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1 Introduction

This paper is concerned with the long-time behaviour of spectral semi-discretisations
of the one-dimensional non-linear wave equation

utt − uxx + ρu + g(u) = 0 (1)

for t > 0 and −π ≤ x ≤ π subject to periodic boundary conditions. We assume ρ > 0
and a non-linearity g that is a smooth real function with g(0) = g′(0) = 0. We con-
sider small initial data: in appropriate Sobolev norms, the initial values u(·,0) and
ut (·,0) are bounded by a small parameter ε.

The near-conservation of actions and long-time regularity of exact solutions to the
wave equation (1) have been studied by Bambusi [1] and Bourgain [2], and more
recently in our paper [5]. There we use the technique of modulated Fourier expan-
sions to prove the almost-conservation properties. This approach is also chosen in the
present paper on spatial semi-discretisations of (1) and in [4] for full discretisations.
Compared with the normal form theory of [1], we can work with weaker conditions
on the non-linearity, which is helpful in the analysis of the spatial discretisation, and
we do not require non-linear coordinate transforms, which is helpful for the analysis
of time discretisations.

In Sect. 2, we review the known results on the near-conservation of harmonic ac-
tions along exact solutions of (1). Section 3 describes spectral semi-discretisation in
space and formulates the main result on the near-conservation of actions (and spatial
regularity) along solutions of the semi-discrete equations over long times t ≤ ε−N for
any fixed N ≥ 1. This holds under the same non-resonance condition as for the cor-
responding result for the wave equation. As a consequence of this result, we further
show that the continuous energy of the trigonometric polynomial determined by the
semi-discretisation is well conserved and remains close to the discrete energy of the
semi-discrete equations over long times. The exact solution conserves momentum, as
a consequence of the shift invariance x → x + ξ . There is no such invariance under
a continuous group action in the semi-discretisation, and indeed momentum is not
conserved. We will show, however, that momentum is approximately conserved. The
proofs are given in Sects. 4–6. Following [5], we study the modulated Fourier expan-
sion in time of the semi-discretisation in Sect. 4 and its almost-invariants in Sect. 5.
Conservation of energy and momentum are shown in Sect. 6.

Approximate momentum conservation for spatial semi-discretisations of semi-
linear wave equations has previously been studied by Oliver, West, and Wulff [7],
for finite-difference discretisations on regular grids. They show almost-conservation
with exponentially small error of a modified momentum over short times for general
analytic, not necessarily small solutions. Their results do not extend to long times,
however, because the regularity of solutions to modified equations is not under con-
trol. Another approach to almost-conservation properties of spatial (and full) discreti-
sations of semi-linear wave equations within the framework of standard backward
error analysis and modified equations has been given by Cano [3], where likewise the
extension to long times rests on unverified regularity assumptions, which are formu-
lated as conjectures.
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2 The Non-linear Wave Equation with Small Data

Equation (1) has several conserved quantities. The total energy or Hamiltonian, de-
fined for 2π -periodic functions u,v as

H(u,v) = 1

2π

∫ π

−π

(
1

2

(
v2 + (∂xu)2 + ρu2)(x) + U

(
u(x)

))
dx, (2)

where the potential U(u) is such that U ′(u) = g(u), and the momentum

K(u,v) = 1

2π

∫ π

−π

∂xu(x)v(x) dx = −
∞∑

j=−∞
iju−j vj (3)

are exactly conserved along the solution (u(·, t), ∂tu(·, t)) of (1). Here, uj = Fj u are
the Fourier coefficients in the series u(x) = ∑∞

j=−∞ uj eijx . Since we consider only
real solutions, we note that u−j = uj . In terms of the Fourier coefficients, (1) reads

∂2
t uj + ω2

j uj +Fj g(u) = 0, j ∈ Z, (4)

with the frequencies

ωj =
√

ρ + j2.

The harmonic actions

Ij (u, v) = ωj

2
|uj |2 + 1

2ωj

|vj |2 (5)

(note I−j = Ij ) are conserved for the linear wave equation (g(u) ≡ 0). In (1), they
turn out to remain constant up to small deviations over long times for almost all values
of ρ > 0, when the initial functions are close to the equilibrium u = 0. Such a result
is proved by Bambusi [1], Bourgain [2], and Cohen, Hairer, and Lubich [5]. We now
give a precise statement of this result.

