
REVIEW ARTICLE

Current status and new horizons in Monte Carlo
simulation of X-ray CT scanners

Habib Zaidi Æ Mohammad Reza Ay

Received: 18 December 2006 / Accepted: 2 June 2007 / Published online: 5 July 2007

� International Federation for Medical and Biological Engineering 2007

Abstract With the advent of powerful computers and

parallel processing including Grid technology, the use of

Monte Carlo (MC) techniques for radiation transport simu-

lation has become the most popular method for modeling

radiological imaging systems and particularly X-ray com-

puted tomography (CT). The stochastic nature of involved

processes such as X-ray photons generation, interaction

with matter and detection makes MC the ideal tool for

accurate modeling. MC calculations can be used to assess

the impact of different physical design parameters on

overall scanner performance, clinical image quality and

absorbed dose assessment in CT examinations, which can

be difficult or even impossible to estimate by experimental

measurements and theoretical analysis. Simulations can

also be used to develop and assess correction methods and

reconstruction algorithms aiming at improving image

quality and quantitative procedures. This paper focuses

mainly on recent developments and future trends in X-ray

CT MC modeling tools and their areas of application. An

overview of existing programs and their useful features will

be given together with recent developments in the design of

computational anthropomorphic models of the human

anatomy. It should be noted that due to limited space, the

references contained herein are for illustrative purposes and

are not inclusive; no implication that those chosen are better

than others not mentioned is intended.
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1 Introduction

X-ray computed tomography (CT) is a medical imaging

modality that produces cross-sectional images representing

the X-ray attenuation properties of the body [1, 2]. Unlike

conventional two-dimensional (2D) projection imaging,

CT does not suffer from interference from structures in the

patient outside the slice being imaged. Recent develop-

ments in X-ray CT instrumentation spurred the develop-

ment of multi-slice and flat-panel detector configurations

thus offering significant improvements in volume cover-

age, isotropic spatial resolution and contrast utilization [3].

Despite worthwhile research efforts and achievements in

instrumentation, X-ray CT images still have the inherent

tendency to produce physics-related artifacts owing to the

fact that the images are reconstructed from a large number

of independent detector elements. There are several sources

of error and artifact that affect both clinical and small

animal X-ray CT image quality [4, 5]. The assessment of

their relevance is generally commended with the aim to

reduce their impact either by optimizing the scanner design

or by devising appropriate image correction and recon-

struction strategies.

The evaluation of the effect of physical, geometrical and

other design parameters on scanner performance and

resulting image quality and patient dose could be achieved

through cumbersome experimental measurements using
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developed test prototypes [6, 7] or more conveniently using

deterministic mathematical modeling [8–10] or sophisti-

cated Monte Carlo (MC) simulations [11, 12]. The latter

relies on either in-house developed dedicated programs [5,

11, 13, 14] or public domain general purpose MC codes

such as MCNP [12], EGS4 [15] and GEANT4 [16].

Nowadays, the MC method is widely used for solving

many scientific problems involving statistical processes

and is particularly well suited for medical physics and

biomedical engineering applications due to the stochastic

nature of radiation emission, transport and detection pro-

cesses. The general idea of MC analysis is to create a

model as similar as possible to the real system under study

and calculate the interaction within the modeled system

based on known probabilities of occurrence using random

sampling of probability density functions for each event.

An overview of the fundamentals of MC techniques and

their applications in diagnostic medical imaging and radi-

ation dosimetry can be found in [17–19]. The computa-

tional burden of MC calculations compared to fast

analytical modeling remains the bottleneck for their

introduction in clinical environments. However, the wide-

spread availability of high performance parallel computing

and more recently Grid technology in addition to the

popularity of variance reduction techniques spurred their

development and application to a wide variety of problems

particularly when modeling complex geometries.

