric pair potential containing a short
range repulsion and a long range attraction compo-
nents.

– The model of hard convex body is used to represent
the geometry of the species in the mixture, it is de-
rived from the hard sphere system based on the scaled
particle theory SPT see [7]. A system of hard spheres
represents the simplest realistic prototype for modeling
the vapor-fluid phase separation in such a mixture.

– The mixture is considered as a pure neutral molecu-
lar phase, since we have a region of temperature T
well below 1000K and pressure P below 1 Mbar. In
such conditions, molecular dissociation and ionization
by pressure are not expected to occur. For details on
the ionized plasma of the helium-hydrogen mixture at
high pressure, see [8]. At low temperature and mod-
erately low pressure, the transition from a molecular
phase to an atomic phase (H2 � 2 H) is not expected,
further the presence of He stabilizes the molecules in
the mixture as shown in [9]. In interstellar conditions
neutrality is not always granted due to the frequent
presence of ionizing and dissociating radiations allow-
ing the coexistence of H and H2. However, in “dense”
molecular clouds (n > 103 cm−3, 3 < T < 50K, still
much less dense than the best industrial vacuum) al-
most all H is converted into H2, so the He–H2 mixture
is the relevant one there.

– For P bellow 1Mbar, the molecular-metallic transi-
tion is not reached. This will have an influence on the
mixing conditions, especially since He is more soluble
in H2 than in metallic H as predicted by Stevenson
and Salpeter [10]. Results about the solubility of He
in metallic H are given by Stevenson [11], the prop-
erties of metallic H are studied under high dynamic
pressures by Nellis [12] and the details on molecular-
metallic transition of H are exposed by Chabrier [13].

– The effects of minor isotopic and trace species and
ions in astrophysical conditions (D, Li, CO, H2O, CH4,
NH3, . . . ) are not included in model construction.

– The gravitational separation of phases is not in-
cluded in our model. This hypothesis is justified by
assuming the gravitational field negligible, or by con-
sidering a sufficiently small region at constant pressure.
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Barotropic phenomena have been described in the
H2–He system in the investigations of Street [14–16].
This system belongs to an unusual class of binary
mixtures in which the more volatile component (He)
has the higher molecular weight, and at high pressure
may be more dense than the second component, even
though the former may be a gas and the latter a solid
or liquid in the pure state. As pressure passes through
a corresponding value, the liquid phase rises up and
floats on the top of the gas phase. By considering a
region around the barotropic pressure, the coexisting
phases have the same densities and the gravitational
phase separation doesn’t occur, at least for a limited
time.

– Taking into account the condition of low tempera-
ture T < 50K that we are interested in, the ortho-
para composition of H2 is considered here to be fully
para-H2. This point might be improved in future
works, because the ortho-para equilibrium can be well
parametrized as a function of temperature.

3 Double Yukawa for the He–H2 system

The estimation of the intermolecular potential energy in-
evitably involves assumptions concerning the nature of at-
traction and repulsion between molecules. Intermolecular
interaction is resulting from both short-ranged repulsion
uHS

ij and long-ranged attraction (or “traction”) ut
ij

uij(r) = uHS
ij (r) + ut

ij(r), (1)

while the long-ranged attraction is treated as a pertur-
bation and the short-ranged repulsion acts as an unper-
turbed reference (usually approximated by a repulsive
hard sphere).

The Lennard-Jones potential is undoubtedly the most
widely used intermolecular potential for molecular simu-
lation. It is a simple continuous potential that provides
an adequate description of intermolecular interactions for
many applications at low pressure. But the inverse-power
repulsion in LJ potential is inconsistent with quantum me-
chanical calculations and experimental data, which show
that the intermolecular repulsion has an exponential char-
acter. For this purpose the exponential-6 (α-exp-6) poten-
tial is a reasonable choice instead of the LJ potential [17].

An anomalous property of the α-exp-6 potential, how-
ever, is that at a small distance rc in the region of high
temperature (T > 2000K), the potential reaches a maxi-
mum value and in the limit r → 0, it diverges to −∞ [18].
As suggested in [4,19] the double Yukawa potential uDY

may be considered as advantageous since it can fit many
other forms of empirical potentials, and, in addition, the
related integral equation of the Helmholtz free energy and
compressibility factor can be solved analytically:

uDY
ij = εijAij

σ0
ij

r

[
eλij(1−r/σ0

ij) − eνij(1−r/σ0
ij)

]
, (2)

where εij represents the potential depth and σ0
ij the posi-

tion at which the potential is zero (see Fig. 1).

Fig. 1. The double Yukawa potential for the 3 possible pair
interactions in the He–H2 mixture.

Table 1. DY potential parameters in the He–H2 mixture.

He–He H2–H2 He–H2

i, j 1.1 2.2 1.2

σ0
ij (Ȧ) 2.634 2.978 2.970

εij/k (K) 10.57 36.40 15.50

Aij 2.548 3.179 2.801

λij 12.204 9.083 10.954

νij 3.336 3.211 3.386

The terms Aij , λij and νij control the magnitude of
the repulsive ant attractive contributions of the double
Yukawa potential. The parameters (Tab. 1) are suitably
chosen to provides a close fit to the exp-6 potential pro-
posed in [17].