We consider the Sobolev space, for s ≥ 0,

Hs = {
v ∈ L2(T) : ‖v‖s < ∞}

, ‖v‖s =
( ∞∑

j=−∞
ω2s

j |vj |2
)1/2

,

where vj denote the Fourier coefficients of a 2π -periodic function v. We assume
that the initial position and velocity have small norms in Hs+1 and Hs for suitably
large s:

(∥∥u(·,0)
∥∥2

s+1 + ∥∥∂tu(·,0)
∥∥2

s

)1/2 ≤ ε. (6)

This is equivalent to requiring
∑∞

j=−∞ ω2s+1
j Ij (u(·,0), ∂tu(·,0)) ≤ 1

2ε2.
To prepare for the formulation of a non-resonance condition, we consider se-

quences k = (k�)
∞
�=0 with only finitely many integers k� 
= 0. We denote |k| =
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(|k�|)∞�=0, and we let

‖k‖ =
∞∑

�=0

|k�|, k · ω =
∞∑

�=0

k�ω�, ωσ |k| =
∞∏

�=0

ω
σ |k�|
� (7)

for real σ , where we use the notation ω = (ω�)
∞
�=0. In particular, for j ∈ Z, we write

〈j 〉 = (0, . . . ,0,1,0, . . .) with the only entry at the |j |th position.
For a fixed integer N and for ε > 0, we consider the set of near-resonant indices

Rε = {
(j,k) : j ∈ Z and k 
= ±〈j 〉, ‖k‖ ≤ 2N with |ωj − |k · ω|| < ε1/2}. (8)

We impose the following non-resonance condition: there are σ > 0 and a constant
C0 such that

sup
(j,k)∈Rε

ωσ
j

ωσ |k| ε
‖k‖/2 ≤ C0ε

N . (9)

As is shown in [5], condition (9) is implied for sufficiently large σ by the non-
resonance condition of Bambusi [1], which reads as follows: for every positive in-
teger r , there exist α = α(r) > 0 and c > 0 such that for all combinations of signs,

|ωj ± ωk ± ω�1 ± · · · ± ω�r | ≥ cL−α for j ≥ k ≥ L = �1 ≥ · · · ≥ �r ≥ 0, (10)

provided that the sum does not vanish unless the terms cancel pairwise. In [1], it is
shown that for almost all (w.r.t. Lebesgue measure) ρ in a fixed interval of positive
numbers, there is a c > 0 such that condition (10) holds with α = 16r5.

Theorem 2.1 [5, Theorem 1] Under the non-resonance condition (9) and assump-
tion (6) on the initial data with s ≥ σ + 1, the estimate

∞∑
�=0

ω2s+1
�

|I�(t) − I�(0)|
ε2

≤ Cε for 0 ≤ t ≤ ε−N+1

with I�(t) = I�(u(·, t), ∂tu(·, t)) holds with a constant C which depends on s, N ,
and C0, but not on ε and t .

3 Spectral Semi-discretisation in Space

For the numerical solution of (1), we consider the “method of lines” approach.
Pseudo-spectral semi-discretisation in space with equidistant collocation points xk =
kπ/M (for k = −M, . . . ,M − 1) yields an approximation by the real trigonometric
polynomial

uM(x, t) =
∑′

|j |≤M

qj (t)e
ijx, vM(x, t) =

∑′

|j |≤M

pj (t)e
ijx, (11)
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where the prime indicates that the first and last terms in the sum are taken with
the factor 1/2. Here, we have set pj (t) = d

dt
qj (t), and we note that q−j = qj and

p−j = pj . The 2M-periodic coefficient sequence q(t) = (qj (t)) is a solution of the
2M-dimensional system of ordinary differential equations

d2q

dt2
+ Ω2q = f (q) with f (q) = −F2Mg

(
F−1

2Mq
)
. (12)

Here, Ω is the diagonal matrix with entries ωj for |j | ≤ M , and F2M denotes the dis-
crete Fourier transform: (F2Mw)j = 1

2M

∑M−1
k=−M wke−ijxk . Since the non-linearity

in (12) has the components

fj (q) = −∂V (q)

∂q−j

with V (q) = 1

2M

M−1∑
k=−M

U
((

F−1
2Mq

)
k

)
,

Equation (12) is a finite-dimensional complex Hamiltonian system with the discrete
energy

HM(q,p) = 1

2

∑′

|j |≤M

(|pj |2 + ω2
j |qj |2

) + V (q), (13)

which is conserved along the solution (q(t),p(t)) with p(t) = dq(t)/dt , and differs
from the continuous energy H(uM,vM) evaluated at the trigonometric polynomials
uM,vM of (11).

