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Abstract RNA viruses exist in large intra-host populations which display great geno-
typic and phenotypic diversity. We analyze a model of viral competition between two
viruses infecting a constantly replenished cell pool. We assume a trade-off between
the ability of the virus to colonize new cells (cell killing rate or virulence) and its
local competitiveness (replicative success within coinfected cells). We characterize
the conditions that allow for viral spread by means of the basic reproductive number
and show that a local coexistence equilibrium exists, which is asymptotically stable.
At this equilibrium, the less virulent competitor has a reproductive advantage over
the more virulent colonizer reflected by a larger equilibrium population size of the
competitor. The equilibria at which one virus outcompetes the other one are unstable,
i.e., a second virus is always able to permanently invade. We generalize the two-virus
model to multiple viral strains, each displaying a different virulence. To account for
the large phenotypic diversity in viral populations, we consider a continuous spectrum
of virulences and present a continuum limit of this multiple viral strains model that
describes the time evolution of an initial continuous distribution of virulence without
mutations. We provide a proof of the existence of solutions of the model equations,
analytically assess the properties of stationary solutions, and present numerical ap-
proximations of solutions for different initial distributions. Our simulations suggest
that initial continuous distributions of virulence evolve toward a distribution that is
extremely skewed in favor of competitors. At equilibrium, only the least virulent part
of the population survives. The discrepancy of this finding in the continuum limit
with the two-virus model is attributed to the skewed equilibrium subpopulation sizes
and to the transition to a continuum. Consequently, in viral quasispecies with high
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virulence diversity, the model predicts collective virulence attenuation. This result
may contribute to understanding virulence attenuation, which has been reported in
several experimental studies.

Keywords SIR models of viral infection · Competition–colonization dynamics ·
RNA virus · Evolution of virulence · Attenuation of virulency

1 Introduction

RNA viruses are fast evolving pathogens that can adapt to continuously changing
environments. Due to their error-prone replication, large population size, and high
turnover, RNA virus populations exist as quasispecies (Eigen et al. 1988; Holland
et al. 1992; Domingo and Holland 1997). The viral mutant spectrum consists of many
genetic variants which give rise to diverse phenotypes. This phenotypic diversity is
reflected in different traits, including the rate of killing host cells, which is referred
to as virulence herein.

The concept of virulence has been used in various areas of the life sciences with
different meanings. In evolutionary biology, the virulence of a pathogen is defined as
the fitness costs to the host that are induced by the pathogen. In epidemiology, the
term usually means the pathogen-induced host mortality. In clinical settings, viru-
lence often refers to the severity of disease symptoms induced by a pathogen. In this
article, we consider intra-host virus dynamics and use the term virulence to denote
the cell killing rate of a virus infecting tissue. Thus, we apply the epidemiological
meaning of virulence to the intra-host viral microepidemics. This definition is related
to the macroscopic or inter-host concept of virulence, because, in general, the cell
killing rate of a virus affects the course of infection and the mortality of the host.

The evolution of virulence has been studied using experimental and theoretical
approaches in a variety of host-pathogen systems and under diverse conditions or
assumptions. In the past few decades, the “conventional wisdom” that well-adapted
pathogens are avirulent has been replaced by the stricter evolutionary reasoning that
successful pathogens exploit their hosts to maximize their number of offspring (An-
derson and May 1982; Ewald 1983). In fact, the basic epidemiological model of in-
fection predicts that pathogens will evolve to maximize their basic reproductive num-
ber (Nowak 2006). Depending on the specific way how infectivity and virulence are
linked in this model, the relationship between pathogens and their hosts can range
from commensalism to high pathogenicity (Bremermann and Thieme 1989).

Because pathogens are exposed to different environmental conditions during
their life cycle, they face different types of selective pressure, and adaptation is
typically controlled by various phenotypic traits that are not independent. In or-
der to investigate the constraints of adaptability and their impact on the evolution
of virulence, several adaptive trade-off theories have been proposed (Bull 1994;
Frank 1996). These models assume finite resources and make an economic argu-
ment by trading off two or more pathogen traits. For example, the trade-off be-
tween rapid pathogen reproduction (virulence) and longer transmission time due
to longer life time of the host is often considered (Bremermann and Thieme 1989;
Bonhoeffer et al. 1996; Cooper et al. 2002). The virulence-transmission trade-off can
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give rise to intermediate or increased virulence, but Lenski and May (1994) have ar-
gued that intermediate virulence levels can lead to reduced virulence in the long run.

Multilevel selection models address the trade-off between pathogen competition
within and among hosts. Krakauer and Komarova (2003) find intermediate virulence
levels when modeling an intracellular trade-off between genome replication capac-
ity and genetic translation applied to polio virus. Coombs et al. (2007) integrate the
evolutionary and ecological processes of infection and study within- versus between-
host competition and find that the strain that maximizes between-host fitness dom-
inates. In the presence of mutation, coexistence is possible, and distributions of di-
verse virulence values with complex dynamics have been observed (Bonhoeffer and
Nowak 1994; Coombs et al. 2007; Boldin and Diekmann 2008). Diverse distributions
of virulence are also predicted by a superinfection model without coinfection, but
with a hierarchy of competitive dominance among strains (Nowak and May 1994;
May and Nowak 1994). In this model, the average virulence increases, and highly
virulent strains can be maintained in the population.

The superinfection model of May and Nowak (1994) is closely related to the
metapopulation model of Tilman (1994), in which coexistence results from spatially
structured habitats. A trade-off between the ability of each individual to colonize un-
occupied territory and to compete with others for the same habitat patch can result
in coexistence of two strategies, competition and colonization. Competitors have an
advantage when competing locally for resources, whereas colonizers are more suc-
cessful in reaching new resources.

Competition–colonization dynamics have recently been demonstrated in an RNA
virus in vitro using an experimental and theoretical approach (Ojosnegros et al.
2010a, 2010b). In this system, highly virulent viral strains play the role of coloniz-
ers, because they kill cells faster and thus replicate faster, which allows faster spread
and colonization of new cells. Local competition arises when two or more differ-
ent viruses infect the same cell and compete for intracellular resources. Competitors
manage to produce more offspring in a cell coinfected together with a colonizer and,
at the same time, extend the cell killing time characteristic of a colonizer, a phenom-
enon known as viral interference.

The competition–colonization coevolutionary dynamics of two different viral
strains in cell culture have been described in Ojosnegros et al. (2010a) by a modi-
fication of the basic model of virus dynamics (Nowak and May 2000a; Perelson and
Nelson 1999). The model predicts that the outcome of viral competition for the cell
monolayer depends on the initial overall number of viruses per cell. Under low initial
density, colonizers produce more total offspring, whereas under high density con-
ditions, coinfection is more likely to occur, and hence competitors have a selective
advantage. This prediction was confirmed experimentally.

In the present article, we make a first step toward transferring the results obtained
in vitro to the in vivo situation under the assumption of a competition–colonization
trade-off. We extend the basic model of competition–colonization dynamics of two
different viral strains in cell culture by replacing the finite cell monolayer with a
constantly replenished pool of uninfected cells. Furthermore, to account for the pos-
tulated competition–colonization trade-off, we archetypically model the intracellular
fitness of the viruses during coinfection as being inversely proportional to their re-
spective virulence. Like any adaptive trade-off theory, our model is a metaphor for
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host-pathogen systems that highlights a specific aspect of the evolution of virulence,
namely the interplay between competition and colonization strategies (Frank 1996).

We present a rigorous analytical study of this model and demonstrate that it allows
for local asymptotically stable coexistence of competitors and colonizers. Moreover,
the less virulent competitor is shown to have a reproductive advantage reflected by
its higher abundance and a higher number of cells infected with it at equilibrium.

We generalize this model by considering more than two viral variants. We as-
sume that different viral strains can only be distinguished through their virulences
and ask how a distribution of virulences is modified in the course of the infection
by the competition–colonization dynamics. In other words, we study the time evo-
lution of a distribution of virulences. While simulation results for a finite number of
viral strains will be presented elsewhere (Ojosnegros et al., in preparation), here we
account for the high phenotypic diversity of RNA virus populations by considering
the continuum limit of this multiple-viral-strain model. In the continuum limit, we
consider a continuous interval of virulence values and model the time evolution of a
continuous distribution of virulence. We provide a proof of the existence of solutions
of this model’s equations, analytically assess the properties of stationary solutions,
and present numerical approximations.