The controlling parameters (Tab. 1) are slightly non-
additive, i.e., A12 ≈ (A11 + A22)/2, λ12 ≈ (λ11 + λ22)/2
and ν12 ≈ (ν11 + ν22)/2. In contrast, the potential depth
εij is strongly nonadditive

ε12 = α
√

ε11ε22, (3)

where the nonadditive parameter α quantifies the rela-
tive strength of the unlike pairwise interaction. In our
case (α ≈ 0.79 < 1) and the molecules are not energet-
ically alike. We are, hence, concerned with a not ather-
mal mixture (i.e., we don’t have energetically alike species
ε11 = ε22 = ε12). In such a situation the contribution to
the free energy is predicted to be arising from both en-
thalpic and entropic effects. According to [4] the smaller
value of α (compared to 1) should drive the mixtures to-
wards demixing.

4 Gibbs energy of mixing
Considerable efforts have been spent in the recent years
to propose a fundamental physical theory describing the
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reasons responsible for phase separation in a binary mix-
ture.

Thermodynamically, the Gibbs energy of mixing GM

which depends on the enthalpy HM and the entropy SM , is
of great interest. In fact, by evaluating its deviation from
the Gibbs value of an ideal mixture Gid, the energetic
term GM provides the crucial informations on the ther-
modynamic stability of the mixture. Obviously the pro-
cess could be complicated by the respective enthalpic or
entropic contributions to segregation (for details, see [2]).
The term GM is expressed as

GM = G −
∑

i

ciG
0
i , (4)

where ci are the mole fractions, G is the Gibbs free energy
of the mixture and G0

i = G(ci → 1) is the free energy of
the pure constituent species i. The variable G relates the
pressure P to the Helmholtz free energy F

G

NkT
=

F

NkT
+

P

nkT
, (5)

where T , n1, N and k are respectively the temperature,
the number density, the total number of molecules, and
Boltzmann’s constant.

4.1 Hard convex body free energy

The total Helmholtz energy F for a mixture of N
molecules is obtained from

F

N
= F id + FHB + F t + FQ, (6)

where F id is the Helmholtz energy per molecule arising
from the ideal gas mixture. It is defined with

βF id =
3
2

ln
(

h2

2πkTmc1
11m

c2
22

)
+lnn+

∑
i

ci ln ci−1, (7)

where h is the Planck’s constant, mii are the atomic
masses and β is the inverse temperature β = 1/kT .

The Helmholtz free energy FHB for the hard convex
body is given by

βFHB = amix β
(
FHS + F nonadd

)
, (8)

where the coefficient amix is the nonsphericity parameter
and will be presented in details bellow, the term FHS is
the Helmholtz energy of hard sphere, and F nonadd is the
contribution arising from the nonadditivity of the hard
sphere diameter.

The expression of FHS reads (see e.g., [19])

βFHS =
η3 (f1 + (2 − η3)f2)

1 − η3
+

η3f3

(1 − η3)2

+(f3 + 2f2 − 1) ln(1 − η3), (9)
1 Note that sometimes ρ is used instead of n in the chemical-

physics literature, which leads to confusion with the elsewhere
widely adopted meaning of ρ as the mass density.

where the parameters in equation (9) are related to the
hard spheres diameters σij by

f1 =
3y1y2

y0y3
, (10)

f2 =
y1y2

y3
3

(y4z1 + y0z2), (11)

f3 =
y3
2

y0y2
3

, (12)

yi =
ηi

n
, (13)

ηi =
π

6
n(c1σ

i
11 + c2σ

i
22), (14)

z1 = 2c1c2σ11σ22
σ11 − σ22

σ11 + σ22
, (15)

z2 = c1c2σ11σ
3
22(σ

2
11 − σ2

22). (16)

The distances σij are calculated via the integration of the
correlation function

σij =
∫ σ0

ij

0

(
1 − e−βuij(r)

)
dr. (17)

According to [20], equation (17) may be derived from the
minimization of the free energy difference between the ref-
erence fluid (a purely short range repulsive model) and the
effective hard sphere model (including the long range at-
traction). The use of equation (17) makes σij temperature
dependent and enables us to investigate the effect of tem-
perature on GM and consequently the impact of tempera-
ture and pressure on the mixing conditions of binary mix-
ture (heterocoordination, segregation or phases separa-
tion). Subsequently, by taking into account the enthalpy-
entropy relation (SM = −∂GM/∂T ), the T dependence of
GM paves the way to illustrate the entropic contributions
of binary mixture with respect to T and P .

4.2 Non-additive free energy

The positive nonadditivity of hard sphere diameters
(σ12 > (σ11 + σ22)/2) is predicted to cause an instabil-
ity of binary mixture as shown in many works (see for
example [21–24]). Although in the conclusion of the lat-
ter the negative nonadditivity of hard sphere diameters
(σ12 < (σ11 + σ22)/2) is considered to not exhibit a fluid-
fluid demixing, however in [25] a demixing transition in
binary hard sphere mixture is possible for a slightly nega-
tive nonadditivity. The drawback of the major approaches
is that σij remains independent of T and hence its appli-
cability is limited.

On a more realistic basis the T dependence of σij in-
troduced via equation (17) is desirable to study the non-
additivity effect and the phase diagram of the mixture, as
shown by [19,26].