We consider the actions (for |j | ≤ M) and the momentum

Ij (q,p) = ωj

2
|qj |2 + 1

2ωj

|pj |2, K(q,p) = −
∑′′

|j |≤M

ijq−jpj , (14)

where the double prime indicates that the first and last terms in the sum are taken
with the factor 1/4. These quantities are defined such that, with the trigonometric
polynomials uM , vM of (11), we have

Ij (q,p) = Ij

(
uM,vM

)
and K(q,p) = K

(
uM,vM

)

with the definitions of Sect. 2 used on the right-hand sides. The equality for Ij holds
for |j | < M , whereas I±M(q,p) = 4I±M(uM,vM). Since we are concerned with real
approximations (11), the Fourier coefficients satisfy q−j = qj and p−j = pj , so that
I−j = Ij .

For a 2M-periodic sequence q = (qj ), we introduce the weighted norm

‖q‖s =
(∑′′

|j |≤M

ω2s
j |qj |2

)1/2

, (15)

which is defined such that it equals the Hs norm of the trigonometric polynomial
with coefficients qj .
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We assume that the initial data q(0) and p(0) satisfy a condition corresponding
to (6):

(∥∥q(0)
∥∥2

s+1 + ∥∥p(0)
∥∥2

s

)1/2 ≤ ε. (16)

Theorem 3.1 Under the non-resonance condition (9) with exponent σ and the as-
sumption (16) of small initial data with s ≥ σ + 1, the estimate

M∑
�=0

ω2s+1
�

|I�(t) − I�(0)|
ε2

≤ Cε for 0 ≤ t ≤ ε−N+1

with I�(t) = I�(q(t),p(t)) holds with a constant C which depends on s, N , and C0,
but is independent of ε, M , and t .

We note that Theorem 3.1 implies long-time spatial regularity:

(∥∥uM(·, t)∥∥2
s+1 + ∥∥vM(·, t)∥∥2

s

)1/2 ≤ ε(1 + Cε) for t ≤ ε−N+1. (17)

The momentum is no longer an exactly conserved quantity in the semi-discreti-
sation, but we have the following approximate-conservation result.

Theorem 3.2 Under the assumptions of Theorem 3.1, the estimate

|K(t) − K(0)|
ε2

≤ CtεM−s−1 for 0 ≤ t ≤ ε−N+1

with K(t) = K(q(t),p(t)) holds with a constant C which depends on s, N , and C0,
but is independent of ε, M , and t .

We do not know if the above estimate is optimal for large values of εt . In our
numerical experiments, we observed that on very long time intervals, the relative
deviation of the momentum behaves like an almost-periodic function of ε2t , which
depends on M and whose maximum decreases with a negative power of M .

The discrete energy (13) is not the same as the continuous energy (2) along the
semi-discrete solution. However, since Theorem 3.1 controls the spatial regularity of
the semi-discrete solution over long times, we have the following result.

Theorem 3.3 Under the assumptions of Theorem 3.1, the estimate

|H(t) − H(0)|
ε2

≤ CεM−s−1 for 0 ≤ t ≤ ε−N+1

with H(t) = H(uM(·, t), vM(·, t)) holds with a constant C which depends on s, N ,
and C0, but is independent of ε, M , and t .

The proof of Theorem 3.3 also shows that for 0 ≤ t ≤ ε−N+1,

|H(uM(·, t), vM(·, t)) − HM(q(t),p(t))|
ε2

≤ CM−s−1.
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The rest of the paper is concerned with the proof of these results. The proof of
Theorem 3.1 is a modification of the proof of the corresponding result for the contin-
uous problem and is outlined in Sects. 4 and 5. In parallel, we give a proof of a variant
of Theorem 3.2, which provides additional insight into the structure of the problem
and has the advantage of being transferable to the fully discrete case (see [4]). A dif-
ferent shorter proof, which yields the precise estimate of Theorem 3.2, is given in
Sect. 6.1, where also Theorem 3.3 is proved. The shorter proof does, however, not
extend to full discretisations because it uses the exact momentum conservation of the
wave equation which is not available for time discretisations.