Our simulations suggest that initial continuous distributions of virulence evolve
toward a distribution which is heavily skewed in favor of competitors such that, even-
tually, only the least virulent part of the population will survive. This finding is in
contrast to the coexistence equilibrium of the two-virus model. It is a consequence
of the transition to a continuum and the skewed subpopulation sizes at equilibrium.
Thus, the competition–colonization model predicts attenuation of the virus popula-
tion. This result might explain previous observations of suppression of high-fitness
mutants in various viral systems (De la Torre and Holland 1990; Novella et al. 2004;
Turner and Chao 1999; Bull et al. 2006).

This article is organized as follows. In Sect. 2, we formulate the basic model of two
competing viral strains and illustrate our model assumptions. In the Results section,
a detailed analytical study of its equilibrium behavior is presented. In Sect. 3.5, the
multiple-viral-strain model is introduced, and in Sect. 3.6, we derive its continuum
limit. The continuous-virulence model is analyzed both analytically and numerically.
We close in Sect. 4 by discussing some of the model assumptions and consequences
for the evolution of virulence. The supplementary material can be obtained from the
corresponding author upon request via email.

2 Formulation of the Two-Viral-Strain Model

Our modeling approach is based on the basic SIR model of virus dynamics (Nowak
and May 2000b; Perelson and Nelson 1999), which we extend in order to model
two different viral populations giving rise to singly infected and doubly infected or
coinfected cells. It is well known that cells infected with a virus can be significantly
modified and no longer follow the normal biochemical processes. In particular, an
infected cell is transformed into a new living organism that has its own death process.
This new death process defines the average death rate of a population of infected
cells, i.e., the virulence a of the infecting viral strain. In the case of coinfected cells
we assume that the new death rate is imposed by the less virulent infecting strain (see
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Box below). Accordingly, the time evolution of the concentration of two competing
viral strains, uninfected and infected cells, is described by the following system of
ordinary differential equations:

ẋ = λ − dx − βx(v1 + v2)

ẏ1 = βxv1 − βy1v2 − a1y1

ẏ2 = βxv2 − βy2v1 − a2y2

ẏ12 = β(y1v2 + y2v1) − min(a1, a2)y12

v̇1 = Ka1y1 + cK min(a1, a2)y12 − uv1

v̇2 = Ka2y2 + (1 − c)K min(a1, a2)y12 − uv2

(1)

The variable x models the concentration of uninfected cells with an external con-
stant supply of new cells at rate λ, dying at a rate d and being infected with effi-
ciency β . The variables v1 and v2 describe the concentration of strain 1 and strain
2, respectively. The variable yi represents the concentration of cells infected solely
with strain i. These cells die and release viral offspring at rate ai , the virulence of
strain i. The variable y12 models the concentration of cells infected with both viral
strains. These cells die and release viral offspring at rate min(a1, a2) (more on this
below). Free virus of type i is produced at rate ki = Kai , where K is the burst size,
and inactivated at rate u. The parameter c denotes the proportion of strain 1 pro-
duced at the burst of coinfected cells. The state of the system at time t is denoted by
S(t) = (x(t), y1(t), y2(t), y12(t), v1(t), v2(t))

T .
We make the following general assumptions about the parameters:

• All parameters are positive.
• The efficiency with which strain 1 respectively strain 2 infects uninfected cells or

singly infected cells is equal and denoted by β.

• The death rates of strain 1 and strain 2 are equal and denoted by u.

Furthermore, based on the experimental results presented in Ojosnegros et al.
(2010a), see Box below, we assume:

• The burst size of singly and coinfected cells is equal and denoted by K .
• The death rate a12 of coinfected cells is equal to the death rate of cells singly

infected with the least virulent virus, i.e., a12 = min(a1, a2). In other words, this
rate is imposed by the least virulent viral strain.

• To account for the competition–colonization trade-off postulated, we model the in-
tracellular fitness of the viruses during coinfection as being inversely proportional
to their respective virulence by setting c := a−1

1 /(a−1
1 + a−1

2 ). In this archetypical
form of a trade-off, we capture the assumption that poor colonization abilities are
compensated by intracellular competition abilities and vice versa.

Without loss of generality, we can assume that a1 ≤ a2. Thus, strain 1 is the better
competitor, while strain 2 is the better colonizer, and the last three equations of (1)
become

ẏ12 = βy1v2 + βy2v1 − a1y12

v̇1 = Ka1y1 + cKa1y12 − uv1

v̇2 = Ka2y2 + (1 − c)Ka1y12 − uv2
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In Ojosnegros et al. (2010a), the model (1) with λ = 0, d = 0, a1 < a2, and an uncon-
strained (i.e., independent of a1) parameter c > 1/2 was introduced to describe two
competing viral strains in cell culture. These special in vitro conditions of a fixed and
limited amount of target cells allowed for an analytical treatment of the system in the
large initial virus load limit which is not possible in the more general case of system
(1) considered here.

Ojosnegros et al. (2010a) described the diversification of a single purified clone
of foot-and-mouth disease virus into two populations that resembled the eco-
logical strategies of competition and colonization.
The phenotype of the two strategies showed the following main features:

• Colonizers are virulent variants with higher cell killing rate.
• Competitors kill the cells slower than colonizers, but when competitors and

colonizers infect the same cell, the cell dies as slowly as if infected only by
competitors.

• Competitors and colonizers show identical progeny production, that is, the
same burst size.

• Competitors produce more progeny in coinfected cells: When a cell is coin-
fected with both variants, the production of each variant is uneven, and com-
petitors are favored.

• Because of the different replication capacity during independent infections
or during coinfections, the competition–colonization strategies follow a
density-dependent selection. Under low density of viruses, coinfections are
rare, many cells are available, and colonizers spread faster. Under high den-
sity of viruses, coinfections are frequent, and competitors have an advantage.

3 Results

3.1 Establishing Infection

To identify the conditions on the parameters of the model that imply spread of at least
one of the viral strains, we analyze the stability of the (obvious) equilibrium point

S(0) = (
x(0), y

(0)
1 , y

(0)
2 , y

(0)
12 , v

(0)
1 , v

(0)
2

)T := (λ/d,0,0,0,0,0)T

at which the infection dies out. The Jacobian matrix J of system (1) evaluated at S(0)

is

J (S(0)) =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

−d 0 0 0 −βλ/d −βλ/d

0 −a1 0 0 βλ/d 0
0 0 −a2 0 0 βλ/d

0 0 0 −a1 0 0
0 Ka1 0 cKa1 −u 0
0 0 Ka2 (1 − c)Ka1 0 −u

⎞

⎟⎟⎟⎟⎟
⎟
⎠
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The eigenvalues of this matrix are

−d, −a1,
−d(ai + u) + Δi

2d
,

−d(ai + u) − Δi

2d
, i = 1,2,

where Δi := √
d2(ai − u)2 + 4Kaiβλd for i = 1,2. All eigenvalues are real given

that all parameters are assumed to be positive. This equilibrium becomes unstable as
soon as at least one eigenvalue is positive. This happens if and only if −d(a1 + u) +
Δ1 > 0 or −d(a2 + u) + Δ2 > 0, which is equivalent to d(a1 − u)2 + 4Ka1βλ >

d(a1 + u)2 or d(a2 − u)2 + 4Ka2βλ > d(a2 + u)2. The latter expression is in turn
equivalent to Kβλ > du. In other words, it is generically sufficient for viral spread
that

R0 := Kβλ

du
> 1 (2)

For generic parameter values (the fine tuning Kβλ = du cannot be expected), this
condition is also necessary, because Kβλ < du implies that S(0) is asymptotically
stable.

If we consider initial conditions in which yi(0) = 0, y12(0) = 0, vi(0) = 0, and
vj (0) �= 0, where i, j ∈ {1,2}, i �= j, the model reduces to a simple SIR model of
single viral infection (Bonhoeffer et al. 1997; Nowak and May 2000b; Korobeinikov
2004), and we recognize the magnitude R0 as the well-known basic reproductive
number of the infection system. Condition (2) can also be expressed as M := Kβλ −
du > 0. The magnitude M turns out to be algebraically very helpful for our further
analysis of the model.