The contribution F nonadd is obtained by means of the
first order perturbation correction [27]

βF nonadd = −4πn c1c2 σ2
12 Δσ12 gHS

12 (σ12), (18)
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with

σ12 =
σ11 + σ22

2
and Δσ12 = σ12 − σ12. (19)

Here the term gHS
12 (σ12) refers to the radial distribution

function g12(r) for a hard sphere model at the contact
point r = σ12 (conventionally the term gHS

ij (r) is noted
RDF and it measures the extent to which the positions
of particle center deviate from those of uncorrelated ideal
gas).

The contact values of RDF gHS
ij (σij) consists of the im-

proved versions given in [28,29], denoted by gBMCSL
ij (σij),

and the correction term, gBS
ij (σij), suggested by [30] to

improve the contact value of the pair correlation function

gHS
ij (σij) = gBMCSL

ij (σij) + gBS
ij (σij), (20)

the values of the terms gBMCSL
ij (σij) are introduced by

Tang and Benjamin [31] as

gBMCSL
ij (σij) = g

(0)
ij (σij) + g

(1)
ij (σij), (21)

where g
(0)
ij (σij) is the contact value of the Percus-Yevick

radial distribution function (PY RDF)

g
(0)
ij (σij) =

1
1 − η3

+
3η2

(1 − η3)2
σiiσjj

σii + σjj
(22)

and g
(1)
ij (σij) is the first-order RDF at contact point, given

by

g
(1)
ij (σij) =

2η2
2

(1 − η3)3

(
σiiσjj

σii + σjj

)2

. (23)

The terms gBS
ij (σij) are given by

gBS
ij (σij) =

1 − δijci

2
η1η2

(1 − η3)2
D (σ11 − σ22) σiiσjj

σij(
δij + (1 − δij)

σ22

σ11

)
, (24)

where δij is the Kronecker Delta function, D the reduced
collision parameter

D =
σ11 σ22

2 σ12
, (25)

and
σij =

σii + σjj

2
. (26)

4.3 Shape factor

The coefficient amix in equation (8) is the nonsphericity
parameter or the shape factor. It scales the excess com-
pressibility factor of a hard sphere mixture to obtain that
corresponding to the HCB (hard convex body) mixture.
Following the works of Largo and Solana [5,32], we have

amix =
1

Vmix

∑
ij

cicj V ef
ij aef

ij , (27)

Fig. 2. The shaded area represents the difference between ef-
fective and real molecular volume of a hard dumbell: (I) as
“seen” by a sphere of the same diameter as the one of the
dumbbell spheres, (II) as “seen” by a bigger sphere.

with
Vmix =

∑
ij

cicj V ef
ij , (28)

where V ef
ij is the effective volume of the molecule i as

“seen” by a molecule of species j

V ef
ij =

π

6
σ3

ij V ij , (29)

and aef
ij is the effective nonsphericity parameter aef

ij defined
in the form

aef
ij =

1
3π

(V ef
ij )′ (V ef

ij )′′

V ef
ij

, (30)

where ′ and ′′ denote the first and second derivatives with
respect to σij

(V ef
ij )

′
=

(
∂V ef

ij

∂σii

)

σjj

+

(
∂V ef

ij

∂σjj

)

σii

, (31)

(V ef
ij )

′′
=

(
∂2V ef

ij

∂σ2
ii

)

σjj

+ 2
∂2V ef

ij

∂σii ∂σjj
+

(
∂2V ef

ij

∂σ2
jj

)

σii

,(32)

and V ij is the average molecular volume, estimated as
function of ni, the number of elemental spheres of diame-
ter σii, and of the center to center distance li (see Fig. 2)

V ij =1 + (ni − 1)

[
3
2

(
1 +

σ2
ij

σ2
ii

)
Li − 1

2
L3

i

− 3
hij

σii
θij

(
σ2

jj

σ2
ii

)]
, (33)

where

Li =
li
σii

, (34)

hij =
1
2

√
(σii + σjj)2 − l2i , (35)

θij = arcsin
(

li
σii + σjj

)
. (36)
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While the He average molecular volume is equal to 1,
the average H2 molecular volume is about 1.3, this will
have an important influence on the thermodynamic pre-
dictions, especially for mixtures of cosmic interest that
contain about 90% of H2 mole fraction

4.4 Attraction free energy

At high temperature and pressure, the stiffness and the
range of the intermolecular repulsion play dominant roles.
It is the case when the detonation velocity of condensed
explosives are investigated [17], or in the Jupiter and Sat-
urn’s interiors (5 × 103 < T < 104 K and P ≈ 200 GPa.),
where the long-ranged molecular attraction contribution
becomes negligible. In contrast, at low temperature and
pressure, for predicting properly the vapour-liquid tran-
sition both the repulsive and attractive effects must be
included.

In equation (6), the term F t is the first order perturba-
tion contribution due to long-ranged attraction. Statisti-
cal mechanics provides an evaluation of F t via the integral
equation including the radial distribution functions gij(r)
and the potentials uDY

ij (r):

βF t = β
n

2

∑
ij

cicj

∫ ∞

σ0
ij

uDY
ij (r) gHS

ij (r, σij , n) 4πr2 V ij dr.