4 Modulated Fourier Expansion

The principal tool for the long-time analysis of the semi-discretised non-linear wave
equation is a modulated Fourier expansion as in [6, Chapter XIII]. The presentation
follows closely the analysis of non-linear wave equations in [5].

4.1 Estimates of Modulation Functions and Remainder

In the following, we use the abbreviations (7) concerning sequences k = (k�)�≥0 with
k� = 0 for � > M (because only the frequencies ω0, . . . ,ωM are present in the semi-
discretisation), and we set

[[k]] =
{ 1

2 (‖k‖ + 1), k 
= 0,

3
2 , k = 0.

Theorem 4.1 Under the assumptions of Theorem 3.1, there exist truncated asymp-
totic expansions (with N from (9))

q̃(t) =
∑

‖k‖≤2N

zk(εt)ei(k·ω)t , p̃(t) = d

dt
q̃(t), (18)

such that the solution (q(t),p(t)) of (12) satisfies
∥∥q(t) − q̃(t)

∥∥
s+1 + ∥∥p(t) − p̃(t)

∥∥
s
≤ CεN for 0 ≤ t ≤ ε−1. (19)

The truncated modulated Fourier expansion is bounded by
∥∥q̃(t)

∥∥
s+1 + ∥∥p̃(t)

∥∥
s
≤ Cε for 0 ≤ t ≤ ε−1. (20)

On this time interval, we further have, for |j | ≤ M ,

q̃j (t) = z
〈j〉
j (εt)eiωj t + z

−〈j〉
j (εt)e−iωj t + rj , with ‖r‖s+1 ≤ Cε2, (21)

and the modulation functions zk are bounded by

∑
‖k‖≤2N

(
ω|k|

ε[[k]]
∥∥zk(εt)

∥∥
s

)2

≤ C. (22)
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Bounds of the same type hold for any fixed number of derivatives of zk with respect

to the slow time τ = εt . Moreover, the modulation functions satisfy z−k
−j = zk

j . The

constants C are independent of ε, M , and of t ≤ ε−1.

The proof of this result follows closely that of Theorem 2 in [5]. We only outline
the minor modifications that are necessary to treat the semi-discrete case.

4.2 Modifications in the Proof of the Analytic Case

For an analysis, it is convenient to rewrite (12) in the following notation: for a
2π -periodic function w(x), we denote by (Qw)(x) the trigonometric interpola-
tion polynomial to w(x) in the points xk . For a 2M-periodic coefficient sequence
q = (qj ), we denote by (Pq)(x) the trigonometric polynomial with coefficients qj ,
(Pq)(x) = ∑′

|j |≤M qj eijx . For the approximation given by (11), we then have

uM = Pq with the solution q(t) of (12), which is rewritten as

∂2
t uM − ∂2

xuM + ρuM +Qg
(
uM

) = 0. (23)

Taylor expansion of the non-linearity expresses it as

Qg
(
uM

) =
∑
m≥2

g(m)(0)

m! Q(Pq)m (24)

in the case of an analytic non-linearity, and appropriately truncated and with a re-
mainder term for a smooth non-linearity. For w(x) = ∑∞

j=−∞ wj eijx , the interpola-
tion polynomial is given by the aliasing formula

Qw(x) =
∑′′

|j |≤M

( ∞∑
l=−∞

wj+2Ml

)
eijx . (25)

We use this formula, insert the trigonometric polynomial P q̃ with q̃(t) from (18)
into (23) with (24), and consider the j th Fourier coefficient. This yields the formal
modulation equations as in Sect. 3.2 of [5], from which the modulation functions are
obtained:

(
ω2

j − (k · ω)2)zk
j + 2iε(k · ω)żk

j + ε2z̈k
j

+
∑
m

g(m)(0)

m!
∑

k1+···+km=k

∑′

j1+···+jm≡j mod 2M

zk1

j1
· · · zkm

jm
= 0. (26)

The only difference to the corresponding equation in [5] is the range |ji | ≤ M and
that the sum over the ji is taken modulo 2M . As in (11), the prime on the sum over
j1, . . . , jm indicates that with every appearance of zki

ji
with ji = ±M, a factor 1

2 is
included.
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The non-linearity in (26) now becomes the j th Fourier coefficient of the trigono-
metric polynomial

∑
m

g(m)(0)

m!
∑

k1+···+km=k

Q
(
Pzk1 · · ·Pzkm)

.