Having determined a condition on the parameter values that characterizes viral
spread, we next ask whether under these circumstances, the system admits a steady
state in which both viral strains can coexist. The opposite steady state scenario would
be that one of the viral strains outcompetes the other. To this end, we examine further
fixed points of the system and their stability.

3.2 Further Fixed Points

Performing algebraic manipulations we found the following nontrivial fixed points of
system (1):

S(1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

x(1)

y
(1)
1

y
(1)
2

y
(1)
12

v
(1)
1

v
(1)
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

:= 1

β

⎛

⎜⎜⎜⎜⎜⎜
⎝

u/K

M/(a1K)

0
0

M/u

0

⎞

⎟⎟⎟⎟⎟⎟
⎠

, S(2) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

x(2)

y
(2)
1

y
(2)
2

y
(2)
12

v
(2)
1

v
(2)
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

:= 1

β

⎛

⎜⎜⎜⎜⎜⎜
⎝

u/K

0
M/(a2K)

0
0

M/u

⎞

⎟⎟⎟⎟⎟⎟
⎠
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and

S∗ =

⎛

⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

x∗
y∗

1

y∗
2

y∗
12

v∗
1

v∗
2

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

:= 1

βK

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

u

a2uM/(a1(M + u(a1 + a2)))

a1uM/(a2(M + u(a1 + a2)))

M2/(a1(M + u(a1 + a2)))

a2KM/(u(a1 + a2))

a1KM/(u(a1 + a2))

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

By the assumed positivity of the parameters and by M > 0 (we assume that viral
spread is possible) all these fixed points are (component-wise) nonnegative and thus
biologically meaningful. We also found a fourth fixed point S− which, nevertheless,
has negative entries for all parameter values considered. Summarizing, we have two
equilibria, S(1) and S(2), in which one of the viral strains outcompetes the other, and
one coexistence equilibrium S∗. The following subsections are devoted to studying
their properties.

3.3 The Coexistence Equilibrium

The Jacobian matrix J (S∗) of system (1) evaluated at the equilibrium point S∗ equals

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

−βλK/u 0 0 0 −u/K −u/K

a2M

u(a1+a2)
− a1M

u(a1+a2)
− a1 0 0 u/K − a2uM

a1K(M+u(a1+a2))

a1M

u(a1+a2)
0 − a2(M+u(a1+a2))

u(a1+a2)
0 − a1uM

a2K(M+u(a1+a2))
u/K

0
a1M

u(a1+a2)

a2M

u(a1+a2)
−a1

a1uM

a2K(M+u(a1+a2))

a2uM

a1K(M+u(a1+a2))

0 Ka1 0
Ka1a2
(a1+a2)

−u 0

0 0 Ka2
Ka2

1
(a1+a2)

0 −u

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

The characteristic polynomial of this matrix is too long to be displayed here. Thus, we
performed its analysis using computer algebra and symbolic computation. Under the
premise of viral spread, i.e., M > 0, we used the computer algebra system Maple™
to show that all coefficients are positive. Furthermore, we used Maple™ to construct
Routh’s table (reviewed in Barnett and Šiljak 1977) and verified that all entries in
its first column are positive (see supplementary material). By Routh’s criterion (re-
viewed in Barnett and Šiljak 1977), all roots of the characteristic polynomial have
strictly negative real parts. As a consequence, the equilibrium point S∗ in which both
viral strains can coexist is a local asymptotically stable fixed point. This holds for all
positive parameter values, provided that M > 0.

The peculiarity of this coexistence equilibrium is that the viral load at equilib-
rium of the competitor, v∗

1 = a2M/(βu(a1 + a2)), is proportional to the relative
virulence of the colonizer. Similarly, the viral load at equilibrium of the colonizer,
v∗

2 = a1M/(βu(a1 + a2)), is proportional to the relative virulence of the competitor.
Thus, the two-viral-strain system (1) not only allows for coexistence of both viral
strains, but it confers the less virulent competitor a reproductive advantage over the
more virulent colonizer. This discrepancy is reflected in the higher concentration of
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competitors, v∗
1/v∗

2 = a2/a1 > 1, and the higher concentration of cells infected with
competitors, y∗

1/y∗
2 = (a2/a1)

2 > 1, at equilibrium.
To analyze which features of the model are responsible for the peculiar proper-

ties of the coexistence equilibrium, we consider the two major model assumptions,
namely the competition–colonization trade-off, c = a−1

1 /(a−1
1 + a−1

2 ), and the cell
killing rate imposed by competitors in coinfected cells, i.e., the factor min(a1, a2)

in the last three equations of model (1). The second assumption turns out to be not
crucial, which can be seen as follows. If we replace the minimum in model (1) by the
maximum and assume that a1 ≤ a2 as before, then we obtain

ẏ12 = β(y1v2 + y2v1) − a2y12

v̇1 = Ka1y1 + cKa2y12 − uv1

v̇2 = Ka2y2 + (1 − c)Ka2y12 − uv2

for the last three equations, while all others remain unchanged. Comparing this model
to the original one, we realize that strain 1 and strain 2 have interchanged their roles
so that the equation for strain 1 now has mixed virulence terms whereas the one
for strain 2 has become homogeneous. In other words, we might as well write the
maximum model as

ẋ = λ − dx − βx(v1 + v2)

ẏ2 = βxv2 − βy2v1 − a2y2

ẏ1 = βxv1 − βy1v2 − a1y1

ẏ12 = βy1v2 + βy2v1 − a2y12

v̇2 = Ka2y2 + c̃Ka2y12 − uv2

v̇1 = Ka1y1 + (1 − c̃)Ka2y12 − uv1

where c̃ := a−1
2 /(a−1

1 + a−1
2 ). This model is equivalent to (1) with a1 and a2 having

switched their roles. The coexistence equilibrium in the maximum model is

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

x∗
y∗

2

y∗
1

y∗
12

v∗
2

v∗
1

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

= 1

βK

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

u

a1uM/(a2(M + u(a2 + a1)))

a2uM/(a1(M + u(a2 + a1)))

M2/(a2(M + u(a2 + a1)))

a1MK/(u(a2 + a1))

a2MK/(u(a2 + a1))

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

at which competitors and cells infected with competitors are more abundant, v∗
1/v∗

2 =
a2/a1 > 1 and y∗

1/y∗
2 = (a2/a1)

2 > 1.
We have compared the effect of the cell killing rate of coinfected cells on the

steady state by testing the smallest and the largest values that are biologically plausi-
ble, namely, min(a1, a2) and max(a1, a2). We argue that any value in between (i.e.,
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a12 ∈ (min(a1, a2), max(a1, a2))) would not make a qualitative difference. Simula-
tion results not presented here support this conjecture. Therefore, the comparison of
the minimum and the maximum models lets us conclude: (1) How two different viral
strains “compromise” within a coinfected cell regarding the cell killing velocity does
not affect the steady state properties of the two-viral-strain model, and (2) the crucial
property is the inverse proportionality between virulence and intracellular fitness dur-
ing coinfection. The functional shape c = a−1

1 /(a−1
1 + a−1

2 ) of this trade-off is likely
to play an important role (see Discussion).

3.4 Single Viral Strain Equilibria

The existence of a local asymptotically stable coexistence equilibrium suggests that
a viral strain can bear the presence of another one. However, to fully address the
question of whether system (1) always allows for a second viral strain to invade tissue
already infected with a different strain, we examine the stability of the equilibria S(1)

and S(2), in which one of the viral strains ousts the other.
The Jacobian matrix of system (1) evaluated at the point S(1) is

J (S(1)) =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

−M/u − d 0 0 0 −u/K −u/K

M/u −a1 0 0 u/K −M/(a1K)

0 0 −M
u

− a2 0 0 u/K

0 0 M/u −a1 0 M/(a1K)

0 Ka1 0 Ka1a2/(a1 + a2) −u 0

0 0 Ka2 Ka2
1/(a1 + a2) 0 −u

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

Assuming viral spread (M > 0), we showed using Maple™ that the leading coeffi-
cient of the characteristic polynomial of J (S(1)) is positive, whereas the independent
coefficient is negative (see supplementary material). By Routh’s criterion, at least
one root of the characteristic polynomial has positive real part. Therefore, the equi-
librium point S(1) in which the competitor outcompetes the colonizer is not stable.
Analogously, we found that the equilibrium point S(2) in which the colonizer outcom-
petes the competitor is also unstable. Both statements hold for all positive parameter
values, provided that M > 0.