(37)
Using the respective Laplace transforms of the functions
r gHS

ij (r)

Gij(s) =
∫ ∞

0

r gHS
ij (r) e−sr dr, ∀s ∈ R. (38)

Equation (37) can be brought to

βF t =
2πn

kT

∑
ij

cicj εij σ0
ij Aij V ij

(
eλij G

(
λij

σ0
ij

)

− eνij G

(
νij

σ0
ij

))
− δF t, (39)

where δF t is the value of the integral on the interval
[σij , σ

0
ij ]

δF t = β
n

2

∑
ij

cicj

∫ σ0
ij

σij

uDY
ij (r) gHS

ij (r) 4πr2 V ij dr. (40)

The substraction of δF t is important due to the fact that
the interval [σij , σ

0
ij ] is covered by equation (38) and does

not belong to the attractive range [σ0
ij ,∞].

Regarding the intersection of the functions
uDY

ij (r) gHS
ij (r) and uDY

ij (r) gHS
ij (σij) at r = σij and

r = σ0
ij respectively, by considering the close variations

of these functions in the interval [σij , σ
0
ij ], we can ap-

proach the value of δF t by numerical integration of the

expression

δF t ≈ β
n

2

∑
ij

cicj

∫ σ0
ij

σij

uDY
ij (r) gHS

ij (σij) 4πr2 V ij dr.

(41)
The contact values of the radial distribution functions
gHS

ij (σij) are found by equation (20–24).
The details of the analytical expressions of the func-

tions Gij(s) are given in Tang and Benjamin [31].

4.5 Quantum free energy

The term FQ in equation (6) corresponds to the first or-
der quantum correction of the Wigner-Kirkwood expan-
sion [33,34]

βFQ =
h2β2NA n

96π2

∑
ij

cicj

mij

×
∫ ∞

σij

∇2uDY
ij (r) gHS

ij (r, σij , n) 4πr2 V ij dr.(42)

Using equation (38) we can obtain FQ in term of Laplace
transforms

βFQ =
h2β2NAn

24π

∑
ij

cicj εij Aij V ij

mij σ0
ij

×
(

λ2
ij eλij G

(
λij

σ0
ij

)
−ν2

ij eνij G

(
νij

σ0
ij

))
.(43)

After checks we find that the first order quantum cor-
rection exhibits a poor convergence for temperature T <
50K. Although the second order correction of Wigner-
Kirkwood expansion extends somewhat the convergence
over colder systems, it is still by far insufficient at cryo-
genic temperatures, e.g., in the case of pure He with tem-
perature T less than 40K, [35].

We recall that one may suggest the application of
quantum correction to the hard sphere diameter σij , [36],
via the relation

σcor = σ +
λ

8
, (44)

where λ is the de Broglie wavelength λ =
√

β�2/2m.
This correction is usable at high temperature, but in-

sufficient for obtaining reasonable description of quantum
effects at cryogenic temperature T < 50K.

4.6 Renormalized Wigner-Kirkwood expansion

To describe the He–H2 mixture at such low temperature,
we have used the renormalized Wigner-Kirkwood cumu-
lant expansion [6]. This is a reasonable choice since it is
usable down to zero temperature.

In order to obtain a renormalized cumulant approxi-
mation of the Wigner-Kirkwood (WK) expansion, follow-
ing Royer [6] we make use, for simplicity, the following
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one-dimensional treatment which could be extended to the
multi-dimensional case.

We denote by nV (X) the quantum Boltzmann density
at the space coordinate X

nV (X) =
〈
X

∣∣ e−βHV
∣∣ X

〉
, (45)

where HV is the Hamiltonian of a particle of mass m mov-
ing with momentum p in the potential V

HV =
p2

2m
+ V. (46)

The classical approximation of Boltzmann density reads

nV,cl(X) =
1

2
√

πλ
e−βV (X). (47)

Let us consider W (x) the quadratic potential approximat-
ing V (x) around the point X ,

W (x) = V (X)+V ′(X)(x−X)+
1
2
V ′′(X)(x−X)2. (48)

We expand ln nV (X), instead of nV (X), in powers of the
potential difference v = V − W . By Taylor expanding
v(x) about X in the cumulant expansion, we obtain an
expansion which is a resummation over power of V ′′(X)
of the WK expansion of lnnV (X). Provided V ′′(X) > 0,
this expansion remains a useful approximation even when
T → 0.

According to the standard formalism of statistical
quantum mechanics, in a domain Λ of a N -particle fluid,
the partition functions Zq and Zcl corresponding to nV (X)
and nV,cl(X) respectively, are given by

Zq =
1

N !

∫

Λ

nV (X) dX (49)

and
Zcl =

1
N !

∫

Λ

nV,cl(X) dX. (50)

With the free energy Fqu, defined by the relation

−βFqu = ln Zqu. (51)

We can readily obtain an estimation of the quantum
Helmholtz energy correction FQ as

FQ =
(

ln Zq

ln Zcl
− 1

)(
F id + amix

(
FHS + F nonadd

))
. (52)

The detail on the complicated expression of the cumulant
expansion with respect to the choice of the local approxi-
mating potential W (x) are given in [6]. We note that the
ratio lnZq/ ln Zcl should approach unity in the case of high
temperature where the quantum free energy is neglected,
while for T = 100K the ratio lnZq/ lnZcl takes a value
corresponding to the first order WK.

In our computational implementation we can choose
to use either the renormalized cumulant expansion, or the
first order WK, since the latter is simpler to calculate.