2 Dedicated simulators for modeling

of X-ray CT scanners

The simulation of X-ray CT imaging to assess qualitatively

and quantitatively the image formation process and inter-

pretation and to assist development of new detector con-

figurations using deterministic methods and simplifying

approximations has been developed mainly to improve

speed of operation [3, 10]. Analytical simulators are gene-

rally used for generation of raw data sets to evaluate

correction and reconstruction algorithms [20], whereas

MC-based simulators can, in addition to the above nomi-

nated purposes, be used for more realistic in-depth

assessment of the effect of different design parameters on

system performance and resulting image quality. More-

over, they offer the possibility to estimate physical

parameters (e.g., scatter) that are difficult or even impos-

sible to calculate using experimental measurements and

analytical modeling. Analytical X-ray CT simulators are

based on projection ray-tracing methods for the three-

dimensional (3D) calculation of intersections between tra-

jectories of photons emitted from the X-ray tube focal spot

toward the detector elements and all voxels or surfaces’

equations for each X-ray energy bin since the attenuation

coefficients of different materials are energy-dependent.

One such example is the simulator developed by De Man

[20] for single-slice detector configurations using the IDL

language (Research Systems Inc., Boulder, CO) with the

aim to evaluate his developed iterative reconstruction

algorithm for reduction of metallic artifacts in X-ray CT.

The effect of different sources of error such as beam

hardening, partial volume effect, scattered radiation, mo-

tion and aliasing has been theoretically considered in this

simulator. Another example is a CT simulator specifically

designed to simulate dynamic cardio-pulmonary studies

with single- and multi-slice detector CT (MDCT) operating

in spiral mode to optimize the performance of reconstruc-

tion algorithms in dynamic studies [21].

MC-based simulations are based on direct transport of

photons and electrons inside the materials in a 3D geo-

metry. Their use for accurate dosimetry calculations in X-ray

CT scanning is well established [15, 22], however, since

the X-ray CT detection system is not modeled for such

applications, the assessment of imaging related factors is

not possible. Some MC simulators were developed for

simulating conventional radiographic X-ray imaging chain

[23–25]. Though, to the best of our knowledge, there exist

only three dedicated MC-based X-ray CT simulators,

which can be used for both imaging and dosimetry modeling

purposes. Colijn et al. [11] developed a rapid MC-

based micro-CT simulator, refereed to here as accelerated

MC simulator (AMCS), dedicated for modeling the Sky-

Scan 1076 (SkyScan, Aartselaar, Belgium) cone-beam

small-animal X-ray CT scanner. The simulator has been

validated through comparison with experimental measure-

ments of water phantom with various diameters, some

containing steel and Teflon rods. The simulation process is

divided in two main parts: the projection data of primary

X-ray photons are computed with a ray-tracer and the

scatter distribution is estimated using an accelerated MC

simulation method [5]. More recently, Ay and Zaidi [12]

developed a MC-based X-ray CT simulator for fan- and

cone-beam geometries with single-slice, multi-slice (up to

64 slices) and flat-panel detector configurations based on

the general purpose MCNP4C radiation transport computer

code. The simulator was validated through comparison

with experimental measurements of different nonuniform

phantoms with various sizes using both a clinical GE

HiSpeed X/iF (General Electric Healthcare Technologies,

Waukesha, WI, USA) fan-beam X-ray CT scanner and a

small-animal SkyScan 1076 cone-beam X-ray CT scanner.

A graphical user interface (GUI) running under Matlab

6.5.1 (The MathWorks Inc., Natick, MA, USA) creates the

geometry of the scanners in different views as MCNP4C

input file based on user selected design parameters. The

simulator includes the possibility of detailed simulation of

the X-ray tube [26], collimator, bow-tie filter, phantom,

810 Med Bio Eng Comput (2007) 45:809–817

123



detector geometry and material. Figure 1 illustrates the

principles and main components of the MCNP4C-based

Monte Carlo simulator as applied to model an X-ray CT

imaging system. The third MC code called CTmod, uses

MC transport of photons inside simple phantoms for a

single row of detector elements and has been used mainly

for scatter modeling in the cone-beam geometry [14].