However, it is worth mentioning that any trajectory S(t) for which one viral
strain, say of type i, and all cells infected or coinfected with it have disappeared
at some point in time s would stay confined in the corresponding hyperplane Hi :=
{(x, y1, y2, y12, v1, v2)

T | yi = y12 = vi = 0} for all t ≥ s. As mentioned in Sect. 3.1,
within the corresponding hyperplanes, the equilibria S(1) and S(2) become asymp-
totically stable, provided that R0 > 1. Whether a trajectory starting outside Hi flows
into the hyperplane or not remains to be analytically studied. Our simulations do not
show any evidence for this type of behavior.

3.5 Multiple-Viral-Strains Model

A straightforward generalization of our model (1) that accounts for the experimen-
tally observed diversity of viral populations is to consider more than two competing
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viral strains. This generalization raises the question of how many viruses can coin-
fect a cell simultaneously. For example, the multiplicity of HIV-infected spleen cells
has been reported between 1 and 8 with mean 3.2 (Jung et al. 2002). However, for
the sake of mathematical simplicity, we consider here the case in which at most two
viruses can coinfect a cell. We assume that we can distinguish each of the viral strains
via their corresponding virulences ai . As above, we assume inverse proportionality
between virulence and intracellular fitness during coinfection. In other words, the
proportion of strain i produced at the burst of a cell coinfected with strains i and j is
given by ci := a−1

i /(a−1
i + a−1

j ) for all i, j ∈ {1, . . . , n}, i < j , where n ∈ N is the
total number of viral strains modeled. Thus, the equations for the generalized model
read

ẋ = λ − dx − βx

n∑

j=1

vj

ẏi = βxvi − βyi

(
n∑

j=1
j �=i

vj

)

− aiyi, i = 1, . . . , n

ẏlj = β(ylvj + yjvl) − min(al, aj )ylj , l, j = 1, . . . , n and l < j

v̇i = Kaiyi + a−1
i K

(∑

l,j
l<j

1

a−1
l + a−1

j

wi(l, j)min(al, aj )ylj

)
− uvi, i = 1, . . . , n

where wi(l, j) = 1 if l = i or j = i, and otherwise wi(l, j) = 0. The model does not
explicitly account for the order of infection. Nevertheless, to increase the symmetry of
the model and to simplify the notation, we will consider the order of infection events
and separately model the populations ylj and yjl , where the order of the indices
indicates the order of infection with the viral strains l and j . With this notation, in
general, ylj �= yjl , and the variable y12 in the two-viral-strain model (1) refers to
y12 + y21. To be consistent, we have to make sure that for l �= j, the magnitude
ylj + yjl obeys the corresponding equation, that is,

ẏlj + ẏj l = β(ylvj + yjvl) − min(al, aj )(ylj + yjl)

To ensure this, the equation for ylj becomes

ẏlj = βylvj − min(al, aj )ylj , l, j = 1, . . . , n s.t. l �= j

Summarizing, we obtain the following model:

ẋ = λ − dx − βx

n∑

j=1

vj

ẏi = βxvi − βyi

(
n∑

j=1
j �=i

vj

)

− aiyi, i = 1, . . . , n (3)
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ẏlj = βylvj − min(al, aj )ylj , l, j = 1, . . . , n s.t. l �= j

v̇i = Kaiyi + a−1
i

(
n∑

j=1
j �=i

1

a−1
i + a−1

j

K min(ai, aj )(yij + yji)

)

− uvi, i = 1, . . . , n

Note that the magnitude
∑n

j=1 vj (t) is the total viral population at any given point in
time t .

Since the number of equations in this model grows quadratically with the num-
ber n of viral strains, it becomes rather involved to analyze it. In Ojosnegros et al.
(in preparation) the results of numerical simulation for numerically tractable values
of n are presented. Here, in compliance with the quasispecies view of viral popula-
tions, we devise a new approach to studying the evolution of virulence and consider
the continuum limit of the multistrain model (3). In this continuum limit, we con-
sider a continuous spectrum of virulence values and identify viral strains with viru-
lence values. We call the resulting continuum limit the continuous-virulence model.
In this model, the viral quasispecies is represented by a time-dependent continuous
distribution of virulence. Unlike the discrete multiple-viral-strains model, the con-
tinuum approach allows us to study the virulence distribution of diverse RNA virus
populations in a manner independent of the number of different strain types.

3.6 Continuous-Virulence Model

We identify viral strains with their virulence a and denote by v(a, t) the density of
viruses of type a at time t . If we consider an interval [a1, a2] ⊂ (0,1) of possible
virulences (defined and justified in the next subsection), then the initial distribution
of virulences is defined by a continuous density function v(·,0) : R → R which van-
ishes outside the interval [a1, a2]. The continuum limit of model (3) is therefore the
following integro-differential (Cushing 1977) initial-value problem (also known as
Cauchy problem):

ẋ(t) = λ − dx(t) − βx(t)

∫ a2

a1

v(ξ, t) dξ

∂y

∂t
(a, t) = βx(t)v(a, t) − βy(a, t)

(∫ a2

a1

v(ξ, t) dξ

)
− ay(a, t)

∂z

∂t
(a, b, t) = βy(a, t)v(b, t) − min(a, b)z(a, b, t)

∂v

∂t
(a, t) = Kay(a, t) + a−1K

(∫ a2

a1

1

a−1 + b−1
min(a, b)(z(a, b, t)

+ z(b, a, t)) db

)
− uv(a, t)

x(0) = x0, y(ξ,0) = y0(ξ), z(ϑ,μ,0) = z0(ϑ,μ)

v(ξ,0) = v0(ξ)

(4)

For every t ∈ R≥0, the function z(·, ·, t) : [a1, a2] × [a1, a2] → R describes the den-
sity of coinfected cells with respect to the two-dimensional Lebesgue measure on R

2.



The Evolution of Virulence in RNA Viruses 1893

Table 1 Parameters of the model of evolution of virulence during infection. These values were chosen
based on the measurements underpinning Ojosnegros et al. (2010a)

Parameter Description Value Units

λ Natural growth rate of uninfected population 105 (ml·h)−1

d Natural death rate of uninfected population 0.05 h−1

β Rate of infection 5 · 10−8 ml/h

K Burst size 150 dimensionless

u Clearance rate of free virus 0.15 h−1

The value z(a, b, t) is only meaningful for our modeling purposes outside the diag-
onal a = b. Note that the exception j �= i in the sums of the original discrete model
can be neglected here because the values of a real-valued function on a set of measure
zero do not modify the value of the integral.

In Appendix A we provide a proof of the existence of solutions of system (4).

3.6.1 Simulation Results

In order to explore the dynamics of the continuous-virulence model, we numeri-
cally solved the Cauchy problem (4), as described in Appendix B, using typical
parameter values given in Table 1. Because y, z, and v represent concentration
densities, the units of y and v are [concentration]/[virulence], and the unit of z is
[concentration]/[virulence]2. Given that the unit of virulence is [Time]−1, y, z, and v

are measured in units of [Time]/[Volume], [Time]2/[Volume], and [Time]/[Volume],
respectively. The variable x represents a concentration, and its unit is therefore
[Volume]−1.

As stated in Sect. 2, cells infected with a virus are significantly modified and no
longer follow the normal biological processes. As a consequence, compared to popu-
lations of uninfected cells, populations of infected cells display a different death rate,
(i.e., the virulence of the infecting viral strain).

By definition, a death rate must be positive; thus, we have a first lower bound for
possible values of virulence, namely zero. Moreover, the question arises as to whether
the death rate of infected cells (i.e., the virulence of the infecting virus) can become
lower than the natural death rate of uninfected cells. In the case of oncogenic viruses,
this might be possible under certain circumstances; however, we do not intend to
consider this type of scenario here. In conclusion, we assume that the virulence is
bounded from below by d , the natural death rate of uninfected cells.