With the following simple (and known) lemma and noting that the norm (15) of q

equals the Hs norm of Pq , ‖q‖s = ‖Pq‖s , we obtain the estimate

∥∥Q(
Pzk1 · · ·Pzkm)∥∥

s
≤ C

∥∥zk1∥∥
s
· · ·∥∥zkm∥∥

s
.

The proof of Theorem 4.1 is then identical to that of Theorem 2 in [5]. The bounds
(20–22) follow from the estimates in Sect. 3.7 of [5].

Lemma 4.2 There are constants C depending only on s > 1
2 , such that for all func-

tions v,w ∈ Hs the trigonometric interpolation operator satisfies

‖Qv‖s ≤ C‖v‖s, (27)

‖Qv − v‖0 ≤ CM−s‖v‖s . (28)

Moreover, Hs is a normed algebra:

‖vw‖s ≤ C‖v‖s‖w‖s . (29)

Proof With the aliasing formula (25) and the Cauchy–Schwarz inequality, we obtain

‖Qv‖2
s =

∑′′

|j |≤M

ω2s
j

∣∣∣∣∣
∞∑

l=−∞
vj+2Ml

∣∣∣∣∣
2

≤
∑′′

|j |≤M

( ∞∑
l=−∞

ω2s
j

ω2s
j+2Ml

) ∞∑
l=−∞

ω2s
j+2Ml |vj+2Ml |2 ≤ C1‖v‖2

s .

The bound (28) follows with the Cauchy–Schwarz inequality as

‖Qv − v‖2
0 ≤

∑
|j |≥M

|vj |2 +
∑

|j |≤M

∣∣∣∣
∑
l 
=0

ω−s
j+2Ml · ωs

j+2Mlvj+2Ml

∣∣∣∣
2

≤
∑

|j |≥M

ω−2s
j · ω2s

j |vj |2 +
∑

|j |≤M

(∑
l 
=0

ω−2s
j+2Ml

)(∑
l 
=0

ω2s
j+2Ml |vj+2Ml |2

)

≤ CM−2s‖v‖2
s .

Similarly, the inequality (29) follows with
∑

i+j=k ω−2s
i ω−2s

j ≤ Cω−2s
k and the

Cauchy–Schwarz inequality. �
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4.3 Estimates of the Defect

The modulation equations (26) are solved approximately by an iterative procedure
[5, Sect. 3.3]. After 4N iterations, this leaves a defect d = (dk

j ), like in formula (36)
of [5] given by

dk
j = (

ω2
j − (k · ω)2)zk

j + 2iε(k · ω)żk
j + ε2z̈k

j

+
N∑

m=2

g(m)(0)

m!
∑

k1+···+km=k

∑′

j1+···+jm≡j mod 2M

zk1

j1
· · · zkm

jm
. (30)

This is to be considered for ‖k‖ ≤ NK , where we set zk
j = 0 for ‖k‖ > K = 2N . In

Sects. 3.8–3.11 of [5], inequalities (40, 41, 47), the following bound is shown:

( ∑
‖k‖≤NK

‖ω|k|dk(τ )‖2
s

)1/2

≤ CεN+1 for τ ≤ 1. (31)

5 Conservation of Actions and Momentum

We now show that the system of equations determining the modulation functions has
almost-invariants close to the actions and the momentum.