Unfortunately, only few details about this program at the

time of writing this review are available as the authors are

still refining the code and working on validation issues that

will likely be covered in future publications by this group.

It should be emphasized that as opposed to radiation

dosimetry where many studies investigated potential dif-

ferences between the results obtained using different

computational Monte Carlo codes [27], very few studies

addressed this issue in simulation of medical imaging

systems. Fig. 2 shows the comparison of measured and

simulated profiles from water phantom containing Teflon

and steel rods presented in log-linear scale in order to

magnify the differences between simulated and measured

results. It appears that MCNP4C has better agreement with

the measured profile compared to AMCS (Figure 2b). The

high absolute normalized error in the area covered by steel

rods is due to the high attenuation of steel and probably

small geometrical misalignment between simulated and

experimental setups. The comparison between calculated

SPR further illustrates the discrepancy between AMCS and

MCNP4C in the region corresponding to steel rod location

for the reasons discussed above (Fig. 2c).

3 Applications of Monte Carlo simulations in CT

The application of MC modeling in X-ray CT imaging

research is an everlasting enthusiastic topic and still is an

area of considerable interest. Today’s applications of MC

techniques in the field of radiological imaging include

performance assessment and optimization of design

geometries and scanning parameters [12], scatter charac-

terization and rejection strategies [5, 13, 14], search for

ideal detector configuration and material [16], generation

of data sets for testing reconstruction and beam hardening

correction algorithms and absorbed dose calculations to

assess radiobiological risk from CT scans.

Although CT is a diagnostic imaging modality deliver-

ing higher patient dose in comparison with other diagnostic

radiological procedures, its excellent spatial resolution

stimulated its use in diagnostic imaging. In addition, the

introduction of MDCT with its greater axial coverage and

faster gantry rotation times increased the diagnostic utility

of CT scanning. To optimize patients’ selection, scanning

protocols and benefit-to-risk ratios, substantial efforts were

made by radiation protection committees to estimate radi-

ation dose to patient for various CT examinations [28].

Given that the absorbed dose depends on various scanning

parameters such as mA, kVp, pitch, slice thickness …etc.,

the Monte Carlo method was adopted as the most conve-

nient and powerful tool for organ and effective dose

assessment [19]. The accuracy of MC calculations is well

established for both axial [15] and spiral [6, 22, 29–34]

scanning modes. One of the predominant methods for

assessment of organ absorbed dose in CT examinations is

the application of conversion coefficients derived by Monte

Carlo calculations. CTDOSE is one of the earliest codes

allowing calculation of organ and effective dose in diag-

nostic CT procedures [35]. Currently, CTDosimetry is the

most popular dose calculation software, which makes use

of the former National Radiological Protection Board

(NRPB) Monte Carlo dose data sets published in its report

SR250 [36]. This package allows to calculate patient organ

and effective doses for the majority of commercially

available CT scanners including most recent CT scanners

with 64 slice capability [37].

With the advent of multiple-row and flat-panel detector

configurations in addition to the slip-ring technology, there

have been rapid developments in the design of clinical and

small-animal CT scanners including X-ray tube specifica-

tions, geometrical magnification, detector configuration
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Fig. 1 Principles and main components of the MCNP4C-based Monte Carlo program dedicated for simulation of X-ray CT imaging systems
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and dose management. Ay et al. [26] investigated the effect

of different parameters such as target material, target/filter

combinations, voltage ripple, anode heel effect and focal

spot size on the generated X-ray spectra using MC simu-

lations. The impact of target angle on off-axis spectra,

which is an important factor for covering the whole

detector aperture by the X-ray beam in CT particularly for

multi-slice systems, was also investigated. Although dif-

ferent analytical computational models with varying

degrees of accuracy can be used for generation of X-ray

spectra [38], MC simulations offer many additional

advantages including the possibility of optimizing tube

design and developing new target/filter combinations to

improve image quality and reduce patient dose. The opti-

mization of geometrical magnification in X-ray CT, which

depends on the source to detector and iso-center distances,

has been investigated using theoretical calculations [3, 9].