We set the upper limit of the interval of possible virulence values to 1/2 h−1 based
on general knowledge about how fast RNA viruses can kill a cell and experimental
observations, see García-Arriaza et al. (2006).

The aforementioned lower and upper bounds of virulence imply that, within the
framework of our model, the distribution of virulence in a viral population has to
be confined to the interval [a1, a2] := [d,0.5]. In other words, the support of any
virulence distribution must lie within [d,0.5].



1894 E. Delgado-Eckert et al.

Fig. 1 Time evolution of a uniform initial distribution of virulences. Each panel shows the shape of the
density function at the point in time displayed in its title

Starting from non infected tissue, i.e., x0 = λ/d , y0(ξ) ≡ 0, and z0(ϑ,μ) ≡ 0,
we studied three different initial unnormalized continuous distributions of virulences
given by the densities v(a,0) = v0(a), a ∈ [d,0.5]:
1. A uniform distribution defined by v0(a) = 1[d,0.5](a), where 1[d,0.5] is the in-

dicator function of the set [d,0.5]. The total initial concentration is given by∫
R

v0(a) da = ∫ 0.5
d

v0(a) da = 0.450 ml−1.

2. A truncated Gaussian distribution with mean value μ = 1/4 and standard devia-
tion σ = 1/40 given by v0(a) = 1[d,0.5](a)e−800(a−1/4)2

. The total initial concen-

tration is given by
∫

R
v0(a) da = ∫ 0.5

d
v0(a) da ≈ 0.063 ml−1.

3. A truncated mixture of two Gaussian distributions with mean values μ1 = 1/6,

μ2 = 4/10, equal standard deviations σ1 = σ2 = 1/150, and unequal weights
λ1 = 3/10 and λ2 = 7/10 given by v0(a) = 1[d,0.5]C((3/7)e−11250(a−1/6)2 +
(7/10)e−11250(a−4/10)2

), where C is a constant. The total initial concentration is
given by

∫
R

v0(a) da = ∫ 0.5
d

v0(a) da ≈ 0.024 ml−1.

The time evolution of a flat initial virulence density is shown in snapshots in Fig. 1.
After a very short absorption phase, the density takes an exponential shape in favor
of the most virulent part of the interval which is greatly amplified during the first
13 hours of simulation time. After approximately 14 hours a recession is observed,
which by t = 5.9 days has already decreased the populations’ density by one order
of magnitude. After approximately 8 days a qualitative change takes place, and the
distribution starts loosing its exponential shape to become a nonsymmetric unimodal
distribution with mode around a virulence of 0.275 h−1 at t = 9.9 days. This distri-
bution starts traveling to the left, becomes narrower and more symmetric. By t = 19
days the distribution has moved further to the left and is now almost symmetric. At
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Fig. 2 Time evolution of a Gaussian initial distribution of virulences

Fig. 3 Time evolution of a Gaussian mixture initial distribution of virulences

this point, the dynamics become significantly slower, and we start observing an am-
plification effect. At t = 29 days the distribution starts changing its shape to become
an exponentially shaped distribution, this time in favor of low-virulence competitors.
The changes become very slow, and, at least numerically, the system seems to be
reaching a stationary distribution highly in favor of the smallest virulence values. (In
the supplementary material we provide movies of the simulations depicted by snap-
shots in Figs. 1, 2, and 3.)
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Fig. 4 Time evolution of the expected value E(a)(t) = ∫ a2
a1

ξv(ξ, t)/‖v(b, t)‖dξ of virulence (dashed

curve, vertical axes on the left) and of the total concentration of viruses
∫ a2
a1

v(b, t) db (solid curve, vertical
axes on the right) for three different initial distributions. The crosses mark the value of E(a) at the time
points (>0) depicted in the corresponding evolution-of-distribution-figure (Figs. 1–3)

Despite the prominent differences between the initial distributions, Figs. 2 and
3 reveal similar qualitative properties of the dynamics, namely, a biphasic behavior
comprising an initial phase in which the more virulent parts of the density are ampli-
fied, followed by a second phase in which the less virulent regions predominate. All
three trajectories become very similar once the density becomes unimodal, although
the time scales are significantly different, and all three reach very similar numerically
stationary distributions (see the following subsection).

We also experimented with an initial virulence density derived from the truncated
mixture of two Gaussians described above, namely, the same density except for the
fact that it vanishes at a distance of seven standard deviations left and right from
each of the means μ1 and μ2. More precisely, the density vanishes on the intervals
[d,μ1 − 7σ1], [μ1 + 7σ1, μ2 − 7σ2], and [μ2 + 7σ2, 1/2]. The numerical simulation
(see movie in the supplementary material) reveals dynamics very similar to the ones
depicted in Fig. 3, the main difference being that the exponentially shaped distribution
observed at the onset of numerical stationarity is located to the right of the cut-off
point μ1 − 7σ1 instead of d.

For each of the three initial virulence densities v0(a) listed above, Fig. 4 shows
the time evolution of the expected value E(a) of the virulence at point in time
t , E(a)(t) = ∫ a2

a1
ξv(ξ, t)/‖v(b, t)‖dξ , which is obtained by normalizing with1

‖v(b, t)‖ := ∫ a2
a1

|v(b, t)|db at each point in time t , as the system of integro-partial
differential equations is not norm-preserving. Figure 4 also depicts the time evolution
of the total concentration of viruses

∫ a2
a1

v(b, t) db = ‖v(b, t)‖. In this graph, we can
clearly identify the two different regimes of the biphasic behavior described above.

1‖f ‖ := ∫ a2
a1

|f (x)|dx is indeed a norm in the space L1([a1, a2]).
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This biphasic behavior can also be observed in simulations of the two-viral-strain
model (simulations presented in Ojosnegros et al., in preparation). As a matter of fact,
the simulations suggest that the coexistence equilibrium (see Sect. 3.3) is globally at-
tracting, provided that M > 0. If we assume that this equilibrium is globally attracting
under the premise of viral spread (M > 0), we can conclude that starting from initial
conditions in which the most virulent virus predominates (v2(0) > v1(0)), the system
must undergo this biphasic behavior. On the other hand, starting from initial condi-
tions in which the least virulent virus predominates (v1(0) > v2(0)), the differential
equations for the viral populations at an early stage in which the number of coinfected
cells can be neglected can be written as

v̇1 = Ka1y1 − uv1

v̇2 = Ka2y2 − uv2

Thus, at an early stage, the population v2 of the most virulent virus grows faster than
the population v1 of the least virulent one. Depending on the initial values v1(0) and
v2(0), the most virulent virus might or might not become more numerous than the
least virulent one during the initial phase.

3.6.2 Analytical Assessment of Stationary Solutions

Given the apparent convergence observed in our three simulation experiments, we
speculated whether the exponentially shaped distribution observed toward the end
of the simulations would become steeper and steeper and eventually stabilize as the
(Dirac) delta distribution δa1 with peak at a = a1. To explore this hypothesis, we
formulated the following ansatz for the stationary distributions:

y∗(a) = Yδa1(a)

v∗(a) = V δa1(a)

z∗(a, b) = Zδ(a1,a1)(a, b)

(5)

where δa1 is the one-dimensional delta distribution centered at a1, δ(a1,a1) is the two-
dimensional delta distribution centered at (a1, a1), and Y,V,Z ∈ R are parameters
to be determined. For the x component, the stationary value is just a point x∗ ∈ R,

a fourth parameter to be determined. In order to obtain conditions that determine
these four parameters, we assume that the solution postulated in (5) is stationary, that
is, the right-hand side of (4) should vanish in a distributional sense. The first equation
of (4) yields (recall that

∫
R

δa1(ξ) dξ = ∫ a2
a1

δa1(ξ) dξ = 1)

λ − dx∗ − βx∗V = 0 (6)