5.1 The Extended Potential

Corresponding to the modulation functions zk
j (εt) we introduce, for ‖k‖ ≤ 2N and

2M-periodic in j ,

y = (
yk
j

)
with yk

j (t) = zk
j (εt)ei(k·ω)t . (32)

By construction, the functions yk
j satisfy

∂2
t yk

j + ω2
j y

k
j +

N∑
m=2

g(m)(0)

m!
∑

k1+···+km=k

∑′

j1+···+jm≡j mod 2M

yk1

j1
· · ·ykm

jm
= ek

j , (33)

where ‖ki‖ ≤ 2N and |ji | ≤ M , and where the defects ek
j (t) = dk

j (εt)ei(k·ω)t

are small. In (1), the non-linearity g(u) is the gradient of the potential U(u) =∫ u

0 g(v) dv. The sum in (33) is recognised as the partial derivative with respect to

y−k
−j of the extended potential U(y) defined by

U(y) =
N∑

l=−N

Ul (y),

Ul (y) =
N∑

m=2

U(m+1)(0)

(m + 1)!
∑

k1+···+km+1=0

∑′

j1+···+jm+1=2Ml

yk1

j1
· · ·ykm+1

jm+1
,

(34)

where again ‖ki‖ ≤ 2N and |ji | ≤ M .
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The modulation system (33) can now be rewritten as

∂2
t yk

j + ω2
j y

k
j + ∇−k

−j U(y) = ek
j , (35)

where ∇−k
−j U is the partial derivative of U with respect to y−k

−j .

5.2 Invariance under Group Actions

For an arbitrary real sequence μ = (μ�)�≥0 and for θ ∈ R, let

(
Sμ(θ)y

)k
j

= ei(k·μ)θ yk
j ,

(
T (θ)y

)k
j

= eijθyk
j . (36)

Since the sum in the definition of U is over k1 + · · · + km+1 = 0 and that of U0 over
j1 + · · · + jm+1 = 0, we have

U
(
Sμ(θ)y

) = U(y), U0
(
T (θ)y

) = U0(y) for θ ∈ R.

Differentiating these relations with respect to θ yields

0 = d

dθ

∣∣∣∣
θ=0

U
(
Sμ(θ)y

) =
∑

‖k‖≤K

i(k · μ)
∑′

|j |≤M

yk
j ∇k

j U(y), (37)

0 = d

dθ

∣∣∣∣
θ=0

U0
(
T (θ)y

) =
∑

‖k‖≤K

∑′

|j |≤M

ijyk
j ∇k

j U0(y). (38)

5.3 Almost-Invariants of the Modulation System

We multiply (35) with i(k · μ)y−k
−j for μ = 〈�〉 = (0, . . . ,0,1,0, . . .) with the only

entry at the �th position and sum over k and j . Expressing the yk
j of (32) in terms

of zk
j , the invariance property (37) then implies that

J�(z, ż) := −
∑

‖k‖≤K

ik�

∑′

|j |≤M

z−k
−j

(
i(k · ω)zk

j + εżk
j

)
(39)

satisfies

ε
d

dτ
J�(z, ż) = −

∑
‖k‖≤K

ik�

∑′

|j |≤M

z−k
−j dk

j . (40)

As in Theorem 3 of [5], we obtain the following result.

Theorem 5.1 Under the conditions of Theorem 4.1,

M∑
�=0

ω2s+1
�

∣∣∣∣ d

dτ
J�(z(τ ), ż(τ ))

∣∣∣∣ ≤ CεN+1 for τ ≤ 1.
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We now proceed similarly, multiplying (35) with ijy−k
−j , summing over k and j ,

and using (38):

∑
‖k‖≤K

∑′

|j |≤M

ijy−k
−j ∂2

t yk
j =

∑
‖k‖≤K

∑′

|j |≤M

ijy−k
−j

(
ek
j −

∑
l 
=0

∇−k
−j Ul (y)

)
.

The negative left-hand side is recognised as the time derivative of

−
∑

‖k‖≤K

∑′

|j |≤M

ijy−k
−j ∂ty

k
j

which in terms of the variables z of (32) equals

K(z, ż) = −
∑

‖k‖≤K

∑′

|j |≤M

ijz−k
−j

(
i(k · ω)zk

j + εżk
j

)
. (41)

We thus obtain

ε
d

dτ
K

(
z(τ ), ż(τ )

) = −
∑

‖k‖≤K

∑′

|j |≤M

ijz−k
−j

(
dk
j −

∑
l 
=0

∇−k
−j Ul (z)

)
. (42)

Theorem 5.2 Under the conditions of Theorem 4.1,
∣∣∣∣ d

dτ
K(z(τ ), ż(τ ))

∣∣∣∣ ≤ C
(
εN+1 + ε2M−s+1) for τ ≤ 1.