The optimal detector’s element material and size, which

depend on the balance between image resolution, patient

dose and signal to noise ratio, is another active research

area where MC modeling plays an important role [16].

The corruption of projection data in X-ray CT with

scattered radiation decreases low contrast detectability,

reduces CT numbers and introduces cupping and streak

artifacts in reconstructed images [4]. Scatter removal is

also mandatory in X-ray CT imaging because of the need to

have clinically acceptable low contrast detectability. The

assessment of the scatter component in fan- and cone-beam

X-ray CT scanners is an active research area in quantitative

imaging and there are many relevant contributions to this

domain [5, 14, 39–44]. The most common technique used

to reduce the detection of scattered radiation consists of

using collimator plates inside the detector housing (septa)

in multi-slice detector CT and antiscatter grids in flat-panel

cone-beam CT scanners. The optimization of septa length

and thickness (namely geometrical efficiency of detection

system) as well as septa material is also being investigated

through assessment of resulting scatter-to-primary ratio

(SPR) using MC calculations. It has been shown that

increasing the septa length could effectively reduce the

contribution of scattered radiation, thus decreasing the SPR

at the expense of additional manufacturing constraints to

avoid possible septa plates’ vibration during the gantry

rotation [12]. It has long been recognized that the ideal

research tool for scatter modeling and evaluation of scatter

correction techniques is the MC method [18]. Given a

known electronic density or attenuation distribution of the

object, MC techniques allow detected events to be classi-

fied into unscattered and scattered events thus offering the

possibility to determine directly the scatter component

(which is often rather smooth). MC methods give further

insight and might in themselves offer a possible correction

procedure [43]. However, even with the use of acceleration

techniques, these simulations require large amounts of

computer time [45]. Moreover, the simulation of the scatter

component for each patient is impractical in clinically

feasible times. Faster implementations of hybrid

approaches combining MC calculations and deterministic

algorithms for the estimation of noise-free scatter projec-

tions while maintaining accuracy have also been described

elsewhere [5, 46].

Analytical models for generation of transmission poly-
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Fig. 2 Comparison between MCNP and AMCS simulated profiles

and experimental measurements from water phantom containing steel

and Teflon rod inserts [11] using the SkyScan small-animal X-ray CT

scanner at tube voltage 100 kVp showing (a) total and primary

profiles; b the absolute normalized error of the profiles shown in a;

and c the scatter to primary ratio for the simulated data. Reprinted

with permission from [12]
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reconstruction and beam hardening correction algorithms

can be used with some confidence for simple geometries

and homogeneous objects; however, their application to

more complex geometries and nonhomogeneous objects is

complicated and prone to error. A more general and

accurate approach for generation of data sets is to use MC

simulations by paying special attention to the number of

simulated events to reduce statistical uncertainties in the

generated data sets.

4 Development of computational models

for use in Monte Carlo simulations

Conceptually, the purpose of a physical phantom or com-

putational model for X-ray CT modeling is to represent an

organ or body region of interest, to allow modeling the

chemical composition of the attenuating medium, which

absorbs and scatters the X-ray beams in a manner similar to

biological tissues [47]. In other terms, a physical phantom

or mathematical model is generally designed to represent

an organ or tissue of the body, an organ system, or the

whole-body. Computerized anthropomorphic models can

either be defined by mathematical (analytical) functions or

digital (voxel-based) volume arrays [18]. Analytic models

consist of regularly shaped continuous objects defined by

combinations of simple mathematical geometries (e.g.,

right circular cylinders, spheres, or disks), whereas voxel-

based models are mainly derived from segmented tomo-

graphic images of the human anatomy obtained by either

X-ray CT or magnetic resonance imaging (MRI). Any

complex attenuating medium distribution can therefore be

modeled without being confined to geometrical shapes.