5 The equation of state

As mentioned by Jung et al. [37], at the boundary of a
fluid-fluid phase change, we must obtain an equal value for
the Gibbs free energies of different phases. Since a small
error in the free energy expression can significantly shift
the position of the phase boundary, we need then an ac-
curate equation of state (EOS) for determining correctly
the critical phase change curve and the critical point.

In the chemical picture, by dealing with a pure molec-
ular system without dissociation the compression ratio
tends to increase considerably because of internal degree
of freedom of the molecules (rotations and vibrations) [38].

Let us introduce the subscripts: � ∈ {HB, t, Q, id,
nonadd, HS} which carry the same meaning as in equa-
tions (6) and (8). The compressibility factor Z� is ex-
pressed via the thermodynamic relation

Z� = n
∂

∂n

(
F �

kT

)
. (53)

It is easy to see that from equations (53) and (7) we have
the behaviour of the ideal gas mixture

Z id = n
∂

∂n

(
F id

kT

)
= 1. (54)

With equation (53) and by taking into account
equation (8), the compressibility factor ZHB can be
expressed as

ZHB = n
∂

∂n

(
FHB

kT

)

= amix

(
n

∂

∂n

(
βFHS

)
+ n

∂

∂n

(
βF nonadd

))

= amix

(
ZHS + Znonadd

)
, (55)

where

ZHS = n
∂

∂n

(
FHS

kT

)

=
1

1 − η3
+

3η1η2

η0(1 − η3)2
+

η3
2(3 − η3)

η0(1 − η3)3

+
η1η2(η4z1 + η0z2)

(1 − η3)2
. (56)

Similarly, the correction term of compressibility factor
Znonadd which arises from the non-additivity of hard
spheres is expressed as

Znonadd = n
∂

∂n

(
F nonadd

kT

)

= −4πn c1c2 σ2
12 Δσ12

(
gHS
12 (σ12)

+n

(
∂gHS

12 (σ12)
∂n

)

c

)
. (57)
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By applying the partial derivative with respect to n given
in (53) in the relation (39), we obtain the compressibility
factor corresponding to the attractive effects Zt

Zt =
2πn

kT

∑
ij

cicj εij σ0
ij Aij V ij

(
eλij

(
G

(λij

σ0
ij

)

+n
∂

∂n
G

(λij

σ0
ij

))
−eνij

(
G

( νij

σ0
ij

)

+n
∂

∂n
G

( νij

σ0
ij

)))
− δZt, (58)

where δZt corresponds to the integral in the interval
[σij , σ

0
ij ], which is evaluated by numerical integration of

the expression

δZt ≈ β
n

2

∑
ij

cicj

(
gHS

ij (σij) + n
∂gHS

ij (σij)
∂n

)

×
∫ σ0

ij

σij

uDY
ij (r) 4πr2 V ij dr. (59)

The terms gHS
ij (σij) and the derivatives ∂gHS

ij (σij)/∂n can
be readily obtained from equations (20–24).

The expression of the compressibility factor ZQ corre-
sponding to the first order quantum correction of Wigner-
Kirkwood expansion is obtained from equation (43)

ZQ =
h2β2NAn

24π

∑
ij

cicj εij Aij V ij

mijσ0
ij

(
λ2

ij eλij

(
G

(λij

σ0
ij

)

+n
∂

∂n
G

(λij

σ0
ij

))
− ν2

ije
νij

(
G

( νij

σ0
ij

)

+n
∂

∂n
G

( νij

σ0
ij

)))
. (60)

The pressure P in equation (5) can be directly obtained
by summing the respective compressibility factors

P = nkT
(
1 + ZHB + Zt + ZQ

)
. (61)

The resulting pressure should be treated by a Maxwell
construction when density n(P, T ) at a fixed T becomes
multi-valued. We describe in Appendix A an iterative
method to carry out this construction.

6 Phase stability

There are different ways to investigate the conditions of
phase stability of a mixture [39]. The first one is through
the calculation of the Gibbs energy as in equation (5). The
condition for the stability of the mixture is

(
∂2G

∂c2

)

T,P

> 0. (62)

Fig. 3. Common tangent construction for a binary mixture
model. The coexisting compositions c1 = 0.25 and c1 = 0.75
lie on the same tangent, thus having the same free energy for
the two components.

0 0.50 0.75 10.25

Pr
es

su
re

  P

Unstable

StableBinodal

Spinodal

Metastable

Fig. 4. Phase diagram of a binary mixture model.

When the free energy curve is not entirely convex, i.e.,
it has also concave part with points associated with a
negative curvature ((∂2G/∂c2)T,P < 0) the mixture is
no longer stable as a single phase. In such a case it is
possible to find two points on the curve that share the
same tangent and consequently the free Gibbs energy of
both components at these compositions are the same (see
Fig. 3). In other words, these compositions can coexist in
equilibrium. By mean of this graphical method known as
the method of double tangent or common tangent con-
struction, we can find the locus of the coexisting points in
(P, c) plan at constant temperature known as the binodal
curve.

The point of instability corresponds to
(

∂2G

∂c2

)

T,P

= 0, (63)

and the locus of these points in (P, c) plan at constant
temperature, defines the spinodal curve which is the bor-
der of the stability of the mixture (see Fig. 4).