Proof With the Cauchy–Schwarz inequality and the bound |j | ≤ ωj , we obtain

∣∣∣∣
∑

‖k‖≤K

∑′

|j |≤M

ijz−k
−j dk

j

∣∣∣∣ ≤
( ∑

‖k‖≤K

∑′

|j |≤M

ω2
j

∣∣zk
j

∣∣2
)1/2( ∑

‖k‖≤K

∑′

|j |≤M

∣∣dk
j

∣∣2
)1/2

.

The first factor on the right-hand side is bounded by O(ε) in view of (22), and the
second factor is O(εN+1) by (31).

The remaining expression of (42) contains terms of the form

∑
‖k‖≤K

∑′

|j |≤M

ijz−k
−j ∇−k

−j Ul (z)

=
N∑

m=2

U(m+1)(0)

m!
∑

k1+···+km+1=0

∑′

j1+···+jm+1=2Ml

zk1

j1
· · · zkm

jm
· ijm+1z

km+1

jm+1
,

which is the 2Mlth Fourier coefficient of the function

w(x) :=
N∑

m=2

U(m+1)(0)

m!
∑

k1+···+km+1=0

Pzk1
(x) · · ·Pzkm

(x) · d

dx
Pzkm+1

(x).
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Since Hs−1 is a normed algebra for s > 3/2, the Hs−1 norm of w is bounded by

N∑
m=2

|U(m+1)(0)|
m!

( ∑
‖k‖≤K

‖zk‖s−1

)m( ∑
‖k‖≤K

‖zk‖s

)
.

The terms in this sum are estimated using the Cauchy–Schwarz inequality,

∑
‖k‖≤K

‖zk‖s ≤
( ∑

‖k‖≤K

ω−2|k|
)1/2( ∑

‖k‖≤K

‖ω|k|zk‖2
s

)1/2

.

The first factor on the right-hand side is a finite constant by Lemma 2 of [5], and the
second factor is O(ε) by (22). Hence, we have

‖w‖s−1 ≤ Cε3,

and, therefore, the 2Mlth Fourier coefficient of w is bounded by Cε3ω−s+1
2Ml ≤

Cε3(2Ml)−s+1. In this way, the result follows from (42). �

5.4 Relationship with Actions and Momentum

The almost-invariants J� of the modulated Fourier expansion turn out to be close
to the corresponding harmonic actions (5) of the solution of the non-linear wave
equation,

J� = I� + I−� = 2I� for 0 < � < M, J0 = I0, JM = IM,

and K is shown to be close to the momentum K .
With the same argument as in [5, Theorem 4], we obtain the following result.

Theorem 5.3 Under the conditions of Theorem 4.1, along the semi-discrete solution
(q(t),p(t)) of (12) and the associated modulation sequence z(εt), it holds that

J�

(
z(εt), ż(εt)

) = J�

(
q(t),p(t)

) + γ�(t)ε
3

with
∑M

�=0 ω2s+1
� γ�(t) ≤ C for t ≤ ε−1. All appearing constants are independent of

ε, M , and t .

For the momentum, we have the following theorem.

Theorem 5.4 Under the conditions of Theorem 4.1, along the semi-discrete solution
(q(t),p(t)) of (12) and the associated modulation sequence z(εt), it holds that

K
(
z(εt), ż(εt)

) = K
(
q(t),p(t)

) +O
(
ε3) +O

(
ε2M−s

)
.

Proof Separating in (41) the terms with k = ±〈j 〉 and applying the bound (21) to the
remaining terms, we find

K(z, ż) =
∑′

|j |≤M

jωj

(|z〈j〉
j |2 − |z−〈j〉

j |2) +O
(
ε3).
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In terms of the Fourier coefficients of the modulated Fourier expansion q̃j (t) =∑
‖k‖≤K zk

j (εt)ei(k·ω)t and p̃j (t) = d
dt

q̃j (t), we have

K[z] =
∑′

|j |≤M

j
ωj

4

(∣∣̃qj + (iωj )
−1p̃j

∣∣2 − ∣∣̃qj − (iωj )
−1p̃j

∣∣2) +O
(
ε3)

= K(̃q, p̃) +O
(
ε3) +O

(
ε2M−s

)

= K(q,p) +O
(
ε3) +O

(
ε2M−s

)
,

where we have used the bound (21). The O(ε2M−s) comes from the boundary terms
in the sum. The last equality is a consequence of the remainder bound of Theo-
rem 4.1. �

With an identical argument to that of [5, Sect. 4.5], Theorems 5.1–5.4 yield the
statement of Theorem 3.1 by patching together many intervals of length ε−1. For the
momentum, the same argument gives the bound

|K(t) − K(0)|
ε2

≤ C
(
ε + M−s + εtM−s+1) for 0 ≤ t ≤ ε−N+1

instead of that of Theorem 3.2.