The second and third equations of (4) yield

βx∗V δa1(a) − βYδa1(a)V − aYδa1(a) = 0

βYδa1(a)V δa1(a) − min(a, b)Zδ(a1,a1)(a, b) = 0
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These are to be understood in a distributional sense, that is, for any test func-
tion F with support contained in [a1, a2], it should hold (recall that δa1(F ) =∫

R
δa1(ξ)F (ξ) dξ = F(a1))

(
βx∗V δa1(a) − βYδa1(a)V − aYδa1(a)

)
(F )

=
∫

R

(
βx∗V δa1(a) − βYδa1(a)V − aYδa1(a)

)
F(a)da

=
∫ a2

a1

(
βx∗V δa1(a) − βYδa1(a)V − aYδa1(a)

)
F(a)da

= βx∗V F(a1) − βYV F(a1) − a1YF(a1) = 0

Analogously, for any test function F with support contained in [a1, a2]× [a1, a2], we
require

(
βYδa1(a)V δa1(b) − min(a, b)Zδ(a1,a1)(a, b)

)
(F )

=
∫

R2

(
βYδa1(a)V δa1(b) − min(a, b)Zδ(a1,a1)(a, b)

)
F(a, b) da db

=
∫ a2

a1

∫ a2

a1

(
βYδa1(a)V δa1(b) − min(a, b)Zδ(a1,a1)(a, b)

)
F(a, b) da db

= βYV F(a1, a1) − a1ZF(a1, a1) = 0

In particular, for a function F with F(a1) �= 0, it holds

βx∗V − βYV − a1Y = 0 (7)

And analogously, for a function F with F(a1, a1) �= 0, we have

βYV − a1Z = 0 (8)

By the same distributional argument, for any test function F with support contained
in [a1, a2], the fourth equation of (4) yields

(
KaYδa1(a) + a−1K

(∫ a2

a1

1

a−1 + b−1
min(a, b)Z(δ(a1,a1)(a, b)

+ δ(a1,a1)(b, a)) db

)
− uV δa1(a)

)
(F )

=
∫ a2

a1

KaYδa1(a)F (a)da + K

(∫ a2

a1

∫ a2

a1

a−1

a−1 + b−1
min(a, b)Z(δ(a1,a1)(a, b)

+ δ(a1,a1)(b, a))F (a) db da

)
−

∫ a2

a1

uV δa1(a)F (a)da

= Ka1YF(a1) + Ka1ZF(a1) − uV F(a1) = 0
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Again, for a function F with F(a1) �= 0, we have

Ka1Y + Ka1Z − uV = 0 (9)

Summarizing, the stationarity argument has provided us with a system of four non-
linear equations (6), (7), (8), and (9) for the unknown parameters x∗, Y,Z, and V . By
solving this system of equations algebraically we obtain

L(0) =

⎛

⎜⎜
⎝

x(0)

Y (0)

Z(0)

V (0)

⎞

⎟⎟
⎠ :=

⎛

⎜⎜
⎝

λ/d

0
0
0

⎞

⎟⎟
⎠

and

L∗ =

⎛

⎜⎜
⎝

x∗
Y ∗
Z∗
V ∗

⎞

⎟⎟
⎠ := 1

βK

⎛

⎜⎜
⎝

u

uM/(M + ua1)

M2/(a1(M + ua1))

KM/u

⎞

⎟⎟
⎠

where M = Kβλ − du as before.
The solution L(0) represents the state in which the infection dies out. Interestingly,

if we simulate the continuous-virulence model using parameters such that the condi-
tion for viral spread established for the two-viral-strain model is not fulfilled (i.e.,
M < 0), the system evolves toward this state (results not explicitly shown).

The solution L∗ has a remarkable structural similarity with the coexistence so-
lution S∗ we found for the two-viral-strain model. However, the corresponding sta-
tionary solution cannot be regarded as a coexistence solution, because only the least
virulent part of the population survives. The stationarity argument presented above
was strongly validated when we confirmed that in each of the three simulation exper-
iments presented in the previous subsection the following holds:

x(T ) = x∗
∫ a2

a1

y(ξ, T ) dξ = Y ∗

∫ a2

a1

∫ a2

a1

z(ξ, η,T ) dξ dη ≈ Z∗

∫ a2

a1

v(ξ, T ) dξ = V ∗

where T is the total simulation time run.
This concordance provides strong evidence for the convergence of our simulations

toward a stationary solution of (4). There is a small discrepancy in the case of the
integral of z(ξ, η,T ) over [a1, a2] × [a1, a2]. We attribute this discrepancy to the
discretization error that arises during the numerical approximation of the integral
using an equidistant grid on [a1, a2] × [a1, a2].
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With the parameter values L∗ obtained, our ansatz (5) leads us to a nontrivial
stationary solution of (4). While this solution seems to be the point of convergence of
our simulations, it would go beyond the scope of this article to analytically assess its
(local) stability properties.

4 Discussion

We have analyzed the evolution of virulence of an RNA viral quasispecies in which
the cell killing capacity (the virulence ai ) of viruses is inversely related to the in-
tracellular viral fitness within coinfected cells. In the case of two viral strains, this
competition–colonization trade-off allows for stable coexistence of competitors and
colonizers, and each virus type can be invaded by the other. This holds for all positive
parameter values, provided that the conditions for viral spread are given (M > 0).
These conditions do not depend on the particular virulence values ai . However, the
population levels at the coexistence equilibrium do depend on the particular virulence
values ai, and this dependency is in favor of the least virulent viral strain. Moreover,
as substantiated at the end of Sect. 3.6.1, the dynamics of this two-strain system show
a biphasic behavior comprising an initial phase in which the population of the most
virulent strain is more strongly amplified, followed by a second phase in which the
population of the least virulent strain predominates.

Generalizing this two-viral-strain model to multiple viral strains is conceptually
straightforward, but the resulting system of differential equations is difficult to study
analytically. Moreover, the lack of accurate experimental measurements of the actual
number of (in terms of virulence) different strains contained in a viral population
limits the applicability of this modeling approach. Furthermore, the quadratic depen-
dency of the number of equations on the number of strains n constrains the dimension
of the models that can be numerically analyzed (Kryazhimskiy et al. 2007). We cir-
cumvented these issues by considering a continuous spectrum of virulence values
and introducing a model that describes the time evolution of a continuous distribu-
tion of virulences under the same type of competition–colonization trade-off. This
model is naturally derived as the continuum limit of the multiple-viral-strain model,
providing a better modeling framework for the high phenotypic diversity of viral
populations. While the model exhibits a complicated mathematical structure as an
integro-differential Cauchy problem, we were able to provide a simple proof of the
existence of solutions. We solved the Cauchy problem numerically using typical para-
meter values. The discretization step size in the numerical scheme (see Appendix B)
clearly limits the accuracy of the numerical approximations. However, this numeri-
cal limitation does not represent a loss of modeling power, whereas computational
complexity does limit the number of scenarios that can be modeled using the discrete
multiple-strain model.

Our simulation results indicate that the intra-host evolution of virulence is charac-
terized by two phases. During the first phase, colonizers become more frequent, and
the average virulence of the population increases. In the second phase, the abundance
of competitors increases, and the mean population virulence decreases. Eventually,
the virulence distribution takes an exponential shape in favor of the least virulent part
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of the population. In our simulations, this distribution seems to be converging towards
V δa1 , where δa1 is the delta distribution centered at a1, and V ∈ R is a suitable con-
stant. However, convergence takes infinite time, implying that, after a finite period
of time (in our simulations ranging from 1 month to 1.8 years), the exponentially
shaped distribution in favor of the least virulent part of the population becomes the
qualitatively characteristic state of the intra-host viral population.

We assumed that the virulence is bounded from below by d , the natural death rate
of uninfected cells, and bounded from above by 0.5. Accordingly, in the three sim-
ulations presented above we considered initial distributions of virulence with prob-
ability density functions that are positive in the interval [a1, a2] = [d,0.5] and zero
otherwise. However, we have observed in other simulations (one example is pro-
vided as a movie in the supplementary material) that the statements of the previous
paragraph also hold for initial distributions of virulence with support [a1, a2] satis-
fying [a1, a2] ⊂ (d,0.5]. This observation suggests that our conclusions regarding
the steady state of the system are not dependent on the particular virulence value
displayed by the least virulent strain represented in the initial viral population.