Let us assume that the principal process which leads
to phase instability is a trend towards the aggregation
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between particles of the same species. An other and ef-
ficient method to control the mixing behavior at atomic
level is to compute the concentration-concentration fluc-
tuation

Scc(0) = NkT

(
∂2G

∂c2

)−1

T,P

. (64)

This quantity, compared to the ideal values Sid
cc = c1c2,

provides valuable insight on the degree of order and the
thermodynamic stability of the mixture. In atomic pic-
ture, at given composition c1, the positive deviation from
ideal Scc(0) > Sid

cc is an indication of a tendency to seg-
regation (like atoms tend to pair as nearest neighbors).
In contrast the negative deviation from ideal Scc(0) <
Sid

cc corresponds to heterocordinations (unlike atoms tend
to pair as nearest neighbors). The extreme deviations
Scc(0) → ∞ and Scc(0) → 0 are respectively correspond-
ing to phase separations and complete heterocordinations
(compound formation).

7 Results

The results are presented in two steps: first, we compare
Monte Carlo simulations (MC) and Molecular Dynamic
computations (MD) with our He–H2 mixture model de-
scribed above, and programmed in a FORTRAN-90 code
called AstroPE. Second, we describe the thermodynamic
behavior of the He–H2 mixture, including quantum correc-
tions, under cryogenic conditions or potentially interesting
cases for the cold interstellar medium.

7.1 Comparisons with pure He and H2 simulations
and data

By taking the required input from Table 1 we have ob-
tained the theoretical values of pressure for different val-
ues of temperature T and He concentration c1. In Table 2
we introduce a comparison between our computed values
of the pressure and the results of Monte Carlo (MC) sim-
ulation presented by Ree [17]. In this work, the He–H2

mixture is considered as a van der Waals one fluid model
and the intermolecular potential is the exp-6 potential.

We observe a reasonable agreement between our re-
sults and those corresponding to the MC simulations,
which are usually considered as sufficiently accurate. The
quantum effect is not included in the above compari-
son. Nevertheless, in our calculation, for a temperature
T = 100K, the quantum corrections raise P by about
15%, which corresponds to the first order correction of
the Wigner-Kirkwood expansion as estimated in [17]. For
higher temperature the obtained values of P are not af-
fected significantly by the quantum contribution.

On the other hand, we have compared our results in
the case of pure He with those resulting from the work
of Koei et al. [40]. In this latter work the Buckingham
potential is used to perform molecular dynamics (MD)
simulations of He for studying the phase transitions and
the melting points.

In Figures 5–8 we present the variation of the pressure
with respect to the density for some given values of the

Table 2. Comparison of the pressure P resulting from our As-
troPE FORTRAN-90 code with the pressure corresponding to
Ree [17] MC simulations. The corresponding values of the re-
duced density n� are listed. Quantum effects are not included.

T c1 V n� P MC P AstroPE

(K) (cm3/mol) (GPa) (GPa)

50 0.50 20.0 0.03011 0.0473 0.0441

100 0.50 14.0 0.04301 0.3380 0.3550

300 0.25 10.0 0.06022 2.3090 2.6987

300 0.50 10.0 0.06022 1.8560 2.1389

300 0.75 10.0 0.06022 1.4240 1.5371

1000 0.25 9.0 0.06691 5.2550 5.2978

1000 0.50 9.0 0.06691 4.5100 4.7319

1000 0.75 9.0 0.06691 3.7150 3.7955

4000 0.50 8.0 0.07528 12.4300 12.2877

4000 0.50 7.0 0.08603 16.3300 16.0603

Fig. 5. The pressure of pure He compared to the values of MD
simulations and experimental results at temperature T = 75 K.

Fig. 6. The pressure of pure He compared to the values of
MD simulations and the experimental results at temperature
T = 150 K.
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Fig. 7. The pressure of pure He compared to the values of
MD simulations and the experimental results at temperature
T = 225 K

Fig. 8. The pressure of pure He compared to the values of
MD simulations and the experimental results at temperature
T = 300 K.

temperature. The lines represent the variation resulting
from our computations. The cross symbols correspond to
the MD results, whereas the other symbols are related to
the experimental data as reported in [40].

The match of our results with the experimental data
is almost perfect especially for the region of low pressure.
The MD results exhibit a good agreement with the ref-
erence data in the case of high pressure since the model
in [40] is expected to be valid at high pressures, but not
for very low pressures, where quantum effects dominate
the solid state properties.

In Figure 9 we compare densities on the 0.85MPa
isobar in the temperature range 18 to 300K, coming
from experimental data, other theoretical predictions, and
from our program AstroPE. The experimental data comes
from [41], the Path Integral simulation (PI) comes from
Wang et al. [42]. The phase transition on the 0.85MPa
isobar at about 30K is well visible. Clearly the overall be-
haviour is reproduced, but the absolute value of density
in the condensed phase may differ by a up a factor 9%.

A simple but stringent test for using our model at
cryogenic temperature is to check the positions of the

Fig. 9. Fluid densities on isobar P = 0.85 MPa as a function
of temperature. The curve is the experimental data from [41]
and the symbols are from path integral simulations [42] and
from this work.

Fig. 10. The pressure of the pure He without Maxwell con-
struction. The reported critical point is located at Pc ≈
220 kPa and Tc ≈ 5.2 K.

respective critical point of He and H2, that are deter-
mined by searching a point where ∂P (T, n)/∂n = 0 and
∂2P (T, n)/∂n2 = 0 at constant T for P (T, n) uncorrected
by the Maxwell construction.