6 Consequences of Long-Time Spatial Regularity

In this section, we provide proofs of Theorems 3.2 and 3.3, which are based on the
regularity estimate (17).

6.1 Conservation of Momentum

Inserting the exact solution ũ(x, t) of (1) with starting values ũ(x,0) = uM(x,0) and
∂t ũ(x,0) = vM(x,0) into (23) yields

∂2
t ũ − ∂2

x ũ + ρũ +Qg(̃u) = d

with a defect d = Qg(̃u) − g(̃u). Under condition (16), it is known from [5] that
‖ũ(·, t)‖s+1 ≤ Cε on intervals of length ε−1. With the variation of constants formula,
it then follows as in [5, Sect. 3.13] that with ṽ = ∂t ũ,

∥∥uM(·, t) − ũ(·, t)∥∥1 + ∥∥vM(·, t) − ṽ(·, t)∥∥0 ≤ Ct max
0≤σ≤t

∥∥d(·, σ )
∥∥

0

for t ≤ ε−1 and, together with Lemma 4.2,
∥∥d(·, t)∥∥0 ≤ CM−s−1

∥∥g
(̃
u(·, t))∥∥

s+1.

For g analytic in a neighbourhood of 0, the bound (17) implies, via g(0) = g′(0) = 0
and (29), that ‖g(̃u(·, t))‖s+1 ≤ C‖ũ(·, t)‖2

s+1 ≤ Cε2. Hence,

∥∥d(·, t)∥∥0 ≤ Cε2M−s−1 for t ≤ ε−1.
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This implies that on the short interval 0 ≤ t ≤ ε−1,
∣∣K(

uM(·, t), vM(·, t)) − K
(̃
u(·, t), ṽ(·, t))∣∣ ≤ Ctε3M−s−1.

To get the momentum conservation over a longer time interval, we introduce the grid
tn = nε−1, and we consider the local solution (̃un, ṽn) of (1) corresponding to initial
values (uM(·, tn), vM(·, tn)). Since K is exactly conserved along (̃un, ṽn), we have
for tn+1 ≤ ε−N+1,

∣∣K(
uM(·, tn+1), v

M(·, tn+1)
) − K

(
uM(·, tn), vM(·, tn)

)∣∣
= ∣∣K(

uM(·, tn+1), v
M(·, tn+1)

) − K
(̃
un(·, tn+1), ṽn(·, tn+1)

)∣∣
≤ C(tn+1 − tn)ε

3M−s−1.

The last estimate holds uniformly in n because of the regularity estimate (17). Sum-
ming up the telescoping sum yields the estimate of Theorem 3.2.

6.2 Conservation of Energy

We finally prove Theorem 3.3. We note that by (2, 5, 11, 13),

H
(
uM(·, t), vM(·, t)) = HM

(
q(t),p(t)

) − ωMIM

(
uM(·, t), vM(·, t))

+ 1

2π

∫ π

−π

(
U

(
uM(x, t)

) −QU
(
uM(x, t)

))
dx.

By the Cauchy–Schwarz inequality and Lemma 4.2, the last term is bounded by
CM−s−1‖U(uM(·, t))‖s+1. For U analytic in a neighbourhood of 0, the bound (17)
implies, via U(0) = U ′(0) = U ′′(0) = 0 and (29),

∥∥U
(
uM(·, t))∥∥

s+1 ≤ C
∥∥uM(·, t)∥∥3

s+1 ≤ Cε3 for t ≤ ε−N+1.

By Theorem 3.1,
∣∣ωMIM

(
uM(·, t), vM(·, t)) − ωMIM

(
uM(·,0), vM(·,0)

)∣∣ ≤ Cε3ω−2s
M .

Since HM is conserved exactly along the solution of (12), these estimates yield the
statement of Theorem 3.3.
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