Analytical models, however, have the advantage of being

able to model anatomical variability and dynamic organs

easily. In addition, the disadvantage of the voxelized

approach is that inherent errors are introduced due to the

model voxelization. The discretization errors inherent in

the voxelized representation may be reduced by finer

sampling of the discretized models. More refined analysis

of advantages and drawbacks of analytical versus voxel-

ized model representation for simulation of imaging sys-

tems is described elsewhere [48].

4.1 Stylized mathematical models

The mathematical specifications for models that are

available assume a specific age, height and weight. People,

however, exhibit a variety of shapes and sizes. The first

breakthrough in the use of MC techniques was the devel-

opment of the Fisher–Snyder heterogeneous, hermaphro-

dite, anthropomorphic model of the human body in the

1970s [49]. This model consisted of spheres, ellipsoids,

cones, tori and subsections of such objects, combined to

approximate the geometry of the body and its internal

structures. The representation of internal organs with this

mathematical model is very crude, since the simple equa-

tions can only capture the most general description of an

organ’s position and geometry. In 1987, Cristy and Eck-

erman [50] of Oak Ridge National Laboratory (ORNL)

developed a series of models representing children of dif-

ferent ages, one of which (the 15-year-old) also served as a

model for the adult female.

Many stylized models have been developed specifically

for assessment of image reconstruction techniques in X-ray

CT and emission tomography and may not be suitable for

other applications in radiological sciences (e.g., radiation

dosimetry). Examples of these include the popular Shepp

and Logan brain model [51], which has been used exten-

sively during the early developments of image recon-

struction methodologies and the FORBILD database

developed by the Institute of Medical Physics of Erlangen

University, Germany [52]. The latter family of objects

comprises various organ models representing the head,

abdomen, lung, thorax, hip and jaw, and are commonly

used for evaluation of reconstruction algorithms, usually

only with deterministic simulations.

Mathematical anthropomorphic models are continuously

being improved. Recent three- and four-dimensional (space

and time) computer models seek a compromise between

ease of use, flexibility and the accurate modeling of pop-

ulations of patient anatomies, and attenuation and scatter

properties in patients. The use of dynamic anthropomor-

phic models in MC simulations is becoming possible,

owing to the increasing availability of computing power.

This includes the development of appropriate primitives

that allow the accurate modeling of anatomical variations

and patient motion, such as superquadrics [53] and non-

uniform rational B-spline surfaces (NURBS) [54]. More

recently, an efficient algorithm for the computation of

X-ray transforms for superelipsoids and tori with mono-

chromatic X-rays was developed to promote the use of

superquadrics for CT simulation [55].

One such example is the 4D NURBS-based Cardiac-

Torso (NCAT) model developed by Segars et al. [54],

which brought several improvements to the earlier Math-

ematical CArdiac-Torso (MCAT) anthropomorphic model

[56] that has been used extensively in emission computed

tomography imaging research. The latter uses mathemati-

cal formulae, the size, shape and configurations of the

major thoracic structures and organs such as the heart,

liver, breasts, and rib cage to achieve realistic modeling.

Incorporation of accurate models of cardiac and respiratory

physiology into the current 4-D NCAT model was a sig-

nificant step forward to account for inherent cardiac and

respiratory motion not considered in the previous models.
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3D surface renderings illustrating anterior, posterior and

right lateral views of the 4D NCAT model are shown in

Fig. 3.

While much effort has been devoted towards the crea-

tion of human models, few research studies have been

initiated to address the need for models supporting small

animal imaging and dosimetry research. The recent interest

in small animal imaging instrumentation for molecular

imaging research has spurred the development of realistic

computerized models modeling their anatomy and physi-

ological functions. One such example is the 4D digital

mouse model based on high-resolution 3D magnetic reso-

nance microscopy acquired data and NURBS formalism

mentioned above for modeling the organ shapes [57]. The

NURBS primitives can elegantly model the complex organ

shapes and structures, providing the foundation for a real-

istic model of the 3D mouse anatomy.