For He we find the critical point at Pc ≈ 220 kPa and
Tc ≈ 5.2K, and for H2 at Pc ≈ 1300kPa and Tc ≈ 32K.
Numerical noise in the saddle point evaluation prevents
us to give more digits. Industrial cryogenic gas refer-
ence [43] gives Pc = 227.5kPa and Tc = 5.2K for He,
and Pc ≈ 1298kPa and Tc ≈ 32.976K for para-H2, and
Pc ≈ 1298kPa and Tc ≈ 33.24K for normal-H2.

In Figures 10–13 we show the equation of state for pure
He and H2 with and without the corresponding Maxwell
construction. The algorithm to determine the Maxwell
construction is sketched in Appendix A.

Overall the agreements between our results and those
corresponding to MC simulation and MD simulation and
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Fig. 11. The pressure of the pure He with Maxwell construc-
tion.

Fig. 12. The pressure of pure H2 without Maxwell construc-
tion. The reported critical point is located at Pc ≈ 1300 kPa
and Tc ≈ 32 K.

experimental data show that our equation of state is us-
able already for the pure substances over a wide range
of temperature and pressure, including the cryogenic and
low pressure regimes that we are interested in.

7.2 Thermodynamic results on the He–H2 mixture

Here we present the calculated thermodynamic properties
of the He–H2 mixture under cryogenic conditions and low
pressure, suited for some interstellar medium conditions,
where the He concentration amounts to about 11%. Fig-
ures 14 and 15 show surface plots of the compressibility
factors corresponding to the Hard Body repulsive and at-
tractive effects respectively. The results are reported for
2 ranges of reduced density’s values: 10−44 < n� < 10−4

(left side) and 10−4 < n� < 10−1 (right side). The tem-
perature range is 1 ≤ T ≤ 80K. Logarithmic scales are
used when possible. In Figure 15 we plotted arcsinh (Zt)
to provide good representation at large negative and pos-
itive values of the attraction compressibility factor.

Similarly, in Figure 16 we present the compressibility
factor ZQ. Clearly quantum effects are important at high
density and low temperature.

Fig. 13. The Pressure of the pure H2 with Maxwell construc-
tion.

Fig. 14. The compressibility factor corresponding to Hard
Body repulsive effects in the mixture of 11% Helium. The val-
ues are repported in the range of low density (left) and in the
range of high density (right).

Fig. 15. The compressibility factor corresponding to the trac-
tion effects in the mixture of 11% Helium. The values are re-
ported in the range of low density (left) and in the range of
high density (right).
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Fig. 16. The compressibility factor corresponding to the quan-
tum effects in the mixture of 11% Helium. The values are re-
ported in the range of low density (left) and in the range of
high density (right).

Fig. 17. The compressibility factor corresponding to the non-
additivity a mixture of 11% Helium.

The compressibility factor Znonadd and the packing
factor η3 are shown in Figures 17 and 18 respectively.
We observe a similar behavior of Znonadd and η3 since the
nonadditivity depends on the radial distribution function
at the contact point gij(σij) which relates to the values of
the packing factor as given in (22) and (23).

The pressure is plotted as function of the temperature
and the reduced density in Figure 19.

The phase boundaries of the mixture are given in
Figure 20 including also the transition lines of pure
constituents: the H2 gas-condensed phase boundary and
the He gas-liquid phase boundary.

An important point to take into account is that the
pressure-induced solidification of a He–H2 mixture is quite
different from that of pure constituent. In the latter the
melting pressure is only temperature dependent, but in
the mixture the added degree of freedom allows fluid and
solid to coexist over wide ranges of pressure at fixed tem-
perature and vice versa [16].

Fig. 18. The packing factor η3 for the mixture of 11% Helium.

Fig. 19. The pressure P for the mixture of 11% Helium.
Maxwell construction is carried out.

In Figure 20 we observe the effect of adding 11% He
in H2. The transition line between the gas and condensed
phase is shifted into the region of higher pressure.

At low temperature and low pressure suitable for some
regions of the interstellar medium at T ≤ 10K, we com-
puted the excess Gibbs energy for the mixture of 11% He.
Figure 21 shows the value of the reduced excess Gibbs
energy are introduced without applying the common tan-
gent construction. It is easy to see that in the pressure-
temperature domain (log P, log T ) is globally separated in
two regions corresponding to the deviations from the ideal
mixing behavior. Clearly, sufficiently cold dilute He–H2

gas will seperate below a critical pressure, even at the
very low pressures expected in “dense” molecular clouds
if the temperature drops much below 5 K.

The use of the concentration-concentration fluctuation
tool enables us to investigate efficiently the stability of the
mixture at the atomic level. We compute the reduced con-
centration fluctuations S�

cc(0) = Scc(0)/Sid. The stable
and unstable regions are thus reported in a surface plot
in Figure 22. As mentioned in Section 6, this quantity
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Fig. 20. Phase boundaries: the gas-solid phase boundary for
pure Hydrogen, the gas-liquid phase boundary for pure Helium
and the gas-condensed phase boundary for Helium-Hydrogen
mixture.