As mentioned in Sect. 3.6.2, we made the interesting observation that if we sim-
ulate the continuous-virulence model using parameters such that the condition for
viral spread is not fulfilled (i.e., M < 0), the system evolves toward the zero density
function (results not shown). This outcome seems to be independent of the initial dis-
tributions of virulence used. This result suggests that the condition for viral spread,
which we originally derived for the two-viral-strain model, appears to be still valid
in the continuum limit. This finding raises the general question of the similarities
and differences between the qualitative properties of the dynamics displayed by both
models. We saw that the dynamics of both models show the biphasic behavior de-
scribed above and that the requirements for viral spread seem to be the same. On the
other hand, there is an important difference between the models: While all simula-
tions of the two-viral-strain model we have run converge to the coexistence equilib-
rium S∗, the simulations of the continuum limit model seem to be converging toward
a weighted delta distribution centered at a1, in other words, toward a distribution that
only allows for the existence of the least virulent strain of the initial population. The
explanation for this phenomenon lies in the skewed equilibrium abundances of the
viral subpopulations of different virulence and is highlighted in simulations of the
discrete model (3).

We ran simulations of this model (results presented in Ojosnegros et al., in prepa-
ration) with increasing values of the number n of viral strains, whose corresponding
virulence values were uniformly distributed over the interval [a1, a2]. Analogously
to the simulations presented in Sect. 3.6.1, the initial abundances of each viral strain
obeyed uniform, Gaussian, and Gaussian mixture distributions, respectively. We ob-
served that these simulations converge to an exponentially shaped discrete distribu-
tion in favor of the least virulent strains in the initial population. With an increasing
number of viral strains, this steady-state discrete distribution becomes steeper and
steeper, and some of the most virulent strains become extinct. In other words, at
steady state, coexistence is only possible among the less virulent strains.

In view of this observation, the stationary behavior displayed by the continuum
limit model (4) can be understood as the limit case for n → ∞ of the steady-state
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distribution displayed by the discrete model (3). The similarities in the simulations
of models (3) and (4) are not surprising, given that the system of ODEs solved to
numerically approximate the solution of the continuous virulence system is struc-
turally very similar to the equations of the discrete model, the only difference being
the weights that appear in the Newton–Cotes formulas used to approximate the inte-
grals

∫ a2
a1

v(ξ, t) dξ and
∫ a2
a1

1
a−1+b−1 min(a, b)(z(a, b, t) + z(b, a, t)) db (see Appen-

dix B).
It is well known that RNA viruses replicate with high error rates (see, for in-

stance, Domingo 2006). We can not discard that mutation plays a role in modulat-
ing the evolution of virulence, although in this initial study we have considered a
more simplified scenario. The main outcome of our simulation study, namely the
imposition of competitors over colonizers after a transient domination by the colo-
nizers, seems to be independent of the initial shape of the distribution of virulence.
Thus, we expect that mutations altering the distribution of virulence might delay
the convergence toward a stationary distribution by resetting the dynamic process.
Accordingly, we conjecture that the steady state may occur in the form of a dy-
namic polymorphism of virulent variants, similar to the one described by the qua-
sispecies model (Eigen 1971; Eigen et al. 1988). However, the byphasic behavior of
the competition–colonization model might still hold after implementation of muta-
tion mechanisms. Moreover, we speculate that very high mutational rates could yield
an oscillatory behavior in which the predominance of colonizers and of competitors
alternates.

In conclusion, the two models studied in this article make two major predic-
tions about the evolution of virulence under a competition–colonization trade-off.
First, two viral strains with distinct virulence can coexist, and second, a viral pop-
ulation displaying a range of virulence values will be attenuated and evolve toward
a population of many competitors and very few colonizers. Our model predictions
differ from those of other epidemiological models of infection which predict that
selection maximizes the basic reproductive number of the pathogen. This discrep-
ancy is due to the following model assumptions: (1) We introduce specific variables
and equations to model the populations of coinfected cells, (2) we do not assume
that the viral strain with the highest individual cell killing performance dominates
the events during coinfections, and (3) we assume a competition–colonization trade-
off.

Under these assumptions, selection appears to favor low-virulence competitors, as
long as uninfected cells are constantly replenished, but not unlimited. The attenua-
tion property of the continuous-virulence model may also explain experimental ob-
servations of suppression of high-fitness viral mutants (colonizers), which might have
been displaced by competitors (De la Torre and Holland 1990; Novella et al. 2004;
Turner and Chao 1999; Bull et al. 2006) and intra-host virulence attenuation events
(Sanz-Ramos et al. 2008).

In Ojosnegros et al. (2010a) two foot-and-mouth disease viral strains were re-
ported that had been isolated from a population undergoing viral passaging ex-
periments (see also Box above). Measurement of cell killing rates, intracellu-
lar fitness, and other parameters suggested a competition–colonization trade-off.
These experimental findings motivated the hypothesis that viruses can specialize
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either to improve colonization by fast cell killing or to improve competitive in-
tracellular reproductive success. In our modeling approach, we have implemented
the competition–colonization trade-off using the algebraically simple relationship
c = a−1

1 /(a−1
1 + a−1

2 ), which renders the mathematical analysis convenient. The ac-
tual dependency between virulence ai and intracellular fitness c is likely to be more
complicated and to depend on additional parameters. It would be of biological inter-
est to identify and to characterize virus populations with a competition–colonization
trade-off and to establish the nature of the trade-off experimentally.
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Appendix A: Existence of Solutions of the Continuous-Virulence Model
Equations

If we assume that a solution of the initial-value problem (4) exists, then we can de-
rive the following expressions: Setting V (t) := ∫ a2

a1
v(ξ, t) dξ , we have, for the first

equation, ẋ(t) = λ − dx − βx(t)V (t) and thus

x(t) =
(

x0 +
∫ t

0
λeW(ξ) dξ

)
e−W(t) (A.1)

where W(θ) := ∫ θ

0 d + βV (τ) dτ. The second equation can be solved as

y(a, t) =
(

y0(a) + β

∫ t

0
x(τ)v(a, τ )eUa(τ) dτ

)
e−Ua(t)

where Ua(θ) := ∫ θ

0 a + βV (τ) dτ. Substituting the expression for x(t) into the ex-
pression for y(a, t) gives

y(a, t) =
(

y0(a) + β

∫ t

0
v(a, τ )

(
x0 +

∫ τ

0
λeW(ξ) dξ

)
eUa(τ)−W(τ) dτ

)
e−Ua(t)

=
(

y0(a) + β

∫ t

0
v(a, τ )

(
x0 +

∫ τ

0
λeW(ξ) dξ

)
e(a−d)τ dτ

)
e−Ua(t) (A.2)

The third equation yields

z(a, b, t) =
(

z0(a, b) + β

∫ t

0
y(a, η)v(b, η)emin(a,b)η dη

)
e−min(a,b)t (A.3)

Substituting the expression for y(a, t) allows us to express z(a, b, t) + z(b, a, t) in
terms of v(a, τ ), v(b, τ ), and integrals involving them as

z(a, b, t) + z(b, a, t) = (
z0(a, b) + z0(b, a) + R(a, b, t)

)
e−min(a,b)t
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where

R(a, b, t) := β

∫ t

0

((
v(b, η)y0(a) + v(a, η)y0(b) + Q(a,b, η)

)
emin(a,b)η−Ua(η)

)
dη

Q(a, b, η) := β

∫ η

0

(
v(b, η)v(a, τ )e(a−d)τ + v(a, η)v(b, τ )e(b−d)τ

)

×
(

x0 +
∫ τ

0
λeW(ξ) dξ

)
dτ

Finally, we substitute the expressions obtained for y(a, t) and z(a, b, t) into the
differential equation for v(a, t) obtaining

∂v

∂t
(a, t) = Ka

((
y0(a) +

∫ t

0
βv(a, τ )

(
x0 +

∫ τ

0
λeW(ξ) dξ

)
e(a−d)τ dτ

)
e−Ua(t)

)

+ a−1K

(∫ a2

a1

1

a−1 + b−1
min(a, b)

(
z0(a, b) + z0(b, a)

+ R(a, b, t)
)
e−min(a,b)t db

)
− uv(a, t) (A.4)

A solution of system (4) necessarily has to fulfill this integro-partial differential equa-
tion for the function v(a, t). On the other hand, a solution of the latter equation that
is continuous on [a1, a2] × R and partially differentiable with respect to t and sat-
isfies v(ξ,0) = v0(ξ) allows for constructing a solution of system (4) by means of
substitution of v(a, t) into the expressions (A.1), (A.2), and (A.3).