4.2 Tomographic voxel-based models

Modeling for imaging and dosimetry applications is best

done with models that match the gross parameters of an

individual patient. Anthropomorphic models with inter-

nally segmented structures make clinically realistic MC

simulations possible. Zubal [58] developed a typical

anthropomorphic voxel-based adult model by the manual

segmentation of CT transverse slices of a living human

male performed by medical experts. Each voxel of the

volume contains an index number designating it as

belonging to a given organ or internal structure. These

indexes can then be used to assign a value, corresponding

to, for example, electronic density. The same group has

also developed a high resolution brain model based on an

MRI scan of a human volunteer, which can be used for

detailed investigations in the head. More recently, a new

voxel-based whole body model, called VIP-Man [59] and a

head/brain model [60] have been developed using high

resolution transversal color photographic images obtained

from the National Library of Medicine’s visible human

(VH) Project. A group at the National Research Center for

Environment and Health (GSF) in Germany has also been

developing some voxel-based models to cover persons of

individual anatomy and includes at the moment two pedi-

atric and five adult models of both sexes, different ages and

stature, and several others are under construction [61].

Several national and international initiatives were also

undertaken to develop Korean- and Chinese-type [62]

equivalents to the above referenced VH project.

Despite the difficulties and ethical issues, the efforts

devoted towards the development of voxel-based pediatric

models and pregnant female are further emphasized in the

construction of the two UF (University of Florida, USA)

models (newborn female and 2-month-old male) [63] and

the 30 weeks pregnant female tomographic model [64]

opening the door to prospective imaging and dosimetry

studies that would otherwise be difficult to perform.

5 Acceleration of Monte Carlo simulations

One significant problem in the use of MC calculations is

the presence of statistical uncertainties (noise) in the esti-

mates. A simple but not practical way to decrease statistical

uncertainties is to run MC simulations for sufficiently long

time (large number of histories) and use efficient variance

reduction techniques. Currently, two approaches are used

to reduce statistical uncertainties from MC calculations:

hardware (parallelization) and software (de-noising and

hybrid simulation) approaches. It should be noted that

optimization and validation of these approaches is still an

area of considerable research interest that requires further

research and development efforts.

Parallel implementation of time-consuming MC calcu-

lations can be performed efficiently owing to the fact that

particle histories are completely independent from each

other [17]. A common way to parallelize MC codes is to put

identical ‘‘clones’’ on the various processors; only the ran-

dom number seeds are different [65]. However, special

attention should be paid to seeds’ initialization of random

number generators (RNGs) for sequences to be uncorre-

lated. Another alternative would be to parallelize the RNGs

used during simulation [66]. By spreading out the calcula-

Fig. 3 Surface rendered images

of the 4-D NCAT phantom

showing from left to right:
anterior, posterior and right

lateral views with outer body

surface removed to show the

ribs cage and various organs

modeled. Courtesy of Dr P.

Segars [54]
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tions among many processors, a speed-up that approaches

the number of processors being used could be attained. This

can be achieved through the use of parallel processing

environments including arrays of transputers, vector paral-

lel supercomputers, massively parallel computers, a cluster

of workstations in a local area network using a parallel

computing simulator such as Parallel Virtual Machine

(PVM), or geographically distributed platforms taking

advantage of the latest developments in Grid technology.

The latter requires substantial organizational skills and huge

investments in physical resources (computers, disks and

network) and relies on ‘‘grid middleware’’ software that

guarantees the access and the coordinated use of the grid of

networked computers (servers) for authorized users (clients)

thus limiting its availability to big research centers.