Fig. 21. Excess Gibbs energy for the mixture of 11% Helium.

provides the degree of order and the thermodynamic sta-
bility of the mixture in the atomic picture. The extreme
values S�

cc(0) ≫ 1 observed in Figure 22 correspond to
phase separation in the unstable region. On the other
hand, the values Scc(0) → 0 are an indication of heteroco-
ordination in the stable region. By choosing an orthogonal
view of the above figure, the value of the reduced con-
centration fluctuations are also shown in two dimensions
in Figure 23. By reproducing the computation of S�

cc(0)
without including the quantum effects, we obtain the cor-
responding stability graph shown in Figure 24. Clearly
when comparing Figures 23 and 24 we see that the quan-
tum effect is important for the delimitation of the stability
region.

We observe the corellation between the results in Fig-
ures 20, 21 and 23 in the delimitation of the temperature-
pressure conditions for which the mixture of 11% He ex-
hibited a phase separation between gas region of stable
mixture and condensed phase region of unstable mixture.

Fig. 22. The reduced concentration-concentration fluctuation
for a mixture of 11% He computed using the common tangent
construction.

Fig. 23. The regions of stable and unstable mixture corre-
sponding to the reduced concentration-concentration fluctua-
tion for a mixture of 11% He.

Fig. 24. The regions of stable and unstable mixture without
quantum effect corresponding to the reduced concentration-
concentration fluctuation for a mixture of 11% He.
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8 Conclusion

In a region of low temperature such as in the interstellar
medium, a direct observation of the phase separation of
He–H2 mixture is not possible because the emitted radi-
ations is low and partly hidden by the universal cosmic
radiation at 2.726K. The strong quantum effect related
to both the lightest and most abundant elements in the
Universe makes the thermodynamic behavior of the mix-
ture more difficult to model. In this study we have estab-
lished a working tool to investigate the stability of the
He–H2 mixture at a temperature bellow 100K. The equa-
tion of state is analytically derived from the knowledge of
the pair spherical potentials to which quantum corrections
are superposed. The results are in satisfactory correspon-
dence with the experimental data as well as with MD an
MC simulations for being useful in applications that do
not require very high precision. As in a metallurgical ap-
proach the region of mixing and demixing are predicted
by means of the concentration-concentration fluctuations
tools. The He–H2 mixture shows a phase separation in the
region of very low temperature and low to high pressure.
The results are suited for a study with hydrodynamics of
the evolution of the cold and “dense” interstellar medium
clouds or denser cold objects.

We thank S.M. Osman for interesting e-mail exchanges. This
work is supported by Swiss National Science Foundation;
Grant No. 200020-107766.

Appendix A: Maxwell construction

Below are given in pseudo-code the steps used to achieve
the Maxwell construction: for a given isothermal P (V )
curve associated with a phase transition, such as shown in
Figure 25,

we want to find the value P̃ and the volumes Vl and Vr

such that the integral
∫ Vr

Vl
(P − P̃ ) dV = 0. This condition

is applied to verify the mechanical energy conservation, it
may be formulated in term of the number density n by
applying the variable change:

V =
N

n
⇒ dV = −N

n2
dn.

The problem is then to find the three numbers nl, nr and
P̃ such that: ∫ nr

nl

P − P̃

n2
dn = 0,

and P (nl) = P (nr) = P̃ . Isolating P̃ we have:

P̃ (nl, nr) =
nlnr

nr − nl

∫ nr

nl

P

n2
dn.

Fig. 25. Maxwell construction.

Clearly P̃ depends on nl and nr, so we have in fact a
problem with two equations and two unknowns: P (nl) =
P (nr) = P̃ (nl, nr).

Let us apply the following discretization of the interval
[nl, nr]:

[nl, nr] =
M−1⋃
i=1

[ni, ni+1],

where n1 = nl, nM = nr. We define the ith incrementa-
tion of the density number as:

Δni = ni+1 − ni,

and we introduce the ith mean value Pi = (P (ni) +
P (ni+1))/2, the term P̃ which depends on (nl, nr) can
then be approximated by a numerical quadrature:

P̃ (nl, nr) � nlnr

nr − nl

M−1∑
i=1

Pi

n2
i

Δni. (65)

Algorithm

– Starting step: (see Fig. 26)
– Find the local extremum points: (P 0

l , n0
l ) and

(P 0
r , n0

r)
– Set: (nl, nr) = (n0

l , n
0
r) (initialization of interval

corresponding to the density jump)
– Set: (Pl, Pr) = (P 0

l , P 0
r )

– Compute: P̃ = P̃ (nl, nr) (see Eq. (65))
– Iterative correction step: (see Fig. 27)
do while (|Pl − Pr| > ε)
if

(
P̃ < P (nl − Δnl)

)
then
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Fig. 26. Initialization step (0): P 0
r < P̃ 0 < P 0

l .

Fig. 27. An example of iterative step where: Pr < P̃ < Pl.

– Set: nl = nl − Δnl (the interval is enlarged at the
left side)

– Compute: P̃ = P̃ (nl, nr) (see Eq. (65))
– Set: Pl = P (nl)
endif
if

(
P̃ > P (nr + Δnr)

)
then

– Set: nr = nr + Δnr (the interval is enlarged at the
right side)

– Compute: P̃ = P̃ (nl, nr)
– Set: Pr = P (nr)
endif
enddo
P-Maxwell = P̃

Fig. 28. Convergence at iterative step (f): P f
r = P̃ f = P f

l .
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