In order to show that a solution of (4) exists, we consider solutions during a
very short time span [t1, t2] ⊂ [0,∞) within which the values of V (t) and z(a, b, t)

do not significantly change, i.e., V (t) ≈ Vt1 := V (t1) and z(a, b, t) ≈ zt1(a, b) :=
z(a, b, t1) ∀t ∈ [t1, t2]. Given that (4) is autonomous, we may as well consider the
time interval [t1 = 0, t2]. Thus, W(θ) ≈ ∫ θ

0 d + βV0 dτ = θ(d + βV0), Ua(θ) ≈
∫ θ

0 a + βV0 dτ = θ(a + βV0) ∀θ ∈ [0, t2], and
∫ a2
a1

1
a−1+b−1 min(a, b)(z(a, b, t) +

z(b, a, t)) db ≈ ∫ a2
a1

1
a−1+b−1 min(a, b)(z0(a, b) + z0(b, a)) db =: S0(a) ∀t ∈ [0, t2].

With this, (A.4) becomes

∂v

∂t
(a, t) = Ka

(
y0(a) +

(∫ t

0
βv(a, τ )

(
x0 + λ

eτ(d+βV0) − 1

d + βV0

)

× e(a−d)τ dτ

)
e−t (a+βV0)

)
+ a−1KS0(a) − uv(a, t)

where y0(a) = y(a,0), x0 = x(0). Some algebra yields

∂v

∂t
(a, t) = Ka

(
y0(a) +

(
βλ

∫ t

0

βV0

d2 + dβV0
v(a, τ )e(a−d)τ

+ 1

d + βV0
v(a, τ )eτ(a+βV0) dτ

)
e−t (a+βV0)

)
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+ a−1KS0(a) − uv(a, t)

= −uv(a, t) + Kβλae−t (a+βV0)

×
∫ t

0

(
βV0

d2 + dβV0
e(a−d)τ + 1

d + βV0
eτ(a+βV0)

)
v(a, τ ) dτ

+ Kay0(a) + a−1KS0(a)

If we write e−t (a+βV0) as 1 + (−a − βV0)t + O(t2) and neglect terms of quadratic
order, we obtain, for t sufficiently small,

∂v

∂t
(a, t) = −uv(a, t) + Kβλa

(
1 + (−a − βV0)t

)

×
∫ t

0

(
βV0

d2 + dβV0
e(a−d)τ + 1

d + βV0
eτ(a+βV0)

)
v(a, τ ) dτ

+ Kay0(a) + a−1KS0(a)

Let us assume for a moment that a three times differentiable solution exists. Differ-
entiation on both sides yields

∂2v

∂t2
(a, t) = −u

∂v

∂t
(a, t) − Kβλa(a + βV0)

×
∫ t

0

(
βV0

d2 + dβV0
e(a−d)τ + 1

d + βV0
eτ(a+βV0)

)
v(a, τ ) dτ

+ Kβλa
(
1 + (−a − βV0)t

)

×
(

βV0

d2 + dβV0
e(a−d)t + 1

d + βV0
et(a+βV0)

)
v(a, t)

Again, differentiation on both sides gives

∂3v

∂t3
(a, t) = −u

∂2v

∂t2
(a, t) − Kβλa(a + βV0)

×
(

βV0

d2 + dβV0
e(a−d)t + 1

d + βV0
et(a+βV0)

)
v(a, t)

+ Kβλa
(
1 + (−a − βV0)t

)

×
(

βV0

d2 + dβV0
e(a−d)t + 1

d + βV0
et(a+βV0)

)
∂v

∂t
(a, t)

− Kβλa(a + βV0)

(
βV0

d2 + dβV0
e(a−d)t + 1

d + βV0
et(a+βV0)

)
v(a, t)

+ Kβλa
(
1 + (−a − βV0)t

)

×
(

(a − d)βV0

d2 + dβV0
e(a−d)t + a + βV0

d + βV0
et(a+βV0)

)
v(a, t)
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Summarizing, we have

∂3v

∂t3
(a, t) + u

∂2v

∂t2
(a, t) − Kβλa

(
1 + (−a − βV0)t

)

×
(

βV0

d2 + dβV0
e(a−d)t + 1

d + βV0
et(a+βV0)

)
∂v

∂t
(a, t)

= −2Kβλa(a + βV0)

(
βV0

d2 + dβV0
e(a−d)t + 1

d + βV0
et(a+βV0)

)
v(a, t)

+ Kβλa
(
1 + (−a − βV0)t

)
(

(a − d)βV0

d2 + dβV0
e(a−d)t + a + βV0

d + βV0
et(a+βV0)

)
v(a, t)

(A.5)

For each a ∈ [a1, a2], the latter equation is a third-order ordinary differential equa-
tion with variable coefficients. Using standard Lipschitz-continuity arguments (see,
for instance, Sect. 4.3 in Königsberger (2004)), it can be shown that for each a ∈
[a1, a2], the initial-value problem (A.5), together with v(a,0) = v0(a), ∂v

∂t
(a,0) =

−uv0(a) + Kay0(a) + a−1KS0(a) and ∂2v

∂t2 (a,0) = −u(−uv0(a) + Kay0(a) +
a−1KS0(a)) + Kβλa(

βV0
d2+dβV0

+ 1
d+βV0

)v0(a) (which we assume to be continuous
functions of a), must have a unique solution defined on some interval [0, T1] ⊂ [0,∞)

of positive length T1 ∈ R+. Given that the coefficients of (A.5) are continuous
functions of a (which can be interpreted as a parameter in the ODE (A.5) in the
framework of a sensitivity analysis), all the solutions v(a, t) must be continuous
on [a1, a2] × [0, T1] (see, for instance, Theorem 6.1 in Epperson (2007) and also
Sect. 3.1.1 in Deuflhard and Bornemann (2008)). This family of solutions allows us
to construct a local solution (defined on [a1, a2] × [0, T1]) of (4) by means of substi-
tution of v(a, t) into the expressions (A.1), (A.2), and (A.3). The procedure can be
now repeated for a short time interval starting at T1 yielding the next local solution.
A global solution can be obtained by patching together the local solutions and letting
Ti → 0.

Appendix B: Numerical Solution of the Continuous-Virulence Model’s
Equations

To solve the system of equations (4) numerically, we discretized the “virulence-
space” with an equidistant grid Gn([0.05,0.5]) and approximated the integrals∫ a2
a1

v(ξ, t) dξ ≈ ∑
j∈Gn([0.05,0.5]) γj v(j, t) and

∫ a2
a1

1
a−1+b−1 min(a, b)(z(a, b, t) +

z(b, a, t)) db ≈ ∑
j∈Gn([0.05,0.5]) γj

1
a−1+j−1 min(a, j)(z(a, j, t) + z(j, a, t)) using a

Newton–Cotes quadrature formula of seventh order (with weights γj ). After this dis-
cretization step, we obtain, for each pair (a, b) ∈ (Gn([0.05,0.5])×Gn([0.05,0.5])),
the following system of ordinary differential equations:

ẋ(t) = λ − dx(t) − βx(t)
∑

j∈Gn([0.05,0.5])
γj v(j, t)
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dy

dt
(a, t) = βx(t)v(a, t) − βy(a, t)

∑

j∈Gn([0.05,0.5])
γj v(j, t) − ay(a, t)

dz

dt
(a, b, t) = βy(a, t)v(b, t) − min(a, b)z(a, b, t)

dv

dt
(a, t) = Kay(a, t) + a−1K

∑

j∈Gn([0.05,0.5])

(
γj

1

a−1 + j−1

× min(a, j)
(
z(a, j, t) + z(j, a, t)

)) − uv(a, t)

The resulting system of coupled ordinary differential equations is solved numerically.
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