A more convenient and less demanding approach to

remove statistical fluctuations from noisy MC results is to

use smoothing or de-noising algorithms. Some of the

developed methods are inspired from classic image pro-

cessing methods (e.g., filtering, anisotropic diffusion,

wavelets, …etc), whereas other methods do not have direct

relationship with image processing techniques (e.g.,

Kawrakow’s locally adaptive method, Fipple and Nusslin’s

formulation, …etc) [67]. Although denoising seems to be

the ideal solution to speed-up MC simulations, only one

group reported on the use of dedicated curve fitting pro-

cedures inspired by the Richardson-Lucy deblurring algo-

rithm to calculate scattered radiation projections in small-

animal cone-beam X-ray CT scanners [5]. It should be

noted that most denoising techniques have been proposed

with the aim of reducing MC statistical fluctuations for

radiotherapy treatment planning. The optimization and

implementation of similar techniques for CT simulation

remains to be explored. Recently, El Naqa et al. [67]

compared several denoising techniques including locally

adaptive Savitzky-Golay filtering, content adaptive median

hybrid filters, wavelet threshold denoising, anisotropic

diffusion and noise reduction as an optimization problem.

The results of denoising techniques effectiveness can be

used for development of new denoising methods in the

field of X-ray CT simulation.

Another approach to speed-up X-ray CT modeling is to

use hybrid approaches combining MC and analytical sim-

ulations. In this approach, the contribution of the primary

component to the projections is calculated through ana-

lytical simulations using ray-tracing methods whereas the

contribution of the scatter component is calculated using

pure MC simulations. The final projections are determined

by appropriate combination of both simulation results. This

approach has been used for modeling conventional radio-

graphic imaging systems [25] and more recently for

tomographic X-ray CT scanners [12] reporting good

agreement between hybrid and pure MC simulated results

[44]. Figure 4 illustrates the excellent agreement between

attenuation profiles of a uniform cylindrical water phantom

and water phantom containing centred steel rod insert

generated using pure Monte Carlo calculations based on

our MCNP4C code and hybrid simulation combining

analytical and Monte Carlo calculations.

6 Summary

Monte Carlo analysis in medical and biological engineer-

ing has been used for several decades, however with the

ever-increasing power of desktop computers; the utility of

Monte Carlo simulation is increasing. Today’s applications

of Monte Carlo techniques include: diagnostic imaging and

radiation therapy, traffic flow, Dow-Jones forecasting, and

oil well exploration, as well as more traditional physics

applications like stellar evolution, reactor design, and

quantum chromo-dynamics. Likewise, Monte Carlo meth-

ods are widely used in modelling of materials and chemi-

cals, from grain growth modelling in metallic alloys, to

behaviour of nanostrutures and polymers, and protein

structure predictions. It should be noted that a few papers

were published in this journal related to this specific topic,
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Fig. 4 Comparison of attenuation profiles for a uniform cylindrical

water phantom (a) and water phantom containing centred steel rod

insert (b) computed using pure MCNP4C-based Monte Carlo

calculations and hybrid simulations combining analytical and Monte

Carlo calculations

Med Bio Eng Comput (2007) 45:809–817 815

123



e.g., for parameter prediction in biomechanical models

[68].

The use of the Monte Carlo method to simulate radiation

transport has become the most accurate means of simulating

medical imaging systems with the aim of optimizing

instrumentation design or improving the accuracy of

quantitative analysis and predicting absorbed dose distri-

butions and other quantities of interest in diagnosis and

radiation treatments of cancer patients. This trend has

continued for the estimation of the absorbed dose in diag-

nostic procedures as well as the assessment of image quality

and the quantitative accuracy of radiological imaging. As a

consequence of this generalized use, many questions are

being raised, primarily about the need and potential of

Monte Carlo techniques, but also about how accurate they

really are, what would it take to apply them clinically and

make them available widely to the medical physics com-

munity at large. Many of these questions will be answered

when Monte Carlo techniques are implemented and used in

a reasonable amount of time using high powered computing

workstations or distributed computing networks for more

routine calculations and for in-depth investigations.

The combination of realistic computer models of the

human anatomy and accurate models of the imaging pro-

cess allows the simulation of X-ray CT data that are ever

closer to actual patient data. Simulation techniques will

find an increasingly important role in the future of medical

imaging in light of the further development of realistic

computer models, the accurate modeling of projection data

and computer hardware. However, caution must be taken to

avoid errors in the simulation process, and verification via

comparison with experimental and patient data is essential.
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